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THE MC-DAGUM DISTRIBUTION AND ITS STATISTICAL

PROPERTIES WITH APPLICATIONS

BRODERICK O. OLUYEDE, SASITH RAJASOORIYA

Abstract. In this paper, a new class of distributions called Mc-Dagum dis-

tribution is proposed. This class of distributions contains several distributions
such as beta-Dagum, beta-Burr III, beta-Fisk, Dagum, Burr III and Fisk dis-

tributions as special cases. The hazard function, reverse hazard function, mo-

ments, mean residual life function, Renyi entropy and Fisher information are
obtained. Lorenz, Bonferroni and Zenga curves are derived. Maximum likeli-

hood estimates of the model parameters and numerical examples are given to

illustrate the usefulness of the proposed class of distributions.

1. Introduction

Camilo Dagum [1] proposed the Dagum distribution to fit empirical income
and wealth data, and also accommodate heavy tailed models. Dagum distribution
has both Type-I and Type-II specification, where Type-I is the three parameter
specifications and Type-II deal with four parameter specification. The cumulative
distribution function (cdf) and probability density function (pdf) of the three-
parameter Dagum distribution are given by

(1) G(x;λ, δ, β) =
(
1 + λx−δ

)−β
,

and

(2) g (x;λ, δ, β) = βλδx−δ−1
(
1 + λx−δ

)−β−1
, for λ, δ, β > 0,

respectively, where λ is a scale parameter, and δ and β are shape parameters.
Dagum refers to his model as the generalized logistic-Burr distribution. Actually,
when β = 1, Dagum distribution is referred to as the log-logistic distribution [13].
The most popular Burr distributions are Burr-XLL distribution, often called Burr
distribution with cdf,

(3) F (x; δ, β) = 1−
(
1 + x−δ

)−β
, for x > 0, δ, β > 0,

and more importantly the Burr-III distribution with cdf

(4) F (x; δ, β) =
(
1 + x−δ

)−β
, for x > 0 and δ, β > 0.
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2 RODERICK O. OLUYEDE, SASITH RAJASOORIYA

Dagum distribution is a Burr III distribution with an additional scale parameter
(λ), [13]. The kth moment of Dagum distribution is given by

E
(
Xk
)

= βλ
k
δB

(
β +

k

δ
, 1− k

δ

)
,(5)

for δ > k, λ, δ, β > 0, where B(.,.) is the beta function, (by setting t = (1+λx−δ)−1).
The qth percentile of the Dagum distribution is

(6) x(q) = λ
1
δ (q

−1
β − 1)

−1
δ .

Additional results on the Dagum distribution, including estimation of the parame-
ters for censored data and properties of the beta-Dagum distribution can be seen
in McDonald and Xu [14], Domma and Condino [2] and Domma et al. [3].

1.1. Basic Utility Notions. Some useful functions that are employed in subse-
quent sections are given below. The gamma and digamma functions are given by

Γ (x) =
∫∞
0
tx−1e−t dt and Ψ(x) = Γ

′
(x)

Γ (x) respectively, where Γ
′
(x) =

∫∞
0
tx−1(log t)e−t dt

is the first derivative of the gamma function. The nth-order derivative formula of
gamma function is given by: Γ (n)(s) =

∫∞
0
zs−1(log z)n exp(−z) dz. The lower in-

complete gamma function and the upper incomplete gamma function are

(7) γ(s, x) =

∫ x

0

ts−1e−t dt and Γ (s, x) =

∫ ∞
x

ts−1e−t dt,

respectively.

1.2. Mc-Donald Generalized Distribution. Consider an arbitrary parent cdf
G(x). The pdf f(x) of the Mc-Donald generalized distribution is given by

(8) f(x; a, b, c) =
cg(x)

B(a, b)
Gac−1(x) (1−Gc(x))

b−1
, for a > 0, b > 0, and c > 0.

Note that g(x) is the pdf of parent distribution , g(x) = dG(x)/dx, and a,b and c
are additional shape parameters. Introduction of this additional shape parameters
is specially to introduce skewness. Also, this allows us to vary tail weight. Cordeiro
et al. [6] presented results on the McNormal distribution. Marciano et al. [4]
obtained the statistical properties of the Mc-Γ distribution and applied the model
to reliability data. It is important to note that for c=1 we obtain a sub-model
of this generalization which is a beta-generalization and for a = 1, we have the
Kumaraswamy (Kum) generalized distributions. If a random variable X has the
pdf above, we write X ∼ Mc-G(a,b,c). The cdf for this generalized distribution is
given by

(9) F (x; a, b, c) = IG(x)c(a, b) =
1

B(a, b)

∫ G(x)c

0

ωa−1(1− ω)b−1dω,

where Ix(a, b) = B(a, b)−1
∫ G(x)c

0
ωa−1(1 − ω)b−1dω denotes the incomplete beta

function ratio (Gradshteyn and Ryzhik, [8]). The same equation can be expressed
as follows:

(10) F (x; a, b, c) =
G (x)

ac

aB (a, b)
[2F1 (a, 1− b; a+ 1;G(x)c)] ,
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where

(11) 2F1 (a, b; c;x) = B (b, c− b)−1
∫ 1

0

tb−1 (1− t)c−b−1

(1− tz)a
dt,

is the well known hypergeometric function (Gradshteyn and Ryzhik, [8]), and

B(a, b) = Γ (a)Γ (b)
Γ (a+b) .

An important motivation for the development of the McDonald-Dagum (Mc-D)
distribution is the benefit of this class in its ability to fit skewed data that cannot
properly be fitted in many other existing distributions. Mc-G family of densities
allows for higher levels of flexibility of its tails and has a lot of applications in various
fields. See Cordeiro el al. [5] for additional results on generalized distributions and
McDonald Weibull distribution [7].

