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Abstract

This paper investigates Cauchy and Goursat problems for partial
differential operators. Successive approximation techniques for partial
differential equations and the estimated results are employed to obtain
the existence and the uniqueness of the solutions of such problems. An
extended Darboux-Goursat-Beudon problem is studied.
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1 Introduction

The purpose of this study is to investigate some partial differential equations in-
cluding Cauchy and Goursat problems and extended Darboux-Goursat-Beudon
problem. The majorant and iterative methods are used.

In [2] the investigation of initial value problems of partial differential equa-
tions was initiated. In this paper, another direction is taken to study the same
problems. We shall use the majorant function introduced by [9] to review some
Hormander results. The following problem (P ′) was studied by [6, 7] for the
special case when the coefficients am,0,...,0 vanishes in the hyperspace z0 = 0,
in other words when the operator is Fuchsian.
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In this paper, we shall study the following problems. First we consider

(P )

⎧⎨
⎩

Dβu =
∑

|α|≤m

aαD
αu+ f

Dk
j (u− ϕ)|Ω′

j

= 0, (j, k) ∈ Iβ,

for arbitrary holomorphic functions (aα)|α|≤m, f and ϕ, where

Iβ = {(j, k) : j = 0, 1, ..., n, and k = 0, 1, ..., βj − 1}.
The initial values are supported by the hypersurface zj = 0. Then we solve
the Cauchy-Kovalevskaya problem

(P ′)

⎧⎨
⎩

∑
|α|≤m

aαD
αu = f

Dk
0 (u− ϕ)|Ω′

0

= 0, 0 ≤ k ≤ m− 1,

and the Darboux-Goursat-Beudon problem with mixed data

(P ′′)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∑
|α|≤m

aαD
αu = f

Dk
0 (u− ϕ)|Ω′

0

= 0, 0 ≤ k ≤ m− 2

(u− ϕ)|Ω′
1

= 0.

We start by presenting some basic notations. Let R
n+1 be the (n + 1)-

dimensional Euclidean space, R+ the set of real numbers ≥ 0, R
n+1
+ be the set of

all r = (r0, r1, ..., rn) with rj ∈ R+ and Cn+1 be the (n+1)-dimensional complex
space with variables z = (z0, z1, ..., zn) and Ω an open subset of Cn+1 containing
the origin. We use the standard multi-index notation. More precisely, let Z be
the set of integers, > 0 or ≤ 0, and Z+ be the set of integers ≥ 0. Then Z

n+1
+

is the set of all α = (α0, α1, ..., αn) with αj ∈ Z+ for each j = 0, 1, ..., n. The
length of α ∈ Z

n+1
+ is |α| = α0 + α1 + ...+ αn; α ≤ β means αj ≤ βj for every

j = 0, 1, ..., n; and α < β means α ≤ β and α �= β. If α ∈ Z
n+1
+ and β ∈ Z

n+1
+ ,

we define the operation + by

α + β = (α0 + β0, α1 + β1, ..., αn + βn).

Moreover, we let α! = α0!α1!...αn!,

Dα =

(
∂

∂z0

)α0
(
∂

∂z1

)α1

...

(
∂

∂zn

)αn

,

and use the notation Dj = ∂
∂zj
. Also, we let Dα = Dα0

0 Dα1
1 ...Dαn

n . Let u be a

continuous function in Ω; by the support of u, denoted by sup pu, we mean
the closure in Ω of {z : z ∈ Ω, u (z) �= 0}. By Ck (Ω), k ∈ Z+, 0 ≤ k ≤ ∞, we
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denote the set of all functions u defined in Ω, whose derivatives Dαu(z) exist
and continuous for |α| ≤ k. Using the multi-index notation, we may write the
Leibnitz formula

Dβ(uv) =
∑
α≤β

β!

α!(β − α)!
Dβ−αuDαv,

where we assume u, v ∈ C|α| (Ω). If u ∈ C∞ (Ω), we may consider the Taylor
expansion at the origin

u (z) =
∑

α∈�n+1
+

Dαu (0)

α!
zα.

Let H(Ω) denote the set of all holomorphic functions in Ω, that is functions
u (z) ∈ C∞(Ω) given by their Taylor expansion in some neighborhood of the
origin in Ω. A linear partial differential operator P (z;D) is defined by

P (z;D) =
∑
|α|≤m

aα (z)Dα,

where the coefficients aα(z) are in H(Ω). If for some α of length m, the
coefficient aα(z) does not vanish identically in Ω, m is called the order of
P (z;D).

2 Some General Results

We state and prove a general theorem that gives both Cauchy-Kovalevskaya
and Darboux-Goursat-Beudon results.

Theorem 2.1 Let Ω be a neighborhood of Cn+1 containing the origin, β a
multi-indices of Z

n+1
+ such that |β| = m ≥ 1, (aα)|α|≤m, f and ϕ are holo-

morphic functions in Ω. If
∑

|α|=m |aα(0)| < (2e)−m, then there exists Ω′ ⊂ Ω
connected open neighborhood of the origin such that

(P )

⎧⎨
⎩

Dβu =
∑

|α|≤m

aαD
αu+ f

Dk
j (u− ϕ)|Ω′

j

= 0, (j, k) ∈ Iβ ,

has one and only one holomorphic solution on Ω′, where

Ω′
j =

{
z : z ∈ Cn+1, zj = 0

} ∩ Ω′.

