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ABSTRACT 

 

Transportation systems such as rail, road, and waterways are key component of 

critical infrastructure systems, providing connectivity between other components to enable 

the production and distribution of goods and services. During large scale disasters such as 

earth quakes and floods, this connectivity is disrupted, restricting or completely halting the 

flow of goods and services. To ensure that the connectivity between the different modes of 

transportation are restored in an aftermath of these disruptions, the interdependence 

between them and the importance of individual elements to the overall connectivity  have 

to be studied and formulated to develop a system-level restoration plan. This paper presents 

a framework to develop efficient restoration schemes for a road transportation network in 

an aftermath of a disruption. The road transportation network is modelled using graph 

theory analytics. Using a system oriented parameter such as the Eigen-vector centrality 

measure associated with the road transportation, it is possible to understand the importance 

of different network components. This model captures the interdependence between the 

different elements in the road transportation network critical in understanding failure 

effects by identifying the important nodes in the network using the Eigen-vector centrality 

measure. The model is constructed from publically available data for Saint-Louis, 

Missouri. By performing a sensitivity analysis, we have found that the node with the 

highest Eigen-vector centrality measures are shown to provide a higher value within a 

ninety-five percent confidence level, indicating low sensitivity to changes in input 

parameters. This provides a measure to determine the most important nodes to place back 

into service to assist in restoring an urban center’s supply chain in the wake of an extreme 

event. 
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1. INTRODUCTION AND BACKGROUND 

 

Critical infrastructure systems provide the backbone for socioeconomic vitality and 

security of urban areas. The US Department of Homeland Security (DHS) defines critical 

infrastructure systems as the assets, systems, and networks, whether physical or virtual, 

vital to the United States that their incapacitation or destruction would have a debilitating 

effect on security, national economic security, national public health or safety, or any 

combination thereof (DHS, 2014).”  Large-scale disasters, such as earthquakes or 

hurricanes, have devastating impacts on the key critical infrastructure systems of a 

community. The likelihood that a disruption in one network will affect the functioning of 

other systems is very high in an interconnected infrastructure network (McEntire, 2004; 

Mills, 2005). The transportation system is one of the complex systems greatly affected by 

natural and man-made disruptions. An affected transportation system can have severe 

consequences on the economic vitality of a region. Hurricane Katrina made landfall in 

August, 2005 causing extensive flooding in New Orleans, Louisiana where over two 

hundred thousand homes were damaged or destroyed, and more than eight hundred 

thousand people were displaced. Roadways and bridges were impassable for several weeks 

with huge volumes of debris requiring disposal, and over two billion dollars had to be 

invested to restore the region's infrastructure, not including the large amount of indirect 

costs associated with loss of production and lost wages (Enke, Tirasirichai and Luna, 

2008). Figure 1.1 depicts the damage to roadways due to Hurricane Katrina. This is just 

one example of the economic impact of these events, demonstrating the importance of how 

to best implement plans to restore transportation capabilities, making the study of
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transportation network at a system level essential for planning and accelerating critical 

infrastructure restoration.  

 

Figure 1.1. Effect of Hurricane Katrina on the roadways of New Orleans, Louisiana. 

(Image from Louisiana Department of Transportation and Development 

 

Existing decision-making techniques developed by the federal, state and local 

government agencies focus only on emergency responses in an event of a disruption (Veras 

and Jaller, 2012; Hale and Moberg, 2005; Horner and Widener, 2011). For developing a 

restoration scheme applicable for long-term purposes, community planners should 

integrate large amount of data available to make these decisions, such as location data, 

infrastructure data, geo-spatial data, etc. Though there are constraints in the data acquisition 

process, much of these data are found in the Geospatial Information Systems (GIS). GIS 

not only help in depicting the geographic interdependencies within critical infrastructure 

elements (Goodchild and Haining 2004; Greene, 2002) but also help in examining the 
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interdependency among critical infrastructure systems (Sinton, 1992). However, one of the 

biggest challenges is integrating the large amount of data into a single model which 

facilitates multi-dimensional approach (Mitchell, 2005; Zeiler, 2010).  

Graph theory analytics is used to integrate different data sets into a single model 

which captures the complex interdependencies of the transportation network representing 

true system conditions. Graph theory analytics help in modeling the different critical 

infrastructure elements into a graph by representing road segments as edges and 

intersections, bridges, and other interaction points as vertices. This allows for a quick 

analysis of different interfaces between the elements to be restored in the aftermath of a 

disaster. This in turn enables rapid assessment for decision making and hastens actions that 

have to be taken to restore or improve to pre-disaster living conditions, thereby revitalizing 

the economy, social and cultural life. The repair, restoration and replacement of the 

damaged facilities involve direct and indirect costs. Direct costs refer to the costs incurred 

due to infrastructure damages. Indirect costs refer to costs incurred due to consequences of 

a large-scale disaster such as freight flow interruption, temporary unemployment, etc.  

Damage to a particular infrastructure element can also have a cascading effect on other 

infrastructures. For instance, the lower capacity of the transportation network will result in 

lower production capacity for each industry sector due to reduced material deliveries or 

fewer employees having access to the company (Enke, Tirasirichai and Luna, 2008). 

Thus, it is important for community planners to use the resources, labor and time 

efficiently to minimize the overall costs of the restoration process. This brings the need for 

the prioritization in the order of restoring the infrastructures as all the infrastructures need 

not be restored at once. This research identifies the important nodes in the network using 
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the Eigen-vector centrality measure and helps in prioritizing the order of restoration of the 

infrastructures efficiently based on the importance of each node in the network in an event 

of a disaster.  

 

1.1. EIGEN-VECTOR AND ITS APPLICATION USING GRAPH THEORY 

 

A graph G can be considered as an ordered pair G = (V, E) comprising of a set of 

vertices or nodes V together with a set of edges E where an edge is related with two vertices, 

and the relation is represented as an unordered pair of the vertices with respect to that 

particular edge (West, 2000). Graph-based methods provide a valuable tool for elucidating 

network structures. In this research, we focus on a particular type of graph-based method 

that identifies nodes which play crucial roles within the network. These nodes are 

characterized by a measure called “node centrality”. There are many centrality measures 

used to analyze the graph based networks such as degree centrality, betweeness centrality, 

Eigen-vector centrality, etc. The degree centrality is one of the simplest centrality 

measures. The degree of a node is defined as:  

                                                                𝑥𝑖 = ∑𝑗 𝑎𝑖𝑗                                                         (1)  

Where  

𝑥𝑖 = degree centrality of vertex i 

𝑎𝑖𝑗 = 1 if vertex i is connected to vertex j 

𝑎𝑖𝑗 = 0 if vertex i is not connected to vertex j 

 

Degree centrality states that a node has high degree if it has strong connections to 

many other nodes in the graph. For directed graphs, there are two separate measures of 
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degree centrality, such as the in-degree and the out-degree. In-degree refers to the number 

of edges directed to the node and out-degree refers to the number of edges that the node 

directs to others.  

Eigen-vector centrality is a natural extension of the simple degree centrality where 

nodes with high connectivity are favored. The concept of Eigen-vectors and Eigen-values 

are usually used in the context of linear algebra or matrix theory (Anton, 1987). Eigen-

vectors and Eigen-values emerged while studying the quadratic forms and differential 

equations. Many well-known mathematicians including Euler used the concept of Eigen-

vector and Eigen-values to study the rotational motion of a rigid body and discovered the 

importance of the principal axes (Carter and Tapia, 2008). In linear algebra, an Eigen-

vector is a non-zero vector whose direction does not change when a linear transformation 

is applied to it. If A is a linear transformation from a vector space V over a field F into 

itself and v is a vector in V that is not the zero vector, then v is an eigenvector of A if A 

(v) is a scalar multiple of v. This can be written as: 

                                                                A (�⃗�) =λ�⃗�                                                           (2)    

Where λ is a scalar in the field F, known as the eigenvalue or characteristic root associated 

with the Eigen-vector �⃗�. 

