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ABSTRACT 

 

The mechanical properties and processing parameters of boride ceramics in foam 

and laminate architectures were evaluated. The ceramic reticulated foam was produced 

through a polymer substrate replication technique and the hardness and compressive 

strength were tested. The laminate structure was tested to evaluate the flexure strength 

and work of fracture as a function of temperature. 

The foam architecture was produced using a TiB2 slurry coating on a 

polyurethane reticulated foam preform. Foams sintered to 2150°C displayed an average 

grain size of 8.9 ± 7.3 µm, and a hardness of 17.3 ± 2.4 GPa. Crush testing foams were 

sintered at 1975°C, and displayed a specific strength of 208 ± 63 kPa with an overall 

porosity of 97%. For these specimens, it is likely that microcracking lowered the 

hardness, but the overall strength was controlled by the bulk density. 

The laminate structures were fabricated using alternating layers of ZrB2 and C–10 

vol% ZrB2. The structures were fabricated through the shaping of ceramic loaded 

thermoplastic polymers that underwent burnout and hot pressing cycles. These specimens 

had strong phase ZrB2 layers that were about 150 µm thick alternating with weak phase 

layers that were about 20 µm thick. Specimens exhibited a maximum flexure strength of 

311 ± 10 MPa at 1600°C, and an increased work of fracture compared to conventional 

ZrB2 ceramics. The maximum fraction of inelastic work of fracture occurred at room 

temperature, and decreased as temperature increased. This was reflected in the length of 

the crack path through the specimen. Deflected cracks travelled through the center of the 

C–ZrB2 layers in the material in Mode II fracture.  
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1. INTRODUCTION 

 

The focus of this thesis is on the processing and properties of different structures 

made of diboride ceramics. Transition metal diborides are a group of materials that has 

received a great deal of interest in recent years. These materials are characterized by their 

high melting temperature and their strength, but they also display exemplary hardness as 

well as thermal and electrical conductivity.1 This combination of properties has led to 

studies into the potential to use these materials for high temperature applications such as 

wing leading edges on hypersonic aircraft that require some degree of stiffness.2, 3 

Two diboride materials in particular are of interest to this study, titanium diboride 

(TiB2) and zirconium diboride (ZrB2). For TiB2, the most significant attribute is its high 

hardness value. While the exact number for the hardness of TiB2 is debated across 

different studies, the majority of studies place the value around 25 GPa.2, 4, 5 TiB2 is also 

considered a high strength material, with a reported value of about 550 MPa at room 

temperature.6 TiB2 also exhibits a high melting temperature (~3225°C)7, which makes it 

useful in high temperature applications, such as tools in contact with molten metal or as 

cutting tool materials. 

The TiB2 materials were used to make reticulated foam structures. The large 

amount of porosity in a foam specimen gives them an unusual combination of properties.8 

The porosity throughout the specimen leads to a high level of surface area per gram of 

material. This property lends itself to uses as a catalyst materials, where the larger surface 

area helps to speed up the rate of reactions.9 Because the foam is reticulated the porosity 

is almost entirely interconnected and open to the surrounding environment, allowing 
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fluids to pass entirely through the material. By controlling the size of the porosity in the 

foam structure, it is possible to use a reticulated foam structure to filter the fluid that 

flows through.10 Reticulated foams also retain a degree of strength and stiffness of the 

homogenous monolithic specimens of their constituent materials, allowing for their use as 

structural components.11 

ZrB2 has also been studied as a high temperature structural material. With a 

melting point of ~3250°C, ZrB2 also has a high thermal and electrical conductivity.1 This 

combination of properties makes this material highly suited to applications such as 

leading edges on hypersonic aircraft.12 However, this material has a fracture toughness of 

3.5 MPa√m13 and it also displays significant oxidation when under atmospheric 

conditions at elevated temperatures, leading to studies of this material as part of 

composite systems.14  

The ZrB2 materials were used to make a laminate structure. These composites 

exhibit alternating layers of different material.15 A few different varieties of laminates 

have been studied, including those with alternating layers of materials with different 

strength, levels of porosity, or materials under different stress states.16, 17, 18 The goal for 

each of these structures is to increase the toughness of the final part, and thereby make 

the piece less sensitive to the flaws in a stressed section.15 In these composites, the 

toughness is increased through either arresting cracks or deflecting them along one of the 

phases.19 Either of these outcomes increases the fracture toughness as well as the work 

required to propagate a crack through a specimen. 

The research presented in this thesis looked at the procedures for processing TiB2 

foams as well as ZrB2 laminates. For both types of structures, this study focused on the 



3 

 

 
 

two topics of processing and mechanical properties. For the foams, the replication 

technique was used to replicate a polyurethane preform and the sintered foams were 

tested in uniaxial compression. For the laminate structures, ceramic loaded thermoplastic 

polymers were used to form the structure, and specimens were machined into bars which 

were tested in 4-point bending over a range of temperatures. 

In pursuit of these studies, there are a few primary goals for this project to 

achieve. These are structured as the questions below: 

1) Can a TiB2 foam that retains a high intrinsic hardness be produced? What 

strength values would this structure exhibit? 

2) Will a laminate of ZrB2/ C-10 vol% ZrB2 deflect cracks at room temperature 

and high temperatures? What is the work of fracture for specimens that do 

deflect cracks? 

3) How do the ZrB2/ C-10 vol% ZrB2 laminates fail, and do they exhibit similar 

strength to homogenous ZrB2 at all temperatures? 

  



4 

 

 
 

2. LITERATURE REVIEW 

 

2.1 LATTICE STRUCTURE 

Many transition metal diborides exhibit the P 6/mmm space group, giving the 

materials anisotropic intrinsic properties.20 In this structure, there are alternating planes of 

metal and boron, as shown in Figure 2.1, where the transition metal planes are arranged 

in a hexagonally close packed structure and the boron plane is arranged in 6-member 

rings similar to graphite. This structure gives boron atoms 3 neighboring boron atoms and 

6 transition metal atoms, while the transition metal atoms have 6 neighboring transition 

metal atoms and 12 neighboring boron atoms. 

 

Figure 2.1.  Representation of the hexagonal crystal structure of typical transition metal 

diboride from various perspectives. The solid lines in images (a) and (b) outline a unit 

cell20 
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Unit cells in these materials consist of a single formula unit. The dimensions of 

these unit cells are controlled by the length of the bonds between the transition metal 

atoms for the a-direction, and the transition metal-to-boron bonds control the length along 

the c-axis. The lattice parameters for TiB2 are a = 3.04 Å and c = 3.24 Å. For ZrB2 the 

lattice parameters are slightly smaller at a = 3.13 Å and c =  3.53 Å.20 

The melting temperature of transition metal diborides is controlled by the strength 

of the bonds between transition metal atoms and boron.1 The predicted melting 

temperature values for a majority of transition metal diborides are above 3000°C.1 For 

these structures, it is generally accepted that the bonding among transition metal atoms is 

metallic, while bonds among boron atoms are covalent, and bonds between the transition 

metal and the boron is a mixture between ionic and covalent.21 Because of the shared 

valence electrons in the metallic bonds among the transition metal atoms, these materials 

exhibit higher thermal and electrical conductivities along the a-axis than along the c-axis. 