The hazard and reverse hazard functions for the Mc-G distribution are given by

(12) hF (x) =
f(x; a, b, c)

1− F (x; a, b, c)
=
cg (x)Gac−1 (x) {1−Gc (x)}b−1

B (a, b)
{

1− IG(x)c (a, b)
} ,

and

(13) τF (x) =
f(x; a, b, c)

F (x; a, b, c)
=
cg (x)Gac−1 (x) {1−Gc (x)}b−1

B (a, b) IGc(x)(a, b)
,

respectively, for a > 0, b > 0, and c > 0.
The outline of this paper is as follows. In section 2, the Mc-Dagum distribution

and related family of distributions are introduced. The series expansion for the
density, hazard and reverse hazard functions, and other properties are presented in
section 3. Section 4 contains the moments, Lorenz, Bonferroni and Zenga curves.
Section 5 deals with measures of uncertainty, including Renyi entropy. Section 6
contains maximum likelihood estimates of the model parameters. Fisher informa-
tion and asymptotic confidence intervals are presented in section 7, followed by
applications in section 8. Some concluding remarks are given in section 9.

2. Mc-Dagum Distribution

In this section, the new class of distributions, called McDonald-Dagum (Mc-D)
distribution is introduced. Considering the properties and some useful features
of both Dagum and Mc-Donald distributions, a broad range of generalization is
possible by combining these distributions. The new class of distributions possess
capabilities widely applicable in several areas including economics, finance and re-
liability.

Now, combining the Mc-G and Dagum distributions, we obtain the pdf of the
Mc-Dagum distribution as follows:

f(x;λ, δ, β, a, b, c) =
cβλδx−δ−1

B(a, b)

(
1 + λx−δ

)−βac−1 [
1−

(
1 + λx−δ

)−cβ]b−1
,

for a, b, c, λ, β, δ > 0. The cdf of this new distribution is given by

(14) F (x) = I(1+λx−δ)−βc (a, b) ,

where

Iy(a, b) = 1
B(a,b)

∫ y
0
ωa−1(1− ω)b−1dω
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is the incomplete beta function. The cdf can also be written as follows:

F (x) =

(
1 + λx−δ

)−βac
aB(a, b)

[
2F1

(
a, 1− b; a+ 1; (1 + λx−δ)−βc

)]
,(15)

where

(16) 2F1 (a, b; c;x) = 1
B(b,c−b)

∫ 1

0
yb−1(1−y)c−b−1

(1−yz)a dy,

is the well-known hypergeometric function, (Gradshteyn and Ryzhik,[8]).
The hazard and reverse hazard functions are given by

hF (x;λ, δ, β, a, b, c) =
cβλδx−δ−1(1+λx−δ)

−βac−1
[1−(1+λx−δ)−cβ]

b−1

B(a,b)

[
1−I

[(1+λx−δ)−βc]
(a,b)

] ,

and

τF (x;λ, δ, β, a, b, c) =
cβλx−δ−1(1+λx−δ)

−βac−1
[
1−(1+λx−δ)

−cβ
]b−1

B(a,b)I
(1+λx−δ)−βc

(a,b)

for a > 0, b > 0, c > 0, λ > 0, β > 0, δ > 0, respectively.

3. Expansion of Distribution

Note that for |ω| < 1, and b > 0, (1− ω)b−1 =
∑∞
j=0

(−1)jΓ (b)
Γ (b−j)j! ω

j . Therefore, the

cdf can be expanded to obtain

F (x;λ, β, δ, a, b, c) =
1

B(a, b)

∫ (1+λx−δ)
−βc

0

ωa−1
∞∑
j=0

(−1)jΓ (b)

Γ (b− j)j!
dω

=

∞∑
j=0

pjG(x;λ, βc(a+ j), δ),(17)

where pj = (−1)jΓ (b)
B(a,b)Γ (b−j)j!(a+j) . Similarly, the pdf is given by

(18) f(x) =

∞∑
j=0

pjg(x;λ, βc(a+ j), δ).

If b is an integer, then the summation in equations (17) and (18) stops at b− 1.
If c = 1, we have a finite mixture of Dagum distribution with pdf

f(x;λ, β, δ, a, b) =

b−1∑
j=0

pjg(x;β (a+ j) , λ, δ).

The graphs below are the pdf, cdf and hazard function of the Mc-Dagum distri-
bution for different values of parameters λ, δ, β, a, b, and c. The graphs of hazard
function shows various shapes including decreasing, unimodal shapes for the select-
ed values of the model parameters.
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3.1. Submodels. With this generalization, we have several sub-models that can
be obtained with specific values of parameters λ, β, δ, a, b and c.

(1) When c = 1, the Mc-Dagum distribution is the beta-Dagum Distribution,
with the density given by:

(19) f(x;λ, β, δ, a, b) =
βλδx−δ−1

B(a, b)

(
1 + λx−δ

)−βa−1 [
1− (1 + λx−δ)−β

]b−1
,

for x > 0, λ > 0, β > 0, δ > 0, a > 0, and b > 0. See Domma and Condino
[3] for additional details.

(2) If a = b = c = 1, we have the Dagum distribution with the pdf,

(20) fD (x;λ, δ, β) = βλδx−δ−1
(
1 + λx−δ

)−β−1
,

for λ, δ, β > 0.
(3) If b = c = 1 and a > 0, then we have the Dagum distribution with param-

eters βa, λ and δ. The pdf is

(21) f (x;βa, λ, δ, ) = βaλδx−δ−1
(
1 + λx−δ

)−βa−1
,

for λ, δ, β > 0.
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(4) If a = c = 1 and b > 0,we have another Beta-Dagum distribution with
parameters b, β, λ, δ and the pdf is given by

(22) fBD (x;λ, δ, β, b) = bβλδx−δ−1
(
1 + λx−δ

)−β−1 [
1−

(
1 + λx−δ

)−β]b−1
,

for λ, δ, β > 0.
(5) If a = c = λ = 1, then we have the beta-Burr III distribution with param-

eters b, β, δ and the pdf is given by

(23) fBB (x; δ, β, b) = bβδx−δ−1
(
1 + x−δ

)−β−1 [
1−

(
1 + x−δ

)−β]b−1
,

for b, δ, β > 0.
(6) If c = β = 1, then we have the beta-Fisk distribution with parameters

a, b, λ, δ and the pdf is given by

(24) fBF (x;λ, δ, a, b) =
λδx−δ−1

B (a, b)

(
1 + λx−δ

)−a−1 [
1−

(
1 + λx−δ

)−1]b−1
,

for a, b, λ, δ > 0.