Corollary 2.2 Let A =
{
α : α ∈ Z

n+1
+ , |α| = m, aα(0) �= 0

}
. If we replace∑

|α|=m

|aα(0)| < (2e)−m by β /∈ convex hull of A considered as a subset of R
n+1,

then the conclusion of Theorem 2.1 holds.
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To prove Theorem 2.1 we need the following lemmas.

Lemma 2.3 Let D = {ζ : ζ ∈ C, |ζ | < 1} be the unit disc centered at the
origin with radius 1. We define the operator D−1 by

D−1 : H (Ω) 	−→ H (Ω)

v (ζ) 	−→ D−1v (ζ) =

∫
γζ

v (t) dt,

where γζ is the path that relates the origin to ζ in D. If there are a > 1 and
c ≥ 0 such that

|v (ζ) | ≤ c (1 − |ζ |)−a ,

then ∣∣(D−1v
)
(ζ)

∣∣ ≤ c

a− 1
(1 − |ζ |)−a . (1)

Proof: If ζ = 0, then every path in D joining 0 to 0 satisfies (D−1v) (0) = 0
and the estimate holds. If ζ �= 0, we consider γζ = [0, ζ ] . This particular path
does not affect the proof of the lemma since the integral does not depend on
the choice of the path. Consider

γζ =
{
t : t ∈ C, t = reiθ, θ fixed and 0 ≤ r ≤ |ζ |} .

We have

∣∣(D−1v
)
(ζ)

∣∣ ≤
|ζ|∫

0

v
(
reiθ

)
dr

≤
|ζ|∫

0

(1 − r)−a dr

=
−c

1 − a
(1 − |ζ |)−a+1 +

c

1 − a

≤ c

a− 1
(1 − |ζ |)−a+1

≤ c

a− 1
(1 − |ζ |)−a , ζ ∈ D.

This completes the proof.

Lemma 2.4 Let v ∈ H(D) and suppose there are two constants a ≥ 0 and
c ≥ 0 satisfying the following estimate

|v (ζ)| ≤ c (1 − |ζ |)−a , ∀ζ ∈ D.
Then,

|v′ (ζ)| ≤ ce (1 + a) (1 − |ζ |)−a−1 , ∀ζ ∈ D. (2)
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Proof: Set D1 =
{
ζ1 : ζ1 ∈ C, ζ1 = ζ + εeiθ1 ; θ1 ∈ [0, 2π]

}
for ε > 0, ε ∈ ]0, ρ[

and ρ = 1 − |ζ |. It is trivial to show D1 ⊂ D. We have |ζ1| ≤ |ζ | + ε, so that

1 − |ζ1| ≥ 1 − |ζ | − ε

= ρ− ε

and
(1 − |ζ1|)−a ≤ (ρ− ε)−a .

The hypothesis of Lemma 2.4 becomes

|v (ζ1)| ≤ c (ρ− ε)−a ,

with ζ1 ∈ D1 ⊂ D. Using Cauchy’s inequality on the circle with center ζ and
radius ε we get

|v′ (ζ)| ≤ c

ε
(ρ− ε)−a . (3)

We want to minimize the right hand side of (3), namely

f(ε) =
c

ε
(ρ− ε)−a ,

so that

f ′ (ε) = − c

ε2
(ρ− ε)−a +

ac

ε
(ρ− ε)−a−1

=
c

ε2
(ρ− ε)−a−1 [− (ρ− ε) + aε]

=
c

ε2
(ρ− ε)−a−1 [−ρ+ ε (a+ 1)],

and f ′(ε) = 0 if and only if ε = ρ
a+1

, (ε ∈ ]0, ρ[). Therefore f passes by the

minimum
(

ρ
a+1

, f
(

ρ
a+1

))
. Let us compute f

(
ρ

a+1

)
. We have

f

(
ρ

a+ 1

)
= c

(
a+ 1

ρ

)(
ρ− ρ

a + 1

)−a

=
c

ρ
(a+ 1)

(
ρ (a+ 1) − ρ

a + 1

)−a

=
c

ρ
(a+ 1) ρ−a

(
(a + 1) − 1

a+ 1

)−a

=
c

ρ
(a+ 1) ρ−a

(
a

a + 1

)−a

=
c

ρ
(a+ 1) ρ−a

(
a + 1

a

)a

= c (a+ 1)

(
a+ 1

a

)a

ρ−a−1.
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Since
(

a+1
a

)a ≤ e for every a > 0, then

|v′ (ζ)| ≤ c (1 + a) e (1 − |ζ |)−a−1 , ∀ζ ∈ D.
If a = 0, then

|v′ (ζ)| ≤ c

ε

by Cauchy’s inequality. Since ε is arbitrary in ]0, ρ[, we can choose it as follows
ρ
e
≤ ε ≤ ρ and we have

1

ε
≤ ρ−1e ≤ e (1 − |ζ |)−1 .

Consequently,
|v′ (ζ)| ≤ ce (1 − |ζ |)−1 , ∀ζ ∈ D.

This concludes the proof of Lemma 2.4.

