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Abstract
We provide a recursive classification of meander graphs, showing that each meander is identified by a unique 

sequence of fundamental graph theoretic moves. This sequence is called the meander’s signature and can be used 
to construct arbitrarily large sets of meanders, Frobenius or otherwise, of any size and configuration. In certain special 
cases, the signature is used to produce an explicit formula for the index of seaweed Lie subalgebra of sl(n) in terms 
of elementary functions.

Keywords: Biparabolic; Frobenius; Lie algebra; Meander; Seaweed 
algebra

Introduction 
Dergachev and A. Kirilov [1] introduced meanders as planar graph 

representations of bi-parabolic, or seaweed, subalgebras of sl(n) and 
also provided a combinatorial method of computing the index of such 
seaweeds from the number and type of the connected components 
of their associated meander graphs. Of particular interest are those 
seaweed algebras whose associated meander graph consists of a single 
path. Such algebras have index zero. More generally, algebras with 
index zero are called Frobenius and have been extensively studied in 
the context of invariant theory [2-5] and more recently from the point 
of view of quantum group theory [3].

Extending the work of Elashvilli, Coll et al. [2,6] showed that a 
seaweed of type | |a b c

n
was Frobenius precisely when gcd (a + b, b + 

c)=1. However, the methods used there do not extend to seaweeds with 
more than four blocks. Also, the question of what the index actually is 
for the non-Frobenius four block case was left unaddressed. We take 
up these questions in this follow-up note, by first providing a recursive 
classification of meander graphs, showing that each meander is 
identified by a unique sequence of fundamental graph theoretic moves.

This sequence is called the meander’s signature. The signature 
provides a fast algorithm for the computation of the index of Lie 
algebra associated with the meander, and can therefore be used to test 
any relatively prime conditions based on the type of the meander that 
might define Frobenius seaweed Lie algebra. In particular, we find that 
an easy induction on the moves of the signature gives that the index 
of a seaweed of type | |a b c

n
is gcd (a + b, b + c)−1. The signature also 

yields, with relative ease, new infinite families of Frobenius seaweed Lie 
algebras of any size and type.

Definitions 
In this section, we detail the notions of the index of Lie algebra, and 

seaweed algebras and the meanders associated with them.

Index 

Definition 1. Let g be Lie algebra over a field of characteristic zero. 
For any functional F ∈ g* one can associate the Kirillov form BF (x, y) = 
F [x, y] which is skew-symmetric and bilinear. The index of g is defined 
to be the minimum dimension of the kernel of BF as F ranges over g*. The 
Lie algebra g is Frobenius if its index is zero.

Seaweed algebras 

Definition 2. Let k be an arbitrary field of characteristic 0 and n 
a positive integer. Fix two ordered partitions 1{ } =

k
i ia and 1{ } =



j jb of the 
number n. Let 1{ } =

n
i ie be the standard basis in kn. A subalgebra of sl(n) 

that preserves the vector spaces {Vi = span (e1, . . . , ea1+…+ai )} and 
{Wj  = span (eb1+…+bj+1, ..., en)} is called a seaweed algebra of type 

1 2
1 2

| | |
| | |

…
…



m

a a a
b b b

due to their suggestive shape when exhibited in matrix 

form (Given in left hand side of Figure 1).

Remark. A basis free definition is available but not necessary for 
the present discussion. Also, the notion of seaweed algebra has been 
extended to reductive algebras by Panychev [7].

Meanders 

Definition 3. To each seaweed algebra, a planar graph, called a 
meander, can be constructed as follows: Line up n vertices and label them 
with v1, v2, . . . , vn and partition this set into two ordered partitions, 
called top and bottom. For each part in the top (likewise bottom) we 
build up the graph by adding edges in the same way. This involves adding 
the edge from the first vertex of a part to the last vertex of the same part 
drawn concave down (respectively concave up in the bottom part case). 
The edge addition is then repeated between the second vertex and the 
second to last and so on within each part of both partitions. The parts of 
these partitions are called blocks. With top blocks of sizes a1, a2, . . . , aℓ 

and bottom blocks of sizes b1, b2, . . . , bm, we say such a meander has type 
1 2
1 2

| | |
| | |

…
…



m

a a a
b b b

 (Given in right hand side of Figure 1).