2.2 DENSIFICATION 

Transition metal diborides in general, and TiB2 in particular, are difficult to 

densify. One contribution to this is that the titanium diboride readily reacts with oxygen 

at temperatures below 1000°C.22, 23As this system is brought to higher temperatures, the 

oxide phases tend to promote grain coarsening, leaving entrapped porosity within the 

grains.24 In testing this, several studies on the densification of TiB2 have been performed, 

with the resulting materials reaching densities in excess of 95%.4, 24, 25, 26 

Additionally, TiB2 is typically densified while under pressure, using techniques 

such as hot pressing, hot isostatic pressing, or field assisted sintering.6 The pressure is 

applied in these processes in order to promote densification processes. This effectively 
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means that the piece does not have to be at the sintering temperature for as long a time, 

which helps to limit the amount of grain growth that can occur. In hot pressing, the 

conditions required to achieve full density are typically reported to be around 32 MPa and 

up to 1900°C or above.4, 6, 26 Conditions for sintering pressurelessly have also been 

reported, although they usually require sintering aids or higher temperatures to reach high 

densities.24, 25 

Another common practice for densifying TiB2 is to introduce a transition metal as 

an additive to form a liquid phase in the matrix at high temperature.25, 27, 28 This allows 

for increased diffusion across the grain boundaries, thereby allowing materials to sinter to 

full density at a reduced temperature and pressure. There are a number of different 

additives that are commonly used, including iron, nickel, and cobalt.25, 27 While these 

materials will help to densify the part, some of them reduce the strength and hardness of 

the final piece, especially at high temperatures (>1800°C).25 Several additives, including 

silicon nitride, have been used to assist densification with a minimal impact on the 

strength of the specimens at low temperatures.26, 29 These materials are reported to form a 

liquid phase during sintering, like the metallic additives, while also removing oxygen 

from the titanium within the material as the oxygen preferentially bonds with the 

silicon.29 

With behavior similar to TiB2 in oxidizing environments, ZrB2 starts to react with 

the ambient atmosphere at around 1100°C.30  This leads to an accumulation of oxygen 

within the material, and at elevated temperatures the oxide phases turn to liquid and 

enhance grain growth. Entrapped porosity and coarse grains are likely to be results of the 

presence of oxides.1 
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In many studies, ZrB2 is fabricated through hot pressing, hot isostatic pressing, or 

field assisted sintering, as opposed to pressureless methods.1 As with TiB2, these pressure 

assisted processes serve to reduce the time and temperature required for sintering. ZrB2 

has been sintered over a range of temperatures, but generally it is reported that a pressure 

of 32 MPa and a temperature of 2100°C or greater are necessary for pure ZrB2.
13, 31  

Additionally, additives have been used in ZrB2 in order to aid in achieving full 

density. Several materials are commonly added to assist in sintering, and they may be 

split up into groups by the role that they play in the densification process. Some additives 

form a liquid phase in the structure and act to reduce the energy required for densifying 

processes, and these include materials such as silicon nitride.32 The second category of 

materials react with the oxygen that is incorporated into the matrix causing the resulting 

oxide phases to leave the system in the form of a gas. These materials include boron 

carbide, carbon, and tungsten carbide.33, 34, 35 It has been noted that with the addition of 8 

wt% tungsten carbide, the required sintering temperature to densify ZrB2 through hot 

pressing decreases to 1900°C.1 

2.3 MECHANICAL PROPERTIES 

2.3.1 Titanium Diboride. Titanium diboride (TiB2) is a member of the group IV 

transition metals, and is perhaps best known for its high hardness. While the exact value 

for the intrinsic hardness of this material is debated, it has been shown in studies to be 

between 25 and 35 GPa.2, 4, 5 This high level of hardness has contributed to this material 

being used in cutting applications, where the amount of wear on cutting surfaces is 

reduced by the mechanical properties. To this purpose, it is common to coat TiB2 onto a 

metallic substrate, or to add this as a particulate component in a metallic matrix.2 
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The strength of TiB2 has also been studied. For nominally pure TiB2, it is reported 

that the strength will be around 500 MPa when the grain size is around 6 µm and the 

density is above 95% of the theoretical value.6, 28 Increasing the density up to ~98% can 

yield specimens with a strength around 550 MPa.6 The reported strength can change 

significantly depending on the additives used. Using less than 2 wt% metallic additives, 

flexure strengths up to ~700 MPa have been reported.2 Non-metallic additives have also 

been used to help densify this material. There are a wide variety of these that have been 

reported, generally in the nitride and carbide groups, with some of the more effective 

additives including silicon carbide, silicon nitride, and aluminum nitride.29 For these 

additives, a greater amount of dopant is required to produce dense TiB2 as compared to 

the metallic additives.2  

Another important mechanical property of TiB2 is its fracture toughness. 

Generally, the fracture toughness measured for TiB2 is reported as somewhere between 2 

and 6 MPa√m, depending on the grain size and amount of secondary phase present in the 

matrix.4, 26  Combined with the fact that the material does not display any significant R-

curve behavior, this is one characteristic that limits the widespread application of TiB2 as 

a structural material.28 

2.3.2 Zirconium Diboride. Due to the high melting temperature of ZrB2 

(3250°C), and its high temperature properties, this material has received interest for use 

as structural parts in extreme environments. ZrB2 has been proposed to be a suitable 

material for molten metal filters, catalyst support structures, cutting tools, and leading 

edges on hypersonic vehicles.12, 36, 37 In all of these applications, it is important that the 

chosen material displays a degree of strength, tolerance for high temperature conditions, 
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and for some of these applications it is important for the material to be thermally or 

electrically conductive. 

Due to the common requirements of the potential applications, the strength of 

ZrB2, especially at high temperatures, is one of its most studied attributes. This material 

has been tested over a range of different temperatures, from room temperature all the way 

up to 2300°C.31 At room temperature and under normal atmospheric conditions, the 

strength of ZrB2 has been reported to be as high as 500 MPa.30, 38, 39 These materials had 

density values above 95%, and were nominally pure specimens. The strength of ZrB2 also 

shows a strong dependence on the temperature at which a specimen is tested. Neuman et 

al. performed testing over a range of different temperatures, from room temperature up to 

2300°C in different ambient environments. From this series of tests, it was seen that 

nominally pure ZrB2 exhibits a strength of approximately 380 MPa at room temperature, 

and maintains a strength of over 200 MPa from 1600°C up to the final testing 

temperature of 2300°C. In order to ensure that specimens tested at elevated temperatures 

were not affected by creep, flexure tests at high temperatures were performed using faster 

loading rates.  

