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Abstract

In this note, some fundamental results including relationship be-
tween weighted distribution functions and mean advantage over inferi-
ors functions are established. Ordering of reliability and/or distribution
functions via mean advantage over inferiors functions and related func-
tions for parent and weighted reliability functions are presented. Some
applications and examples are given.
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1 Introduction

The usefulness and applications of weighted distributions to biased samples in
various areas including medicine, ecology, reliability, and branching processes
can be seen in Patil and Rao [11], Gupta and Kirmani [7], Gupta and Keating
[6], Oluyede [10] and in references therein. When data is unknowingly sampled
from a weighted distribution as opposed to the parent distribution, the survival
function, hazard function, and mean residual life function (MRLF) may be un-
der or overestimated depending on the weight function. If the weight function
is monotone increasing and concave, then the weighted distribution of an in-
creasing hazard rate (IHR) distribution is an IHR distribution. Similarly, the
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size-biased distribution of a decreasing mean residual (DMRL) distribution has
decreasing mean residual life.

The MRLF has a mirror image referred to as mean advantage over inferiors
function (Goldberger [5]). Let (0, b) be the support of the probability density
function f for the components or machines of interest. The mean advantage
over inferiors function is the difference between the age x of a machine that
has not broken down and the average age at breakdown of the machines that
it has outlasted. The average age at breakdown of machines that broke down
before age x is given by

∫ x

0
tf(t)dt/F (x), where f(t)/F (x) is the conditional

probability that a machine broke down at age t, given that it did not survive
to age x > 0. The mean advantage over inferiors of a machine that survives to
exactly age x is defined as

μ
F
(x) = x −

∫ x

0

tf(t)dt

F (x)
. (1)

See Bergstrom and Bagnoli [1] for additional results.

In section 2, some basic results and utility notions are presented. Sections 3
and 4 contain inequalities and results on the ordering of parent and weighted
reliability functions via the mean advantage over inferiors (MAOI) function
and mean inactivity time (MIT). For additional results on MIT see Block,
Savit, and Singh [2], Chandra and Roy [3], and Kayid and Ahmad [8], and
references therein. Section 5 deals with MAOI function and weighted residual
entropy. Some examples and applications are presented.

2 Some Utility Notions and Basic Results

In this section, some basic definitions and utility notions are presented. In a
weighted distribution problem, a realization x of X enters into the investigators
record with probability proportional to a weight function W (x). The recorded
x is not an observation of X, but rather an observation on a weighted random
variable XW . Let X be a nonnegative random variable with an absolutely
continuous cumulative distribution function F (x), survival function F (x) =
1−F (x) and probability density function (pdf) f(x). Let a = inf{x : F (x) > 0}
and b = sup{x : F (x) < 1}. The reverse hazard rate function of F is τF (x) =
f(x)/F (x) for x > a, and the hazard rate function of F is λ

W
(x) = f(x)/F (x)

for x < b. Let W (x) be a positive weight function such that 0 < EF (W (X)) <
∞. The weighted survival or reliability function of XW is given by

F W (x) =
EF [W (X)|X > x]

EF [W (X)]
F (x), x ≥ 0. (2)
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When W (x) = x, the resulting reliability function is called the length-biased
reliability function and is given by

F W (t) =
F (t)(t + δF (t))

μ
, (3)

where δF (t) = EF (X − t|X > t] = 1
F (t)

∫ +∞
t

F (x)dx is the mean residual life

function(MRLF). We present some basic and important definitions.

Definition 2.1 Let X and Y be two random variables with distribution
functions F and G respectively. We say F <st G, stochastically ordered, if
F (x) ≤ G(x), for x ≥ 0 or equivalently, for any increasing function Φ(x),

E(Φ(X)) ≤ E(Φ(Y )). (4)

Definition 2.2 A distribution function F is an increasing hazard rate (IHR)

distribution if F (x+t)

F (t)
is decreasing in 0 < t < ∞ for each x ≥ 0. Similarly, a

distribution function F is a decreasing hazard rate (DHR) distribution if F (x+t)

F (t)

is increasing in 0 < t < ∞ for each x ≥ 0.

