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ABSTRACT 

We compare the effects of interactive and noninteractive complementary nutrients on the growth of an organism in the 
chemostat. We also compare these two situations to the case when the nutrients are substitutable. In previous studies, 
complementary nutrients have been assumed to be noninteractive. However, more recent research indicates that some 
complementary nutrient relationships are interactive. We show that interactive complementary and substitutable nutri-
ents can lead to higher population densities than do noninteractive complementary nutrients. We numerically illustrate 
that if the washout rate is high, an organism can persist at higher densities when the complementary nutrients are inter-
active than when they are noninteractive, which can result in the extinction of the organism. Finally, we present an ex-
ample by making a small adjustment to the model that leads to a single nutrient model with an intermediate metabolite 
of the original substrate as the nutrient for the organism. 
 
Keywords: Chemostat; Growth; Dual Substrate; Complementary Nutrients; Substitutable Nutrients 

1. Introduction 

We consider a basic, resource-based model of growth in 
the chemostat. Such models have applications in ecology 
to model a simple lake and in biotechnology to model the 
commercial bio-reactor. Experimental verification of the 
match between theory and experiment in the chemostat 
can be found in [1]. Basic growth in the chemostat is 
described by the dimensionless system 
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For a detailed discussion of growth in the chemostat 
and a description of the constants  (input of the 
nutrient), yS (yield constant), and D (dilution (washout) 
rate), see Smith and Waltman [2].  

 0S

Two nutrients are complementary if they meet differ-
ent needs for an organism. For example, ammonia pro-
vides nitrogen while glucose provides carbon [3] (build-
ing blocks of protein). Similarly, two nutrients are sub-
stitutable if they meet the same needs for an organism. 
For example, glucose, galactose, maltose, ribose, arabi-
nose, and fructose all provide energy (sugar) [4].  

See Stroot et al. [5], for a recent study of Acinetobac-

ter spp. bacteria in an activated sludge bioreactor system 
using the noninteractive Monod model for multiple nu-
trients.  

However, other research [3,4,6-9] indicates that a 
model of interactive multiple limiting nutrients may be 
more appropriate for some situations. Of particular inter-
est, Lendenmann and Egli [4] discuss several growth 
models appropriate for substitutable interactive nutrients 
and compare them to the growth of E. coli with sugar 
nutrients glucose, galactose, maltose, ribose, arabinose, 
and fructose. Whang et al. [9] perform a similar study 
using bacteria from the wastewater of a food-processing 
plant. On the other hand, Bapat et al. [10] use a Monod 
model to study the growth of A. mediterranei S699 with 
multiple interactive complementary nutrients. Champa- 
gne et al. [11] form a model of cometabolism with two 
interactive complementary nutrients in a well-mixed sys-
tem. Bae and Rittmann [12] develop a dual-limiting mo- 
del, compare the results to experimental data, and ob-
serve that they agree, which provides further evidence 
that a multiple nutrient limiting model might be more 
appropriate in some situations than a single nutrient lim-
iting model. From [12], having an accurate kinetic model 
for dual limitation is essential for a proper design of 
treatment operations such as in bioremediation or con- 
taminated groundwater... Dual limitation also can be 
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critical for predicting the fate of pollutants in certain 
natural environments, such as a deep lake or an ocean... 

To consider a single organism’s growth in the chemo- 
stat for two nutrients, we study the dimensionless system  
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If the nutrients are complementary and noninteractive 
and assuming Monod (or Michaelis-Menten) kinetics 
typical choices of f take the following forms. When as- 
suming that the nutrients are noninteractive, one of the 
nutrients is the limiting nutrient. If the nutrients are com-
plementary and noninteractive, we take f to be  

  1 1 2 2
1 2

1 1 2 2

, min ,
m S m S

f S S
K S K S

 
    

,       (3) 

The biological meaning of (3) is that one of S1 or S2 is 
the limiting nutrient, which is appropriate in modeling 
many situations [3]. If the nutrients are complementary 
and interactive, f has the form 

  1 1 2 2
1 2

1 1 2 2

,
m S m S

f S S .
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        (4) 

Finally, if the nutrients are supplementary, f has the 
form 

  1 1 2 2
1 2

1 1 2 2

,
m S m S

f S S .
K S K S

 
 

        (5) 

and the constants are described in Table 1. (Refer to [13-  

15] or [16]).  