Recursive Classification and Winding Down 
In this section, we show that any meander can be contracted or 

“Wound Down” to the empty meander through a sequence of graph-
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theoretic moves; each of which is uniquely determined by the structure 
of the meander at the time of move application. We find that there are 
five such moves, only one of which affects the component structure 
of the graph and is therefore the only move capable of modifying the 
index of the graph, here defined to be twice the number of cycles plus 
the number of paths minus one. Dergachev and Kirillov showed that 
the index of the graph is precisely the index of the associated seaweed 
subalgebra. Since the sequence of moves which contracts a meander 
to the empty meander uniquely identifies the graph, we call this 
sequence the meander’s signature. Although developed independently, 
we find that the signature is essentially a graph theoretic recasting 
of Panyushev’s reduction algorithm, which [7] was used to develop 
inductive formulas for the index of seaweeds in gl(n). Here these 
inductive formulas are expressed in terms of elementary functions, 
which are laid plain by the explicit nature of the signature.

Lemma 4 (Winding Down). If M is a general meander of type

1 2 3

1 2 3

| | | | ,
| | | |

…
=

…
n

m

a a a aM
b b b b

the we have the following cases:

1. Flip (F) If a1 < b1, then simply exchange ai for bi to get

1 2

1 2

| | | .
| | |

…
≡

…
m

l

b b bM
a a a

2. Component elimination (C(c)) If a1 = b1=c, then 

2 3

2 3
.| |…|

→
| |…|

l

m

a a aM
b b b

3. Block elimination (B) If a1 = 2b1, then

1 2 3

2 3
.| | |…|

≡
| |…|

l

m

b a a aM
b b b

4. Rotation contraction (R) If b1 < a1 < 2b1, then

1 2 3

1 1 2 3
.

(2 )
| | |…|

≡
− | | |…|

l

m

b a a aM
b a b b b

5. Pure contraction (P) If a1 > 2b1, then

1 1 1 2 3

2 3

( 2 ) .− | | | |…|
≡

| |…|
l

m

a b b a a aM
b b b

Note that the Winding Down moves can be reversed to create a 
set of “Winding Up” moves, which can be used to build all meanders, 
Frobenius and otherwise.

v1 v2 v3 v4 v5 v6 v7

(b) A meander of type | |
|(a) A seaweed of type 2|2|3

5|2
2 2 3
5 2

Figure 1: A seaweed and corresponding meander.

Remark. Although not our concern here, one of the major 
questions for both open and closed meanders is their enumeration. 
Using a different family of index preserving operators on meanders 
graphs, Dufflo and Yu have recently developed an approach which can, 
in certain cases, effect this enumeration via polynomials [8].

The signature 

We call the cases in Lemma 4 moves since they move one meander 
to another. Notice that in each of these moves except the Flip, the 
number of vertices in the graph is reduced. Also note that in each move 
except for the Component Elimination move, the component structure 
of the meander is maintained. Given a meander, there exists a unique 
sequence of moves (elements of the set {F, C(c), B, R, P}) which reduce 
the given meander down to the empty meander. Such a list is called 
the signature of the meander. Since the only move that changes the 
component structure is C(c), we get the following corollary, which 
provides a recursive classification of Frobenius meanders.

Theorem 5 (Recursive classification). A meander is Frobenius if and 
only if the signature contains no C(c) move except the very last move 
which must be C(1).

Example: As an example of the signature of a Frobenius meander, 

considers the meander of type 
6 1

2 3 2
|

| |
. This meander has signature 

PFRBFBFBC(1), the movements for which are demonstrated in the 
following Figure 2.

Theorem 5 provides a fast algorithm for computing the signature 
of a meander. Indeed, from the signature, one can read off the index of 
the meander by simply adding the parameters used in the Component 
Elimination moves and subtracting 1. That is, if {c1, c2, . . . , cm} are the 
parameters used in the Component Elimination moves, then the index 

6|1
2|3|2

P

2|2|1
3|2

F

3|2
2|2|1

R

2|2
1|2|1

B

1|2
2|1

F

2|1
1|2

B

1|1
2

F

2
1|1

B

1
1

C (1)
0

Figure 2: Detailed signature of 
6 |1

2 | 3 | 2 .
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of the meander equals 
1

( ) 1
=

−∑
m

i
i

c . So, there is a linear (in the order of 

the meander) time algorithm for computing the index of the meander.

Index of a Meander with 4 Blocks
The determination of whether seaweed sub algebra is Frobenius 

usually relies on a combinatorial argument. This section recasts known 
formulas for computing the index in terms of elementary functions. 
Theorem 8 provides a new addition to this class of formulas and is a 
strengthening of a result of Coll et al. [6].

Theorem 6. A meander of type |a b
n

 has index gcd(a, b) – 1 [2].

In order to prove the next result, we make repeated use of the 
following easy fact that follows from the Euclidean Algorithm.

