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Abstract

Abstract. This paper is devoted to the establishment of weak condi-
tions for Darboux-Goursat-Beudon (DGB) theorem in order to improve
analogous results in [1, 7]. By adapting a technique proposed by [7] in
another setting [8] via majorant method, we obtain the generalization
of DGB theorem.

Mathematics Subject Classifications: 35A10, 58A99

Keywords: Cauchy-Kovalevskaya theorem, connected open neighborhood,
support of function

1 Introduction

It is well known that the classical Cauchy and Goursat theorems [1, 2, 5, 6, 7, 8]
play an important role in the theory of differential equations and their solu-
tions. As a result, the study of Darboux-Goursat-Beudon problem is attaining
more prominence. In particular, during the last two decades many useful and
interesting contributions have been made in the investigation of existence and
uniqueness of the solution. The extended DGB problem has been initiated in
[1] and [7] and the theory of analytic function of several variables [3] and [4]
has been applied to ensure the existence and the uniqueness of the generalized
DGB problem. In this paper, we shall continue this study and investigate the
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existence and uniqueness of the solution of DGB problem with weak hypothe-
ses in this framework.

2 Utility notions and basic results

We start by presenting some basic notations. Let R
n+1 be the (n + 1)-

dimensional Euclidean space, R+ the set of real numbers ≥ 0, R
n+1
+ be the

set of all r = (r0, r1, ..., rn) with rj ∈ R+ and Cn+1 be the (n + 1)-dimensional
complex space with variables z = (z0, z1, ..., zn) and Ω be an open subset of
Cn+1 containing the origin. We use the standard multi-index notation. More
precisely, let Z be the set of integers, > 0 or ≤ 0, and Z+ be the set of integers
≥ 0. Then Z

n+1
+ is the set of all α = (α0, α1, ..., αn) with αj ∈ Z+ for each

j = 0, 1, ..., n. The length of α ∈ Z
n+1
+ is |α| = α0 + α1 + ... + αn; α ≤ β

means αj ≤ βj for every j = 0, 1, ..., n; and α < β means α ≤ β and α �= β. If
α ∈ Z

n+1
+ and β ∈ Z

n+1
+ , we define the operation + by

α + β = (α0 + β0, α1 + β1, ..., αn + βn) ∈ Z
n+1
+ .

Moreover, we let α! = α0!α1!...αn! and if α ≤ β(
β

α

)
=

(
β0

α0

)(
β1

α1

)
...

(
βn

αn

)
=

β!

α! (β − α)!
, (1)

Dα =

(
∂

∂z0

)α0
(

∂

∂z1

)α1

...

(
∂

∂zn

)αn

,

and use the notations Dj = ∂
∂zj

and

Dα = Dα0
0 Dα1

1 ...Dαn
n (2)

respectively. Let u be a continuous function in Ω; by the support of u, denoted
by sup pu, we mean the closure in Ω of {z : z ∈ Ω, u (z) �= 0}. Let Ck(Ω),
k ∈ Z+, 0 ≤ k ≤ ∞, denote the set of all functions u defined in Ω, whose
derivatives Dαu(z) exist and continuous for |α| ≤ k. Using the multi-index
notation, we may write the Leibnitz formula

Dβ (uv) =
∑
α≤β

β!

α!(β − α)!
Dβ−αuDαv, (3)

where we assume u, v ∈ C|α|(Ω). If u ∈ C∞(Ω), we may consider the Taylor
expansion at the origin

u(z) =
∑

α∈�n+1
+

Dαu(0)

α!
zα. (4)
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Let H(Ω) denote the set of all holomorphic functions in Ω, that is, functions
u(z) ∈ C∞(Ω) given by their Taylor expansion in some neighborhood of the
origin in Ω. A linear partial differential operator P (z; D) is defined by

P (z; D) =
∑
|α|≤m

aα (z) Dα, (5)

where the coefficients aα(z) are in H(Ω). If for some α of length m the the
coefficient aα(z) does not vanish identically in Ω, m is called the order of
P (z; D). We set Iβ = {(j, k) : j = 0, 1, ..., n, and k = 0, 1, ..., βj − 1}.