ZrB2 also displays moderate hardness (15-23 GPa) and high elastic modulus (526 

GPa) values when tested at room temperature.1, 20, 40 While there have not been many 

tests of the hardness of ZrB2 at elevated temperatures, the elastic modulus has been 

examined. In Neuman’s study, the elastic modulus of specimens heated in air was tested 

using the static bend test. These specimens show an elastic modulus of 524 GPa at room 

temperature, decreasing linearly to ~370 GPa at 1300°C. Further increasing the 

temperature led to a steeper decrease in elasticity down to ~260 GPa at 1600°C. Other 
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studies have noted these decreasing trends in mechanical properties as a function of 

temperature, and the change in behavior at 1300°C has been attributed to the softening of 

grain boundaries or secondary phases.41 

2.4 FOAMS 

 Foams are three dimensional structures that are characterized by high levels of 

porosity.42, 43, 44, 45 These structures can be found in many places, from nature in the form 

of sponges and other natural cellular materials, to modern day packaging and insulation.  

There are also metal foams which can be used as a catalyst or a low density structural 

material as well as ceramic foams which have often been used as molten metal filters, 

catalysts, and reinforcing phases in composite materials.46, 47, 48 The particular uses for 

each variety of foam can necessitate different structures. 

There are two different primary structures of foams, reticulated and non-

reticulated (or closed pore). Reticulated foams are characterized by their interconnected 

porosity, where the entire piece has all of its porosity open and the solid structure exists 

as a series of struts.11, 49 This type of structure allows fluids to flow through the piece, 

leading to its common use as a filter catalyst, or as a scaffold for bioactive applications.9, 

50, 51 It is also possible to fill in all of the porosity in this type of specimen with a different 

material. This property is commonly used to produce composites that use the foam 

structure as a reinforcing phase, lending either stiffness or hardness to the structure, or 

possibly reducing the bulk density.47, 52 Foams with closed pores also see a wide range of 

applications. These foams may be readily used as a thermally insulating phase due to the 

limited heat conduction through the material.11, 53, 54  
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There are a variety of techniques to produce the different foam structures as 

ceramic materials, though they may be sorted into a few general categories. Foams may 

be made through the bubbling and solidification of a slurry or ceramic containing 

polymer (foaming), the use of a ceramic slurry to coat a pre-existing foam structure (the 

replication method), or the direct fabrication of a foam structure through selective 

deposition of a ceramic phase (as in 3D printing).43, 45, 55 

The process of foaming is relatively simple, with the main step in the process 

being the formation of bubbles in a liquid gel or sol. This method is commonly used for 

making foams from materials such as polyurethane or cellulose.56 In most cases this tends 

to produce foams with closed cells, but if the gas used to form the pores is flammable 

then it is possible to ‘burn out’ the thin walls that separate the pores, leaving a reticulated 

structure. 

Replication is a common process to produce reticulated foam structures using a 

pre-existing foam substrate.43, 44 This technique requires that a preform be coated by a 

slurry, depositing material on the substrate to create a mechanically sound foam. The 

preform used is commonly a polymer material (like polyurethane) because such materials 

can be burned out of the system in the final steps, leaving just the coating material. 

Direct fabrication of foam structures is a relatively new approach.57, 58 This 

method has been used to produce scaffold shapes for bioactive materials among other 

things, as it allows foams with specific engineered geometries to be fabricated.59 This 

process uses a slurry or precursor material and deposits it onto a plate or other flat surface 

in a specified pattern, building up the structure layer by layer until the final part is built. 

Depending on the method, the next step may be to remove a binder or polymer phase as 
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in the coating process or to react a deposited precursor with the binder system to form the 

desired ceramic phase. In either case, the control over the geometry used in this method 

allows for a greater level of precision when analyzing behavior than other methods which 

rely on random orientations of foam.60 

Because of their high level of porosity, foams and other cellular materials can 

display unusual behavior when undergoing mechanical testing.8, 44, 61 The common 

method for determining the strength of foams is crush testing, where the foam is loaded 

in compression along one axis.42 While foams with large strut sizes and higher bulk 

densities may undergo critical fracture in a method similar to dense ceramics, other foams 

with smaller struts and higher porosities exhibit gradual failure as the foam collapses in 

on itself.49, 62 This gradual failure occurs as individual struts or small groups alternately 

load and break across the foam. When these struts break, they have a tendency to collapse 

into the remaining foam structure, increasing its effective density. As the foam continues 

to undergo loading during the test, force is applied to a greater cross-sectional area of 

struts in the foam, increasing the maximum load that the foam can sustain. This effect 

was studied by Maiti, and it was determined that the apparent strength of the foam would 

continue to increase as a function of crosshead displacement up to a point where it would 

reach a plateau, as seen in Figure 2.2.61 

2.5 LAMINATES 

 Laminated structures have been used to help mitigate the brittle fracture 

behavior of ceramics.16 While most homogenous ceramics suffer brittle fracture, some 

composites using engineered architectures have been designed to support load after their 

initial failure.30, 63, 64 Laminates belong in this class of materials, along with particulate 
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Figure 2.2. Compressive stress-strain curve for a brittle polymethacrylimid foam61 

 

reinforced composites, chopped fibrous reinforced materials, and continuous fibrous 

monoliths. Of these materials, laminates tend to be some of the cheapest to produce and 

the fastest to manufacture.65 

 A large range of processing techniques exist for producing laminate structures.15 

Each of these processes have pros and cons, and in most cases the downsides have to do 

with the time required for fabrication or the complexity of the fabrication procedure.65 A 

few notable methods that have been frequently used are alternating tape cast layers, slip 

coating on tape cast layers, and layers produced through plastic deformation of a ceramic 

embedded thermoplastic polymer.16, 66 

 The thermoplastic polymer method was originally used by Kovar et al. for the 

production of a fibrous monolithic material.67 These materials make use of separate 
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polymer systems loaded with different phases of ceramics in order to build up the 

structure. Essentially, this process involves loading a weaker interface phase into one 

polymer system and the strong phase in another, then forming them in the green state, 

later removing the polymer and sintering them afterwards.67, 68  

 Several different varieties of laminates have been produced and tested, the 

primary differences between them being how the strong and weak phases are structured. 