Lemma 2.5 Let Pr be the polydisc in Cn+1 containing the origin with radius
r = (r0, r1, ..., rn) with rj ∈ R+, that is Pr = {z, z ∈ Cn+1, |zj | < rj , rj > 0} .
If g ∈ H (Pr), then there is a unique solution u in H(Pr) for the following
problem:

(P )

{
Dβu = g
Dk

ju|(Pr)j
= 0, (j, k) ∈ Iβ , |β| = m ≥ 1.

Proof: We start by showing the uniqueness of the solution u of the problem
(P ).

Uniqueness: Suppose that u exists and u is in H(Pr), then

u(z) =
∑

α∈�n+1
+

uα
zα

α!

for every z ∈ Pr. It is well known that uα = Dβu(0) and Dβu exists due to
the fact that u is C∞ function of z. Now,

g ∈ H (Pr) ⇒ ∀z ∈ Pr : g(z) =
∑

α∈�n+1
+

gα
zα

α!
.

We have

Dβu (z) =
∑

α∈�n+1
+

uα+β
zα

α!

=
∑

α∈�n+1
+

gα
zα

α!
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and by identification uα+β = gα, ∀α ∈ Z
n+1
+ . Set ν = α + β which means α =

ν−β, α ≥ 0. Then uν = gν−β are determined for every ν ∈ Z
n+1
+ , ν−β ≥ 0. We

need to determine uν for which we do not have (ν ≥ β), that is, ∃ j = 0, 1, ..., n
such that νj < βj or (j, k) ∈ Iβ, hence uν = Dνu(0), if not ν ≥ β, by the initial
conditions. Finally, if the solution u exists, then it is unique and we have

u(z) =
∑
ν≥β

gν−β
zν

ν!
.

Existence:
(i) Convergence of the solution u(z): We want to prove the convergence

of the solution u(z) using the majorant method ([6], [9]). To do so, we need to
estimate u(z) by a convergent series and the problem will be solved. We have

u(z) =
∑
ν≥β

gν−β
zν

ν!

=
∑
α≥0

gα
zα+β

(α+ β)!

= zβ
∑
α≥0

gα
zα+β

(α + β)!

and the problem reduces to proving that the series
∑
α≥0

gα
zα+β

(α+β)!
converges.

First, we have the following estimate

|gα|
(α+ β)!

≤ |gα|
α!

, (4)

for every α ≥ 0. Since the term |gα|
α!

of (4) is the general term of a series which
converges on Pr by hypothesis, therefore u converges also on Pr.

(ii) Verification of initial conditions: Let us check that the initial
conditions are satisfied, in other words Dk

ju|(Pr)j
= 0, (j, k) ∈ Iβ . We have

u (z) =
∑
α≥0

gα
zα+β

(α + β)!

=
∑
α≥0

gα

zα0+β0

0 ...z
αj+βj

j ...zαn+βn
n

(α0 + β0)!... (αj + βj)!... (αn + βn)!
,

and

Dk
ju (z) =

∑
α≥0

gα

zα0+β0

0 ...z
αj+βj−k
j ...zαn+βn

n

(α0 + β0)!... (αj + βj − k)!... (αn + βn)!
, (5)
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where (j, k) ∈ Iβ and αj ≥ 0, hence αj + βj − k > 0, and consequently

Dk
ju (z0, ..., zj−1, 0, zj+1, ..., zn) = 0.

Therefore u exists and is unique, which proves the Lemma 2.5.
Remark 2.1 We denote by D−β the inverse operator of Dβ, that is,

D−β : H (Pr) 	−→ H (Pr)

and defined by

D−βg = u ⇔
{
Dβu = g
Dk

ju|(Pr)j
= 0, (j, k) ∈ Iβ .

Lemma 2.6 Let Ω be an open subset of Cn+1 containing the origin such
that Ω ⊃ P 1, where P 1 is the closed polydisc of radius 1 ∈ R

n+1
+ , (aα)|α|≤|β|=m

and v are holomorphic functions in Ω. Then the sequence (vp)p∈�+ ⊂ H(P1)
defined by

v0 = v, vp+1 = D−β

⎛
⎝∑

|α|≤m

aαD
αvp

⎞
⎠ , ∀p ∈ Z+

satisfies the following estimate

|vp (z)| ≤MCp
n∏

j=0

(1 − |zj |)−mp , ∀p ∈ Z+, ∀z ∈ P1 (6)

with M = sup
z∈P 1

|v (z)|, C = A(2e)m and A =
∑

|α|≤m

sup
z∈P 1

|aα (z)|.

Proof: We use the iterative method on p to prove the lemma as we did in [8].
For p = 0, v0(z) = v(z) for every z ∈ P1 and |v(z)| ≤ sup

z∈P 1

|v (z)| = M holds.

Suppose the estimate (6) is true up to the order p, that is,

|vp(z)| ≤MCp
n∏

j=0

(1 − |zj|)−mp, ∀z ∈ P1,

we prove it for p + 1. Set Vp(ζ) = vp (ζ, z1, ..., zn) with (ζ, z1, ..., zn) ∈ P1 and
ζ ∈ D = {ζ : ζ ∈ C; |ζ | < 1}. We have

|Vp (ζ)| ≤ Mp (1 − |ζ |)−mp , (7)

where Mp = MCp
n∏

j=1

(1 − |zj |)−mp. If we apply Lemma 2.4 to (7) with a =

mp ≥ 0, C = Mp ≥ 0, we get∣∣V ′
p (ζ)

∣∣ ≤Mpe (1 +mp) (1 − |ζ |)−mp−1 , ∀ζ ∈ D.
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If we repeat this process α0 times, we obtain∣∣V (α0)
p (ζ)

∣∣ ≤ Mpe
α0 (1 +mp) ... (α0 +mp) (1 − |ζ |)−mp−α0

≤ Mpe
α0 (α0 +mp)α0 (1 − |ζ |)−mp−α0 , ∀ζ ∈ D.