For example, consider a matrix A= [
1 2
4 3

] 

λ is an Eigen value of A iff det(λ In- A) = 0 

where  

In = identity matrix. 

det (λ [
1 0
0 1

]  −  [
1 2
4 3

]) = 0 
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det ([
λ 0
0 λ

]  −  [
1 2
4 3

]) = 0 

det ([
λ − 1 −2

−4 λ − 3
] ) = 0 

(λ − 1) (λ − 3) -8 = 0 

λ2- 3λ - λ + 3 - 8 = 0 

λ2-4 λ -5 = 0 

The above equation is referred as the characteristic polynomial. 

 (λ − 5) (λ + 1) = 0 

λ = 5 or λ = -1 

Assuming non-zero Eigen-vectors, A (�⃗�) =λ�⃗�    

0⃗⃗   = λ�⃗�  - A (�⃗�) 

0⃗⃗   = λ In�⃗�  - A (�⃗�) 

0⃗⃗   = (λ In – A) (�⃗�) 

For any Eigen value λ, 

𝐸λ = N (λ In – A) (�⃗�) 

Where:  

𝐸λ = Eigen space 

N = null space 

When λ = 5, 

𝐸5 = N ([
5 0
0 5

] −  [
1 2
4 3

] ) 

𝐸5 = N ([
4 −2

−4 2
] ) 

([
4 −2

−4 2
] ) �⃗�  = 0⃗⃗   
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Null space of a matrix is equal to the null space of the reduced row echelon form of a 

matrix. 

([
4 −2
0 0

] )          ([
1 −1/2
0 0

] ) [
𝑉1
𝑉2

] = [
0
0

] 

V1 – ½ V2 = 0 

V1 = ½ V2 

𝐸5 = {[
𝑉1
𝑉2

]}= t [
1/2

1
], t ԑ IR 

𝐸5 = span ([
1/2

1
]) 

When λ = -1, 

𝐸−1 = N ([
−1 0
0 −1

] −  [
1 2
4 3

] ) 

𝐸5 = N ([
−2 −2
−4 −4

] ) 

([
−2 −2
−4 −4

] ) �⃗�  = 0⃗⃗    

([
−2 −2
0 0

] )          ([
1 1
0 0

] ) [
𝑉1
𝑉2

] = [
0
0

] 

V1 + V2 = 0 

V1 = - V2 

𝐸−1 = {[
𝑉1
𝑉2

]}= t [
−1
1

], t ԑ IR 

𝐸−1 = span ([
−1
1

]) 

For this example, there are two Eigen values, λ = 5 and λ = -1. This provides an 

infinite number of Eigen-vectors, thereby creating two Eigen spaces where each of them 

corresponds to one of the Eigen values.  
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Though Eigen-vector and Eigen-values were first used to study principal axes of 

the rotational motion of rigid bodies, they are now used in stability analysis, vibration 

analysis, atomic orbitals, facial recognition, and matrix diagonalization (Anton, 1987).  

The concept of Eigenvector centrality was first introduced by Bonacich (Bonacich, 

1987). Eigen-vector centrality gives each vertex or node in the network a score proportional 

to the sum of the scores of its neighbors. In theory, this centrality measure could be used 

for both directed and undirected networks. This is done by counting the number and the 

quality of connections at each node so that a node with few connections to some high-

ranking other nodes may outrank one with a larger number of mediocre connections. 

Undirected networks are preferred over directed networks as a directed networks have an 

adjacency matrix that is asymmetric. This leads to two sets of Eigen-vectors such as the 

left Eigen-vectors and the right Eigen-vectors and thus, have two leading Eigen-vectors.  

The right Eigen-vector is usually used to define the centrality because the centrality in 

directed networks is bestowed by the in-degree of the vertex rather than the out-degree. In 

mathematical terms, a vertex that has a strongly connected component of two or more 

vertices or is the out-component of such a component, can have a non-zero Eigen-vector 

centrality measure. But, there are instances where vertices with high in-degree have high 

centrality even if they are not in a strongly connected component. A directed graph is 

strongly connected if there is a path between all pairs of vertices. Thus, the Eigen-vector 

centrality measure takes into account the entire pattern of the network and is suitable for 

transportation network analysis. 

Many algorithms for computing Eigen-vector centrality measure of symmetric 

adjacency matrices are known. The power iteration method is one of the most efficient 
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methods and used by the Gephi software tool (Bastian, Heymann and Jacomy, 2009). The 

power iteration method is an Eigen-value algorithm where for a given matrix A, the 

algorithm will calculate λ, which is the greatest Eigen value of A and non-zero vector v 

which is the corresponding Eigen-vector of λ such that it satisfies Av = λv. The algorithm 

is also called as Von-Mises iteration. Google's “PageRank” algorithm is a variant of 

eigenvector centrality (Altman and Tennenholtz, 2005). 

 

1.2. CAPTURING PHYSICAL INTERDEPENDENCE OF CRITICAL    

INFRASTRUCUTRE SYSTEMS 
 

There are several works where the transportation network has been represented by 

an undirected graph with the nodes as cities and edges as traffic roads (Ip and Wang, 2011). 

The Critical Infrastructure Modelling System (CIMS, 2006) developed by Idaho National 

Laboratories (INL), uses geospatial information and performs ‘what-if’ analysis but one of 

the key problems with this model is that it fails to account for the interdependency between 

critical infrastructure systems. 

In this research, the road transportation network is considered to study and develop 

a measure that can be used to determine restoration schemes. The road transportation 

network is modeled such that the intersections and state bridges are the nodes and the 

interstates, highways or spurs are the edges. Figure 1.2 illustrates a sample network that is 

modeled in such way that it captures the different modes of transportation. The restoration 

scheme is based on restoring the services associated with the freight flow of the 

transportation network. The road transportation network is considered as it greatly impacts 

the transport of freight across different regions. Disaster management studies fail to capture 
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full system complexity by not combining qualitative and quantitative methodologies and 

the interdependencies that lead to emergent behaviors are not taken into account. 

To investigate the road transportation network a graph G is constructed using real-

time publically available data. These data come from the National Map (USGS, 2017), and 

includes items such as orthoimagery data to identify the roads and intersection under 

consideration. 

 

Figure 1.2. Example of a network that depicts the different modes of transportation with 

nodes and edges. (Image from (scipy-2011-tutorial, 2011)) 

 

This helps in identifying and representing the physical components and interactions 

between those different components that make up the road transportation network.  

The robustness and sensitivity of different centrality measures in various networks 

were studied and compared when different percentages of edges and nodes in the networks 

were removed or added (Herald; Pastran; Zhu, 2013). The Degree centrality measure 

cannot be used for determining the important nodes in a transportation network as it 

considers only the in-degree and out-degree of a node and does not take into account the 
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importance of its neighbors. The Betweenness centrality and the Closeness measure 

centrality measures are node specific and does not account for the entire network. The Katz 

centrality measure computes the relative influence of a node within a network by measuring 

the number of the immediate neighbors but connections between distant neighbors are 

penalized. This type of centrality measure is suitable only for applications involving 

directed networks such as citation networks and World Wide Web (West, 2000).  On 

comparison with the all centrality measures, the Eigen-vector centrality measure is the most 

appropriate system parameter in this scenario. This is the first time that a research has been 

carried out to account for interdependence for a road transportation network using the 

Eigen-vector centrality measure. Based on the calculated centrality measure at each node, 

the restoration scheme which guides the decision making process is developed. The 

technique proposed here takes into account the system characteristics compared to existing 

models which lacked complexity and a robust data identification process (Veras and Jaller, 

2012; Hale and Moberg, 2005; Horner and Widener, 2011; Ramachandran, et al., 2014). 