3 Weak conditions and main results

Consider Darboux-Goursat-Beudon problem:

(P )

⎧⎪⎪⎨
⎪⎪⎩

Pu =
∑

|α|≤m

aαDαu = 0

Dk
0 (u − ϕ)|z0=0

= 0, 0 ≤ k < m − 1

(u − ϕ)|z0=0
= 0.

In fact, (m, 0, ..., 0) = β, aβ(0) = 0, with ϕ(z) = zN
0 , N ∈ Z+,

am,0,...,0(0, z
′) = 0, (6)

D0am,0,...,0(0, z
′) = 0, (7)

and

am−1,1,0,...,0(0, z
′) �= 0. (8)

It is easy to observe that these conditions are weaker than those given in [1, 7].
Moreover, the problem mentioned above admits a unique analytic solution
uN = u. We shall prove that (ϕ �= 0),

Dk
0u(0, z′) = 0, ∀k = 0, 1, ..., N − 1. (9)

We have three cases to consider: N < m, N = m and N > m.
First case N < m: By hypothesis u = um satisfies the equality

Dk
0(u − ϕ)|z0=0

= 0, 0 ≤ k < m − 1. (10)

As N < m, we have

Dk
0(u − ϕ)|z0=0

= 0, 0 ≤ k ≤ N − 1, (11)
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and

Dk
0u(0, z′) = 0, 0 ≤ k ≤ N − 1. (12)

Second case N = m: Now, u = um satisfies the equation Pu = 0, that is,
for every z ∈ Ω∑

|α|≤m

aα(z)Dαu(z)

= am,0,...,0(z)Dm
0 u(z) +

n∑
i=1

am−1,0,...,0, 1
ithplace

,0,...,0(z)DiD
m−1
0 u(z)

+ am−1,0,...,0(z)Dm−1
0 u(z) +

∑
|α|≤m

α0<m−1

aα(z)Dαu(z)

= 0. (13)

Hence for z = (0, z′), we have

n∑
i=1

am−1,0,...,0, 1
ithplace

,0,...,0(0, z
′)DiD

m−1
0 u(0, z′)

+ am−1,0,...,0(0, z
′)Dm−1

0 u(0, z′)

= 0. (14)

Set
Dm−1

0 u(0, z′) = U(z′), am−1,0,...,0, 1
ithplace

,0,...,0(0, z
′) = Ai(z

′),

1 ≤ i ≤ n and am−1,0,...,0(0, z
′) = A0(z

′). By the hypothesis, we have

u(z0, 0, z”) = ϕ(z0, 0, z”) = zN
0 , (15)

for 0 ≤ k < m − 1 = N − 1, hence m = N > 1, consequently,

u(0, 0, z”) = ϕ(0, 0, z”) = 0, (16)

therefore U(0, z”) = 0.
Now, consider the following problem:

(P ′)

⎧⎨
⎩

n∑
i=1

Ai (z
′) DiU(z′) + A0(z

′)U(z′) = 0,

U|z1=0
= 0,

Note that A1(0) �= 0, and U(z′) = 0 is solution of problem (P ′). It is unique
by Cauchy-Kovalevskaya Theorem, that is, Dm−1

0 u(0, z′) = 0. Hence

Dk
0u(0, z′) = 0, (17)
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for every k ∈ Z+ such that 0 ≤ k ≤ m − 1 = N − 1.
Third case N > m :

Dm−1
0 u(0, z′) = 0, for 0 ≤ j ≤ k − 1 < N − 1 and m ≤ k. (18)

Differentiate
∑

|α|≤m

aα(z)Dαu(z) = 0, k − (m − 1) times with respect to z0 by

using the Leibnitz formula, then ∀z ∈ Ω,

0 = D
k−(m−1)
0

⎛
⎝ ∑

|α|≤m

aα(z)Dαu(z)