2. Growth in the Chemostat  

Using Thieme’s results from 1992 [17], we show that 
System (2) is asymptotic to a single nonlinear equation. 
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Because the solutions of  and 1 1D    2 2D     
are 1 1 0DtC e  

t 
 as  and 2 2  

as , in the limit as , System (6) is asymp-
totic to the equation  

t 
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Depending on whether the nutrients are complemen-
tary (noninteractive or interactive) or substitutable and 
assuming Monod (or Michaelis-Menten) kinetics typical 
choices of f take the forms given by Equations (3)-(5). 
For all three situations, x = 0 is a boundary rest point. If f 
is given by (4), we the have the additional rest points: as 
the Equation (8) 

Similarly, if f is given by (5), we obtain the additional 
rest points: as the Equation (9) 
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Numerical results using f given by (3) (noninteractive 

complementary), (4) (interactive complementary), and (5) 
(substitutable) using the parameter values given in Table 
2 are illustrated in Figure 1. In the figure, we can ob-
serve that substitutable nutrients lead to higher popula-
tion densities than do complementary nutrients, which is 
not surprising. However, the differences in the densities 
from noninteractive and interactive nutrients are more 
surprising. When the nutrients are interactive, Rows 1 
and 2 show that there can be a second (unstable) equi- 
librium population density. The stable population density 
is attained more quickly when the nutrients are interact- 
tive than when they are noninteractive. Finally, the stable  

population density is generally higher when the nutrients 
are interactive than when they are noninteractive.  

In fact, the population densities can be quite large as 
illustrated in Figure 2. Consider the values listed in Row 
2 of Table 2 (corresponding to Row 2 of Figure 1). In 
Figure 2, we increase D (the washout rate) from D = 
0.25 to D = 0.75 (row 1), D = 1.25 (row 2), and D = 1.75 
(row 3). Observe that as D increases, interactive com-
plementary nutrients lead to higher population densities 
than do noninteractive complementary nutrients. In fact, 
when the washout rate is sufficiently high, extinction 
occurs when the nutrients are noninteractive comple-
mentary while stable persistence occurs when the nutri-  

 
 

Row 1 

Row 2 

Row 3 

Row 4 

 

Figure 1. Modeling growth with noninteractive complementary, interactive complementary, and substitutable nutrients using 
the parameter values given in Table 2. 
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Row 1 

Row 2 

Row 3 

 

Figure 2. Row 1: D = 0.75; Row 2: D = 1.25; Row 3: D = 1.75. 
 
Table 1. Descriptions of the constants in Equations (2)-(5). 

S1
(0), S2

(0) Input concentration of the nutrients S1 and S2 

D Dilution (washout) rate of chemostat  

m1, m2 Maximal growth rate of ith competitor  

K1, K2 Michaelis-Menten (half-saturation) constants 

y1, y2 Yield constants 

f (S1, S2) Growth rate 

 
Entes are interactive and complementary. 