These can be sorted into several different categories; whether the laminates rely on the 

difference in elastic modulus between materials or the residual stress caused by 

differences in thermal expansion between phases.16, 17, 69 

 For laminates that rely on a difference in elastic modulus between phases, the 

cracks will behave as described in models created by He and Hutchinson.19 In order for 

impinging cracks from any possible angle to be deflected, the elastic modulus of the 

weaker phase must be a quarter or less than that of the other. Any deflection occurs 

because the energy required to extend the crack through the phase with high toughness is 

greater than the energy required for the crack to grow through the weaker phase along a 

non-optimal direction. This causes the crack to propagate parallel to the loading direction 

which takes a greater level of energy than travelling through the same material 

perpendicular to the loading axis, thereby increasing the amount of work necessary to 

fracture the part entirely.65 

 While the strength and work of fracture of laminated specimens are not intrinsic 

properties, they are commonly reported and allow for comparisons to be made to 

conventional ceramics. Clegg et al. saw increases of more than two orders of magnitude 

in the work of fracture for laminates over conventional ceramics.66 The reduction in 
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strength for these materials was seen to be negligible, indicating that the structures tested 

did not affect the loads that the part could support when compared to conventional 

ceramic specimens of the same material. 

 Some laminates have been reported that rely on residual thermal stresses between 

layers in order to increase the work of fracture.69 It is possible to see crack deflection in 

these specimens, but this doesn’t occur as often as in laminates with alternating weak and 

strong layers. The study of these materials has shown that the composites see a ~70% 

reduction in strength when compared to the same material as a dense, conventional 

ceramic.69  
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ABSTRACT 

 

Titanium diboride foams were produced using the foam replication method. 

Sintering conditions were determined by studying the densification behavior of pressed 

pellets. Sintering at 2150°C for 1 hour resulted in pellets that had a relative density of 

95% with a hardness of 22.6 GPa, and a grain size of 1.3 µm. Foams sintered at 2150°C 

exhibited hardness values of 17.3 ± 2.4 GPa. Based on strength values that were lower 

than expected, as well as the appearance of the microstructure, microcracks are likely 

present in the sintered foams. Crush test specimens sintered at 2150°C had a strut density 

of 4.3 g/cm3 (95% relative density) with an overall porosity of 97%. Foams sintered at 

1975°C exhibited an average maximum compressive strength of 7.1 ± 2.2 kPa , with a 

compression modulus of 21 kPa. Based on these results, TiB2 foams show promise as a 

reinforcing phase in applications where hardness and wear resistance need to be 

increased. 
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1. INTRODUCTION 

 

Titanium diboride (TiB2) has strong covalent bonding, a high melting temperature 

(3225 °C)1, high elastic modulus (~580 GPa)2, 3, 4, and high hardness (~32 GPa).5 These 

properties make TiB2 useful in applications ranging from cutting tools and wear resistant 

coatings to armor plates and crucibles.4 Titanium diboride foams may be useful as 

lightweight structural materials, or as an interpenetrating phase that can increase hardness 

or wear resistance of other materials.6, 7, 8, 9  

Numerous types of foams can be produced and they are categorized based on the 

geometry and interconnectivity of the porosity.  One structure of particular interest is 

reticulated foams, which are co-continuous structures with continuous open porosity and 

a continuous network of struts of the solid material.9, 10, 11 One process that can be used to 

produce reticulated foams is the foam replication method, which was popularized by 

Schwartzwalder and Somers.12 Foam replication works by coating a ceramic slurry onto a 

polymer foam substrate that is later removed, leaving a skeleton of ceramic material.11  

Foams have seen widespread use for their properties. They exhibit high specific 

surface area, and the size of the cells that make them up can be varied greatly.13 These 

properties lead to a large array of uses, from packaging products made of polymer foams 

to catalytic substrates and filters for foams made from ceramic materials.9, 14, 15 The 

density of foams can vary, yielding specimens with open porosities ranging from 75% to 

>90%.11 Specimens produced by Jun et al. demonstrate specific strengths of 5.4 MPa for 

specimens of 7% relative bulk density as well as strengths ≥9.3 MPa with 9% relative 

bulk density.16 One potential application for hard ceramic foams is as a reinforcing phase 
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in a metal matrix for abrasion resistant parts, such as brake pads or calipers.17 These 

materials can also be used for making parts such as pistons or cylinder liners in engines.18  

Because of their high melting point and low self-diffusion coefficient, TiB2 and 

other transition metal diborides are difficult to densify without applied pressure.24 TiB2 

has been shown to require temperatures above 2050°C in order to attain >95% of the 

theoretical density.19 Additionally, TiB2 readily oxidizes and the presence of surface 

oxide impurities inhibit densification by promoting grain coarsening at elevated 

temperatures.19 Problems with densification can be mitigated through the use of sintering 

aids such as carbon, boron carbide, or silicon nitride that react with and remove oxides 

from particle surfaces.19, 20, 21, 22 Using processes like hot pressing, along with sintering 

additives, can enhance densification so that near full density can be achieved at 

temperatures as low as 1700°C.23 Some studies have reported densification of TiB2 

through pressureless sintering processes, and these typically require either temperatures 

over 2000°C or liquid phase sintering additives like nickel in addition to reducing 

additives like graphite.19, 24  

The purpose of this study was to produce reticulated foams of TiB2 and to test the 

properties. The foams underwent crush testing to determine their compressive strength, as 

well as indentation testing to determine the hardness of the struts.  

 

2. EXPERIMENTAL PROCEDURE 

 

The starting materials were commercially available TiB2 (Treibacher Industrie 

AG, Althofen, Austria) and phenolic resin (GP 2074, Georgia Pacific Chemicals, Atlanta, 

GA; 41 wt% C yield after char). In order to determine appropriate slurry compositions, 
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suspension stability and solids loading tests were performed. For the suspension stability 

tests, 3 g of TiB2 powder was put into a graduated cylinder along with 9 ml of methyl 

ethyl ketone (MEK) and then agitated in an ultrasonic bath for 5 min. For direct 

comparisons between conditions using different dispersant systems in different amounts. 

Two polymer dispersants (Dolapix CE-64, Zschimmer and Schwarz, Lahnstein, 

Germany; and Disperbyk-110, BYK Additives and Instruments, Wesel, Germany) with 

acidic end groups were used in the suspension stability tests. Levels of dispersants ranged 

from 0 to 2.5 mg/m2 in increments of 0.5 mg/m2. Powders were dispersed using 

ultrasonic agitation (), and then allowed to settle undisturbed for 5 days to observe the 

amount of powder that settled out of suspension. Evaluation of the stability of the 

suspensions was qualitative, with the most desirable conditions being those that resulted 

in the least amount of powder settling.  The stability study showed that suspensions with 

no dispersant added were the most stable. 

A second dispersion study performed was to determine the optimal solids loading, 

by maximizing the solids loading while maintaining a low enough viscosity to allow for 

coating on all internal surfaces of a reticulated foam substrate. Slurries were prepared 

using 20 g of MEK in a polyethylene milling jar and incrementally adding TiB2 powder 

every 30 min.  Mixtures were ball milled at 100 rpm in between additions. Qualitatively, 

the highest possible solids loading was approximately 28 vol% TiB2. 