3.2. Kum-Dagum Distribution. Kumaraswamy [11] in his paper (1980) pro-
posed a two-parameter distribution (Kumaraswamy distribution) defined in (0, 1).
Here we will refer to it as Kum distribution. Its cdf is given by:

F (x; a; b) = 1− (1− xa)
b
, x ∈ (0, 1), a > 0, b > 0.

The parameters a and b are the shape parameters. The Kum distribution has the
pdf given by:

f(x; a, b) = abxa−1(1− xa)b−1, x ∈ (0, 1), a > 0, b > 0.

Note that the Kumaraswamy distribution can be derived from the beta distribu-
tion. Combining cdf of Kumaraswamy distribution with the Dagum distribution
discussed in earlier, we obtain Kum-Dagum distribution with the cdf and pdf given
by

F
Kum

(x) = 1−
[
1−

(
1 + λx−δ

)−βa]b
and

f
Kum

(x) = abβλδx−δ−1
(
1 + λx−δ

)−βa−1 (
1−

[
1 + λx−δ

]−βa)−β−1
,

for a, b, β, λ, δ > 0, respectively. We do not study the properties of the Kum-Dagum
distribution in this paper.

4. Moments and Income Inequality Measures

In this section, we present moments, Lorenz, Bonferroni and Zenga curves for
the Mc-Dagum distribution. Income distribution and its variation is an important
concern for economists. We use the results presented earlier, which was obtained
by expanding the pdf.
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4.1. Moments. We can derive the kth moment of a Mc-D distribution using prop-
erties of the mixture distribution. The kth raw or non-central moments are given
by
(25)

E(Xk) =
∫∞
0
xk cβλx

−δ−1

B(a,b)

(
1 + λx−δ

)−βac−1 (
1−

(
1 + λx−δ

)βc)b−1
dx

= cβλ
B(a,b)

∫∞
0
xk−δ−1

(
1 + λxδ

)−βac−1 (
1−

(
1 + λx−δ

)−βc)b−1
dx.

Now let y−1 =
(
1 + λx−δ

)
then x = (1− y)

−1
δ (λy)

1
δ , and we have

E(Xk) = cβ
δB(a,b)

∫ 1

0
(1− y)

−k
δ (λy)

k
δ yβac−1(1− yβc)b−1dy.

Using the fact that (1−yβc)b−1 =
∑∞
j=1

(−1)jΓ (b)
Γ (b−j)j! (yβc)j , and for pj = (−1)jΓ (a+b)

j!Γ (a)Γ (b−j)(a+j) ,

we obtain

E(Xk) = λ
k
δ cβ

δB(a,b)

∑∞
0

(−1)jΓ (b)
Γ (b−j)j!

∫ 1

0
y
k
δ+βac+βcj−1(1− y)1−

k
δ−1dy

= λ
k
δ cβ

δB(a,b)

∑∞
0

(−1)jΓ (b)
Γ (b−j)j! B(βc(a+ j) + k

δ , 1−
k
δ )

=
∑∞
j=0

pjβc(a+j)λ
k
δ

δ B(βc(a+ j) + k
δ , 1−

k
δ ),

for δ > k.
The mean residual life function (MRLF) denoted by µ(x;λ, β, δ, a, b, c) = µ(x) is

given by
(26)
µ(x) = E[X − x|X ≥ x]

= E(X)−E(X|X≤x)
1−F (x) − x

=
∑∞
j=0

pjβc(a+j)λ
k
δ

δ B(βc(a+j)+ k
δ ,1−

k
δ )−

∑x
0 pj

βc(a+j)λ
k
δ

δ B((1+λx−δ)−1;βc(a+j)+ k
δ ,1−

k
δ )

1−
∑∞
j=0 pjG(x;λ,βc(a+j),δ) − x.

4.2. Lorenz, Bonferroni and Zenga Curves. Lorenz, Bonferroni and Zenga
curves are the most widely used inequality measures in income and wealth distri-
bution, [9]. In this section, we will derive Lorenz, Bonferroni and Zenga curves for
the Mc-Dagum distribution. The Lorenz, Bonferroni and Zenga curves are defined
by

LF (x) =

∫ x
0
tf (t) dt

E(X)
and B(F (x)) =

∫ x
0
tf(t)dt

F (x)E(X)

andA(x) = 1−µ
−(x)
µ+(x) , respectively, where µ−(x) =

∫ x
0
tf(t)dt

F (x) and µ+(x) =
∫ x
0
f(t)dt

1−F (x) =
E(X)−EX>x(X)

1−F (x) are the lower and upper means. For Mc-Dagum distribution, using

these results, we obtain the curves. Lorenz and Bonferroni curves for Mc-Dagum
distribution are given by

(27) LFG(x;Θ) =

∑x
j=0 pjβc(a+ j)λ

1
δB((1 + λx−δ)−1;βc(a+ j) + 1

δ , 1−
1
δ )∑∞

j=0 pjβc(a+ j)λ
1
δB(βc(a+ j) + 1

δ , 1−
1
δ )

,

and
(28)

B(FG(x;Θ)) =

∑x
j=0 pjβc(a+ j)λ

1
δB((1 + λx−δ)−1;βc(a+ j) + 1

δ , 1−
1
δ )∑∞

j=0 pjG(x;λ, βc(a+ j), δ)
∑∞
j=0 pjβc(a+ j)λ

1
δB(βc(a+ j) + 1

δ , 1−
1
δ )
,
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respectively, where Θ = (λ, β, δ, a, b, c). Zenga curve for the Mc-Dagum distribution
is given by

(29) A(x;Θ) = 1− (1−F (x))E[X|X≤x]
F (x)[E(X)−E(X|X≤x)] ,

where E[X|X ≤ x] =
∑x

0 pj
βc(a+j)λ

1
δ

δ B((1+λx−δ)−1;βc(a+j)+ 1
δ , 1−

1
δ ), E(X) =∑∞

j=0 pjβc(a+j)λ
1
δ

δ B(βc(a+ j) + 1
δ , 1−

1
δ ), and F (x) =

∑∞
j=0 pjG(x;λ, βc(a+ j), δ).