⎞
⎠

= D
k−(m−1)
0 [am,0,...,0(z)Dm

0 u(z)

+
n∑

i=1

am−1,0,...,0, 1
ithplace

,0,...,0(z)DiD
m−1
0 u(z)

+ am−1,0,...,0(z)Dm−1
0 u(z) +

∑
|α|≤m

α0<m−1

aα (z) Dαu(z)]

=

k−(m−1)∑
l=1

(
k − (m − 1)

l

)
Dl

0am,0,...,0(z)Dk−l+1
0 u(z)

+
n∑

i=1

k−(m−1)∑
l=1

(
k − (m − 1)

l

)
Dl

0am−1,0,...,0, 1
ithplace

,0,...,0(z)DiD
k−l
0 u(z)

+ D
k−(m−1)
0

⎛
⎜⎜⎝

∑
|α|≤m

α0<m−1

aα (z) Dαu(z)

⎞
⎟⎟⎠

+

k−(m−1)∑
l=0

(
k − (m − 1)

l

)
Dl

0am−1,0,...,0(z)Dk−l
0 u(z). (19)

We have

k−(m−1)∑
l=0

(
k − (m − 1)

l

)
Dl

0am,0,...,0(z)Dk−l+1
0 u(z)

= am,0,...,0(z)Dk+1
0 u(z) +

(
k − (m − 1)

1

)
D0am,0,...,0(z)Dk

0u(z)

+

k−(m−1)∑
l=2

(
k − (m − 1)

l

)
Dl

0am,0,...,0(z)Dk−l+1
0 u(z). (20)

For z = (0, z′), the expression (20) vanishes according to (6) − (7)) and (18).
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The expression

n∑
i=1

k−(m−1)∑
l=1

(
k − (m − 1)

l

)
Dl

0am−1,0,...,0, 1
ithplace

,0,...,0(z)DiD
k−l
0 u(z) (21)

equals

n∑
i=1

(
k − (m − 1)

l

)
am−1,0,..,0, 1

ithplace
,0,..,0(z)DiD

k−l
0 u(z) (22)

for z = (0, z′) and for the same reason as before. The expression

D
k−(m−1)
0

⎛
⎜⎜⎝

∑
|α|≤m

α0<m−1

aα (z) Dαu(z)

⎞
⎟⎟⎠

=
∑
|α|≤m

α0<m−1

k−(m−1)∑
l=1

(
k − (m − 1)

l

)
Dl

0aα0,α′(z0, z
′)

× Dα′
z′ D

k−m+1−l+α0
0 u(z0, z

′), (23)

for z = (0, z′). This expression vanishes because α0 < m − 1 and 0 ≤ l ≤
k− (m− 1), hence k−m+1− l +α0 ≤ k− 1 and the result follows from (18).

The expression

k−(m−1)∑
l=0

(
k − (m − 1)

l

)
Dl

0am−1,0,...,0(z)Dk−l
0 u(z)

= am−1,0,...,0(z)Dk
0u(z)

+

k−(m−1)∑
l=1

(
k − (m − 1)

l

)
Dl

0am−1,0,...,0(z)Dk−l
0 u(z), (24)

for z = (0, z′), this expression becomes am−1,0,...,0(0, z
′)Dk

0u(0, z′) (due to (18)).
Finally, we have

n∑
i=1

am−1,0,...,0, 1
ithplace

,0,...,0(0, z
′)DiD

k
0u(0, z′) + am−1,0,...,0(0, z

′)Dk
0u(0, z′) = 0.