In other words,

|Dα0vp (z0, z1, ..., zn)| ≤Mpe
α0 (α0 +mp)α0 (1 − |z0|)−mp−α0 , ∀z0 ∈ D. (8)

Apply (8) for the other components z1, z2,..., and zn to get

|Dαvp (z)| ≤MCpe|α|
n∏

j=0

(αj +mp)αj (1 − |zj |)−mp−αj , ∀z ∈ P1. (9)

For any α such that |α| ≤ m, we have from (9):

|Dαvp (z)| ≤MCpem (m (p+ 1))m
n∏

j=0

(1 − |zj|)−m(p+1) , ∀z ∈ P1. (10)

Since the sequence (vp)p∈�+
satisfies

Dβvp+1 (z) =
∑
|α|≤m

aα (z)Dαvp(z). (11)

hence by (10), we obtain

∣∣Dβvp+1 (z)
∣∣ ≤ AMCpem (m (p+ 1))m

n∏
j=0

(1 − |zj|)−m(p+1) , ∀z ∈ P1. (12)

where A =

( ∑
|α|≤m

supz∈P1
|aα (z)|Dαvp (z)

)
. Suppose m ≥ 2, then ∃j ∈

{1, ..., n} such that βj ≥ 1 (|β| = m). Suppose that β0 ≥ 1 and set as be-
fore

Wp+1 (ζ) = Dβ′
vp+1 (ζ, z1, ..., zn) for ζ ∈ D,

where β ′ = (β0 − 1, β1, ...., βn). The Cauchy conditions

Dβ0−1
0 vp+1(0, z1, ..., zn) = 0,

allows us to write Wp+1(0) = 0. As Wp+1 is a primitive of

Dβ′
vp+1(., z1, ..., zn) that vanish at zero,
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the inequality (12) becomes

|D0Wp+1(ζ)| ≤ AMCp(em(p+ 1))m

n∏
j=1

(1 − |zj |)−m(p+1) (1 − |ζ |)−m(p+1).

(13)

According to Lemma 2.3 with a = m(p+ 1) ≥ m ≥ 2 in (13), and

Mp = AMCp(em(p+ 1))m
n∏

j=1

(1 − |zj |)−m(p+1),

we get

|D0Wp+1(ζ)| ≤ Mp
(1 − |ζ |)−m(p+1)

m(p+ 1) − 1
. (14)

If we repeat this process β0 times and also with respect to the other compo-
nents, we obtain the following estimate

|vp+1 (z)| ≤ AMCp (em (p+ 1))m

(m (p+ 1) − 1)m

n∏
j=0

(1 − |zj|)−m(p+1) , ∀z ∈ P1. (15)

We need to check that

A

[
em (p+ 1)

m (p+ 1) − 1

]m

≤ C,

where C = A(2e)m. In fact, m(p+1) ≤ 2(m(p+1)−1) because m(p+1) ≥ 1,
(m ≥ 2), consequently

|vp+1(z)| ≤MCp+1

n∏
j=0

(1 − |zj |)−m(p+1) , ∀z ∈ P1, (16)

and the result is established for p+ 1.
The case a = 0, is not provided apriori in Lemma 2.3. Here our reasoning

by induction, is the passage from p = 0 to p = 1.
In the case m = 1. We have |β| = 1, suppose for instance β = (1, 0, ..., 0),

then C = 2eA, v0 ∈ H(P1) and we have the following problem

(P ′′′′)

{
D0v1(z) =

∑
|α|≤1

(aαD
αv0) (z)

v1 (0, z1, ..., zn) = 0.

We know that

|v0(z)| ≤M, ∀z ∈ P1, (17)
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so that

|v0 (ζ, z1, ..., zn)| ≤M, ∀ζ ∈ D, (18)

moreover 0 < 1 − |ζ | ≤ 1 and ζ ∈ D, therefore

(1 − |ζ |)−1 ≥ 1. (19)

Set

V0 (ζ) = v0(ζ, z1, ..., zn), (20)

then

|V0 (ζ)| ≤M (1 − |ζ |)−1 , ∀ζ ∈ D, (21)

by (19) and (20). Using Lemma 2.4, we get

|V ′
0 (ζ)| ≤ Me (1 − |ζ |)−1 , ∀ζ ∈ D. (22)

Since z ∈ P1, 0 < 1 − |zj | ≤ 1 for every j ∈ {0, 1, ..., n} , then (1 − |z0|) ≥
n∏

j=0

(1 − |zj|) and we have

(1 − |z0|)−1 ≤
n∏

j=0

(1 − |zj |)−1 . (23)

For z0 ∈ D, the following estimate holds:

|D0v0 (z0, z1, ..., zn)| ≤Me (1 − |z0|)−1 . (24)