3. An Intermediate Metabolite  

A particularly interesting situation occurs when one sub-
stance degrades to a nutrient for the growth of an organ-
ism. Specifically, Sanchez et al. [18], study the particular 

situation in which phenol degrades to an intermediate 
metabolite that is then the primary nutrient for the organ-
ism (bacterium Pseudomonas putida Q5). This situation 
is particularly interesting because a “harmful” substance 
degrades to a state in which it is a nutrient for the organ-
ism under consideration that is growing in the chemostat, 
rendered harmless, and eliminated. To model this situa-
tion, System (2) is adjusted to  
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where a > 0 is a positive constant. Sanchez et al. [18], 
successfully fit a model of the form of System (10) using  
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where  

  2 2
1

1 1 S pp p e
      

and  

  2 2
1

1 1 S nn n e
      

and f2 = a·S2 to data obtained from their study of bacte-
rium Pseudomonas putida Q5. With p = n = 1 and m1 = 
m1m2 (Notation in Equations (3)-(5).) and f2 = a·S2, (11) 
is the same as (4).  

Although we cannot reduce System (10) to a single 
equation as with System (2), we can reduce it to a system 
of two equations. To do so, let  
Then,  and System (10) can rewritten as  
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Because the solution of  is  as 
, in the limit as , System (12) is asymp-
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For the problem to be biologically meaningful, the feasi-
ble region is  
 

    0
2 2 1 2, 0, 0,x S x S S S x       0 .   (14) 

Assuming Monod kinetics, we now assume that f1 
takes the form given by (11) and that n = p = 1 and that 
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with feasible region 

    0
1 1 1 1, 0, 0,x S x S S S x       0 .    (16) 

Again, assuming that f1 takes the form given by (11) 
and that n = p = 1 and that    2 2 2 2 2 2f S m S K S  , 
we find that System (15) has rest points   1

0
0 10,E S   

 
Table 2. Parameter values used for Figure 1. 

 D S1
(0) y1 m1 K1 S2

(0) y2 m2 K2 

1. 0.25 4 1 6 4 2 1 7 4 

2. 0.25 4 1 6 4 2 1 7 8 

3. 0.25 4 2 6 1 2 1 7 8 

4. 0.25 4 1 6 1 2 3 7 8 
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Row 1 

Row 2 

Row 3 

 

Figure 3. Modeling growth when the nutrient is an intermediate state of the substrate using the parameter values in Table 3. 
 

Table 3. Parameter values used for Figure 3. 

 D S1
(0) y1 m1 K1a K1b m2 K2 

1. 0.5 2 1 3 2 2 1 1 

2. 0.5 6 1 3 2 2 1 1 

3. 0.5 8 1 3 2 2 1 1 

 
two cases there are no interior rest points. While in the 
third, when is increased to 8, (3,4), (3,1), and (4,1), 
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= −0.08

More interesting behavior of the systems is illustrated 
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4.56, 0.143) as shown in Table 5. However, in the first  

two rows of Table 5, (x, S1, S2) = (6.23, 2.76, 1) and 
(8.46, 2.54, 1) are stable spirals while in the third row, (x, 
S1, S2) = (2.92, 1.93, 0.143) is an unstable spiral.  

Thus, depending on the parameter values equilibrium 
states may be stable or unstable. Moreover, slight ad-
justments to the parameter values might make a stable 
state unstable and vice-versa.  

4. Conclusions  

In this paper, we have formed a model of g h in a 
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tive complementary nutrients and ractive comple- 
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Figure 4. Modeling growth when the nutrient is an intermediate state of the substrate using the parameter values in Table 4. 
 

Table 4. Parameter values used for Figure 4. 

 D S1
(0) y1 m1 K1a K1b m2 K2 

interactive, the organism will attain a stable population 
density while if the nutrients are noninteractive, the or-
ganism will become extinct. The simulations indicate 
that interactive complementary nutrients frequently lead 
to higher population densities than do noninteractive 
complementary nutrients. This agrees with the experi-
mental results of Whang et al. [9] that show that com-
plementary substrates (glucose and peptone) significantly 
increased hydrogen production by anaerobic hydrogen- 
producing bacteria.  

A slight adjustment to the system leads to a completely 
different interpretation of the model in which the nutrient 
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Table 5. Rest points and eigenvalues of Jacobian for Figure 
4. 
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