Fact 7. For integers a and b, gcd(a, b)=gcd(a, a + b).

Now, in the style of Theorem 6, we have the following pleasing 
result.

Theorem 8. A meander of type 
| |a b c
n  (or type ( )

|
| −
a b

c n c ) has 

index gcd(a + b, b + c) - 1.

Certainly an F move has no effect on the index of the meander so 
we may assume any meander with four blocks is in one of these forms 
or its flip, whichever is more convenient at the time.

Proof. Let M be a meander with 4 blocks. The proof is by induction 
on the number of simplified Winding Down moves in the signature of 
M. Let k be the number of moves in the signature before either a C(c) 
move or B move is performed. The base of this induction, when k = 
0, is provided by Cases 1 and 2. We consider cases based on the first 
simplified Winding Down move performed in the signature of M. Let 
M′ be the result of this first Winding Down move.

Case 1. A Component Elimination move C(c) is performed.

In this case, M′ has only two blocks so must look like 
a
a

. This 

means M must have type
|
|

c a
c a . Thus, the index of this meander is 

clearly a + c - 1 while the formula says the index should be gcd(c + a, c 
+ a) − 1 = a + c − 1.

Case 2. A Block Elimination move B is performed. 

This case has two subcases. The first is where 
( )
|

=
| −
a bM

c n c
 and 

a=2c. Then 
( )

|′ =
−

c bM
n c

. By Theorem 6, the index of M′ is gcd(b, c)-1. 

Since a = 2c, using Fact 7, this value is the same as gcd(a + b, b + c) − 1 
and the B move preserves the index, the index of M is gcd(a + b, b + 

c) − 1 as claimed. The second case is where =
| |
nM

a b c
so n = 2a and

′ =
|
aM

b c
. By Theorem 6, the index of M′ is gcd(b, c) - 1. Since n=a + b 

+ c=2a, by Fact 7, this value is the same as gcd(a + b, b + c) − 1 and the 
same argument yields the index of M.

Case 3. A Rotation Contraction move R is performed.  

If ( )
|

=
| −
a bM

c n c , then
(2 ) ( )

|′ =
− | −

c bM
c a n c

. By induction, the index 

of M′ is gcd(c + b, b + 2c − a) − 1. By Fact 7, gcd(c + b, b + 2c − a) − 1 = 
gcd(a + b, b + c) − 1 and since the index is preserved under the R move, 

the index of M is as claimed. If 
nM

a b c
=

| |
, an identical argument holds.

Case 4. A Pure Contraction move P is performed.

If
( )
|

=
| −
a bM

c n c
, then ( 2 )

( )
− | |′ =

−
a c c bM

n c
. By induction, the index of 

M′ is gcd(a − c, b + c) − 1. By Fact 7, this equals gcd (a + b, b + c) − 1 
and since the index is preserved under a P move, the index of M is as 
claimed. If =

| |
nM

a b c , an identical argument holds.

Note that Theorem 6 can be reproven very easily using exactly the 
same approach. We now have the following easy corollary to Theorem 
8, which is the main result [6].

Theorem 9. A meander of type | |a b c
n

 or type 
( )
|

| −
a b

c n c
 is 

Frobenius if and only if gcd(a + b, b + c) = 1

New infinite families of Frobenius meanders 

While known infinite families of Frobenius meanders are few, 
new such families can, in theory, be developed by routine applications 
of inductive formulas developed by Panychev [7]. However, we find 
that, in practice, and in keeping with our approach here, recognizing if 
seaweed is Frobenius directly from its block type, via a relatively prime 
condition, is difficult. To illustrate, we note that while it is known that 
Frobenius meanders can have an arbitrarily large number of blocks 
[7,9,10], it is non-trivial to show that they can have arbitrarily many 
blocks of arbitrarily large size.

Theorem 10. If a is even and gcd(a, b) = 1, then the meander of type 
| | | |a a a b

n
 is Frobenius.

Remark. The proof relies on a lengthy counting argument. We 
relegate the proof to Appendix A.

The simplified Winding Down process can be used in cooperation 
with Theorem 10 to obtain the following more general family of 
biparabolics:

Corollary 11. If a is even and gcd(a, b) = 1, then the meander of type 
| | | |
| | | |




a a a b
c a a a

is Frobenius where c=b + ka for some integer k.