Set

Dk
0u(0, z′) = V (z′), (25)

am−1,0,...,0, 1
ithplace

,0,...,0(0, z
′) = Bi(z

′), (26)
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for 1 ≤ i ≤ n and

am−1,0,...,0(0, z
′) = B0(z

′). (27)

We have B1(0) = am−1,1,0,...,0(0, 0) �= 0, and

V (0, z”) = Dk
0u(0, 0, z”)

= Dk
0ϕ(0, 0, z”)

= 0, (28)

due to the fact that ϕ(z) = zN
0 and k < N, therefore the following problem⎧⎨

⎩
n∑

i=1

Bi(z
′)DiV (z′) + B0(z

′)V (z′) = 0

V|z1=0 = 0

admits the unique solution V = 0 (by Cauchy-Kovalevskaya Theorem for an
operator of order 1), in other words

Dk
0u (0, z′) = 0. (29)

Hence

Dj
0u(0, z′) = 0, (30)

for 0 ≤ j ≤ k < N−1 and m ≤ k. Now use the iterative method on k. Suppose

Dj
0u (0, z′) = 0, (31)

for 0 ≤ j ≤ k ≤ N − 1, and m ≤ k, one can show this property remains
true for the rank k = N − 1. We use the same process as before instead of
differentiation k − (m − 1) times with respect to z0 with m > 1,

DN−m
0

⎛
⎝ ∑

|α|≤m

aα (z) Dαu(z)

⎞
⎠ = 0 (32)

=

N−m∑
l=0

(
N − m

l

)
Dl

0am,0,...,0 (z) DN−l
0 u (z)

+
n∑

i=1

N−l∑
l=0

(
N − l

l

)
Dl

0am−1,0,...,0, 1
ithplace

,0,...,0 (z) DiD
N−l−1
0 u (z)

+DN−l
0

⎛
⎜⎜⎝

∑
|α|≤m

α0<m−1

aα (z) Dαu (z)

⎞
⎟⎟⎠

+

N−l∑
l=1

(
N − l

l

)
Dl

0am−1,0,...,0(z)DN−l−1
0 u(z). (33)
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The conditions (6)−(7), (30) and the previous computations allow us to write:

n∑
i=1

am−1,0,...,0, 1
ithplace

,0,...,0(0, z
′)DiD

N−1
0 u(0, z′)

+ am−1,0,...,0(0, z
′)DN−1

0 u(0, z′)

= 0. (34)

Set

DN−1
0 u (0, z′) = W (z′), (35)

am−1,0,...,0, 1
ithplace

,0,...,0(0, z
′) = Ci(z

′), (36)

for 1 ≤ i ≤ n and

am−1,0,...,0(0, z
′) = C0(z

′). (37)

We have

C1(0) = am−1,1,0,...,0(0, z
′) �= 0, (38)

W (0, z”) = DN−1
0 u(0, 0, z”)

= DN−1
0 ϕ(0, 0, z”)

= 0, (39)

since DN−1
0 (zN

0 )|z0=0 = 0. This leads to the solution of the following problem

(P ′′′)

⎧⎨
⎩

n∑
i=1

Ci (z
′)DiW (z′) + C0 (z′)W (z′) = 0

W|z1=0 = 0.

Note that W (z′) = 0 is the solution of the problem P ′′′ and by Cauchy-
Kovalevskaya Theorem, it is unique, hence DN−1

0 u(0, z′) = 0, consequently
we have showed that

Dj
0u (0, z′) = 0, (40)

for 0 ≤ j ≤ k ≤ N and m ≤ k. We have 0 ∈ sup p u because u(z0, 0, z”) = zN
0 .

Now we state the main result which improves the results in [2] and [7].

Theorem 3.1 Let Ω be an open set of Cn+1 containing the origin and
(aα)|α|≤m ∈ C∞ (Ω) . If am,0,...,0(0, z

′) = 0, D0am,0,...,0(0, z
′) = 0 and also

am−1,1,0,...,0(0, z
′) �= 0, then ∀N > 0, N ∈ N, ∃Ω′ ⊂ Ω connected open neigh-

borhood of the origin, and uN = u, u ∈ C∞(Ω) such that
∑

|α|≤m

aαDαu = 0 and

Dk
0u(0, z′) = 0 for every k, 0 ≤ k ≤ N − 1, 0 ∈ sup p u.
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Remark: We can extend the coefficients to complex domain, solve the
problem by the method discussed in this paper and obtain the solution by
restriction.
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