To produce foams, powders were ball milled in batches of 80 g of TiB2 powder 

using TiB2 media in a high density polyethylene jar with 37 g of MEK. Batches were 

milled for 24 hours at ~100 rpm to break up agglomerates. After 24 hours, 2.95 g 

phenolic resin (2.5 wt% superaddition that should yield 1 wt% carbon) was added, and 
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the mixture was milled for another 2 hours to ensure the resin dissolved and was 

dispersed. 

The slurry was dried by rotary evaporation at 70°C under a vacuum (~27kPa) 

(Rotavapor R-124, Buchi, Flawil, Switzerland).  The dried powder was passed through a 

60 mesh sieve to remove large agglomerates. Pellets were produced from the granulated 

powder by uniaxially pressing ~4 g of powder in a 1.3 cm diameter steel die under a 

pressure of ~77 MPa. Pellets were sintered under an argon atmosphere for one hour at 

temperatures ranging from 1800 to 2150°C. Before heating, the furnace was evacuated to 

~15 Pa and backfilled with a gas mixture containing 90 vol% argon and 10 vol% 

hydrogen (Ar10H). The purging-backfilling process was repeated 4 times.  Then, the 

furnace was evacuated to ~15 Pa and heated at a rate of ~10°C/min.  Isothermal holds of 

1.5 hour were performed at 1250°C and 1600°C under a vacuum, allowing the 

atmosphere to drop below 15 Pa. The holds were used to remove volatile species 

produced by decomposition of surface oxides and the length of the holds was determined 

by the time required for the furnace pressure to decrease to ~20 Pa. After the second 

isothermal hold, the furnace was backfilled with Ar10H to a nominal pressure of 105 Pa. 

The furnace was then heated to its target sintering temperature and held for 1 hour. 

Sintered pellets were cross sectioned and polished with successively finer diamond 

abrasives with a final size of 0.25 µm.  Vickers indentation (Duramin 5, Struers, 

Cleveland, OH) with a load of 500 gf and a dwell time of 5 seconds was performed to 

determine the hardness of the specimens.  

Polished cross sections were thermally etched for microstructure characterization. 

Specimens were heated under vacuum (~13.3 Pa) at a rate of 25°C to a temperature of 
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1400°C and held for 1 hour. The surfaces of the specimens were then observed using 

scanning electron microscopy (SEM; S4700, Hitachi, Tokyo, Japan) with an accelerating 

voltage of 5 kV. Grain sizes were estimated from SEM images using computerized image 

analysis (Image J, National Institutes of Health, Bethesda, MD). The average feret 

diameter was determined by measuring 300 grains. 

The preforms used for replication were reticulated polyurethane foams with 

approximately 4 pores per cm. The pores were anisotropic, with a strut length of 3.2 ± 0.8 

mm in the c direction and 1.7 ± 0.4 mm in the a and b directions. With a strut width of 

0.17 ± 0.03 mm, the porosity in the foam was fully open. As a result, the TiB2 slurry fully 

infiltrated the preforms and coated the struts with a uniform layer of ceramic particles. 

For coating, preforms were submerged in the ceramic slurry, squeezed to compress the 

submerged foam, and then allowed to relax to draw the slurry into the foam to coat the 

struts. Foams were then removed from the slurry and compressed to eliminate excess 

slurry from the open pores in the preform. The coating process was repeated for a second 

time, and the foams were dried in ambient laboratory conditions, which allowed the 

solvent to vaporize and left behind the polymer struts with a coating of powder on the 

outside.  

Dried foams were heated in Ar10H to decompose the preform. The furnace was 

heated from room temperature to 600°C at a rate of 5°C/min. Isothermal holds that were 

two hours long were used at 260°C and 300°C to burnout the polymer preform. After 

burnout, a skeletal structure of unsintered TiB2 powder was left in the form of the 

polymer structure. The foam was transferred into another furnace, and put through a 
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sintering cycle. This cycle was the same as described above for the pellets with final 

temperatures of either 1975°C or 2150°C.  

Sintered foams were cut into cubes approximately 2.5 cm on each side.  The 

cubes were tested in compression following ASTM C365 using an Instron (Model 5881, 

Instron, Norwood, MA) load frame, with a crosshead displacement rate of 0.5 mm/min.  

Specimens were compressed until the deflection was at least 10% of the specimen height, 

which was generally around 3 mm. A total of 5 foams sintered at 1975°C underwent 

crush testing in this study, while no foams sintered at 2150°C underwent crush testing. 

Vickers hardness was measured for the TiB2 struts in the foams, using an average 

of 10 indents at a load of 500 gf. Testing was accomplished by first infiltrating the foams 

with epoxy resin, cutting, and then polishing to a 0.25 μm finish. Microstructures of foam 

struts were also examined using SEM.  

 

3. RESULTS AND DISCUSSION 

 

Significant densification of TiB2 pellets required temperatures of 2100°C or 

higher (Figure 1). Sintering at temperatures from 1800°C to 1950°C for 1 hour produced 

bulk densities of around 2.7 g/cm3, which was ~60% relative density.  These values were 

similar to the green density, which was 2.6 g/cm3 or about 58% relative density. 

Increasing the sintering temperature to 2050°C resulted in an increased density of 3.06 

g/cm3, or about 68% relative density.  Density increased more substantially when heating 

to 2100°C or higher where relative density increased to more than 90%. A maximum 

density of 4.3 g/cm3 (~95%) was achieved at a sintering temperature of 2150°C. This 
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shows that in order to achieve relative densities above 90%, sintering temperatures of 

2100°C or greater are required. 

The densified TiB2 pellets had defects along some grain boundaries, which are 

predominantly cracks or pores, as seen in Figure 2. The average grain size of pellets 

sintered at 2150°C was 1.3 ± 0.8 µm with a maximum grain size of ~5 µm.  The defects 

had maximum widths of 0.1 ± 0.05 µm with the largest ones reaching ~0.5 µm. The 

measured hardness of the 95% dense TiB2 pellets was 22.6 ± 1.5 GPa, which is lower 

than the intrinsic hardness value of fully densified TiB2, which is ~32 GPa. Observation 

of the Vickers indentations on the surface of specimens showed that cracks tended to 

propagate preferentially through secondary phases and porosity. 

The struts in foams displayed similar densification behavior to the pellets.  

Sintering at 1975°C resulted in a bulk density of 2.75 g/cm3 in the struts and an overall 

bulk density for the foam of 0.16 g/cm3. Based on the bulk density of the struts, they were 

~61% dense after sintering at 1975°C, indicating that the struts should still contain open, 

interconnected porosity. This was confirmed by observation of the microstructures 

(Figure 3). Vickers indentation on the strut in a foam sintered at 1975°C showed the 

hardness was ~3 GPa, which was about the same as the hardness measured for pellets of 

similar bulk density. 

