Interpolation Theorems for Self-Adjoint Operators

Shijun Zheng
Georgia Southern University, szheng@georgiasouthern.edu

Follow this and additional works at: https://digitalcommons.georgiasouthern.edu/math-sci-facpubs
Part of the Mathematics Commons

Recommended Citation

Zheng, Shijun. 2009. "Interpolation Theorems for Self-Adjoint Operators." Analysis in Theory and Applications, 25 (1): 79-85. doi: 10.1007/s10496-009-0079-y source: http://arxiv.org/pdf/0812.4129.pdf
https://digitalcommons.georgiasouthern.edu/math-sci-facpubs/260

INTERPOLATION THEOREMS FOR SELF-ADJOINT OPERATORS

SHIJUN ZHENG

Abstract

We prove a complex and a real interpolation theorems on Besov spaces and Triebel-Lizorkin spaces associated with a selfadjoint operator \mathcal{L}, without assuming the gradient estimate for its spectral kernel. The result applies to the cases where \mathcal{L} is a uniformly elliptic operator or a Schrödinger operator with electromagnetic potential.

1. Introduction and main result

Interpolation of function spaces has played an important role in classical Fourier analysis and PDEs [1, 6, 12, 15, 18]. Let \mathcal{L} be a selfadjoint operator in $L^{2}\left(\mathbb{R}^{n}\right)$. Then, for a Borel measurable function $\phi: \mathbb{R} \rightarrow \mathbb{C}$, we define $\phi(\mathcal{L})$ using functional calculus. In [15, 11, 2, 17] several authors introduced and studied the Besov spaces and Triebel-Lizorkin spaces associated with Schrödinger operators. In this note we present an interpolation result on these spaces for \mathcal{L}.

Let $\left\{\varphi_{j}\right\}_{j=0}^{\infty} \subset C_{0}^{\infty}(\mathbb{R})$ be a dyadic system satisfying (i) $\operatorname{supp} \varphi_{0} \subset$ $\{x:|x| \leq 1\}, \operatorname{supp} \varphi_{j} \subset\left\{x: 2^{j-2} \leq|x| \leq 2^{j}\right\}, j \geq 1$, (ii) $\left|\varphi_{j}^{(k)}(x)\right| \leq$ $c_{k} 2^{-k j}$ for all $j, k \in \mathbb{N}_{0}=\mathbb{N} \cup\{0\}$, (iii) $\sum_{j=0}^{\infty}\left|\varphi_{j}(x)\right| \approx 1, \quad \forall x$. Let $\alpha \in \mathbb{R}, 1 \leq p, q \leq \infty$. The inhomogeneous Besov space associated with \mathcal{L}, denoted by $B_{p}^{\alpha, q}(\mathcal{L})$, is defined to be the completion of $\mathcal{S}\left(\mathbb{R}^{n}\right)$, the Schwartz class, with respect to the norm

$$
\|f\|_{B_{p}^{\alpha, q}(\mathcal{L})}=\left(\sum_{j=0}^{\infty} 2^{j \alpha q}\left\|\varphi_{j}(\mathcal{L}) f\right\|_{L^{p}}^{q}\right)^{1 / q}
$$

[^0]Similarly, the inhomogeneous Triebel-Lizorkin space associated with \mathcal{L}, denoted by $F_{p}^{\alpha, q}(\mathcal{L})$, is defined by the norm

$$
\|f\|_{F_{p}^{\alpha, q}(\mathcal{L})}=\left\|\left(\sum_{j=0}^{\infty} 2^{j \alpha q}\left|\varphi_{j}(\mathcal{L}) f\right|^{q}\right)^{1 / q}\right\|_{L^{p}}
$$

The following assumption on the kernel of $\phi_{j}(\mathcal{L})$ is fundamental in the study of function space theory. Let $\phi(\mathcal{L})(x, y)$ denote the integral kernel of $\phi(\mathcal{L})$.
Assumption 1.1. Let $\phi_{j} \in C_{0}^{\infty}(\mathbb{R})$ satisfy conditions (i), (ii) above. Assume that there exist some $\varepsilon>0$ and a constant $c_{n}>0$ such that for all j

$$
\begin{equation*}
\left|\phi_{j}(\mathcal{L})(x, y)\right| \leq c_{n} \frac{2^{n j / 2}}{\left(1+2^{j / 2}|x-y|\right)^{n+\varepsilon}} \tag{1}
\end{equation*}
$$

This is the same condition assumed in [28, 18] except that we drop the gradient estimate condition on the kernel. This is the case when \mathcal{L} is a Schrödinger operator $-\Delta+V, V \geq 0$ belonging to $L_{l o c}^{1}\left(\mathbb{R}^{n}\right)$ [14, 19] or \mathcal{L} is a uniformly elliptic operator in $L^{2}\left(\mathbb{R}^{n}\right)$ [8, Theorem 3.4.10].