Let X(t) = {t − X|X < t}, t ∈ {x : F (x) > 0} denote the inactivity time (IT)
or reversed residual life (See Block, Savit, and Singh [1], Chandra and Roy [2],
Kayid and Ahmad [8] for details).

Definition 2.3 Let F and G be absolutely continuous distribution functions
with probability density functions f and g respectively. We say F is smaller
than G in mean inactivity time order (F ≤MIT G) if

EF [t − X|X < t] ≥ EG[t − Y |Y < t], ∀t > 0. (5)

We say F is smaller than G in increasing concave order (F ≤ICV G) if

∫ x

0

F (y)dy ≥
∫ x

0

G(y)dy, ∀x > 0. (6)

Definition 2.4 A distribution function F has smaller mean advantage over
inferiors function than a distribution function G, denoted by F ≤MAOI G if
for any x and t, μ

F
(x) ≤ μ

G
(x), that is

∫ x

0

tf(t)dt

F (x)
≥

∫ x

0

tg(t)dt

G(x)
. (7)
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Remark: Note that μ
F
(x) = x−∫ x

0
tf(t)dt
F (x)

= H(x)

H′(x)
, where H(x) =

∫ x

0
F (t)dt.

This follows from the fact that
∫ x

0
tf(t)dt = xF (x) − ∫ x

0
F (t)dt, so that

μ
F
(x) = x − xF (x) − ∫ x

0
F (t)dt

F (x)
=

H(x)

H ′(x)
. (8)

Note that, if μ
F
(x) = μ

G
(x), then F and G are said to be equivalent. This

leads to the following result on the ordering of mean advantage of inferiors
functions μ

F
(x) and μ

G
(x) for the distribution functions F and G respectively.

Proposition 2.5 Let μ
F
(x) and μ

G
(x) denote the mean advantage over

inferiors functions for the distribution functions F (x) and G(x) respectively.

Then μ
F
(x) ≤ μ

G
(x) if and only if

� x
0

F (t)dt

F (x)
≤

� x
0

G(t)dt

G(x)
, where F (x) =

∫ x

0
f(t)dt

is the distribution function with pdf f.

Example 2.6 Consider the power function distributions with survival func-
tions F (x) = 1−xα1 , and G(x) = 1−xα2 ,for 0 < x ≤ 1 and α

i
> 0, for i = 1, 2.

Note that μ
F
(x) = x

1+α1
, and μ

G
(x) = x

1+α2
,so that μ

F
(x) ≤ μ

G
(x) if and only

if α1 ≥ α2 .

Lemma 2.7 The function μF (x) is monotone increasing if and only if H(x)
is log-concave.

Proof: See Goldberger [5], and Bergstrom and Bagnoli [1].

Definition 2.8 Let F and G be two absolutely continuous distribution func-
tions having reverse rate functions τF (x) and τG(x) and hazard rate functions
λF (x) and λG(x) respectively. We say F is smaller than G in reverse hazard
rate order, denoted by F ≤rh G, if τF (x) ≤ τG(x) for all x for which τF (x) and
τG(x) are defined. Also, F is smaller than G, in hazard rate order, denoted by
F ≤hr G if λF (x) ≥ λG(x) for any x for which λF (x) and λG(x) are defined.

Example 2.9 Consider the inverse Weibull distribution used to model degra-
dation of mechanical components such as pistons, crankshafts of diesel engines,
as well as breakdown of insulating fluid to mention just a few areas. The prob-
ability density function f is given by

f(x) =
c

1

α
c1
1 xc1+1

e
(− 1

α1x
)c1

, x > 0 and c1 > 0, α > 0. (9)

Note that τ
F
(x) = f(x)

F (x)
= c1α

−c1
1 x−c1−1 and τ

G
(x) = g(x)

G(x)
= c2α

−c2
2 x−c2−1,

so that for fixed c1 = c2 > 0, τ
F
(x) ≤ τ

G
(x), if α1 ≥ α2 . Also, note that

xf(x) = c
1
F (x)(−lnF (x)), so that

τ
F
(x) =

c1(−ln(F (x)))

x
. (10)