The area chosen for this study is Saint-Louis, Missouri. Saint Louis, MO is considered as 

a major hub for transportation of goods and services, consisting of road, rail, ship, and air 

transportation. There are four interstate highways (I-70, I-64, I-55 and I-44) that connect 

to a larger regional highway system, major roadways and bridges. Saint Louis has the third-

largest rail hub in the nation that transports grain, gravel, crushed stone, prepared 

foodstuffs, fats, oils, nonmetallic mineral products, alcohol and tobacco products, etc. The 

major rail services across Saint Louis, MO are provided by BNSF, CSX, NS and UP. The 

river transportation network through the Port of Saint Louis, is 19.3 miles of riverbank on 

the Mississippi River that handles more than thirty two million tons of freight annually. 
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The Mississippi River is one of the major rivers of North America which separates 

the east and west of the United States. The Lambert Saint Louis International Airport is 

also the largest and busiest airport in the state. The large amount of freight transported 

through different transportation networks make Saint Louis a crucial region in terms of 

freight flow. 

The freight flow through different transportation networks could be highly 

disrupted in an event of a disaster. Therefore, it is necessary to understand how the different 

transportation networks are interdependent and interconnected so that services could be 

restored in the event of a disaster. Though there are several researches being carried out 

(Ochab, 2012; Atsan and O¨zkasap, 2007; Herland, Pastran and Zhu, 2013), applications 

of Eigen-vector centrality to study the interdependence between the different components 

of transportation networks have seldom been done. Therefore, the goal of this research is 

to develop an efficient measure to be applied to a restoration scheme by capturing the 

interdependence between the different components of the road transportation network by 

taking into account the system oriented parameter of the road transportation network. 
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2. METHODOLOGY 

 

Modeling critical infrastructure elements with real-world data has seldom been 

done as the modeling techniques are predominantly focused on developing methodologies 

and algorithms. A major section of research either assumed that the data are hypothetically 

complete and available, or synthetic data is generated for analyses when needed. This kind 

of approach makes it arduous to understand the complex interactions between different 

critical infrastructures. In this research, the interdependence between different critical 

infrastructure elements are illustrated by using the actual road transportation network in 

the Saint Louis, Missouri area as an example. The road transportation network is modelled 

using graph theory analytics. The road transportation network is modeled in such a way that 

the intersections or state bridges are the nodes and the interstates or highways are the edges. 

We calculate the Eigen- vector centrality measure for the road transportation network to 

identify the important nodes in the network. The Eigen-vector centrality principle states 

that the importance of each node is proportional to the importance of its neighbors. 

Importance refers to the connectivity of a particular node in the network. Nodes with a 

higher Eigen-vector centrality measure, for the overall network have a higher level of the 

importance in the network.  

The proposed technique focusses on restoring the freight flow capacity across the 

road transportation network. The road transportation network is modelled as a graph 

(Figure2.1). using an open source python package called OSMnx. OSMnx is built using 

NetworkX (Aric, Daniel and Pieter, 2008) Geopandas and matplotlib (Boeing, 2017) and 

helps in constructing, projecting, visualizing and analyzing complex street networks. The 

advantage of using OSMnx python package is that one can construct street networks in one 
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line of python code without having to acquire administrative boundary GIS data by tacking 

shapefiles online. 

 

 

Figure 2.1. Graphical representation of Saint Louis road transportation network 

constructed using OSMnx. 

 

OSMnx is also capable of constructing specific network types such as drive, walk, 

bike, private roads, etc. The road transportation network of Saint Louis, Missouri which is 

modelled as a set of nodes and edges is exported as a shapefile for further analysis using 

ArcMap. Figure 2.2 depicts the road transportation network of Saint Louis, MO in Arcmap 

software tool. The secondary and tertiary roads in Saint Louis, MO are removed using 
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ArcMap so as to reduce the complexity of the problem. ArcMap is an integrated application 

of ArcGIS software that could be used for all map-based tasks including cartography, map 

analysis, and editing.  

 

 

Figure 2.2. Graphical representation of Saint Louis road transportation network 

constructed using ArcMap. 

 

The basic concept in creating a geometric network is to determine which feature 

classes will participate in the network and what role each will play. A feature is an object 

that stores its geographic representation as one of its properties in the row. This can be a 
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point, line, or polygon. Points are used for point locations or for features that are too small 

to depict as lines or polygons. Lines are used to represent the shape and location of 

geographic objects, such as street centerlines, etc. Polygons are used to represent the shape 

and location of homogeneous feature types such as states, counties, etc. Each line and 

polygon can be considered as an ordered set of vertices that can be connected to form the 

geometric shape.  Feature classes are defined as a homogeneous collections of common 

features, each having the same spatial representation, such as points, lines, or polygons, and 

a common set of attribute columns, for example, a point feature class for representing the 

road intersections. A geometric network is a connectivity relationship between a collection 

of feature classes in a feature dataset.  

Using the Editor tool, new features can be created with the help of Line construction 

tool zooming to the area selected to add the new feature. The Edge Snapping is activated 

and the pointer is moved to edge to which the selection is to be snapped. The map is clicked 

to create new feature’s vertices. Feature classes contain the geometric shape of each feature 

and descriptive attributes. Each feature class can be considered as a table where individual 

features are placed in rows and feature attributes are placed in columns. The table consists 

of linear features that has a unique identifier such as the Object ID, the coordinate 

information such as the longitude and latitude values, and a common measurement system 

along each linear feature such as the shape which denotes each feature’s geometry. ArcGIS 

can record coordinates using integer numbers and handles locations with very high 

precision. In various ArcGIS operations, feature coordinates are handled using key 

geometric properties. These properties are defined during the creation of each feature class 

or feature dataset.  
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For example, the X, Y resolution indicates the precision at which X, Y coordinates 

within a feature class are recorded. For coordinates that are in latitude-longitude, the default 

X, Y resolution is 0.000000001 degrees. 

The graph is modeled in such a way that this critical infrastructure element could 

be integrated to a larger modeling framework by considering it as a component of a larger 

supply interdependent critical infrastructure system. The graph depicts the connectivity to 

the U.S. supply chain system in the Saint Louis area and helps in understanding the 

geographic interdependencies across the road transportation network. The data associated 

with the graph such as latitude and longitude values, node ID, length, edge source and 

target, etc. from the attribute table are exported as a text file. This text file is then converted 

to a .csv (comma separated values) which is used for further analysis using a software 

called Gephi. 

Gephi (Gephi, n.d.) is an open-source network visualization platform that is used 

for the visualization and analysis of the road transportation network. It iterates through 

visualization using dynamic filtering and is mainly used for exploratory analysis, link 

analysis, social network analysis and biological network analysis. Gephi supports networks 

up to one hundred thousand nodes and one million edges and is compatible with majority 

of graph file formats including CSV. Users can also visualize how a network would evolve 

over time by manipulating the embedded timeline. Gephi has an in-built statistics and 

metrics framework that is capable of calculating different network parameters such as 

shortest path, closeness centrality, Eigen – vector centrality , Page rank , Katz centrality 

and eccentricity of the network.  The Eigen-vector centrality using adjacency matrix is 

calculated as follows: 
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Consider a graph G = (V, E) where V is the number of vertices and E is the number 

of edges. Let A be the adjacency matrix where A= (𝑎𝑣,𝑡). 