Combining (23) and (24), we have

|D0v0 (z0, z1, ..., zn)| ≤ Me

n∏
j=0

(1 − |zj |)−1 . (25)

This inequality (25) is true for Djv0, ∀ j ∈ {0, 1, ..., n}, that is

|Djv0 (z0, z1, ..., zn)| ≤Me

n∏
j=0

(1 − |zj|)−1 , ∀j ∈ {0, 1, ..., n}. (26)

If z0 = 0, then

|v1 (0, z1, ..., zn)| ≤ AMC
n∏

j=0

(1 − |zj|)−1 . (27)
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We suppose z ∈ P1 with z0 �= 0 and since v1 ∈ H(P1), (see P ′′′′,) we have

v1 (z) =

∫
γ

D0v1(ζ, z1, ..., zn)dζ,

where γ is the path that relates the origin to z0 ∈ D. In the problem (P ′′′′) we
have D0v1 (z) =

∑
|α|≤1

aα (z) Dαv0 (z), hence

v1 (z) =

|z0|∫
0

D0v1

(
reiθ, z1, ..., zn

)
eiθdr

=

|z0|∫
0

∑
|α|≤1

aα

(
reiθ, z1, ..., zn

)
Dαv0

(
reiθ, z1, ..., zn

)
eiθdr,

so that

|v1 (z)| ≤
|z0|∫
0

⎛
⎝∑

|α|≤1

∣∣aα

(
reiθ, z1, ..., zn

)∣∣
⎞
⎠max

|α|≤1

∣∣Dαv0

(
reiθ, z1, ..., zn

)∣∣ dr.
Recall that α lies on {(0, 0) , (1, 0) , (0, 1)} and using (17) and (26), we have

|v1 (z)| ≤ A

|z0|∫
0

max

(
Me

n∏
j=1

(1 − |zj |)−1 (1 − r)−1 ,M

)
dr.

However, M ≤Me ≤ Me (1 − |r|)−1 because 0 < 1 − r ≤ 1, therefore

|v1 (z)| ≤ 2MAe
n∏

j=1

(1 − |zj |)−1

[
− ln (1 − r)

2

]|z0|

0

and 1
2
ln (1 − |z0|)−1 ≤ (1 − |z0|)−1 . If we set 1 − |z0| = u and v = 1

u
≥ 1 then

1
2
ln v − v ≤ 0 and we have

|v1 (z)| ≤ 2MAe
n∏

j=0

(1 − |zj |)−1 , ∀z ∈ P1,

that is,

|v1 (z)| ≤MC
n∏

j=0

(1 − |zj |)−1 , ∀z ∈ P1,

which completes the proof.
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Lemma 2.7 Let Ω be an open subset of Cn+1 containing the origin, Pr a
polydisc centered at the origin with radius (r, ..., r), r > 0, (aα)|α|≤|β|=m and v
are holomorphic functions in Ω. Set A =

∑
|α|≤m

r|β−α| sup
z∈P r

|aα (z)|, C = A (2e)m,

and M = sup
z∈P r

|v (z)|, then the sequence (vp)p∈�+
⊂ H (Pr) defined by

v0 = v ∈ H (Pr) , (28)

Dβvp+1 =
∑
|α|≤m

aαD
αvp, ∀p ∈ Z+, (29)

satisfies the following estimate

|vp (z)| ≤ MCp
n∏

j=0

(
1 − |zj |

r

)−mp

, ∀p ∈ Z+, ∀z ∈ Pr. (30)

Proof: Let Φ : P1 	−→ Pr be a mapping defined by Φ (ζ) = rζ for every ζ ∈ P1.
We associate Φ∗ to Φ, defined by

Φ∗ : H (Pr) 	−→ H (P1)

f 	−→ Φ∗ (f) = f ◦ Φ.

Now, (vp)p∈�+
satisfy the hypotheses of the lemma. Set Vp = Φ∗ (vp) = vp ◦Φ,

p ∈ Z+, vp is defined on Pr and Vp on P1. The equation (29) becomes

Dβvp+1 ◦ Φ =
∑
|α|≤m

aα ◦ ΦDαvp ◦ Φ. (31)

Let γ = (γ0, γ1, ..., γn) be a multi-index of Z
n+1
+ and let us computeDγ (vp ◦ Φ) .

We have

D0 (vp ◦ Φ) (ζ) =

n∑
j=0

Djvp (Φ (ζ)) ◦D0Φj (ζ)

= D0vp (Φ (ζ)) r.

One can check easily the following result

Dγ0

0 (vp (rζ)) = (Dγ0

0 vp) (rζ) rγ0 .

More generally, we have

Dγ (vp ◦ Φ) (ζ) = r|γ| [(Dγvp) ◦ Φ] (ζ) , (32)

or

(DγVp) (ζ) = r|γ| [(Dγvp) ◦ Φ] (ζ) , ∀γ ∈ Z
n+1
+ . (33)
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Hence

r|β|
[(
Dβvp+1

) ◦ Φ
]
(ζ) =

∑
|α|≤m

r|β|−|α| (aα ◦ Φ) (ζ) r|α| (Dαvp ◦ Φ) (ζ) . (34)

Now, from the relation (34), we obtain

DβVp+1 (ζ) =
∑
|α|≤m

r|β|−|α| (aα ◦ Φ) (ζ) r|α|DαVp (ζ) . (35)

Set Aα = aα ◦ Φ.r|β|−|α|, it is clear that Aα ∈ H (P1). The initial conditions
become

Dk
j Vp|(P1)j

= Dk
j (vp ◦ Φ)|(P1)j

= rkDk
j vp ◦ Φ|(P1)j

= rkDk
j vp|(Pr)j

= 0, (j, k) ∈ Iβ .