In what follows, $[A, B]_{\theta}$ denotes the usual complex interpolation between two Banach spaces; $(A, B)_{\theta, r}$ the real interpolation, see Section 2 , The notion $T: X \rightarrow Y$ means that the linear operator T is bounded from X to Y.

Theorem 1.2 (complex interpolation). Suppose that \mathcal{L} is a selfadjoint operator satisfying Assumption 1.1. Let $0<\theta<1, s=(1-\theta) s_{0}+\theta s_{1}$, $s_{0}, s_{1} \in \mathbb{R}$ and

$$
\frac{1}{p}=\frac{1-\theta}{p_{0}}+\frac{\theta}{p_{1}}, \quad \frac{1}{q}=\frac{1-\theta}{q_{0}}+\frac{\theta}{q_{1}} .
$$

(a) If $1<p_{i}<\infty, 1<q_{i}<\infty, i=0,1$, then

$$
\left[F_{p_{0}}^{s_{0}, q_{0}}(\mathcal{L}), F_{p_{1}}^{s_{1}, q_{1}}(\mathcal{L})\right]_{\theta}=F_{p}^{s, q}(\mathcal{L}) .
$$

(b) If $1 \leq p_{i} \leq \infty, 1 \leq q_{i} \leq \infty, i=0,1$, then

$$
\left[B_{p_{0}}^{s_{0}, q_{0}}(\mathcal{L}), B_{p_{1}}^{s_{1}, q_{1}}(\mathcal{L})\right]_{\theta}=B_{p}^{s, q}(\mathcal{L}) .
$$

c) If $T: F_{p_{0}}^{s_{0}, q_{0}}(\mathcal{L}) \rightarrow F_{\bar{p}_{0}}^{\bar{s}_{0}, \bar{q}_{0}}(\mathcal{L})$ and $T: F_{p_{1}}^{s_{1}, q_{1}}(\mathcal{L}) \rightarrow F_{\bar{p}_{1}}^{\bar{s}_{1}, \bar{q}_{1}}(\mathcal{L})$, then $T: F_{p}^{s, q}(\mathcal{L}) \rightarrow F_{\bar{p}}^{\bar{s}, \bar{q}}(\mathcal{L})$, where $\bar{s}, \bar{p}, \bar{q}$ and $\bar{s}_{i}, \bar{p}_{i}, \bar{q}_{i}$, satisfy the same relations as those for s, p, q and $s_{i}, p_{i}, q_{i}, 1<p_{i}, q_{i}<\infty$. Similar statement holds for $B_{p}^{s, q}(\mathcal{L})$.

Complex interpolation method originally was due to Calderón [4] and Lions and Peetre [16]; see also [13, 24]. The classical interpolation theory for Besov and Triebel-Lizorkin spaces on \mathbb{R}^{n} has been given
systematic treatments in [20], [3], and [25, 26]. There are interesting discussions on interpolation theory in [20] and [26, 25, 22] for generalized Besov spaces associated with differential operators, which requires certain Riesz summability for \mathcal{L} that seems a nontrivial condition to verify. Nevertheless, we would like to mention that the Riesz summability, the spectral multiplier theorem and the decay estimate in (1) are actually intimately related [10, 18 .

The real interpolation result for $B_{p}^{\alpha, q}\left(\mathbb{R}^{n}\right), F_{p}^{\alpha, q}\left(\mathbb{R}^{n}\right)$ can be found in [20] and [26, 25]. Following the proof as in the classical case, but applying the estimate in (1) in stead of spectral multiplier result, we obtain

Theorem 1.3 (real interpolation). Suppose that \mathcal{L} satisfies Assumption 1.1. Let $0<\theta<1,1 \leq r \leq \infty, s=(1-\theta) s_{0}+\theta s_{1}, s_{0} \neq s_{1}$.
(a) If $1 \leq p<\infty, 1 \leq q_{1}, q_{2} \leq \infty$, then

$$
\left(F_{p}^{s_{0}, q_{0}}(\mathcal{L}), F_{p}^{s_{1}, q_{1}}(\mathcal{L})\right)_{\theta, r}=B_{p}^{s_{r}, r}(\mathcal{L})
$$