 (𝑎𝑣,𝑡) = 1 if vertex v is connected to vertex t 

(𝑎𝑣,𝑡) = 0 if vertex v is not connected to vertex t 

𝑋𝑣= 
1

𝜆
 ∑ 𝑋𝑡𝑡 ∈ 𝑀(𝑣)                         (3) 

𝑋𝑣= 
1

𝜆
 ∑ 𝑎𝑣,𝑡𝑥𝑡𝑡 ∈ 𝑀(𝑣)                                   (4) 

Where:  

M (v) is a set of the neighbors of v. 

In vector notation,   

�⃗� = 
1

𝜆
 A.�⃗�  

λ.�⃗� = A. �⃗� 

Where  

A = Adjacency matrix 

�⃗� = Eigen-vector of A  

λ = Eigen value. 

The adjacency matrix consists of 0’s and 1’s where 1 indicates a particular node is 

connected to the corresponding node and 0 indicates that that particular node is not 

connected to the corresponding other nodes. The process of calculating the Eigen-vector 

centrality measure involves solving for the Eigen values λ𝑖 and the corresponding Eigen-

vectors 𝑋𝑖 of an n x n matrix A. The importance of the Eigen-vector centrality measure as 

measured above is directly related to the ability of freight to be transported across the road 
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transportation network and helps us to understand the interfacing between the bi-modal 

transportation networks and develop a restoration scheme based on it. 

In order to evaluate the proposed technique, data associated with the U.S air 

transportation system which was derived from the Bureau of Transportation Statistics 

(Table 2.1.) is first imported to the Gephi software tool for visualization and Eigen-vector 

centrality measure calculation. 

Similarly, the data associated with the road transportation network such as the 

nodes data table (Table 2.2) and the edges data table (Table 2.3) exported from the ArcGIS 

software tool is imported to the Gephi software tool for the Eigen-vector centrality measure 

calculation. 

 

Table 2.1. Illustration of the nodes data table of the U.S. air transportation system from 

the Bureau of Transportation Statistics. 

 

 

FEATURID LINKID SOURCE STFIPS CTFIPS MILES

1000001 1 D 1 125 1.22

1000002 2 D 1 125 4.24

1000003 3 D 1 125 2.41

1000004 4 D 1 125 1.26

1000005 5 D 1 125 10.88

1000006 6 D 1 125 1.19

1000007 7 D 1 125 6.55

1000008 8 D 1 125 3.59

1000009 9 D 1 125 0.97

1000010 10 D 1 125 2.41

1000011 11 D 1 125 2.26

1000012 12 D 1 125 1.62

1000013 13 D 1 125 11.48

1000014 14 D 1 125 1.33

1000015 15 D 1 73 8.57

1000016 16 U 1 73 0.69

1000017 17 D 1 73 0.43

1000018 18 D 1 73 1.56

1000019 19 D 1 73 7.77

1000020 20 U 1 73 1.17

1000021 21 D 1 73 1.99

1000022 22 U 1 73 2.04

1000023 23 D 1 73 1.05

1000024 24 U 1 73 0.71
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To ensure that the node with maximum Eigen-vector centrality measure is the most 

important node in the graph, thirty experiments were performed where one hundred nodes 

are randomly selected and deleted from the network and the Eigen-vector centrality 

measure is recalculated. These results were used to determine a mean Eigen-vector 

centrality measure and a 95% confidence level. 

 

Table 2.2. Illustration of the nodes data table. 

    

 

 

 

Id Label lat lon

33053203 33053203 38.63644 -90.1862

33053212 33053212 38.6772 -90.2078

33053227 33053227 38.69534 -90.2606

33053229 33053229 38.69917 -90.2619

33053674 33053674 38.66345 -90.1988

33056507 33056507 38.62304 -90.1944

33056509 33056509 38.62402 -90.1942

33056513 33056513 38.62624 -90.1933

33056652 33056652 38.62538 -90.1937

33056767 33056767 38.6243 -90.1954

33056768 33056768 38.62338 -90.1957

33056908 33056908 38.62456 -90.1904

33056909 33056909 38.62541 -90.19

33057048 33057048 38.62515 -90.1888

33057049 33057049 38.62429 -90.1892

53158234 53158234 38.56382 -90.2792

53158363 53158363 38.60622 -90.2689

53158397 53158397 38.61036 -90.304

53158429 53158429 38.61023 -90.3029

53158437 53158437 38.65219 -90.2697
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Table 2.3. Illustration of the edges data table. 

 

 

The confidence interval helps in determining how much uncertainty there is with 

any particular statistic with a margin of error. Confidence levels are expressed as a 

percentage. For a confidence interval of ninety-five percent, ninety-five percent of the time, 

the results will match the results you get from a population when you repeat an experiment 

over and over again and helps to validate our results. The number of samples required 

depend on the analysis to be done and the properties such as mean, median, variance, etc. 

of the sample being studied.  The number of samples used in this research is thirty because 

beyond thirty samples, the sample size is not considered small ( (Khan, n.d.). Also, when 

the number of samples taken are thirty, it is reasonable to assume that if the number of 

samples is thirty or more, the mean has normal distribution with the sample variance being 

equal to the population variance divided by the sample size i.e.  (𝜎2 / n).  

Source Target Type Length

3056741039 3056741033 Directed 106.3138

53166394 3056741039 Directed 13.25688

3056741037 3056741039 Directed 218.0537

53159682 313032753 Directed 276.8673

313032753 312894476 Directed 724.1601

3056741048 3056741049 Directed 117.6021

3056741049 3056741050 Directed 95.28178

53166437 3056741049 Directed 196.2957

3056741053 3056741066 Directed 9.435881

3056741067 3056741053 Directed 122.8903

3056740921 3056741055 Directed 70.16377

53167930 3056741055 Directed 12.43624

3056741055 3056741054 Directed 28.83323

3056763018 53169890 Directed 67.80233
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Where: 

 σ = Variance 

 n = Sample size 

The confidence interval is calculated using the T-distribution. The T-distribution is 

used when the behavior of the population is not known and when the samples are not very 

large. The first step in calculating the confidence interval involves calculating the α value. 

The α value is calculated by  

α = 100% - percentage of confidence level 

In this case, confidence level= 95% 

α = 100% - 95% 

α = 5% = 0.05 

The α value is divided by two to find the α value for one half of the T-distribution  

α =0.05/2 = 0.025 

The degrees of freedom is calculated by subtracting the sample size by 1 

Degrees of freedom = 30 -1 = 29 

Using the T-distribution table, the T-value corresponding to the computed α value and 

degrees of freedom is found to be 2.045. 

The next step involves calculating the standard error. Standard error is calculated 

by dividing the standard deviation by the square root of n where n is the number of samples. 

The confidence interval is determined by adding or subtracting a value calculated by 

multiplying T-value and standard error from the mean.   