Now, v0 = v, M = sup
z∈P r

|v0 (z)| = sup
ζ∈P 1

|V0 (ζ)|, A =
∑

|α|≤m

r|β−α| sup
z∈P r

|aα (z)| =∑
|α|≤m

r|β−α| sup
ζ∈P 1

|Aα (ζ)|, Aα = aα ◦ Φ.r|β|−|α|, and the Lemma 2.6 allows us to

write

|Vp (ζ)| ≤MCp
n∏

j=0

(1 − |zj |)−mp ,

∀p ∈ Z+, and ∀ζ ∈ P1 or

|vp (z)| ≤MCp

n∏
j=0

(1 − |zj |)−mp ,

∀p ∈ Z+, ∀z ∈ Pr, and the proof of the Lemma 2.7 is complete.
To complete the proof of Theorem 2.1, let us start with the case ϕ = 0.
Let (aα)|α|≤m ∈ H (Ω) and f ∈ H (Ω), Ω be a neighborhood of the origin,

we are looking for u and Ω′ ⊂ Ω such that u ∈ H (Ω′) is a solution of the
following problem:

Dβu =
∑
|α|≤m

aαD
αu+ f

Dk
j (u− ϕ)|Ω′

j

= 0, (j, k) ∈ Iβ, |β| = m.

We know that there are ρ > 0 and r > 0 such that Ω ⊃ Pρ ⊃ Pr. Let

u0 = 0, up+1 = D−β

( ∑
|α|≤m

aαD
αup + f

)
and set vp = up+1 − up, p ∈ Z+.
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Recall that D−β ∈ L (H (Pρ) ,H (Pρ)), hence

vp+1 = up+2 − up+1

= D−β

⎛
⎝∑

|α|≤m

aαD
αup + f

⎞
⎠−D−β

⎛
⎝∑

|α|≤m

aαD
αup + f

⎞
⎠

= D−β

⎛
⎝∑

|α|≤m

aαD
αvp

⎞
⎠ .

Set M (r) = sup
z∈P r

|up (z)|, A (r) =
∑

|α|≤|β|=m

r|β−α| sup
z∈P r

|aα (z)| and C (r) =

(2e)mA (r). According to Lemma 2.7, we have the following estimate:

|vp (z)| ≤M (r) [C (r)]p
n∏

j=0

(
1 − |zj|

r

)−mp

, ∀p ∈ Z+, ∀z ∈ Pr. (36)

If we denote by R = (r0, r1, ..., rn) with rj < r, then

|vp (z)| ≤M (r) [C (r)]p
n∏

j=0

(
1 − rj

r

)−mp

, (37)

∀p ∈ Z+, ∀z ∈ PR. The function r 	−→ A (r) is continuous on a neighborhood
of the origin and by hypothesis, we have

lim
r→0

C (r) = (2e)mA (0) = (2e)m
∑
|α|≤m

|aα (0)| < 1. (38)

Therefore C (r) < 1 is valid on a neighborhood of the origin due to the con-
tinuity of C (r) . We choose r0 such that rj < r ≤ r0, with r fixed. As

lim
rj→0

n∏
j=0

(
1 − rj

r

)
= 1, we can always write

[C (r)]
1
m <

n∏
j=0

(
1 − rj

r

)
< 1.

Set γ (r) = γ = C (r)

[
n∏

j=0

(
1 − rj

r

)]−m

< 1. Then

|vp (z)| ≤Mγp, 0 ≤ γ < 1,

implies the series (vp)p∈�+
converges normally on PR, that is, up converges

uniformly to u ∈ H (PR) on every compact PR and Dαup converges uniformly
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also to Dαu ∈ H(PR) by Weistrass Theorem. This limit satisfies

Dβu =
∑
|α|≤m

aαD
αu+ f

Dk
j u|(PR)j

= 0, (j, k) ∈ Iβ.

Let us prove the uniqueness of such solution. Suppose we have two solutions
u and u′, then

u− u′ = D−β

⎛
⎝∑

|α|≤m

aαD
α (u− u′)

⎞
⎠ .

Set u′′ = u− u′. It is clear that u′′ satisfies

u′′ = D−β

⎛
⎝ ∑

|α|≤m

aαD
αu′′

⎞
⎠

Dk
ju

′′
|(PR)j

= 0, (j, k) ∈ Iβ.

The sequence (vp)p∈�+
is such that

v0 = u′′,

v1 = D−β

⎛
⎝∑

|α|≤m

aαD
αu′′

⎞
⎠ ,

and by Lemma 2.5, there is a unique v1 on PR, solution of the Cauchy problem
and since u′′ satisfies the Cauchy problem, v1 = u′′. Now, step by step we arrive
at vp = u′′ for every p ∈ Z+, but

|vp (z)| ≤Mγp, 0 ≤ γ < 1,

that is,
|u′′ (z)| ≤ Mγp, 0 ≤ γ < 1,

hence u′′ ≡ 0 on PR, and we have u = u′ on PR. If we choose Ω′ ⊂ PR connected
open set containing the origin, again we use the estimates for (vp)p∈�+

and
apply Weistrass theorem.