5. Measures of Uncertainty

In this section, we discuss the Renyi entropy [15], Shannon entropy [16] and

β̃-entropy for the Mc-Dagum distribution.

5.1. Renyi and Shannon Entropy. For a pdf f(x), the Renyi entropy is given
by

(30) HR(f) =
log

1− s

(∫ ∞
0

fs(x)dx

)
, s > 0, and s 6= 1.

As s→ 1, we obtain the Shanon entropy. Note that,

fs(x) =
(cβλδ)sx−sδ−s

Bs(a, b)

(
1 + λx−δ

)−βacs−s [
1−

(
1 + λx−δ

)−cβ]bs−s
and∫ ∞
0

fs(x)dx =
(cβλδ)s

Bs(a, b)

∫ ∞
0

x−sδ−s(1 + λx−δ)−βacs−s[1− (1 + λx−δ)−cβ ]bs−sdx

=
(cβλδ)s

Bs(a, b)

∫ 1

0

λ−sδ−sy
−sδ−s
δ +βacs+s−2+ 1

δ+1(1− yβc)sb−s(1− y)s−1+
s−1
δ dy.

Using the fact that, for |ω| < 1, (1 − ω)b−1 =
∑∞
j=0

(−1)jΓ (b)
Γ (b−j)j! ω

j , and setting y =

(1 + λx−δ)−1, so that x−δ = y−1−1
λ = 1−y

λy , and λδx−δ−1dx = y−2dy, we obtain

(31)∫∞
0
fs(x)dx = (cβλδ)s

Bs(a,b)

∫ 1

0
λ−sδ−sy

−sδ−s
δ +βacs+s−2+ 1

δ+1(1− yβc)sb−s(1− y)s+
s
δ−

1
δ−1dy

= (cβλδ)sλ1+ 1
δ
−sδ−s

Bs(a,b)

∫ 1

0
yβacs−

s
δ+

1
δ−1(1− y)s+

s
δ−

1
δ−1

∑∞
j=0

(−1)jΓ (sb−s+1)yβcj

Γ (sb−s+1−j)j! dy

= (cβλδ)sλ1+ 1
δ
−sδ−s

Bs(a,b)

∑∞
j=0

(−1)jΓ (sb−s+1)
Γ (sb−s+1−j)j! B(βcj + βacs− s

δ + 1
δ , s+ s

δ −
1
δ ).

Therefore, Renyi entropy for the Mc-Dagum distribution is

HR(f) =
log

1− s

[
(cβλδ)sλ1+

1
δ−sδ−s

Bs(a, b)

∞∑
j=0

(−1)jΓ (sb− s+ 1)

Γ (sb− s+ 1− j)j!
(32)

B

(
βcj + βacs− s

δ
+

1

δ
, s+

s

δ
− 1

δ

)]
for s > 0 and s 6= 1. If bs − s is a positive integer, then the sum in the Renyi
entropy stops at bs− s.
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5.2. β̃-entropy. We also obtain β̃-entropy for the Mc-Dagum distribution. Note
that β̃-entropy is given by

Hβ̃(f) =
1

β̃ − 1

[
1−

∫ ∞
0

f β̃(x)dx

]
, if β̃ 6= 1, and β̃ > 0.

If β̃ = 1, then Hβ̃(f) = E[−log(f(X))] is the Shannon entropy.

For β̃ 6= 1, and β̃ > 0, β̃-entropy for the Mc-Dagum distribution is

Hβ̃(f) =
1

β̃ − 1

[
1− (cβλδ)β̃λ1+

1
δ−β̃δ−β̃

Bβ̃(a, b)

∞∑
j=0

(−1)jΓ (β̃b− β̃ + 1)

Γ (β̃b− β̃ + 1− j)j!

× B

(
βcj + βacβ̃ − β̃

δ
+

1

δ
, β̃ +

β̃

δ
− 1

δ

)]
.

6. Maximum Likelihood Estimates

Let Θ = (λ, β, δ, a, b, c)T . In order to estimate the parameters λ, β, δ, a, b and c of
the Mc-Dagum distribution, we use the method of maximum likelihood estimation.
Let x1, x2, ......., xn be a random sample from f(x;λ, β, δ, a, b, c). The log-likelihood
function L(λ, β, δ, a, b, c) is:

L(λ, β, δ, a, b, c) = nlog(c) + nlog(β) + nlog(λ) + nlog(δ)− nlogB(a, b)

− (δ + 1)

n∑
i=1

logxi − (βac+ 1)

n∑
i=1

log[1 + λx−δi ]

+ (b− 1)

n∑
i=1

log[1− (1 + λx−δi )−cβ ].

Differentiating L(λ, β, δ, a, b, c) with respect to each parameter λ, β, δ, a, b and c
and setting the result equals to zero, we obtain maximum likelihood estimates.
The partial derivatives of L with respect to each parameter or the score function is
given by:

(33) Un(Θ) =

(
∂L

∂λ
,
∂L

∂β
,
∂L

∂δ
,
∂L

∂a
,
∂L

∂b
,
∂L

∂c

)
,

where
(34)

∂L

∂λ
=
n

λ
−βac

n∑
i=1

(
x−δi

1 + λx−δi

)
−

n∑
i=1

x−δi
(1 + λx−δi )

+(b−1)

n∑
i=1

cβ(1 + λx−δi )−cβ−1x−δi
[1− (1 + λx−δi )−cβ ]

,

(35)
∂L

∂β
=
n

β
− ac

n∑
i=1

log(1 + λx−δi ) + c(b− 1)

n∑
i=1

(1 + λx−δi )−cβlog(1 + λx−δi )

[1− (1 + λx−δi )−cβ ]
,

∂L

∂δ
=

n

δ
−

n∑
i=1

log(xi) + λ(βac+ 1)

n∑
i=1

x−δi log(xi)

(1 + λx−δi )

− λcβ(b− 1)

n∑
i=1

x−δi (1 + λx−δi )−cβ−1log(xi)

[1− (1 + λx−δi )−cβ ]
,(36)
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(37)
∂L

∂a
= −n(ψ(a)− ψ(a+ b))− βc

n∑
i=1

log(1 + λx−δi ),

(38)
∂L

∂b
= −n[ψ(b)− ψ(a+ b)] +

n∑
i=1

log[1− (1 + λx−δi )−cβ ],

where ψ(.) is digamma function ψ(x) = d
dx logΓ (x) = Γ ′(x)

Γ (x) , and

(39)
∂L

∂c
=
n

c
− βa

n∑
i=1

log(1 + λx−δi ) + (b− 1)β

n∑
i=1

(1 + λx−δi )−cβlog(1 + λx−δi )

[1− (1 + λx−δi )−cβ ]
.