Proof. Let a, b and c be as given and let ℓ be the number of blocks 
of size a on the bottom in this meander. By Theorem 10, the meander 

( 2 )
| | | |

=
+




a a a bM
c a

is Frobenius (where there are ℓ extra blocks of size a 

on the top of this meander). To M, we apply an F move followed by ℓ 

P moves. The resulting meander is then flipped again using the F move 

to obtain the meander | | | |′ =
| | | |




a a a bM
c a a a

. Since M was Frobenius, M′ 
is as well.

Conclusion 
Following Theorems 6 and 8, one might expect that a Frobenius 

meander of type | | |a b c d
n

 can be characterized by a relatively prime 

condition of the form

1 2 3 4 1 2 3 4gcd( , ) 1,α α α α β β β β+ + + + + + =a b c d a b c d

where the αi and βj are integer coefficients. Substantial empirical 
evidence suggests that this is not so. Using the signature, exhaustive 

http://dx.doi.org/10.4172/1736-4337.1000227
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simulations have shown that there is no set of integer coefficients, all 
with absolute value at most ten, which can be used to build such a 
relatively prime condition. While this in not conclusive, it is compelling. 
And since the addition of blocks seems to only complicate matters, we 
are led to conjecture that no single, or even finite set of, relatively prime 
conditions are sufficient to classify Frobenius meanders with at least 
five blocks.

Ongoing work 

The notion of a signature consisting of a deterministic sequence 
of index preserving graph theoretic moves can be applied to other 
families of Lie algebras. A forthcoming note will introduce the notion 
of a “symplectic meander” from which a finite set of relatively prime 
conditions can be used to identify Frobenius seaweed subalgebras of 
sp(2n) in the three and four block case. The so(2n) case seems to be 
similarly tractable [11]. However, the five block case appears to be a 
barrier to this “relatively prime” approach in all cases.

Appendix - Proof of Theorem 11 
In this proof, we will be working with meanders which have 

multiple top blocks and a single bottom block, so we make use of the 

following simplified notation: Write a meander of type 1 2| |…| na a a
b

 
as a1|a2|…|an. We also require a preliminary

Lemma 12. For an even integer a and an odd integer b, a meander 
with k blocks a|a|…|a|b has index m if and only if the meander a|a|…
|a|(b + 2a) with the same number of blocks also has index m.

Proof. The proof of this lemma consists of simply showing that any 
path and cycle structure is preserved as the meander is transformed 
between the two meanders M and M′ described below. Let A1, A2, . . . , 
Ak−1 denote the k − 1 blocks of order a (appearing in this order) with A1 
= u1, u2, . . . , ua and let B+ denote a block of order b + 2a with vertices v1, 
v2, . . . , vb+2a. Then all bottom edges of A1 go to the rightmost a vertices 
of B+, namely the vertices vb+a+1, vb+a+2, . . . , vb+2a. Using the top edges, 
these vertices are adjacent to the leftmost a vertices of B+, namely the 
vertices v1, v2, . . . , va.

For each integer i with 1 ≤ i ≤ a/2, we may replace the path

2 1 1 1+ − + − + + + − +i b a i i a i b a i a iv v u u v v

with a new edge viva−i+1 where all internal vertices of the path are 
removed from the meander. Define A′1 to be the vertices v1, v2, . . . , va and 
define B to be the vertices va+1, va+2, . . . , vb+a. Note that all the vertices 
of A1 along with vb+a+1, v b+a+2, . . . , vb+2a have been removed. Call this 
new graph M′. Then M′ is again a meander, and since we have replaced 
paths with single edges, all path and cycle structure, and so the index 
has been preserved. This process can easily be reversed to produce M 
from M′.   

In particular, Lemma 12 means that, when considering whether a 
general meander of type a| a | . . . | a | b  is Frobenius, we may assume b < 
2a. Now, call a segment between consecutive vertices in the drawing of 
a meander an end-segment if there is an edge of the meander connecting 
the two vertices on either end of this segment. Call a segment a top-end-
segment if the segment is an end-segment and the corresponding edge 
is a top-edge. A segment gets mapped by the meander by following 
either the bottom edges or the top edges on either side of the segment. 
By Theorem 8, we may assume there are at least 3 blocks of size a in 
this meander. If we suppose a=2, then by Lemma 12, we know b ≤ 3. 
Evidently, this meander is Frobenius. Thus, we may assume a ≥ 4. If 
there was a cycle, then the Jordan Curve Theorem implies that there 

exists a segment between vertices that does not map (following edges 
of the meander) to the exterior face. Since we show that this is not the 
case, there must not be a cycle in the meander. This proof involves 
considering the segments between vertices in the meander graph and 
showing that each top-end-segment must be mapped by the meander 
to the exterior face. We then consider any segment and show that it 
either maps to a top-end-segment or to the exterior face.