(b) If $1 \leq p, q_{1}, q_{2} \leq \infty$, then

$$
\left(B_{p}^{s_{0}, q_{0}}(\mathcal{L}), B_{p}^{s_{1}, q_{1}}(\mathcal{L})\right)_{\theta, r}=B_{p}^{s, r}(\mathcal{L})
$$

The homogeneous spaces $\dot{B}_{p}^{\alpha, q}(\mathcal{L})$ and $\dot{F}_{p}^{\alpha, q}(\mathcal{L})$ can be defined using $\left\{\varphi_{j}\right\}_{j=-\infty}^{\infty}$ in (i) to (iii), instead of $\left\{\varphi_{j}\right\}_{j=0}^{\infty}$. Then the analogous results of Theorem 1.2 and Theorem 1.3 hold.

2. INTERPOLATION FOR \mathcal{L}

Theorem 1.2 and Theorem 1.3 are part of the abstract interpolation theory for \mathcal{L}. In this section we present the outline of their proofs. It was mentioned in [22] that the interpolation associated with \mathcal{L} is a "subtle and difficult" subject, which normally relies on the very property of \mathcal{L}.
2.1. Complex interpolation. The proof of Theorem 1.2 is similar to that given in 25 in the Fourier case. The insight is that the three line theorem (involved in Riesz-Thorin or Calderón's constructive proof for L^{p} spaces) reflects the fact that the value of an analytic function in the interior of a domain is determined by its boundary values.

Definition 2.2. Let $\left(A_{0}, A_{1}\right)$ be an interpolation couple, i.e., A_{0}, A_{1} are (complex) Banach spaces, linearly and continuously embedded in a Hausdorff space \mathcal{H}. The space $A_{0} \cap A_{1}$ is endowed with the norm $\|a\|_{A_{0} \cap A_{1}}=\max \left\{\|a\|_{A_{j}}, j=0,1\right\}$. The space $A:=A_{0}+A_{1}$ is endowed with the norm

$$
\|a\|_{A}=\inf \left\{\left\|a_{0}\right\|_{A_{0}}+\left\|a_{1}\right\|_{A_{1}}: a_{0} \in A_{0}, a_{1} \in A_{1}\right\} .
$$

Let $S=\{z \in \mathbb{C}: 0 \leq \Re z \leq 1\}$ and \bar{S} its closure. Denote F the class of all A-valued functions $f(z)$ on \bar{S} such that $z \mapsto f(z) \in A$ is analytic in S and continuous on \bar{S}, satisfying
(i)

$$
\sup _{z \in \bar{S}}\|f(z)\|_{A} \text { is finite. }
$$

(ii) The mapping $t \mapsto f(j+i t) \in A_{j}$ are continuous from \mathbb{R} to A_{j}, $j=0,1$.
Then F is a Banach space with the norm

$$
\|f\|_{F}=\max _{j}\left\{\sup _{t}\|f(j+i t)\|_{A_{j}}\right\} .
$$

For $0<\theta<1$ we define the interpolation space $\left[A_{0}, A_{1}\right]_{\theta}$ as

$$
\left[A_{0}, A_{1}\right]_{\theta}:=\{a \in A: \exists f \in F \text { with } f(\theta)=a\} .
$$

Then $\left[A_{0}, A_{1}\right]_{\theta}$ is a Banach space equipped with the norm

$$
\|a\|_{\theta}:=\inf \left\{\|f\|_{F}: f \in F \text { and } f(\theta)=a\right\} .
$$

2.3. Outline of the proof of Theorem 1.2, Let $\left\{\phi_{j}\right\},\left\{\psi_{j}\right\}$ satisfy the conditions in (i)-(iii) and $\sum_{j} \psi_{j}(x) \phi_{j}(x)=1$. Define the operators $S: f \mapsto\left\{\phi_{j}(\mathcal{L}) f\right\}$, and $R: g \mapsto \sum_{j} \psi_{j}(\mathcal{L}) g$. The proof for part (a) follows from the commutative diagram

and Lemma 2.4 and Lemma 2.5, which are interpolation results for Banach space valued L^{p} and ℓ^{q} spaces [25].
Lemma 2.4. Let $0<\theta<1,1 \leq p_{0}, p_{1}<\infty$ and $p^{-1}=(1-\theta) p_{0}^{-1}+$ θp_{1}^{-1}. Let A_{0}, A_{1} be Banach spaces. Then

$$
\begin{equation*}
\left[L^{p_{0}}\left(A_{0}\right), L^{p_{1}}\left(A_{1}\right)\right]_{\theta}=L^{p}\left(\left[A_{0}, A_{1}\right]_{\theta}\right) \tag{2}
\end{equation*}
$$

If $p_{1}=\infty$, then (圆) holds with $L^{p_{1}}\left(A_{1}\right)$ replaced by $L_{0}^{\infty}\left(A_{1}\right)$, the completion of simple A_{1}-valued functions with the esssup norm.