The MLE of the parameters λ, β, δ, a, b and c, say λ̂, β̂, δ̂, â, b̂ and ĉ are obtained
by solving the following equations, ∂L

∂λ = ∂L
∂β = ∂L

∂δ =∂L
∂a = ∂L

∂b =∂L
∂c =0. There is no

closed form solution to these equations, so numerical technique such as Newton
Raphson method must be applied.

7. Fishers Information Matrix

To obtain the Fishers information matrix (FIM), we derive the second partial
derivatives and cross partial derivatives with respect to each parameter λ, β, δ, a,
b, and c as follows:

(40)
∂2L

∂λ2
=
−n
λ2

+(βac+1)

n∑
i=1

x−2δi

A2
i

+(b−1)

n∑
i=1

cβx−2δi A−cβ−2i [A−cβi − cβ − 1]

[1−A−cβi ]2
,

where, Ai=(1 + λx−δi ),

(41)
∂2L

∂λ∂β
= −ac

n∑
i=1

x−δi
Ai

+ (b− 1)

n∑
i=1

x−δi cA−cβ−1i

[cβlog(Ai)− 1 +A−cβi ]

[1−A−cβi ]2
,

(42)
∂2L

∂λ∂δ
= (−βac− 1)

n∑
i=1

x−δi log(xi)

A2
i

+ (b− 1)

n∑
i=1

cβx−δi A−cβ−1i log(xi)Bi,

where Bi =
1−λx−δi cβA−1

i −λx
−δ
i A−1

i +λx−δi cβA−cβ−1
i −(1+λx−δi )−cβ

[1−A−cβi ]2
,

(43)
∂2L

∂λ∂a
= −βc

n∑
i=1

x−δi
(1 + λx−δi )

,

(44)
∂2L

∂λ∂b
=

n∑
i=1

cβ(1 + λx−δi )−cβ−1x−δi
[1− (1 + λx−δi )−cβ ]

,

(45)
∂2L

∂λ∂c
= −βa

n∑
i=1

x−δi
Ai

+ (b− 1)

n∑
i=1

βx−δi A−cβ−1i [cβlogAi − 1 +A−cβi ]

[1−A−cβi ]2
,

(46)
∂2L

∂β2
=
−n
β2

+ c2(b− 1)

n∑
i=1

(1 + λx−δi )−cβ [log(1 + λx−δi )]2

[1− (1 + λx−δi )−cβ ]2
,

(47)
∂2L

∂β∂δ
= ac

n∑
i=1

Ci + (b− 1)

n∑
i=1

λcA−cβ−1i x−δi logxi[1− cβlogAi −A−cβi ]

[1−A−cβi ]2
,
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where Ci =
λx−δi log(xi)

Ai
,

(48)
∂2L

∂β∂a
= −c

n∑
i=1

log(1 + λx−δi ),

(49)
∂2L

∂β∂b
=

n∑
i=1

c(1 + λx−δi )−cβlog(1 + λx−δi )

[1− (1 + λx−δi )−cβ ]
,

(50)
∂2L

∂β∂c
= −a

n∑
i=1

logAi + (b− 1)

n∑
i=1

A−cβi logAi[cβlogAi +A−cβi − 1]

[1−A−cβi ]2
,

(51)
∂2L

∂δ2
=
−n
δ2

+ λ(βac+ 1)

n∑
i=1

x−δi (logxi)
2A−cβ−1i Di

where Di=
[1−λcβx−δi (1+λx−δi )−1−λx−δi (1+λx−δi )−1−(1+λx−δi )−cβ+λx−δi (1+λx−δi )−cβ−1]

[1−(1+λx−δi )−cβ ]2
.

Also,

(52)
∂2L

∂δ∂a
= λβc

n∑
i=1

x−δi logxi

(1 + λx−δi )
,

(53)
∂2L

∂δ∂b
= −λcβ

n∑
i=1

x−δi (1 + λx−δi )−cβ−1logxi

[1− (1 + λx−δi )−cβ ]
,

(54)
∂2L

∂δ∂c
= λβc

n∑
i=1

Fi − λβ(b− 1)

n∑
i=1

A−cβ−1i x−δi logxi[cβlogAi +A−cβi − 1]

[1−A−cβi ]2
,

where Fi =
x−δi logxi

(1+λx−δi )
,

(55)
∂2L

∂a2
= n

[
(ψ(a+ b))2 − Γ

′′
(a+ b)

Γ (a+ b)
− (ψ(a))2 +

Γ
′′
(a)

Γ (a)

]
,

(56)
∂2L

∂a∂b
= n

[
(ψ(a+ b))2 − Γ

′′
(a+ b)

Γ (a+ b)

]
,

(57)
∂2L

∂a∂c
= −β

n∑
i=1

log(1 + λx−δi ),

(58)
∂2L

∂a2
= n

[
(ψ(a+ b))2 − Γ

′′
(a+ b)

Γ (a+ b)
− (ψ(b))2 +

Γ
′′
(b)

Γ (b)

]
,

(59)
∂2L

∂b∂c
=

n∑
i=1

β(1 + λx−δi )−cβlog(1 + λx−δi )

[1− (1 + λx−δi )−cβ ]
,

and

(60)
∂2L

∂c2
=
−n
c2

+ β(b− 1)

n∑
i=1

β(1 + λx−δi )−cβ [log(1 + λx−δi )]2

[1− (1 + λx−δi )−cβ ]2
.
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Fisher information matrix (FIM) for the Mc-D distribution is:

I(λ, β, δ, a, b, c) =


Iλλ Iλβ Iλδ Iλa Iλb Iλc
Iβλ Iββ Iβδ Iβa Iβb Iβc
Iδλ Iδβ Iδδ Iδa Iδb Iδc
Iaλ Iaβ Iaδ Iaa Iab Iac
Ibλ Ibβ Ibδ Iba Ibb Ibc
Icλ Icβ Icδ Ica Icb Icc

 ,

where Iλλ = −E
[
∂2L
∂λ2

]
,........,Icc = −E

[
∂2L
∂c2

]
. The elements of the 6 X 6 matrix

I(λ, β, δ, a, b, c) can be approximated by the elements of the observed information
matrix, where

Iij(θ) = −E
[
∂2L

∂θi∂θj

]
≈ −∂

2L

∂θi∂θj
= Jn(Θ).

7.1. Asymptotic Confidence Intervals. In this section, we present the asymp-
totic confidence intervals for the parameters of the Mc-Dagum distribution. The
expectations in the Fisher Information Matrix (FIM) can be obtained numerically.

Applying the usual large sample approximation, MLE of Θ, that is, Θ̂ is approxi-
mately N6(Θ, I−1n (Θ)), where In(Θ) is the 6X6 observed information matrix. Under
the condition that the parameters are in the interior of the parameter space but
not on the boundary, the asymptotic distribution of

√
n(Θ̂ −Θ) is N6(Θ, I−1(Θ)),

where I(Θ) = lim
n→∞

n−1In(Θ) and

In(Θ) = n


Iλλ Iλβ Iλδ Iλa Iλb Iλc
Iβλ Iββ Iβδ Iβa Iβb Iβc
Iδλ Iδβ Iδδ Iδa Iδb Iδc
Iaλ Iaβ Iaδ Iaa Iab Iac
Ibλ Ibβ Ibδ Iba Ibb Ibc
Icλ Icβ Icδ Ica Icb Icc

 .

The multivariate normal distribution with mean vector (0, 0, 0, 0, 0, 0)T and co-
variance matrix In(Θ) can be used to construct confidence intervals for the model
parameters. That is, the approximate 100(1 − η)% two-sided confidence intervals
for λ, β, δ, a, b and c are given by:

λ̂± Z η
2

√
I−1λλ (Θ̂), β̂ ± Z η

2

√
I−1ββ (Θ̂), δ̂ ± Z η

2

√
I−1δδ (Θ̂), â± Z η

2

√
I−1aa (Θ̂),

b̂± Z η
2

√
I−1bb (Θ̂), and ĉ± Z η

2

√
I−1cc (Θ̂),

respectively, where Z η
2

is the upper η
2
th

percentile of a standard normal distribution.

We can use the likelihood ratio (LR) test to compare the fit of the Mc-D distri-
bution with its sub-models for a given data set. Note that, to test b = c = 1, the
LR statistic is

ω = 2[ln(L(β̂, δ̂, λ̂, â, b̂, ĉ))− ln(L(β̃, δ̃, λ̃, ã, 1, 1))],

where β̂, δ̂, λ̂, â, b̂, and ĉ, are the unrestricted estimates, and β̃, δ̃, λ̃, and ã are the
restricted estimates. The LR test rejects the null hypothesis if ω > χ2

d
, where χ2

d

denote the upper 100d% point of the χ2 distribution with 2 degrees of freedom.
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Table 1. Estimation of models for failure times data.

Estimates Statistics
Distribution β δ λ a b c −2 ln(L) AIC AICC BIC

Mc-D 4.1652 2.7600 106505 0.01904 45431 4.1652 126.0 138.0 148.5 142.3
(5.3470) (0.3228) (2.966E-6) (0.01999) (0.04933) (5.3470)

B-D 7.2221 8.8376 3.5995 0.6595 0.04258 - 147.1 157.1 163.8 160.6
(2.9051) (0.5793) (6.9162) (0.8025) (0.01171) -

B-BIII 0.8308 0.09752 - 290.58 172.49 - 131.3 139.3 143.3 142.1
(0.03511) (0.01684) - (0.2349) (0.1349) -

D 1.1568 1.5295 77.9568 - - - 131.6 137.6 139.8 139.7
(0.6532) (0.3450) (123.96) - - -

BIII 1.3821 1.2237 - - - - 136.0 140.0 141.0 141.5
(0.04983) (0.03518) - - - -

Mc-W - 8.8539 0.01463 0.006759 362.23 13.2979 126.0 136.0 142.5 139.5
(0.4082) (0.001952) (0.009667) (12.1191) (18.8857)

8. Numerical Application: Mc-Dagum and Sub-Distributions

In this section, applications based on real data, as well as comparison of the Mc-
Dagum distribution with its sub-models are presented. We provide examples to
illustrate the flexibility of the Mc-Dagum distribution in contrast to other models
for data modeling. These data sets are modeled by the Mc-D distribution and com-
pared with the corresponding sub-models, including the Dagum distribution. The
first data set (Lawless [12]) represent the failure times, in minutes, of 15 electronic
components in an accelerated life test and they are as follows: 1.4, 5.1, 6.3, 10.8,
12.1, 18.5, 19.7, 22.2, 23, 30.6, 37.3, 46.3, 53.9, 59.8, 66.2. The second data set
presented in Tables 2 and 3 represents the salaries (in dollars) of 818 professional
baseball players for the year 2008. We fit Mc-Dagum(Mc-D), beta-Dagum (B-D),
beta-Burr III (B-BIII), Dagum (D) and McDonald Weibull (Mc-W) distributions
to these data using the method of maximum likelihood estimation. The MLEs of
the parameters (with standard errors in parenthesis), Akaike Information Criterion
(AIC), Bayesian Information Criterion (BIC) for the fitted models are presented in
Tables 1 and 4. The Mc-Weibull pdf [7] is given by

(61) f(x;λ, δ, a, b, c) =
cδλδxδ−1

B(a, b)
e−(λx)

δ

(1− e−(λx)
δ

)ac−1[1− (1− e−(λx)
δ

)c]b−1,

for λ, δ, a, b, c > 0 and x > 0.
The maximum likelihood estimates (MLEs) of the parameters are computed

by maximizing the objective function via the subroutine NLMIXED in SAS. The
estimated values of the parameters (standard error in parenthesis), -2log-likelihood
statistic, Akaike Information Criterion, AIC = 2k − 2 ln(L), Bayesian Information
Criterion, BIC = k ln(n) − 2 ln(L), and Consistent Akaike Information Criterion,

AICC = AIC + 2 k(k+1)
n−k−1 , where L = L(Θ̂) is the value of the likelihood function

evaluated at the parameter estimates, n is the number of observations, and k is
the number of estimated parameters are presented in Tables 1 and 4 for the Mc-D
distribution and its sub-distributions.