Struts in foams sintered at 2150°C had bulk densities of 4.3 g/cm3, which is about 

95% relative density.  The overall bulk densities of foams sintered at 2150°C were about 

0.25 g/cm3. The microstructure was examined by SEM as seen in Figure 4. The average 

grain size in the struts was 8.9 ± 7.3 µm. The larger grains in the struts are above the 

critical grain size that will cause microcracking in TiB2, which is caused by the 
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anisotropic thermal expansion values in the hexagonal TiB2 crystal structure.25, 26 The 

hardness of the struts in foams sintered at 2150°C was 17.3 ± 2.4 GPa, which is lower 

than expected based on the accepted hardness of TiB2 (~32 GPa) and the hardness 

measured for pellets in the present study that were sintered at the same temperature (22.6 

± 1.5 GPa). The lower hardness of the struts compared to the sintered pellets could be a 

result of the geometry of the specimen. More specifically, foam sections mounted in the 

epoxy resin could deform macroscopically under the indentation load. The polymeric 

resin supporting the struts has a lower elastic modulus than TiB2, which would support 

the material in a dense ceramic.  The reduced hardness could also be due to 

microcracking that would result from the larger average grain size of the struts. 

Foams sintered at 1975°C exhibited two different regimes of crushing behavior 

(Figure 5). At low crosshead deflection (<4 mm), the crosshead came into contact with an 

increasing cross-sectional amount of material as deflection increased until a point (~4 

mm extension) where the cross-sectional area of struts in contact with the platens was 

relatively constant. In the regime of increasing load, the foam exhibited a compressive 

modulus of ~21 kPa as the cross-sectional area of foam under load increased while in the 

constant load regime (>4 mm), the material displayed an average compressive strength of 

~7.1 ± 2.2 kPa and a compressive modulus of ~5 kPa. The specific strength calculated 

here divided the average strength of the foam specimens by their relative density. In this 

regime, the top struts of the foam broke as other struts were loaded, yielding a net balance 

on the effective surface area under load. This behavior is consistent with previous reports 

and models of crush tests.27, 28 Based on the analysis in those reports, the crush strength 

of the foams could be increased by increasing the strut thickness, which would provide 
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additional support for the struts through an increased size of ‘nodes’ where struts 

intersect. 

 

4. CONCLUSIONS 

 

TiB2 foams were produced by the foam replication method and tested to 

determine the hardness, crush strength, and compressive modulus. A sintering study on 

TiB2 pellets revealed that temperatures of 2100°C or higher were required for 

densification of TiB2. The hardness of pellets densified at 2150°C was 22.6 ± 1.5 GPa 

and the average grain size was 1.3 µm. Foam specimens densified at 2150°C had a 

hardness of 17.3 ± 2.4 GPa and a grain size of 8.9 ± 7.3 µm, while foams densified at 

1975°C had a hardness of ~3 GPa and particles exhibiting only partial necking. The 

foams sintered at 1975°C also showed a compressive strength of 7.1 kPa with a 

compression modulus of 21 kPa. TiB2 foams were successfully produced and tested, 

showing promise for the use as a hard, reinforcing phase in composite materials or as a 

lightweight structural material. 
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Figure 1. Relative densities of TiB2 pellets as a function of sintering temperature. 

 

 

 

 

 

 

Figure 2. Microstructures of TiB2 pellet sintered at 2150°C. 

 

Figure 3. Microstructure of a strut of a TiB2 foam sintered at 1975°C. 
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Figure 4. Microstructure of a strut of a TiB2 foam sintered at 2150°C. 

 

Figure 5. Load-Displacement curve for a TiB2 foam sintered at 1975°C.  
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ABSTRACT 

 

 Zirconium diboride-based laminates were produced by hot pressing preforms 

consisting of alternating layers of ZrB2 and carbon + 10 vol % ZrB2.  Individual layers 

were produced by mixing the starting powders with thermoplastic polymers and pressing 

them into sheets.  After binder removal, preforms were densified by hot pressing at 

2050°C for 1 hour at a pressure of 32 MPa. Laminate samples had ZrB2 layers ~150 μm 

thick and C-ZrB2 phase layers ~20 μm thick. The flexure strength and work of fracture 

were measured over a range of temperatures, with a maximum strength of 311 ± 10 MPa 

at 1600°C and a maximum inelastic work of fracture of 1.3 ± 0.4 kJ/m2 at 1400°C. 

Cracks were deflected by the weaker C-ZrB2 layers, travelling along the center of the C-

ZrB2 layers over extended distances. Cross sectional images of the fracture surface of the 

specimens showed a greater amount crack travel parallel to the layers at room 

temperature, with decreasing crack propagation within the weak phase 2000°C. The work 

of fracture of tested laminates was greater at all temperatures than the work of fracture of 

conventional ceramic specimens. 
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1. INTRODUCTION 

 

 Zirconium diboride is a widely studied ultra-high temperature ceramic (UHTC) 

material. It has a high melting temperature (~3250°C)1, along with high elastic modulus 

(~525 GPa) and strength (up to ~500 MPa for nominally pure ZrB2 ceramics).1, 2, 3, 4, 5 

This combination of properties has led to potential applications including cutting tools, 

molten metal crucibles, and leading edges for hypersonic aerospace vehicles.6, 7, 8 The 

mechanical properties of ZrB2 have been studied at room temperature and elevated 

temperatures. As with most ceramics, zirconium diboride has relatively low fracture 

toughness (~3 MPa√m).3, 5 One method commonly used to mitigate the low fracture 

toughness is to introduce second phases, as either a continuous secondary phase or as 

dispersed particulates.9, 10  

 Laminate structures have been shown to increase the damage tolerance of brittle 

materials by using alternating layers composed of materials with different properties. 11, 

12, 13, 14 In particular, laminate structures exhibiting extensive crack deflection tend to 

incorporate layers of a weaker phase alternating with layers of a stronger phase. 11, 15, 16  

Deflection occurs because the energy required to propagate a crack through the weaker 

phase is lower than propagating a crack through interfaces and into stronger phases. 16, 17 

Conventional fracture toughness (i.e., KIC) measurements do not capture the damage 

tolerance of laminates because fracture occurs in a mixture of modes.18, 19 Quantifying the 

work of fracture can provide a more accurate measure of the damage tolerance since this 

measurement considers the total area under the load-deflection curve (i.e., the energy 

associated with fracturing the specimen regardless of fracture mode). For example, Clegg 

et al. reported that work of fracture increased by about 100-fold for a silicon carbide – 
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carbon laminate compared to a conventional silicon carbide ceramic.20 Hence, laminates 

are a promising approach for increasing damage tolerance. 