In order to develop a restoration scheme that focuses on restoring ninety-five 

percent of the freight flow capacity across the road transportation network, the order of 
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restoring the connectivity between nodes and edges are prioritized based on the Eigen-

vector centrality measure. Ninety-five percent restoration is considered so as to ensure that 

there is maximum freight flow across the road transportation network, thereby minimizing 

the indirect costs. A restoration decision tree is then developed to carry out the restoration 

process. The restoration tree can be used to help community planners to evaluate the road 

transportation network based on the amount of destruction and also help in determining if 

a particular transportation mode could be substituted for another mode in order to maintain 

continuous freight flow. Efficient restoration schemes can be developed based on the 

restoration decision tree and system specific information such as the freight and 

infrastructure data.  
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3. RESULTS 

 

This results section is divided into two sub-sections. The first sub-section presents 

the results associated with evaluating the air transportation system of the U.S and the 

second sub-section describes the results associated with the road transportation network. 

 

3.1. VISUALIZING TRANSPORTATION SYSTEMS 

 

The U.S air transportation system consists of three hundred and thirty one nodes 

and one thousand three hundred and sixty four edges where each node refers to an airport 

and the edge refers to the flight route between airports. The Eigen-vector centrality measure 

is then calculated for each node in the network. Table 3.1 depicts the calculated Eigen-

vector centrality measures for the air transportation network in the U.S.  

Table 3.1. Illustration of few nodes and associated Eigen centrality measure of the Air 

Transportation Network in the U.S. 

 

id label Eigen-vector centrality

331 Pago Pago Intl 0.021906675

330 Babelthuap/Koror 8.40E-04

329 Guam Intll 0.006906634

328 Rota Intl 8.40E-04

332 West Tinian 3.57E-04

327 Saipan Intl 0.001375303

326 Johnston Atoll 0.005933433

120 Cedar Rapids Muni 0.104250017

119 Bradley Intl 0.44927527

118 Chicago O'hare Intl 1

117 Erie Intl 0.020245685

116 Klamath Falls Intll 0.01402894

115 Elmira/Corning Regional0.021002725

114 Greater Rockford 0.024767695

113 Binghamton Regional/Edwin A Li0.035984283

112 Detroit Metropolitan Wayne Cou0.782506181

5 Nome 0.004454191

4 Fairbanks Intl 0.019064624

3 Ralph Wien Memorial 0.004454191

2 Deadhorse 0.00528161

1 Wiley Post-Will Rogers Mem0.00528161
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The node with ID 118 which is the Chicago O’hare Airport is found to have the 

maximum Eigen-vector centrality measure in the network. All the other nodes will be 

arranged in the descending order of their Eigen-vector centrality measures to prioritize 

which infrastructure element should be restored first. The node with ID 25 which is the 

Gustavus Airport in Alaska is found to have the lowest Eigen vector centrality measure. 

Figure 3.1 depicts the network visualization of the Air Transportation Network in 

the U.S using Gephi software tool. The nodes are not geographically located in this network 

visualization. 

 

Figure 3.1. Illustration of the node that has the highest Eigen-vector centrality measure. 
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The Gephi software tool separates the nodes with low Eigen-vector centrality 

measure from the nodes with high Eigen-vector centrality measure by placing the nodes 

with low Eigen-vector centrality measure to the far left end of the network and pushing the 

nodes with high Eigen-vector centrality measure to the far right end of the network. The 

edges connecting the nodes with low Eigen-vector centrality measure are indicated with 

blue whereas edges connecting the nodes with high Eigen-vector centrality measure are 

indicated with red. 

 

3.2. EVALUATING THE ROAD TRANSPORTATION NETWORK USING 

GEPHI 

 

The road transportation network consists of one thousand two hundred and fifty 

eight nodes, and two thousand one hundred and seventeen edges.  

Table 3.2. Illustration of few nodes of the graph and their associated Eigen-vector 

centrality measure. 

 

 

ID Label lat lon Eigen-vector Centrality

53166827 53166827 38.63644 -90.1862 0.273274882

3.19E+08 3.19E+08 38.6772 -90.2078 0.054093928

53166858 53166858 38.69534 -90.2606 0.273315821

5.42E+08 5.42E+08 38.69917 -90.2619 0.231029638

53166925 53166925 38.63112 90.21554 1

53166926 53166926 38.63644 -90.1862 0.314366693

53166928 53166928 38.6772 -90.2078 0.287862453

53166929 53166929 38.69534 -90.2606 0.287814377

53166930 53166930 38.69917 -90.2619 0.392818743

53166932 53166932 38.66345 -90.1988 0.581970635

53166933 53166933 38.62304 -90.1944 0.98016743

53166936 53166936 38.62402 -90.1942 0.284920888

53166945 53166945 38.62624 -90.1933 0.27333588

53166950 53166950 38.62538 -90.1937 0.273317115

53166953 53166953 38.6243 -90.1954 0.27331715

53167006 53167006 38.62338 -90.1957 0.27331693

53168967 53168967 38.62456 -90.1904 0.273317113

53167029 53167029 38.62541 -90.19 0.21604111

53168969 53168969 38.62515 -90.1888 0.273317111

53167034 53167034 38.62429 -90.1892 0.285266247

53167108 53167108 38.56382 -90.2792 0.273318271
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The node with node ID 53166925 is found to have the maximum Eigen-vector 

centrality measure in the network (Figure 3.2). All the other nodes will be arranged in the 

descending order of their Eigen-vector centrality measures to prioritize which 

infrastructure element should be restored first.  

 

Figure 3.2. Illustration of the node with the highest Eigen-vector centrality measure in the 

network using Arcmap. 
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The node is located based on the node ID, longitude and latitude values. This node 

is the most critical node in the network based on the importance defined by the Eigen-

vector centrality measure. This node which corresponds to the intersection between North 

Jefferson Avenue, South Jefferson Avenue, Market Street and I-64 in the city of Saint 

Louis, has high Eigen-vector centrality measure due to its connectivity and the network 

will be most impacted if this particular node is disrupted in an event of a disaster. Also, 

there are other nodes in the network with Eigen-vector centrality measures not equal to 1. 

These nodes are also important and play a key role while developing restoration schemes. 

The restoration schemes are developed by prioritizing the order of restoration of all the 

infrastructure elements and this prioritization is done based on the descending order of the 

centrality measure at each node.  

Figure 3.3 depicts the network visualization of the road transportation network 

using Gephi software tool. The nodes with low Eigen-vector centrality measure are 

indicated with blue and the nodes with high Eigen-vector centrality measure are indicated 

with red. Though the nodes in the visualization are not geographically located, community 

planner can easily identify the key nodes in the network. The Eigen-vector centrality 

measure at each node in the network may or may not change when a node is connected or 

removed. The Eigen-vector centrality measure at each node in the network is dynamic and 

the centrality measure might change depending on how a node is connected or removed 

from the network. 

When the node with the highest Eigen-vector centrality measure is removed from 

the network, the Eigen-vector centrality measure of the nodes connected to the node with 

highest Eigen-vector centrality measure tend to decrease. Also, another node in the network 
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will have the highest Eigen-vector centrality measure when the node with the highest 

Eigen-vector centrality measure is removed (Figure 3.4). This was evident during the 

sensitivity analysis when hundred nodes were randomly selected and deleted from the 

network. 

 

Figure 3.3. Road transportation network visualization using Gephi software tool. 

 

The average value of the Eigen-vector centrality measures was calculated for thirty 

experiments where one hundred nodes were randomly removed from the network (Table 
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3.3.). The mean, standard deviation, standard error and the confidence interval are 

calculated for each of the nodes in the network.  

Table 3.3 shows that the node with node ID 53166925 continues to have a high 

Eigen-vector centrality measure with a confidence interval 0.98 to 1 at a ninety-five percent 

confidence level. This shows that the node with the highest Eigen-vector centrality measure 

continues to have a higher value irrespective of certain nodes being deleted from the 

network.  