As in [25], denote $\ell^{q}\left(A_{j}\right)$ the space of functions consisting of $a=\left\{a_{j}\right\}$, $a_{j} \in A_{j}$ (A_{j} being Banach spaces) equipped with the norm
$\|a\|_{\ell q\left(A_{j}\right)}=\left(\sum_{j}\left\|a_{j}\right\|_{A_{j}}^{q}\right)^{1 / q}$.

Lemma 2.5. Let $0<\theta<1,1 \leq q_{0}, q_{1}<\infty$ and $q^{-1}=(1-\theta) q_{0}^{-1}+$ θq_{1}^{-1}. Let A_{j} be Banach spaces, $j \in \mathbb{N}$. Then

$$
\begin{equation*}
\left[\ell^{q_{0}}\left(A_{j}\right), \ell^{q_{1}}\left(B_{j}\right)\right]_{\theta}=\ell^{q}\left(\left[A_{j}, B_{j}\right]_{\theta}\right) . \tag{3}
\end{equation*}
$$

If $q_{1}=\infty$, then

$$
\begin{equation*}
\left[\ell^{q_{0}}\left(A_{j}\right), \ell^{\infty}\left(B_{j}\right)\right]_{\theta}=\ell^{q}\left(\left[A_{j}, B_{j}\right]_{\theta}\right)=\left[\ell^{q_{0}}\left(A_{j}\right), \ell_{0}^{\infty}\left(B_{j}\right)\right]_{\theta}, \tag{4}
\end{equation*}
$$

where $\ell_{0}^{\infty}\left(B_{j}\right):=\left\{\left\{c_{j}\right\} \in \ell^{\infty}\left(B_{j}\right):\left\|c_{j}\right\|_{B_{j}} \rightarrow 0\right.$ as $\left.j \rightarrow \infty\right\}$.
If $1 \leq q_{0}, q_{1}<\infty$, (3) also follows from Lemma 2.4 as a special case where the underlying measure space can be taken as $(X, \mu)=\mathbb{Z}$. If $q_{1}=\infty$, then the remark in [25, Subsection 1.18.1] shows that the second statement in Lemma 2.5 is also true.

In the diagram above in order to show S, R are continuous mappings, we need the following well-known lemma.

Lemma 2.6. Let $h(x)$ be a monotonely nonincreasing, radial function in $L^{1}\left(\mathbb{R}^{n}\right)$. Let $h_{j}(x)=2^{j n / 2} h\left(2^{j / 2} x\right)$ be its scaling. Then for all f in $L_{\text {loc }}^{1}\left(\mathbb{R}^{n}\right)$

$$
\left|\int h_{j}(x-y) f(y) d y\right| \leq c_{n}\|h\|_{1} M f(x)
$$

where $M f$ denotes the usual Hardy-Littlewood maximal function.
Evidently the decay estimate in (1) and Lemma 2.6 imply the continuity of S and R, in light of the $L^{p}\left(\ell^{q}\right)$-valued maximal inequality.

The proof for $B_{p}^{s, q}(\mathcal{L})$ in part (b) proceeds in a similar way.
2.7. Real interpolation. Peetre's K-functional [21] is defined as

$$
K(t, a):=K\left(t, a ; A_{0}, A_{1}\right)=\inf \left(\left\|a_{0}\right\|_{A_{0}}+t\left\|a_{1}\right\|_{A_{1}}\right)
$$