Several methods can be used to produce laminate structures including tape 

casting, centrifugal casting, and slip casting.20, 21, 22, 23 For the present study, layers were 

produced by stacking and pressing sheets made from thermoplastic polymers that were 

loaded with ceramic powders.  This process is based on the procedure described in a 

paper by Kovar et al. for producing textured materials using conventional powder 

processing routes.24 The major advantage of this method is that it uses conventional 

ceramic powders rather than expensive high-strength fibers to increase damage tolerance. 

This method has been successfully used to produce fibrous monolithic structures with 

improved damage tolerance.24  

 The system used in this study consisted of alternating layers of ZrB2 and C-

10vol% ZrB2. Graphitic carbon was chosen for the weak layer because of its low strength 

relative to the ZrB2 as well as its chemical compatibility with ZrB2. The phases in the 

laminate structure need to be inert with respect to each other to minimize interactions 

between layers (e.g., forming a diffusion zone that would prevent crack deflection). In 

this study, ZrB2 was added to the graphite phase to improve the strength of the weak 

layer to maintain the strength of the overall laminate structure.  

 The purpose of the present study was to evaluate the mechanical properties of a 

zirconium diboride-based laminate architecture at room and elevated temperatures.  
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2.  PROCEDURE 

 

 Each of the layers in the laminate was batched and prepared separately. For the 

weak layers, graphite (8.5 µm, Sigma Aldrich, St. Louis, USA) was attrition milled in 

acetone using spherical tungsten carbide – 6 wt% cobalt (WC-6Co) milling media in a 

Teflon coated mill jar for 2 hours to break up agglomerates and reduce the particle size. 

The resulting slurry was dried in a rotary evaporator at 70°C under a vacuum (~27kPa) 

(Rotavapor R-124, Buchi, Flawil, Switzerland).  The dried powder was mixed with 10 

vol% ZrB2 (Grade B, HC Starck, Munich, Germany) by ball milling in acetone with WC-

6Co in an HDPE jar then dried by rotary evaporation using the conditions described 

above. For the strong layers, ZrB2 powder was batched with 2 vol% carbon black (Cabot 

120, Cabot Corporation, Boston, USA) and 1.5 vol% boron carbide (B4C) (Grade HD-20, 

HC Starck) to act as sintering aids. The powders were blended by ball milling in an 

HDPE jar for 2 hours in acetone with WC-6Co milling media and then dried by rotary 

evaporation using the conditions described above. 

 The powders prepared for each type of layer were individually mixed with a 

thermoplastic polymer (ethylene/ethyl acrylate MI-20, Dow Chemical Company, 

Midland, USA) in a high shear mixer (Rheocord System 40, Haake Buchler Instruments, 

Saddle Brook, USA) at 130°C. While the powders and polymers were mixing, methyl 

poly ethylene glycol (MPEG) (MW 350, Acros Organics, Geel, Belgium) and heavy 

mineral oil (HMO) (Fisher Chemical, Pittsburgh, USA) were added to adjust the 

viscosity. The final compositions for each layer material are shown in Table I.  

 After formulating the compositions for each layer, the powder-loaded polymers 

were pressed into sheets (Model G50H, Wabash, Wabash, USA) at 150°C. The strong 
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ZrB2 phase materials were pressed to a thickness of 0.46 ± .03 mm, while the weaker C-

ZrB2 phase was pressed to 0.18 ± .03 mm. After pressing, layers were stacked to provide 

a final part with approximately 23 weak phase layers and pressed at 150°C to produce 

laminate preforms.  The preforms were cut to the size of a graphite hot press die using a 

razor blade and loaded into the die. Preforms then underwent binder burnout to remove 

the thermoplastic polymer and other organic processing aids. Burnout was accomplished 

using an atmosphere of 100 kPa of argon and a heating rate of 25°C per hour up to 

125°C, then 5°C per hour up to 500°C where temperature was held for 2 hours to ensure 

complete burnout. After the isothermal hold the furnace power was shut off, allowing the 

specimen to cool to room temperature.  

 After burnout, the die containing the preform was transferred to a hot press 

(Model HP20-3060-20, Thermal technology, Santa Rosa, USA). The initial part of the 

heating cycle was conducted under a nominal vacuum of ~15 Pa. Preforms were heated at 

50°C/min from room temperature to 1450°C.  Temperature was held at 1450°C for one 

hour to allow the vacuum to recover to the nominal level.  Heating was resumed at 

50°C/min to 1650°C for another one hour isothermal hold for vacuum recovery. The 

purpose of the isothermal holds was to allow the sintering aids to react with and remove 

surface oxide impurities as described elsewhere.25, 26, 27 After the second hold, the furnace 

was backfilled with argon to ~100 kPa. The furnace was heated at 30°C/min up to a 

maximum of 2050°C for densification where it was held for 1 hr. During the final ramp 

and hold, a uniaxial pressure of 32 MPa was applied. After the final hold, the furnace 

power was shut off and the system was allowed to cool. Once the temperature reached 
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1600°C the pressure was released, and the furnace was allowed to cool to room 

temperature. 

 Densified billets were removed from the die, surface ground to remove the outer 

layer, and cut into mechanical test bars using an automated surface grinder (Model FSG-

3A818, Chevalier, Santa Fe Springs, USA). These mechanical test bars were 3 mm by 4 

mm by 45 mm, which are size B-bars as defined in ASTM C1161.  The bars were 

oriented such that the layers were parallel to the length of the bar (45 mm) and normal to 

the thickness (3 mm). Bars were polished on the tensile surface using successively finer 

diamond abrasives with a final abrasive size of 0.25 μm. The bars were then tested in 4-pt 

flexure at room temperature (Model 5881, Instron, Norwood, USA) and elevated 

temperatures (Model 33R4204, Instron, Norwood, USA) in accordance with ASTM 

C1161 (modified for elevated temperatures). In the flexure tests, the crosshead extension 

was controlled, and as the temperature increased the extension rate was increased in order 

to maintain linear elastic behavior as the load was applied. The extension rates used for 

flexure testing at the various temperatures are listed in Table II. Work of fracture was 

calculated by integrating the area under the load-displacement curve from the flexure test. 

Elastic work of fracture is the area under the curve during initial loading until the first 

load drop occurred.  After the initial load drop, the area under the load-deflection curve 

was considered to be inelastic work of fracture. 

 The specimens were then mounted in an epoxy resin and cross sections were 

polished in steps down to 0.25 μm. The specimens were then removed from the epoxy 

and thermally etched at 1400°C using a heating rate of 50°C/min and a dwell time of 1 

hour under a vacuum of ~15 Pa. Specimens were then coated with a mixture of gold and 
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palladium and images were taken using scanning electron microscopy (SEM; S4700, 

Hitachi, Tokyo, Japan) with an accelerating voltage of 5 kV. Energy dispersive 

spectroscopy (EDS) was also used to analyze sections of the microstructure. Average 

layer thicknesses and grain sizes were measured using ImageJ (National Institutes of 

Health, Bethesda, USA) using the average Feret’s diameter over 500 grains. 