2. Let us now take the case ϕ �= 0; ϕ ∈ H(Ω). Set u = U + ϕ, then

Dk
j (u− ϕ)|

Ω′
j
={z:z∈Cn+1,zj=0}∩Ω′

= 0 ⇔ Dk
jU|Ω′

j

= 0

for every (j, k) ∈ Iβ.

Dβu = DβU +Dβϕ

=
∑
|α|≤m

aαD
αU +

∑
|α|≤m

aαD
αϕ+ f.



Differential equations 521

Set F = −Dβϕ +
∑

|α|≤m

aαD
αϕ + f ∈ H(Ω). We need to solve the following

problem:

DβU =
∑
|α|≤m

aαD
αU +

∑
|α|≤m

aαD
αϕ+ F

Dk
jU|Ω′

j

= 0, (j, k) ∈ Iβ , |β| = m,

it follows from the previous studies that there exists a unique U and hence
u = U + ϕ is the unique solution of the problem under consideration. This
concludes the proof of Theorem 2.1.

Proof of Corollary 2.2: We have

A = {α : α ∈ Z
n+1
+ , |α| = m, aα(0) �= 0}.

If A is empty, then its convex hull is empty ∀α ∈ Z
n+1
+ , we have |α| = m,

aα(0) = 0, hence
∑

|α|=m

|aα(0)| = 0 < (2e)−m verifies the hypotheses of the

Theorem 2.1.
If A is non-empty, then A is a closed subset of R

n+1 because it contains
finite elements.

Theorem 2.8 (Darboux-Goursat-Beudon(DGB)) Let Ω be an open subset
of Cn+1 containing the origin, (aα)|α|≤m, f and ϕ be holomorphic functions
on Ω. Suppose that α = (m, 0, ..., 0), aα ≡ 0 and if β = (m − 1, 1, 0, ..., 0),
aβ(0) �= 0, then there is Ω′ ⊂ Ω connected open neighborhood of the origin such
that the problem below

(DGB)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Dβu =
∑

|α|≤m

aαD
αu+ f

Dk
0 (u− ϕ)|Ω′

0

= 0, 0 ≤ k < m− 1

(u− ϕ)|Ω′
1

= 0

admits a unique holomorphic solution on Ω′.

Remarks 2.2
1. We have Iβ = {(0, k) : 0 ≤ k < m− 1, (1, 0)},
2. The problem (DGB) (Goursat-Cauchy problem) is a problem with mixed

data,
3. We can isolate β in the equation

∑
|α|≤m

aα (z)Dαu (z) = f(z) (39)
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in the following sense and we write

aβ (z)Dβu (z) +
∑
|α|≤m
α 	=β

aα (z)Dαu (z) = f(z), (40)

hence

aβ (z)Dβu (z) =
∑
|α|≤m
α 	=β

−aα (z)Dαu (z) + f(z). (41)

As aβ does not vanish at the origin, it is not null on every neighborhood of the
origin, in other words, there is Ω1 ⊂ Ω such that aβ (z) �= 0 for every z ∈ Ω1.
Hence we have a new equation in this neighborhood

Dβu (z) =
∑
|α|≤m
α 	=β

−aα (z)

aβ (z)
Dαu (z) +

f (z)

aβ (z)
. (42)

If we set

Aα = −aα

aβ
and F =

f

aβ
(43)

then (42) becomes

Dβu (z) =
∑
|α|≤m
α 	=β

Aα (z)Dαu (z) + F (z) . (44)

One can show that β /∈ convex hull of A (cf. [2]). The equation (44) is called
the reduced equation of (42).

3 Extended Darboux-Goursat-Beudon Theo-

rem

Let P (z;D) =
∑

|α|≤m

aα(z)Dα, z = (z0, z
′) with z′ = (z1, ..., zn). We shall take

the first and second components of z but with the derivatives of orders (m−k)
and k respectively.

Theorem 3.1 Let Ω be an open subset of Cn+1 containing the origin, and
let (aα)|α|≤m, f, and ϕ be holomorphic functions on Ω. Suppose that β = (m−
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k, k, 0, ..., 0), aβ(0) �= 0 with k = (0, 1, ..., n) and |β| = m ≥ 1, then there exists
Ω′ ⊂ Ω connected open neighborhood of the origin such that the problem below

(P ∗)

{
Pu = f
Dk

j (u− ϕ)|Ω′
j

= 0, (j, k) ∈ Iβ

admits a unique holomorphic solution on Ω′.

Proof: LetA = {α : α ∈ Z
n+1
+ , |α| = m, aα(0) �= 0}. According to Corollary 2.2,

it suffices to prove that β /∈ convex hull of A. Since we take the two components
z0 and z1, then we can consider the projection of this convex hull and solve
the problem R

2. For this we refine the hypotheses at maximum and discuss
the position of k with respect to the center of the segment [(0, m), (m, 0)]. Let
E[m

2
] denote the entire part of m

2
. The problem is already studied for k = 0.