Intuitively, the proof makes use of the following heuristic: We 
visualize the meander as an object (much like a shell) with openings 
in the top between the blocks. If water is poured into these openings, 
we ask whether the water permeates all areas inside the shell. If so, the 
meander is Frobenius and if not, it contains a cycle and is therefore not 
Frobenius.

Label the segments between consecutive vertices of the meander in 
the natural (drawn) order from 1 up to ka + b − 1 where k is the number 
of even blocks. Let c=a/2 and note that, since c ≥ 2, c also shares no 
common factor with b. Then any top-end-segment must be labeled with 
ωc where ω is an odd positive integer. Furthermore, the exterior face is 
accessible via any segment labeled ia = 2ic for any positive integer i ≤ k.

For any segment labeled x, following the bottom mapping by the 
meander yields 2kc+b−x since c = a/2 . We denote this by

2 .−→ +
b

x kc b x
When following the top mapping by the meander, we have two 

cases. If we are in the odd group (of size b), we would map x to 4kc + 
b − x so we denote this by

4 .→ + −
ot

x kc b x
Suppose now we map within an even group (of size a). If we start in 

the ℓth such group, we would map x to (2ℓ − 1)2c − x which is denoted 
by

(2 1)2 .→ − −

et
x c x

These maps will be called arrow maps.

Our first goal is to show that, starting with a top-end-segment 
labeled ωc and following the mapping by the meander, we would 
reach the exterior face (represented by a segment labeled 2ic for some 
positive integer i as above) before ever reaching another top-end-
segment. In order to accomplish this, we show that any sequence 
of these arrow maps would send ωc to 2ic before ever reaching ω′c 
for some positive odd integer ω′. After the first bottom map, we get 

2ω ω ω′+ − =→ +
b

c kc b c c b  for some positive odd integer ω′. Certainly this 
is not an even multiple of c since b and c share no common factors. We 
now consider sequences of top maps and bottom maps, called double 
mappings, by the meander. This gives us two cases:

4 ( 1) 2 (4 ) ( 2 )ω ω ω ω′ ′ ′ ′+ − − − → + −→ − = − +
ot b

c xb kc c x b kc xb kc c k c xb

or

(2(2 1) )

 2 ((2(2 1) ) ) 
(2 2(2 1)) ( 1)

ω ω

ω
ω

→

→

′ ′+ − − −

′+ − − − −
′= + − − + +







et

b

c xb c xb

kc b c xb
k c x b

where x is a positive integer.

In either case, the result is an odd multiple of c plus a multiple of b 
where the multiple of b never decreases and increases by at most one after 
double mapping. Since this double mapping can be repeated, we see that 
ωc will only map to ω′c + mb where ω′ is odd and m is a positive integer. 
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Suppose we have chosen m to be the smallest positive integer with ω′c + 
mb=dc where d is a positive integer. Our goal is to show that d is even.

Since c and b share no common factor, we know b|(d − ω′) and 
ω′−

=
dm c

b
. If d is odd, then d − ω′ is even, making m even. Then, if 

we consider m as opposed to m, we see that

2 2 2
ω ωω
′ ′− −′ + = − =

m d dc b dc c c

which is an integer multiple of c, contradicting the minimality of the 
choice of m. Thus, d is even and every top-end-segment maps to the 
exterior face of the meander.

Our next goal is to show that every segment maps to either a 
top-end-segment or the exterior face (in fact both are true). This will 
complete the proof that there is no cycle in the meander and establish 
that the meander is Frobenius.

Consider an arbitrary segment and define an operation to be first a 
bottom map and then a top map. Note that since the total number of 
vertices is odd, there is no bottom-end-segment so an operation is well 
defined for all segments unless the bottom map arrives at a top-end-
segment or the exterior face. We will call such operations terminating 
since the operation cannot actually be completed as defined.

As shown above, any operation where the top map does not occur 
within the last (odd) block must add b plus an integer multiple of c to 
the label of the segment. Since we may suppose b<2a by Lemma 12 and 
we have assumed that there are at least 3 blocks of size in this meander, 
every operation in which the top map occurs within the last block must 
be followed immediately by an operation in which the top map does not 
occur within the last block. Thus, any sequence of operations must add 

an integer multiple of c along with a strictly increasing positive integer 
multiple of b to the label of the segment. Since b shares no common 
factors with c (or a), this sequence of operations must terminate at 
either a top-end-segment or the exterior face, namely a segment label 
which is a multiple of c. Thus, there can be no cycle in the meander so 
the meander is Frobenius.
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