For the failure time data set, the likelihood ratio statistics for the test of the
hypotheses H0 : B-D against Ha : Mc-D and H0 : BIII against Ha : Mc −D are
21.1 (p-value< 0.00001) and 10 (p-value < 0.05), respectively. Also, the likelihood
ratio statistic for the test of H0 : B-BIII against Ha : Mc-D is 5.3 (p-value=0.07065).
Consequently, we reject the null hypothesis in favor of the Mc-D distribution and
conclude that the Mc-D distributions are significantly better than the Dagum and
Beta-Dagum distributions based on the LR statistic. The values of the statistics
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Table 2. Baseball Player Salary (×106)

0.403 1.75 6 0.4345 4.956237 5.5 0.75 0.475 1.5
11.666666 13 0.4186 2.5 0.406 13.1 1.775 2.7875 0.4

0.8 6.25 0.404 1 1.0325 0.42245 9 4.05 0.4
8.75 1.75 5.9 1.75 4 0.4551 3.125 0.975 5.5
1.5 5 1.5 1.7 10 15 0.4073 1.4 8
6.25 0.441 3.65 2 0.800002 33 0.4 1.98125 0.424
0.5 1.5 0.4363 3.5 1 15.285714 1.25 3.666666 0.75

0.401 5.5 0.4142 0.4275 0.403 5.4 0.4115 7 0.4
7.5 0.4 1.95 19 0.4 20.625 0.5 0.675 0.452
3.05 5 4.766666 5.5 7 0.432975 0.4044 8.25 0.445
3.5 4 0.4275 0.75 0.414 5 0.4324 0.4333 2.8

0.425 6.25 10 2.3 6.925 0.4 0.4309 1.255 0.475
0.7125 7 10 0.75 4.65 0.4 0.4 0.4337 0.425
0.43 1.1 7.05 14 3.25 0.405 0.41 0.75 0.5

0.4115 9 0.415 0.439 6 0.41 11 3.25 2.95
2.535 0.43 1.625 0.61 0.95 0.41 0.675 0.4104 5
2.525 12.5 1.055 1.5 5 4 1.6875 1.000018 0.4
0.4225 0.8 9.375 2.6 4.75 0.4 0.4 6 3.325
0.4 4.2 0.75 0.449 1.6625 0.42 0.4005 0.55
1.45 0.4215 2 0.5 0.4 11.5 4.625 2.1
3.6 7 2 14.811414 0.4 0.4 3.5 1.3

0.4225 1.625 0.401 8 0.426 5.3 1 1.29
2 0.475 3.75 0.425 4.25 2.8 0.404 8
5 0.4075 0.8 0.4245 0.415 0.41 2.9 4.445

0.412 3 5.5 1.2 0.4075 0.41 0.40175 0.4028
6.5 13.25 16.6 1.4 12.75 3.9 2.75 0.4139
1.95 13 0.415 2.9 0.447 5 0.401 1.5
2.5 0.575 0.75 0.421 2.45 0.41 8 1.35

0.4375 0.45 9.875 0.4155 1.3 0.41 0.44 0.4301
0.4325 2.2 0.402 0.411 0.75 1 0.65 0.435
0.42 0.4 0.401 6.083333 0.44 4 4.75 3.2
0.425 16.65 0.408 2.25 0.45 13.5 0.4 0.4159
1.2375 17 0.75 1.3 0.422 0.4 0.41 0.4
0.425 0.575 0.403 3.6 0.4125 0.4 0.475 3.75
3.375 0.5 0.407 4.25 0.4275 3.3 6.5 0.75

1 3.5 0.415 0.457 1.7 0.41 8 6.2
3.45 18.75 0.404 3.75 2.5 0.41 0.4017 3.06
15.5 0.44 4.5 12 7.666666 1.1 9.6 0.40807
1.85 1.3 3.75 3.275 0.525 0.405 0.455 0.40662
2.825 14 1 4 0.4 5.475 0.40175 0.41
10 0.44 0.4 11.4 0.4375 0.8 0.40125 0.43468
0.45 1 12.5 2.7 1.475 0.5 0.4 1.615

8.333666 10 0.4 0.425 0.4661 0.65 1 1
2.885 0.52 14.383049 0.405 1.15 0.46 0.401 0.555
15 6 1 1.8 2.75 1.15 0.404 0.4055
3.7 11.5 0.435 1 0.43 1.635 0.48 0.401

0.405 0.41 3.5 3.575 10.5 2 9.6 0.8
0.41 0.75 10 0.437 0.4 5 18.5 0.5
0.8 0.401 6.3 0.64 11.6 4.35 0.419 3.2
0.4 5.6 2.2 5 11.25 0.405 0.405 0.40473

AIC, AICC and BIC shows that the Mc-D distribution gives smaller values than
B-D, B-BIII, D, BIII, and compares favorably with the Mc-Weibull distribution.