Consequently, τ
F
(x) ≤ τ

G
(x), if and only if F (x) ≥ G(x), and α1 ≥ α2.
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Theorem 2.10 Let XW be a weighted random variable defined on an in-
terval (0, b) ⊂ (0,∞), with nondecreasing weight function W (x) ≥ 0. The
reverse hazard function of the random variable {XW − t|XW ≤ t} is decreasing
(increasing) if and only if

{XW − t|XW ≤ t} ≥rh (≤rh){XW − s|XW ≤ s} 0 < t ≤ s < b, (11)

and

XW + t ≤rh (≥rh)XW + s 0 < t ≤ s < b. (12)

Proof: The cumulative distribution function and reverse hazards function of
{XW − t|XW ≤ t} are given by

FWt(x) =
FW (x + t)

FW (t)
and τ

FWt
(x) = τ

FW
(x + t), 0 < x + t < b, (13)

respectively. Therefore, τ
FWt

(x) decreasing (increasing) if and only if

τ
FWt

(x) ≥ (≤)τ
FWs

(x), ∀x + t > 0 whenever 0 < t ≤ s < b. (14)

The reverse hazard function of XW + t is given by τ
FW

(x − t), 0 < x − t < b.
Therefore

XW + t ≤rh (≥rh)XW + s, 0 < t ≤ s < b, (15)

which is equivalent to

τ
FW

(x − t) ≥ (≤)τ
FW

(x − s), ∀x − t > 0 whenever 0 < t ≤ s < b. (16)

Consequently, τ
FW

is decreasing (increasing) on (0, b). This completes the proof
of the Theorem.

Proposition 2.11 Let F be an absolutely continuous distribution function
with pdf f and the expected inactivity time (EIT) be given by

mF (x) =
1

F (x)

∫ x

0

F (t)dt, (17)

then μ
F
(x) and m

F
(x) are equivalent.

Proof: The result follows from the fact that
∫ x

0
tf(t)dt = xF (x) − ∫ x

0
F (t)dt.

Remark: Note that if F is a decreasing reverse hazard rate (DRHR) dis-
tribution then μ

F
(x) is increasing in x > 0. Also, for a distribution function F
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and mean advantage over inferiors function {μ
F
(x) : x ∈ (a, b)}, the distribu-

tion function is uniquely determined as

F (x) = exp

[
−

∫ b

x

1 − μ
′
F
(y)

μ
F
(y)

dy

]
, (18)

where μ
′
F
(x) =

dμ
F

(x)

dx
, so that the pdf f(x) is given by

f(x) = exp

[
−

∫ b

x

1 − μ
′
F
(y)

μ
F
(y)

dy

][
1 − μ

′
F
(y)

μ
F
(y)

]
. (19)

3 Mean Advantage Over Inferiors Order

In this section, results on mean advantage over inferiors ordering for the par-
ent and weighted distributions including residual and equilibrium distribution
functions are presented.

Theorem 3.1 If F ≥MAOI G, then

FW (x) ≤ μ
G
F (x)

μ
F

and GW (x) ≥ μ
F
G(x)

μ
G

(20)

respectively, where FW (x) and GW (x) are the weighted distribution functions
corresponding to the the distribution functions F and G with weight function
W (x) = x.

Proof: Note that F ≥MAOI G, is equivalent to

⇐⇒ x −
∫ x

0

tf(t)dt

F (x)
≥ x −

∫ x

0

tg(t)dt

G(x)

⇐⇒
∫ x

0

tf(t)dt

F (x)
≤

∫ x

0

tg(t)dt

G(x)

⇐⇒ μ
F

F (x)

∫ x

0

tf(t)dt

μ
F

≤ μ
G

G(x)

∫ x

0

tg(t)dt

μ
G

⇐⇒ μ
F
FW (x)

F (x)
≤ μ

G
GW (x)

G(x)
. (21)

Now using the fact that GW (x) ≤ G(x) and FW (x) ≤ F (x) for all x ≥ 0, we
have

FW (x) ≤ μ
G
F (x)

μ
F

and GW (x) ≥ μ
F
G(x)

μ
G

(22)

respectively.
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Theorem 3.2 If F ≥MAOI G, and μ
G
≤ μ

F
, then

F
W

(x)

F (x)
≤ G

W
(x)

G(x)
≤ 1.

Proof: The result follows immediately on the application of the condition that
μ

G
≤ μ

F
, to Theorem 3.1.