where the infimum is taken over all representations of $a=a_{0}+a_{1}$, $a_{i} \in A_{i}$. Let $0<q \leq \infty, 0<\theta<1$. For a given interpolation couple $\left(A_{0}, A_{1}\right)$, the real interpolation space $\left(A_{0}, A_{1}\right)_{\theta, q}$ is given by
$\left(A_{0}, A_{1}\right)_{\theta, q}=\left\{a \in A_{0}+A_{1}:\|a\|_{\left(A_{0}, A_{1}\right)_{\theta, q}}=\left(\int_{0}^{\infty} t^{-\theta q} K(t, a)^{q} \frac{d t}{t}\right)^{1 / q}<\infty\right\}$
with usual modifications if $q=\infty$.
Proof of Theorem [1.3 is similar to [26, Subsection 2.4.2] and [3, Theorem 6.4.5]. Define $\ell^{s, q}(A)=\left\{a=\left\{a_{j}\right\}:\|a\|_{\ell^{s, q}(A)}=\left\|\left\{2^{j s}\left\|a_{j}\right\|_{A}\right\}\right\|_{\ell^{q}}<\right.$ $\infty\}$. For Besov spaces it follows from

$$
\left(\ell^{s_{0}, q_{0}}\left(A_{0}\right), \ell^{s_{1}, q_{1}}\left(A_{1}\right)\right)_{\theta, q}=\ell^{s, q}\left(\left(A_{0}, A_{1}\right)_{\theta, q}\right),
$$

$s=(1-\theta) s_{0}+\theta s_{1}, q^{-1}=(1-\theta) q_{0}^{-1}+\theta q_{1}^{-1}$ and the commutative diagram for $B_{p}^{s, q}(\mathcal{L})$. Consult [26, 25] or [20, Chapter 5, Theorem 6]; both of their proofs rely on retraction method. Also see [3] for a different
proof in the special case involving Sobolev spaces. In the general case [3] suggests using a more concrete characterization of the K-functional for the Lorentz space $L^{p q}$.

For the F-space the proof follows from the commutative diagram for $F_{p}^{s, q}(\mathcal{L})$ and

$$
\left(L^{p_{0}}\left(A_{0}, w_{0}\right), L^{p_{1}}\left(A_{1}, w_{1}\right)\right)_{\theta, p}=L^{p}\left(\left(A_{0}, A_{1}\right)_{\theta, p}, w\right),
$$

where $p^{-1}=(1-\theta) p_{0}^{-1}+\theta p_{1}^{-1}, w=w_{0}^{1-\theta} w_{1}^{\theta}, w_{0}, w_{1}$ being two weight functions [20, Chapter 5].
2.8. Schrödinger operators with magnetic potential. From [14], [28] or [18] we know that if the heat kernel of \mathcal{L} satisfies the upper Gaussian bound

$$
\begin{equation*}
\left|e^{-t \mathcal{L}}(x, y)\right| \leq c_{n} t^{-n / 2} e^{-c|x-y|^{2} / t} \tag{5}
\end{equation*}
$$

then the kernel decay in Assumption 1.1 holds. Let

$$
H=-\sum_{j=1}^{n}\left(\partial_{x_{j}}+i a_{j}\right)^{2}+V,
$$

where $a_{j}(x) \in L_{\text {loc }}^{2}\left(\mathbb{R}^{n}\right)$ is real-valued, $V=V_{+}-V_{-}$with $V_{+} \in L_{\text {loc }}^{1}\left(\mathbb{R}^{n}\right)$, $V_{-} \in K_{n}$, the Kato class [23]. Proposition 5.1 in [7] showed that (5) is valid for $-\Delta+V$ if $V_{+} \in K_{n}$ and $\left\|V_{-}\right\|_{K_{n}}<\gamma_{n}:=\pi^{n / 2} / \Gamma\left(\frac{n}{2}-1\right)$, $n \geq 3$, whose proof evidently works for $V_{+} \in L_{l o c}^{1}$. By the diamagnetic inequality [23, Theorem B.13.2], we see that (5) also holds for H provided $\left\|V_{-}\right\|_{K_{n}}<\gamma_{n}, n \geq 3$.

As another example, a uniformly elliptic operator is given by

$$
\mathcal{L}=-\sum_{j, k=1}^{n} \partial_{x_{j}}\left(a_{j k} \partial_{x_{k}}\right)
$$

where $a_{j k}(x)=a_{k j}(x) \in L^{\infty}\left(\mathbb{R}^{n}\right)$ are real-valued and satisfy the ellipticity condition $\left(a_{j k}\right) \approx I_{n}$. Then [19, Theorem 1] tells that (5) is true provided that the infimum of its spectrum $\inf \sigma(\mathcal{L})=0$.