Suppose now that k �= 0 and 0 < k ≤ m.
a) If (m − k) ∈ {0, ..., E[m

2
]} then we take aj,m−j,0,...,0(z) ≡ 0 for every

j : 0 ≤ j ≤ m− k and we have β /∈ convex hull of A.
b) If (m− k) ≥ E[m

2
] then we take aj,m−j,0,...,0(z) ≡ 0 for every j : m− k ≤

j ≤ m and we have β /∈ convex hull of A. Now let us take a look at the
following problem:

(P ∗∗)

{
Pu = f
Dk

ju|Ω′
j

= uj,k, (j, k) ∈ Iβ,

where the functions uj,k are holomorphic functions on Ω′
j . Let us compare the

problems denoted by P ∗ and P ∗∗. These two problems are equivalent to the
condition that uj,k verify certain conditions of compatibility.

i) The problem P ∗ implies the problem P ∗∗.
ii) The problem P ∗∗ implies the problem P ∗. In fact, it is true under preser-

vation that the functions uj,k verify certain conditions of compatibility between
the problems.

Given the functions uj,k, can we find a function ϕ such that Dk
jϕ|Ω′

j

= uj,k

for (j, k) ∈ Iβ?
Conditions in the two particular cases:
a) β = (m, 0, ..., 0).

Dk
jϕ|Ω′

j

= uj,k, 0 ≤ k ≤ m− 1.

If we set ϕ(z) =
m−1∑
k=0

u0,k(z
′) zk

0

k!
, then ϕ is a candidate. In fact,

ϕ(z) = u0,0(z
′) +

m−1∑
k=1

u0,k(z
′)
zk
0

k!
.
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For z0 = 0, we have

ϕ(0, z′) = u0,0(z
′) = u|Ω′

0

which can be written as (u− ϕ)|Ω′
0

= 0. Now,

Dj
0ϕ(z) =

m−1∑
k=0

u0,k(z
′)k(k − 1)...(k − j + 1)

zk−j
0

k!
,

Dm−1
0 ϕ(z′) = u0,m−1(z

′),

(Dj
0ϕ)(0, z′) = u0,m−1(z

′) = Dk
0u|Ω′

0
.

b) β = (m − 1, 1, 0, ..., 0). If we choose ϕ(z) =
m−1∑
k=0

Vk(z
′) zk

0

k!
, where Vk

denote the holomorphic functions on Ω1, Ω1 = Ω′ ∩ {z : z = (z0, 0, z”)}, and
z” = (z2, ..., zn). The function ϕ as defined must satisfy

(P ∗∗∗)

{
Dk

0ϕ|Ω′
0

= u0,k, 0 ≤ k ≤ m− 2.

ϕ|Ω′
1

= u1,0.

The functions u0,k and u1,0 are not chosen arbitrary. There is certain depen-
dence between them because they are the initials conditions of u; in fact:

For k = 0, we have

ϕ(0, z′) = u0,0(z
′) = V0(z

′), (45)

ϕ(z0, 0, z”) = u1,0(z0, z”), (46)

and for z0 = 0,

ϕ(0, 0, z′) = u1,0(0, z”), (47)

ϕ(0, 0, z”) = u0,0(0, z”). (48)

Note that (47)-(48) ⇒ u0,0(0, z”) = u1,0(z0, z”).
For k = 1, we have

D1
0ϕ(0, z′) = u0,1(z

′), (49)

ϕ(z0, 0, z”) = u1,0(z0, z”). (50)
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Also, (49)-(50) ⇒ D1
0ϕ(z0, 0, z”) = D1

0u1,0(z0, z”), and for z0 = 0,

D1
0ϕ(0, 0, z”) = D1

0u1,0(0, z”). (51)

For z1 = 0, we have

D1
0ϕ(0, 0, z”) = u0,1(0, z”), (52)

and (51)-(52) ⇒ u0,1(0, z”) = D1
0u1,0(0, z”).

If we repeat this process until the order k ≤ m− 2, we find

u0,k(0, z”) = Dk
0u1,0(0, z”). (53)

We obtain a necessary condition:

u0,k(0, z”) = Dk
0u1,0(0, z”), ∀k ∈ N, 0 ≤ k ≤ m− 2. (54)

Sufficient condition: Set ϕ(z) = u1,0(z0, z”) + z1ψ(z), with

ψ(z) =

m−2∑
k=0

u0,k(z0, z”) −Dk
0u1,0(z0, z”)

z1

zk
0

k!
,

then ϕ satisfies {
Dk

0ϕ|Ω′
0

= u0,k, 0 ≤ k ≤ m− 2.

ϕ|Ω′
1

= u1,0.

In fact, ϕ|Ω′
1

= u1,0,

ϕ(z) = u1,0(z0, z”) +

m−2∑
k=0

(
u0,k (z1, z”) −Dk

0u1,0 (0, z”)
) zk

0

k!
, (55)

and for z1 = 0,

ϕ(z0, 0, z”) = u1,0(z0, z”) +

m−2∑
k=0

(u0,k(0, z”) −Dk
0u1,0(0, z”))

zk
0

k!

= u1,0(z0, z”)

= u |Ω′
1
. (56)

To show Dk
0ϕ|Ω′

0
= u0,k, 0 ≤ k ≤ m − 2, it suffices to apply a similar proof of

a) in ii).
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