 

Figure 3.4. Illustration of the change in node with the highest Eigen-vector centrality 

measure in the network using Arcmap. 
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The nodes are arranged in the descending order of the upper limit of their 

confidence interval. This shows the order of importance of each node in the network and 

helps to prioritize the order of restoration of infrastructure elements in an event of a 

disaster.  

 

Table 3.3. Illustration of few nodes from the graph arranged in the descending order of 

their upper limit of the confidence interval. 

 

 

To validate the results obtained using the proposed technique, the important nodes 

identified in the network based on the Eigen-vector centrality measure are compared to the 

actual traffic flow counts at those intersections as provided by the Missouri Department of 

Transportation (MoDOT, 2015). Table 3.4 shows the average annual traffic flow count 

across the nodes that have high Eigen-vector centrality measures. 

The average annual traffic flow count at each node (intersection) is calculated by 

taking the average of the sum of the average annual traffic count across the associated 

Lower Limit Upper limit

1 53166925 0.987941 0.034932355 0.00638 0.97489853 1.000983515

2 53161880 0.975441 0.047753557 0.00872 0.95761155 0.993270493

3 53166256 0.968298 0.057507484 0.0105 0.94682693 0.989769403

4 53171675 0.954012 0.071094341 0.01298 0.92746837 0.980556535

5 53169191 0.94687 0.071138637 0.01299 0.92030897 0.973430216

6 53162296 0.939727 0.075360804 0.01376 0.91158971 0.967863766

7 53163245 0.93437 0.076212455 0.01391 0.90591459 0.962824599

8 53168781 0.930798 0.075391893 0.01376 0.90264953 0.958946801

9 53167723 0.923655 0.073202494 0.01336 0.89632412 0.950986501

10 53165912 0.914727 0.071248172 0.01301 0.88812522 0.941328256

Confidence Interval
S.NO ID Mean Std. Deviation std error
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edges (roads). The average traffic flow count helps to understand the amount of commuter 

traffic and freight transported at a particular node and the road capacity being utilized. 

High average annual traffic flow count at a particular node indicates that the freight 

transported across that node is high. The Eigen-vector centrality measure accounts for the 

connectivity of a particular node in the network, and with higher connectivity, it would 

follow that there would be higher traffic flow at a particular node.  Therefore, connectivity 

of a node can be correlated with the amount of traffic across the edges associated with that 

node.  

 

Table 3.4. Illustration of nodes with high Eigen-vector centrality measure and their 

associated traffic flow counts. 

 

Eigen- Vector 

Centrality 

Measure

Name
Average annual Traffic 

Counts

Major Interstate/ 

Highways 

connection

Average Annual Traffic 

Count across the nodes 

identified based on 

Eigen-vector centality 

measure

North Jefferson Avenue and 

Market Street 79020
I-64

South Jefferson Avenue and 

Market Street
76837.5 Chouteau Avenue

Page Boulevard 4324

Dr. Martin Luther King Drive 3054

North Grand Boulevard 2751

I-64 97328

South Kingshighway Boulevard

Chippewa Street

Chippewa Street 14784

Hampton Avenue 14678

14731

I-44 14678, 14784, 167470.980166

0.980165

I-44

1

0.980167 I-64

Parnell Street

27975 I-700.98025

I-64 97328 I-44

Salsbury Street

East Natural Bridge Avenue

15403

26864.25

84395.16667

27975



33 
 

Table 3.4 gives a comparison of the traffic flow count for the roads at several 

intersections with the highest Eigen-vector centrality measure. The node with the highest 

Eigen-vector centrality measure also had the highest average annual traffic count. As the 

Eigen-vector centrality measure decreases, so does the average annual traffic counts for 

those intersections. 

The identified nodes are also connected to major interstates such as the I-64, I-44 

and I-70 across Saint Louis. MO and according to the 2011 MoDOT freight plan (MoDOT, 

2011), the truck density by tons is around forty-eight million tons of freight across the 

interstates I-70, I-64 and I-44. This accounts for the high average annual traffic flow count 

across the identified nodes. Therefore, the important nodes identified based on the Eigen-

vector centrality measure are actually important in the network in terms of freight flow.  
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4. CONCLUSION 

              

This work demonstrates the use of an Eigen-vector centrality measure to determine 

the importance of a critical infrastructure element to the overall critical infrastructure 

system. This was demonstrated on a road transportation system, but it can be extrapolated 

to include multiple types of infrastructure systems. This measure can be used to determine 

infrastructure connectivity to help develop a restoration framework which in turn aids in 

the post-disaster restoration efforts to allow efficient reconnection of an urban environment 

to the larger economic infrastructure. Restricted access to infrastructure data poses a major 

challenge for developing restoration schemes. However, this research presents a 

methodology for identifying and analyzing road transportation networks by constructing 

models that can utilize real-time, publically available data to create representative models.  

For modeling the road transportation network, GIS is used to represent real-world features 

which are then analyzed using graph theory analytics representing transportation elements 

as vertices and edges.  

The sensitivity analysis performed to identify the most important nodes in the 

network based on the Eigen-vector centrality measure show the resiliency of the approach. 

From Table 3.3, it is evident that the node with the highest Eigen-vector centrality measure 

continues to have a higher value regardless of nodes being deleted from the network. The 

lower limit of the most important node is 0.97 and the upper limit is taken as 1 because it 

is the maximum Eigen-vector centrality measure a node can have. The confidence interval 

helps to account for the uncertainty associated with the Eigen-vector centrality measure for 

each of the nodes when the network is disrupted. This statistical analysis shows that the 

use of a network based Eigen-vector centrality measure provides consistent results as to 



35 
 

the importance of high traffic nodes in the transportation system, lending credibility to the 

proposed methodology. Comparing the actual traffic flow counts and the amount of freight 

transported across the imported nodes identified based on the Eigen-vector centrality 

measure validates the findings of this research.  

This technique maps the physical interactions between the different components of 

the road network such as roads, intersections and bridges by identifying the important 

nodes based on the Eigen-vector centrality measure to allow for prioritizing node 

restoration in the order of their importance to develop a system level restoration plan. This 

restores the flow of goods and services in the aftermath of a disruption, thereby achieving 

the research objective of developing efficient restoration schemes for a road transportation 

network. While previous research works failed to provide an optimal solution to model and 

map the interdependencies between critical infrastructure elements, the validation results 

indicate that integrating different critical infrastructure elements into a single model using 

geospatial data can help in developing efficient disaster restoration frameworks. This 

approach is direct and the results are promising, potentially playing a crucial part in 

restoration efforts. The results also demonstrate that sufficient data can be derived from 

publically available data sets. This research stresses the importance of using real-world 

data to model critical infrastructure systems. In addition, the need to understand 

transportation networks at a system level by taking into account the interactions between 

the different elements of the transportation network improves the restoration schemes. One 

of the major advantages of this methodology is its scalability such that the model could be 

used for different regions and different infrastructure elements if sufficient data are 

available.  
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The ability to visualize the connectivity of the network and identify the high Eigen-

vector centrality measure nodes is also beneficial to community planners.  It provides a 

connectivity representation separate from physical location that provides a perspective on 

how an infrastructure element impacts the other parts of the transportation network. It also 

provides a visual check on the impact of removing elements from the overall infrastructure. 
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5. FUTURE WORK 

 