References

[1] M. Beals, W. Strauss, L^{p} estimates for the wave equation with a potential. Comm. P.D.E. 18 (1993), no. 7-8, 1365-1397.
[2] J. Benedetto, S. Zheng, Besov spaces for the Schrödinger operator with barrier potential, to appear in Complex Analysis and Operator Theory, Birkhäuser.
[3] J. Bergh, J. Löfström, Interpolation Spaces. Springer-Verlag, 1976.
[4] A. Calderón, Intermediate spaces and interpolation. Stud. Math., Seria Specjalna, 1 (1963), 31-34.
[5] , Intermediate spaces and interpolation, the complex method. Studia Math. 24 (1964), 113-190.
[6] S. Cuccagna, P. Schirmer, On the wave equation with a magnetic potential. Comm. Pure Appl. Math. 54 (2001) no. 2, 135-152.
[7] P. D'Ancona, V. Pierfelice, On the wave equation with a large rough potential. J. Funct. Anal. 227 (2005), no. 1, 30-77.
[8] E. Davies, Heat Kernels and Spectral Theory. Cambridge University Press, Cambridge, 1989.
[9] , Uniformly elliptic operators with measurable coefficients. J. Funct. Anal. 132 (1995), no.1, 141-169.
[10] X. Duong, E. Ouhabaz, A. Sikora, Plancherel type estimates and sharp spectral multipliers. J. Funct. Anal. 196 (2002), 443-485.
[11] J. Dziubańsk, Triebel-Lizorkin spaces associated with Laguerre and Hermite expansions. Proc. Amer. Math. Soc. 125 (1997), 3547-3554.
[12] J. Ginibre, G. Velo, Generalized Strichartz inequalities for the wave equation. J. Funct. Anal. 133 (1995), 50-68.
[13] P. Grisvard, Commutativité de deux foncteurs d'interpolation et applications. J. Math. Pures Appl. 45 (1966), 143-290.
[14] W. Hebisch: A multiplier theorem for Schrödinger operators. Colloq. Math, 60/61 (1990), no. 2, 659-664.
[15] A. Jensen, S. Nakamura, Mapping properties of functions of Schrödinger operators between L^{p} spaces and Besov spaces. Advanced Studies in Pure Math. 23 (1994), 187-209.
[16] J. Lions, J. Peetre, Sur une classe d'espaces d'interpolation. Inst. Hautes Études Sci. Publ. Math. 19 (1964), 5-68.
[17] G. Ólafsson, S. Zheng, Function spaces associated with Schrödinger operators: the Pöschl-Teller potential. J. Fourier Anal. Appl. 12 (2006), no.6, 653-674.
[18] G. Ólafsson, S. Zheng, Harmonic analysis related to Schrödinger operators. Contemporary Mathematics 464 (2008), 213-230.
[19] E. Ouhabaz, Sharp Gaussian bounds and L^{p}-growth of semigroups associated with elliptic and Schrödinger operators. Proc. A.M.S. 134 (2006), no. 12, 35673575.
[20] J. Peetre, New Thoughts on Besov Spaces. Duke Univ. Math. Series I. Durham: Duke Univ. 1976.
[21] _ A theory of interpolation of normed spaces. Notes, Brasilia, 1963 (Notas de Matematica, no.39, 1968).
[22] H.-J. Schmeisser, H. Triebel, Topics in Fourier Analysis and Function spaces. Wiley-Interscience, 1987.
[23] B. Simon, Schrödinger semigroups. Bull. Amer. Math. Soc. 7 (1982), no.3, 447-526.
[24] M. Taibleson, On the theory of Lipschitz spaces of distributions on Euclidean n-spaces, I,II. J. Math. Mech. 13 (1964), 407-479; 14 (1965), 821-839.
[25] H. Triebel, Interpolation Theory, Function Spaces, Differential Operators. Amsterdam, North-Holland, 1978.
[26] H. Triebel, Theory of Function Spaces. Birkhäuser, 1983.
[27] K. Yajima, The $W^{k, p}$-continuity of wave operators for Schrödinger operators. J. Math. Soc. Japan 47 (1995), 551-581.
[28] S. Zheng, Littlewood-Paley theorem for Schrödinger operators. Anal. Theory. Appl. 22 (2006), no.4, 353-361.

Department of Mathematical Sciences, Georgia Southern UniverSity, Statesboro, GA 30460-8093

E-mail address: szheng@georgiasouthern.edu
URL: http://math.georgiasouthern.edu/~ szheng

[^0]: Date: February 20, 2013.
 2000 Mathematics Subject Classification. Primary: 42B35, 42B25; Secondary: 35J10.

 Key words and phrases. interpolation, functional calculus.