Definition 3.3 An absolutely continuous distribution function F
(i) is said to be increasing mean advantage over inferiors (IMAOI) if μ

F
(x)

is increasing in x ∈ (a, b),
(ii) is said to be decreasing mean advantage over inferiors (DMAOI) if

μ
F
(x) is decreasing in x ∈ (a, b),
(iii) is said to be constant mean advantage over inferiors (CMAOI) if μ

F
(x)

is constant in x ∈ (a, b).

Clearly, μ
F
(x) is increasing in x if and only if τ

F
(x)μ

F
(x) < 1 for x ∈ (a, b),

so that F is IMAOI if and only if τ
F
(x)μ

F
(x) < 1 for x ∈ (a, b), F is DMAOI

if and only if τ
F
(x)μ

F
(x) > 1 for x ∈ (a, b), and F is CMAOI if and only if

τ
F
(x)μ

F
(x) = 1 for x ∈ (a, b).

Theorem 3.4 Let F
W

and G
W

be two absolutely continuous distribution
functions with densities f

W
and g

W
respectively. F

W
≤MAOI G

W
if and only if

F
W

≤MIT G
W

.

Proof: Note that μ
FW

(x) =
� x
0 F

W
(t)dt

F
W

(x)
, so that F

W
≤MAOI G

W
if and only if

∫ x

0
F

W
(t)dt∫ x

0
G

W
(t)dt

is decreasing in x ≥ 0. (23)

However, F ≤MIT G if and only if

∫ x

0
F (t)dt∫ x

0
G(t)dt

is decreasing in x ≥ 0. (24)

Consequently, for weighted distributions F
W

and G
W

with increasing weight
function W (x) > 0, it follows that F

W
≤MAOI G

W
if and only if F

W
≤MIT G

W
.

4 Ordering Weighted Distributions

In this section we obtain useful inequalities for residual reliability functions.
Let {Xi}∞i=1 be a sequence of operating times from a repairable system that
start functioning at time t = 0. The sequence of times {Xi}∞i=1 form a renewal-
type stochastic point process. Following Kijima [9], if a system has virtual age
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Tm−1 = t immediately after the (m − 1)th repair, then the length of the mth

cycle Xm has the distribution

Ft(x) = P (Xm ≤ x|Tm−1 = t) = {F (x + t) − F (t)}/F (t), (25)

x ≥ 0, where F (x) = 1 − F (x) is the reliability function of a new system.
When t =

∑j
i=1 Xi, j = 1, 2, .....,m − 1, minimal repair is performed, keeping

the virtual age intact and when t = 0 we have perfect repair. The virtual age
of system is equal to its operating time for the case of minimal repair. The
corresponding reliability function is given by

F t(x) = F (x + t)/F (t), x ≥ 0. (26)

The next result shows that mean advantage over inferiors order is stronger
than increasing concave (ICV) order. It is well known that a differentiable
probability density function f is log concave if f

′
(x)/f(x) is decreasing in x,

that is, if for every constant k, f
′
(x)

f(x)
− k has at most one sign change, + to −

if one occurs. Please see Shaked and Shanthikumar [12], for additional results
on log-convexity (log-concavity) and ICV order.

Theorem 4.1 Let F
W

and G
W

be two absolutely continuous weighted dis-
tribution functions with increasing weight function W (x) > 0 and densities f

W

and g
W

respectively. If F
W

≤MAOI G
W

, then F
W

≤ICV G
W

.

Proof: Note that since the weight function W (x) > 0 is increasing, it follows
that

log

[ ∫ x

0
F

W
(t)dt∫ x

0
G

W
(t)dt

]
is decreasing in x for G

W
(x) > 0, (27)

so that ∫ x

0
F

W
(t)dt

F
W

(x)
≥

∫ x

0
G

W
(t)dt

G
W

(x)
x > 0. (28)

Now, since
∫ x

0
F

W
(t)dt∫ ∞

0
F

W
(t)dt

≥
∫ x

0
G

W
(t)dt∫ ∞

0
G

W
(t)dt

x > 0, (29)

and F
W

≤MAOI G
W

implies

∫ x

0
F

W
(t)dt∫ x

0
G

W
(t)dt

≥ lim
x→∞

F
W

(x)

G
W

(x)
, (30)

the result follows immediately. Recall that the residual life at age t, is a
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weighted distribution, with survival function given by

F t(x) = F (x + t)/F (t), (31)

for x ≥ 0. The weight function is W (x) = f(x + t)/f(x), where f(u) =
dF (u)/du. It is clear that if F is IHR (DMRL) distribution, then Ft is IHR
(DMRL) distribution.