Future work will include extending this research technique to other critical 

infrastructure elements. The interdependent nature of critical infrastructures or use of real-

world data were seldom done in most of the modeling techniques. Modeling real-world 

scenarios involves mapping and understanding geographic interdependencies among 

different critical infrastructure elements. Other parameters such as restoring costs and 

freight flow at each node could be added to the existing technique as weights in the network 

to create a better understanding of the system. Most of the databases related to the critical 

infrastructure elements are proprietary and cannot be easily accessed. This calls for a 

detailed analysis to determine which data are required for modeling the supply chain 

network. This research will provide an in-depth understanding on the critical 

infrastructures and its restoration in an event of a natural or man-made disaster. 
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APPENDIX 

 

Data Table for the Eigen-vector centrality measure at each node:  

 

 

S.NO Node ID Eigen-vector centrality measure 

1 53159050 0.147779446 

2 53159103 0.177695207 

3 53159108 0.098658022 

4 53159134 0.025117343 

5 1307387128 0.181350623 

6 53159204 0.057043966 

7 53159285 0.025116237 

8 53159298 0.025116237 

9 53159304 0.099882379 

10 53159365 0.273306976 

11 53159376 0.271826639 

12 53159395 0.025116237 

13 53159398 0.188669364 

14 53159400 0.101149749 

15 53159402 0.057483356 

16 2925078044 0.268670352 

17 53159560 0.179185348 

18 53159577 0.10413764 

19 53159604 0.268442958 

20 53168916 0.40444738 

21 53159612 0.257581804 

22 1830987470 0.197521162 

23 53159631 0.098972994 

24 53159682 0.273561572 

25 53159779 0.435763375 

26 53159791 0.273253427 

27 53159797 0.031913141 

28 53159823 0.26749117 

29 53159875 0.070583226 

30 53159892 0.088338965 

31 53159912 0.313440441 

32 1975527444 0.273317111 

33 53159962 0.273315677 

34 4220528684 0.273319809 

35 4220528686 0.025116237 
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36 53159995 0.10413764 

37 53160010 0.307585945 

38 53160024 0.273317111 

39 53160036 0.273034866 

40 53160044 0.283963946 

41 53160073 0.206363227 

42 53160145 0.025116256 

43 53160147 0.047676845 

44 53160159 0.228792621 

45 53160209 0.026265098 

46 53160211 0.032226432 

47 53160221 0.145054624 

48 53160245 0.314059926 

49 53160267 0.27330967 

50 53160298 0.273254884 

51 53160320 0.273263564 

52 528165269 0.273373314 

53 53160342 0.254155344 

54 53160368 0.025338739 

55 53160401 0.273317111 

56 53160423 0.179184225 

57 53160436 0.273036019 

58 53160493 0.271776874 

59 3056740920 0.025116237 

60 3056740921 0.025116237 

61 3056740926 0.025117343 

62 53160542 0.053019503 

63 53160574 0.581951816 

64 53160599 0.097542402 

65 53160604 0.056738623 

66 53160609 0.04991153 

67 3056741033 0.035990296 

68 3056741037 0.085933994 

69 3056741041 0.028657013 

70 3056741043 0.025338422 

71 3056741044 0.025159965 

72 3056741045 0.025123678 

73 3056741048 0.025116382 

74 3056741050 0.025116238 

75 3056741054 0.025116237 

76 53160641 0.27331715 
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77 3056741064 0.025116237 

78 3056741066 0.025116237 

79 53160655 0.313440441 

80 53160662 0.170066253 

81 53160680 0.581971317 

82 53160879 0.273616619 

83 1624353858 0.273317111 

84 53161096 0.392703385 

85 53161119 0.276201233 

86 53161123 0.274050784 

87 53161154 0.257581804 

88 53161157 0.268442953 

89 53161159 0.272047783 

90 53161162 0.273288492 

91 53161165 0.273195441 

92 1848847567 0.112481989 

93 53161174 0.270406878 

94 53161176 0.262049053 

95 53161179 0.23679496 

96 53161187 0.152641688 

97 53161196 0.025116237 

98 1374756054 0.044055949 

99 53161226 0.273317092 

100 1828138261 0.091186541 
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Data table that illustrates the confidence interval calculation: 
 

 

S.NO ID Mean Std. Deviation std error Tvalue*SE 
95% Confidence Interval 

Lower Limit Upper limit 

1 3056741039 0.361214901 0.071976415 0.013141035 0.026873417 0.334341484 0.388088318 

2 3056741033 0.325463098 0.05735448 0.010471447 0.02141411 0.304048988 0.346877208 

3 53166394 0.093578722 0.020802358 0.003797974 0.007766856 0.085811866 0.101345578 

4 3056741037 0.27356563 0.060844485 0.011108632 0.022717153 0.250848476 0.296282783 

5 53159682 0.012695064 0.002462859 0.000449655 0.000919543 0.01177552 0.013614607 

6 313032753 0.042785454 0.007119315 0.001299803 0.002658097 0.040127357 0.045443551 

7 312894476 0.337974749 0.092365938 0.016863636 0.034486136 0.303488613 0.372460885 

8 3056741048 0.216322886 0.065054682 0.011877306 0.02428909 0.192033796 0.240611975 

9 3056741049 0.289758386 0.04939679 0.009018579 0.018442993 0.271315393 0.30820138 

10 3056741050 0.259380973 0.034240499 0.006251431 0.012784177 0.246596796 0.27216515 

11 53166437 0.096217026 0.019004449 0.003469722 0.007095581 0.089121445 0.103312607 

12 3056741053 0.135789411 0.005756335 0.001050958 0.00214921 0.133640201 0.13793862 

13 3056741066 0.115124759 0.003585235 0.000654571 0.001338599 0.113786161 0.116463358 

14 3056741067 0.17086235 0.011151729 0.002036018 0.004163657 0.166698693 0.175026007 

15 3056740921 0.105445506 0.0029334 0.000535563 0.001095226 0.10435028 0.106540733 

16 3056741055 0.194160824 0.020736714 0.003785989 0.007742347 0.186418477 0.201903171 

17 53167930 0.090616217 0.023322636 0.004258111 0.008707838 0.081908379 0.099324054 

18 3056741054 0.279381252 0.038732624 0.007071577 0.014461375 0.264919876 0.293842627 

19 3056763018 0.166230313 0.006602505 0.001205447 0.002465139 0.163765174 0.168695452 

20 53169890 0.31129082 0.013962729 0.002549234 0.005213183 0.306077636 0.316504003 

21 1639568941 0.218045238 0.010923616 0.00199437 0.004078487 0.213966751 0.222123726 

22 3056763087 0.241661686 0.021870235 0.00399294 0.008165563 0.233496123 0.249827249 

23 3056763034 0.282035161 0.009879378 0.001803719 0.003688606 0.278346555 0.285723767 

24 3056763040 0.468345378 0.017267651 0.003152627 0.006447123 0.461898255 0.474792501 

25 3056763094 0.006579882 5.92287E-05 1.08136E-05 2.21139E-05 0.006557768 0.006601996 

26 3056763053 0.370207296 0.012547864 0.002290916 0.004684923 0.365522372 0.374892219 

27 53171558 0.286249576 0.018362541 0.003352526 0.006855916 0.279393661 0.293105492 

28 53158560 0.110419037 0.050054277 0.009138619 0.018688476 0.091730562 0.129107513 

29 3056763044 0.379414816 0.03953277 0.007217663 0.014760121 0.364654694 0.394174937 

30 313305400 0.310465693 0.027250068 0.004975159 0.0101742 0.300291493 0.320639893 

31 3056763054 0.369624516 0.028971851 0.005289512 0.010817052 0.358807464 0.380441568 