For the baseball player salary data set, the likelihood ratio statistics for the test
of the hypotheses H0 : D against Ha : Mc-D and H0 : B-D against Ha : Mc-D are
519.4 (p-value< 0.00001) and 14.6 (p-value < 0.0002), respectively. Consequently,
we reject the null hypothesis in favor of the Mc-D distribution and conclude that
the Mc-D distribution is significantly better than the Dagum and beta-Dagum
distributions based on the LR statistic. A closer look at the values of the statistics
AIC, AICC and BIC shows that the Mc-D distribution gives smaller values than
B-D, B-BIII, D, BIII, and Mc-Weibull distributions.
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Table 3. (Continued)Baseball Player Salary (×106)

0.415 12 2.8 0.4 0.44 15 9.5 0.65
1.4 0.4025 0.403 0.41 0.43 7.166666 7.75 12.868892
0.4 4.5 4.25 0.46 4 12 13.4 0.41482
0.4 2.65 0.4375 0.403 0.95 2.333333 2.3 0.41176
6.35 0.45 18.971596 10 0.44 6.5 1.4 12
11.5 0.4 0.4 5.775 0.435 12.083333 0.8225 0.41631
0.41 6.25 4.6 8.5 1.152 2.5 2.05 0.41089
0.4 0.55 2.095 15 1.15 8.5 0.413 0.401

7.166666 1.225 0.75 18 19.243682 4.25 0.405 1
0.405 0.405 7 1.6 6.25 0.475 2 1.85

4 13 2.7 0.401 2.625 1.625 0.455 13.054526
0.65 1.325 0.825 0.465 2.8 0.835 3.8 2.5
1.5 0.55 1.3 10 2 11.285714 0.4 0.6

0.445 10.125 2.275 0.405 12 3.125 0.405 2.4
8 0.4175 0.75 0.45 1.6125 2.5 7.666666 0.75
2.4 0.42 3.675 10.4 0.471 0.4 0.4 0.4087
0.42 12.125 10 1.1 2.6 0.4085 0.4 3.75
0.435 0.418 0.735 0.435 0.401 2.425 2.25 1.45
3.35 0.4 1.3 2 0.406 0.402 0.418 14.25
0.8 2.425 0.4 3.665 0.575 0.4015 0.425 2.59
8 5.375 0.4 1.1 0.4 2.15 0.42 0.4139

0.41 2 0.5 3.25 2.2375 2.2 12.25 0.64
0.85 0.4 3.5 3.8 12 0.4015 18 0.4118
8 14 0.4 0.475 6 2.3 0.5 0.4144

0.41 8.5 1.9 5 2.25 0.825 0.4 0.4052
2.4 0.4 0.42 4.75 0.925 1.5 9.85 1.9
2.75 0.4 0.95 0.465 6.125 0.4 2.825 0.4194
0.4 1.5 2.25 1 9.166666 0.4015 0.4 0.85
5 0.418 1.4 0.475 18.876139 7.05 13.302583 7.95
4.5 0.42 0.66 5 4.9 0.4135 0.825 0.4037
2.5 5.1875 0.41 1.825 14 2.5 2.5 0.4023
1.5 2 0.4 0.405 0.4095 2.5 0.4 6.4
0.5 2.25 0.4 3.1 1.7 0.75 0.4 11.625
7.8 0.44 2.4625 7.5 10.5 0.4115 12.137 0.4

11.166666 0.4375 2.4 3.364877 7.75 0.4145 6.5 12
0.4 3.5 0.4125 0.467 0.403075 0.4135 0.405 1.1

0.476 0.4161 0.44 0.404 1.25 6.25 0.95 0.4014
14 3.35 0.4 0.437 16.5 3.2 7.4375 1.015

0.4495 0.4167 0.404 12.433333 1.4 1.875 3.7 4.6875
0.4 2.9375 0.75 0.465 6 0.4 0.411 1.6
0.55 2.5 5.5 1.25 0.432575 7.4 0.5 2
1.5 0.4203 2.225 3.9 0.4033 1.3 3.3125 1.9
0.4 0.4 0.4 0.40075 13 0.4148 0.4 2.6
1 5.5 5.35 2.35 0.414 0.4299 7.5 0.431

1.35 4 0.4 10 21.6 1.255 14.427326 0.4155
12.5 0.4214 0.4 23.854494 3.75 0.75 0.4 8
0.414 0.4461 1.55 15.217401 13 0.4 1 0.4155
9.25 11.5 14.5 0.401 2.125 0.75 0.403 0.4

0.4155 0.4038 1.25 0.4 6.55 0.4 0.43 8
8.333333 3 0.75 0.4025 0.4 0.85 0.65 0.42

Table 4. Estimation of models for baseball player salary data.

Estimates Statistics
Distribution β δ λ a b c −2 ln(L) AIC AICC BIC

Mc-D 47.9710 8.0983 0.000220 0.1053 0.06001 0.8718 2706.2 2718.2 2718.3 2746.4
(9.9363) (0.05615) (0.000014) (0.01043) (0.002683) (0.1580)

B-D 24.7269 8.2030 0.000317 0.1196 0.07237 - 2720.8 2730.8 2730.8 2754.3
(1.0055) (0.02546) (0.000041) (0.01180) (0.003253) -

B-BIII 8.4648 1.2126 - 0.1646 1.0218 - 3367.3 3375.3 3375.3 3394.1
(2.4174) (0.06022) - (0.06231) (0.09221) -

D 70.078 1.0301 0.01163 - - - 3225.6 3231.6 3231.6 3245.7
(34.9306) (0.03011) (0.005860) - - -

BIII 1.3821 1.2237 - - - - 3367.3 3371.3 3371.3 3380.7
(0.04983) (0.03518) - - - -

Mc-W - 0.2562 68.7906 0.01455 4.9316 1315.50 3300.8 3310.8 3310.8 3334.3
(0.01189) (26.4644) (0.003375) (0.1424) (354.12)
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9. Concluding Remarks

We have proposed and presented results on the mathematical and statistical
properties of the Mc-Dagum distribution. This class of distribution contains a
fairly large number of distributions with potential applications to a wide area of
probability and statistics including income and lifetime data analysis. Properties of
the class of Mc-Dagum distributions including the pdf, cdf, moment, hazard func-
tion, reverse hazard function, inequality measures including Lorenz, Bonferroni and
Zenga curves, Fisher information, Renyi entropy and β-entropy are derived. Esti-
mation of the parameters of the models and applications to illustrate the usefulness
of the distribution are also presented.
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