Theorem 4.2 Let Ft(x) and Gt(x) be residual life distribution functions
with weight functions f(x + t)/f(x) > 0 and g(x + t)/g(x) > 0 that are log-
convex for x ≥ 0. If Ft ≤MAOI Gt , then Ft ≤ICV Gt .

Proof: Let f(x + t)/f(x) be log-convex, then f(x + t)/f(x) increasing in
x ≥ 0. Similarly, g(x + t)/g(x) log-convex implies g(x + t)/g(x) increasing in
x ≥ 0. Applying the previous Theorem, the result follows immediately.

5 Mean Advantage Over Inferiors Function and

Weighted Residual Entropy

In this section, we establish results on the link between MAOI function and
weighted residual entropy. The following definitions on weighted entropies of
residual lifetimes and past lifetimes are due to Di Crescendo and Longobardi
[4].

Definition 5.1 Let (0,∞] be the support of the pdf f(x). The weighted
residual entropy at time t of a random lifetime is the differential weighted
entropy of [X|X > t] and is given by

Hw(t) = −
∫ +∞

t

x
f(x)

F (t)
log

f(x)

F (t)
dx, (32)

and the weighted past entropy at time t of a random lifetime X is the differential
weighted entropy of [X|X < t] is given by

H
w
(t) = −

∫ t

0

x
f(x)

F (t)
log

f(x)

F (t)
dx. (33)

We establish a bound and inequality that relates the length-biased reliability
function FW (x) to the weighted differential entropy.

Theorem 5.2 Let FW (t) = F (t)(t+δF (t))
μ

be the length-biased reliability func-

tion, where δF (t) = EF (X − t|X > t] = 1
F (t)

∫ +∞
t

F (x)dx. If the hazard func-

tion λF (t) is decreasing in t, 0 < t ≤ ∞, then

F W (t) ≥ −Hw(t)F (t)

μlogλF (t)
. (34)
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Proof: Note that since λF (t) is decreasing in t, then by [4], we have

Hw(t) ≥ − logλF (t)

F (t)

∫ +∞

t

xf(x)dx. (35)

Now,

μ

∫ +∞

t

xf(x)dx

μ
≥ −Hw(t)F (t)

logλF (t)
, (36)

that is

F W (t) ≥ −Hw(t)F (t)

μlogλF (t)
. (37)

Example 5.3 One of the most useful model in reliability studies is the ex-
ponential failure model with pdf given by

f(t; θ) = θ−1exp(−t/θ), t > 0 and θ > 0. (38)

The hazard function, mean residual life function, and length-biased reliability
function are given by λF (t) = θ−1, δF (t) = θ, and F W (t) = (t+θ)exp(−t/θ)

θ

respectively. The weighted residual entropy is given by

Hw(t) = t + 2θ − (t + θ)log(θ)−1, t ≥ 0. (39)

Consequently, the result of Theorem 5.2 holds.

Example 5.4 The Pareto distribution has applications in a wide variety
of settings including clusters of Bose-Einstein condensate near absolute zero,
file size distribution of internet traffic that uses the TCP protocol, values of oil
reserves in oil fields, standardized price returns on individual stocks to mention
a few area. Consider the survival or reliability function given by

F (x; c, α) =

⎧⎨
⎩

(
c
x

)α

if x > c,

1 otherwise.

Clearly, the hazard function, length-biased version of the distribution function
F and its hazard function are given by λF (x) = α/x,

F W (x; c, α) =

⎧⎨
⎩

(
c
x

)α−1

if x > c,

1 otherwise.

and λFW
(x) = α−1

x
respectively. The failure rate function λF (x) is decreasing.

Consequently, an application of Theorem 5.2 leads to

F W (t) ≥ −Hw(t)F (t)

μlogλF (t)
. (40)
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