32 546688591 0.097813692 0.035902097 0.006554796 0.013404558 0.084409134 0.11121825 

33 3056740920 0.257756525 0.030214287 0.005516349 0.011280933 0.246475592 0.269037458 

34 3056741065 0.21707201 0.021179476 0.003866826 0.007907658 0.209164352 0.224979668 

35 4284538997 0.171546561 0.0131333 0.002397802 0.004903504 0.166643057 0.176450066 

36 3056740925 0.216316962 0.020841703 0.003805157 0.007781546 0.208535416 0.224098508 

37 53169901 0.127428002 0.025329251 0.004624467 0.009457036 0.117970966 0.136885038 

38 53170823 0.194331716 0.041967694 0.007662218 0.015669235 0.178662481 0.210000951 

39 1828192564 0.095574818 0.009632076 0.001758569 0.003596273 0.091978545 0.099171091 
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40 1828192573 0.095902749 0.005627296 0.001027399 0.002101031 0.093801718 0.09800378 

41 1828192583 0.096249147 0.014584155 0.00266269 0.005445201 0.090803946 0.101694348 

42 1828192577 0.11091452 0.022380572 0.004086115 0.008356105 0.102558415 0.119270625 

43 1828192565 0.100156797 0.018941072 0.003458151 0.007071919 0.093084879 0.107228716 

44 53171459 0.345585694 0.077770337 0.014198856 0.02903666 0.316549034 0.374622355 

45 1828192566 0.262473386 0.052403534 0.009567533 0.019565604 0.242907782 0.28203899 

46 1828192581 0.200078356 0.033799875 0.006170985 0.012619664 0.187458692 0.21269802 

47 1828192568 0.173059941 0.03554504 0.006489607 0.013271246 0.159788696 0.186331187 

48 1828192571 0.238315056 0.050860937 0.009285894 0.018989653 0.219325403 0.25730471 

49 3080286086 0.218163267 0.020024988 0.003656046 0.007476614 0.210686653 0.225639881 

50 53171507 0.28566772 0.010382806 0.001895632 0.003876568 0.281791152 0.289544289 

51 1828192569 0.352355412 0.012044986 0.002199103 0.004497167 0.347858245 0.356852578 

52 3079590591 0.100098239 0.002600226 0.000474734 0.000970831 0.099127408 0.101069071 

53 1828192575 0.320018108 0.011201753 0.002045151 0.004182334 0.315835774 0.324200441 

54 1828192570 0.100130176 0.002603227 0.000475282 0.000971952 0.099158224 0.101102128 

55 1828192580 0.100104189 0.002600844 0.000474847 0.000971062 0.099133126 0.101075251 

56 53171531 0.092170132 0.025288453 0.004617019 0.009441803 0.082728329 0.101611935 

57 1830987470 0.234737886 0.019693575 0.003595538 0.007352876 0.22738501 0.242090762 

58 1828192572 0.209607959 0.012689595 0.002316792 0.004737841 0.204870119 0.2143458 

59 1828192585 0.174794551 0.007818889 0.001427527 0.002919293 0.171875257 0.177713844 

60 53168344 0.093246975 0.025080904 0.004579126 0.009364312 0.083882663 0.102611287 

61 1828192576 0.254194788 0.02975996 0.0054334 0.011111304 0.243083484 0.265306092 

62 1828192579 0.141639118 0.005051852 0.000922338 0.001886181 0.139752937 0.143525298 

63 1828192582 0.100099216 0.002600338 0.000474755 0.000970873 0.099128343 0.101070089 

64 3079590592 0.100098369 0.002600242 0.000474737 0.000970837 0.099127532 0.101069206 

65 3581542743 0.006579872 5.81763E-05 1.06215E-05 2.1721E-05 0.006558151 0.006601593 

66 620362088 0.26670206 0.088788788 0.016210541 0.033150556 0.233551504 0.299852615 

67 620364172 0.182515456 0.052858605 0.009650617 0.019735511 0.162779944 0.202250967 

68 53159779 0.141441293 0.029417177 0.005370817 0.010983321 0.130457971 0.152424614 

69 564272949 0.135336232 0.029350975 0.00535873 0.010958603 0.124377628 0.146294835 

70 620364179 0.193912484 0.019506506 0.003561385 0.007283031 0.186629453 0.201195516 

71 564272925 0.04255551 0.008185712 0.0014945 0.003056252 0.039499258 0.045611761 

72 620364195 0.037179245 0.004887753 0.000892378 0.001824912 0.035354333 0.039004157 

73 1640174339 0.006122205 0.001661621 0.000303369 0.00062039 0.005501816 0.006742595 

74 53166152 0.006579872 5.81763E-05 1.06215E-05 2.1721E-05 0.006558151 0.006601593 

75 53162418 0.03169522 0.00129679 0.00023676 0.000484175 0.031211045 0.032179395 

76 53166158 0.013159744 0.000116353 2.1243E-05 4.34419E-05 0.013116302 0.013203186 

77 3633611433 0.006579872 5.81763E-05 1.06215E-05 2.1721E-05 0.006558151 0.006601593 

78 534479592 0.038509813 0.000440674 8.04557E-05 0.000164532 0.038345281 0.038674345 

79 53174748 0.006579872 5.81763E-05 1.06215E-05 2.1721E-05 0.006558151 0.006601593 

80 3056741041 0.346493333 0.076146134 0.013902318 0.028430241 0.318063092 0.374923574 

81 2465891065 0.276861162 0.053043174 0.009684314 0.019804423 0.257056739 0.296665584 

82 3056741043 0.213066137 0.033496139 0.00611553 0.01250626 0.200559877 0.225572397 

83 312083238 0.282830472 0.073893897 0.013491118 0.027589336 0.255241136 0.310419809 

84 312083240 0.222155893 0.050345201 0.009191734 0.018797096 0.203358797 0.24095299 
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85 33053203 0.349093171 0.100914235 0.018424334 0.037677764 0.311415407 0.386770934 

86 312084076 0.551454752 0.057054282 0.010416639 0.021302027 0.530152725 0.572756779 

87 53176434 0.354376946 0.066924721 0.012218726 0.024987295 0.329389651 0.379364241 

88 1780578622 0.653241767 0.115346207 0.02105924 0.043066145 0.610175622 0.696307913 

89 53171550 0.006123658 0.001661997 0.000303438 0.00062053 0.005503128 0.006744189 

90 53166221 0.030604137 0.004876337 0.000890293 0.00182065 0.028783487 0.032424787 

91 33056909 0.236536395 0.036104373 0.006591726 0.013480081 0.223056314 0.250016475 

92 33057048 0.364430409 0.040684792 0.007427993 0.015190245 0.349240163 0.379620654 

93 313340834 0.291517419 0.051094456 0.009328529 0.019076841 0.272440578 0.31059426 

94 33056908 0.214908843 0.024804532 0.004528667 0.009261124 0.205647719 0.224169968 

95 3374201845 0.397305911 0.068037319 0.012421858 0.0254027 0.371903211 0.42270861 

96 1822429448 0.006123322 0.001661913 0.000303422 0.000620499 0.005502823 0.006743821 

97 314934291 0.116510114 0.029364878 0.005361269 0.010963794 0.105546319 0.127473908 

98 1822429447 0.092694254 0.028888432 0.005274282 0.010785906 0.081908348 0.103480161 

99 53166257 0.083464012 0.019013491 0.003471373 0.007098957 0.076365055 0.090562969 

100 53166256 0.157978279 0.02569041 0.004690406 0.00959188 0.148386399 0.167570159 
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