 

3. RESULTS 

 

The laminates consisted of alternating layers of predominantly uniform thickness 

(Figure 1).    The area ratio of strong to weak phases in cross section was ~6.5:1, which 

means the volume ratio should be the same. Image analysis showed that the thickness of 

the average strong phase layer was 146 ± 23 μm and the thickness of the weak phase 

layers was 22 ± 8 μm. The specimens showed consistent layer thickness through most of 

the specimens, and it has been shown that specimens with parallel layers maximize crack 

deflection.16 Parallel layers also reduce the frequency of discontinuities, which would 

allow two layers of the same composition to contact each other. Where discontinuities 

appear, it is possible for a crack to travel through just one material without the possibility 

of crack deflection, thereby reducing the advantage of the laminate architecture. 

 The microstructure of the strong layers is shown in Figure 2. The strong phase 

had an average ZrB2 grain size of 18 ± 9 µm Dark inclusions were also present in the 

strong layers and EDS analysis of this material suggests that these were the remnants of 

the B4C and C that were added as densification aids. These secondary phases were  

mainly located at grain boundary junctions and had an average diameter of approximately  
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6 ± 4 μm. The secondary phases extended along the grain boundaries, appearing as 

irregular shapes. Porosity also appeared in the structure, predominantly at the grain 

boundaries, although some intragranular pores were also observed. 

The weak layers shown in Figure 3 appear to be the edges of aligned graphite 

platelets. Lighter spots within the weak layers had higher concentrations of Zr and B 

based on EDS. The Zr- and B-rich regions were regularly shaped, with an average size of 

4.4 ± 1.7 μm.  Presumably, these were ZrB2 particles that had been added to the graphite. 

The grains of graphite were difficult to distinguish due to the plate-like texture of the 

particles and porosity that was present. Presumably, graphite in these specimens was not 

fully densified since graphite densification typically requires much higher temperatures.28  

Figure 4 summarizes the strengths of the laminates as a function of temperature.   

At room temperature, the strength was 260 ± 36 MPa. This is approximately 70% of the 

strength of a conventional ZrB2 ceramic processed by similar methods.2 This ratio of 

strength between laminate and homogenous material is lower than would be predicted 

based on studies by Clegg et al.11 The laminate materials studied by Clegg et al. showed 

similar strength to conventional ceramics. It is possible that the difference in strength for 

the current study is due to the presence of larger critical flaws introduced as a result of 

the specimen forming process used in this study. The size of the critical flaw in the 

current laminates was estimated using Griffith’s criteria, which assumes that specimens 

exhibited brittle fracture. The equation that most accurately described this material was 

for surface flaws in a finite body (Eq 1).29 For this equation KI is the mode 1 fracture  
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toughness, σ is the flexure strength, F and Q account for the shape factor calculations for 

the geometry of the critical flaw, and a is the length of the critical flaw.  

𝐾𝐼 = 𝜎𝐹√
𝜋𝑎

𝑄
 

In this equation, each layer of the strong phase was treated as a separate body, 

meaning that the flaw size calculated was the size necessary to start a crack propagating 

in a single layer of material. Assuming a fracture toughness of 3.5 MPa√m for the strong 

phase layers in the laminates3, it was determined that the critical flaw was about 30 µm. 

This corresponds to the maximum grain size observed in the strong phase. Observation of 

the fracture surfaces revealed that fractures originated at large grains on the tensile 

surfaces of the specimens, as seen in Figure 5. It is possible that by reducing the grain 

size in the specimen, by starting with smaller powder or going through more particle size 

reduction steps, would increase the strength of the laminates.  

The laminate strengths were maximized at intermediate temperatures with 

strengths of 280 ± 54 MPa at 1400°C and 310 ± 10 MPa at 1600°C.   As the temperature 

increased further, the strength decreased to 220 ± 9 MPa at 1800°C, and to 160 ± 14 MPa 

at 2000°C. The retention of strength by laminates from room temperature up to 1600°C 

indicates that the critical flaw in the material did not change as temperature increased. As 

temperatures approached 2000°C, it is likely that creep effects and grain boundary sliding 

limit the strength to levels below those seen at room temperature.2 Overall, the laminates 

retained strength to high temperatures (~1800°C) because the critical flaw size did not 

change as a function of temperature. 
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The typical load-deflection curves for the laminates are shown in Figure 6, while 

the corresponding cross-sectional images are shown in Figure 7. As temperature 

increased, the amount of crack deflection tended to decrease, reaching a minimum at 

2000°C. This trend could be due to the increased loading rate used at higher 

temperatures. The loading rate was used to maintain linear-elastic behavior as 

temperature increased.2, 16 Cracks that formed also tended to travel through the center of 

the weak layers, as opposed to along the interface between strong and weak layers, as 

seen in Figure 8.  

The inelastic work of fracture increased from room temperature to 1600°C, and 

then decreased above 1600°C as the testing temperature approached 2000°C.  In addition, 

the ratio of inelastic work of fracture to total work of fracture decreased as temperature 

increased. At room temperature, the inelastic work of fracture was 0.7 kJ/m2 (38% of the 

total work of fracture), while at 1600°C the inelastic work of fracture was 2.5 kJ/m2 

(31%) and at 2000°C it was 0.07 kJ/m2 (5%) (Table III). The large standard deviation, as 

seen in Figure 9 was due to the variability in crack deflection, which was most likely due 

to inconsistencies in the layer thicknesses of the laminates. The levels of inelastic work of 

fracture shown by these specimens show that the laminate structure is more resistant to 

catastrophic brittle failure than conventional ZrB2 ceramics. 

 

4. CONCLUSIONS 

 

 Zirconium diboride-based laminates were produced using alternating layers of 

strong ZrB2 ceramics and weak layers of graphite containing 10 vol% ZrB2. Laminates 

were densified by hot pressing at 2050°C under 32 MPa. The laminates exhibited layers 
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that were parallel and evenly spaced, with strong layers being on average 4 times thicker 

than the weak layers. The microstructure of the strong layers showed evidence of B4C 

and C inclusions. The laminates had a strength of ~250 MPa at room temperature, 

retaining this strength up to 1800°C. The strength of these laminates was limited by the 

grain size of the strong phase, and the critical flaw size remains constant until the 

temperature rises above 1800°C. The inelastic work of fracture at room temperature was 

~0.65 kJ/m2 at room temp with a maximum of ~2.5 kJ/m2 at 1600°C. The large deviation 

in the values was likely due to variations in crack paths for different specimens. Crack 

deflection occurred near the center of the weak layers rather than the interfaces between 

layers. The laminates produced maintained flexure strengths in excess of 200 MPa up to 

1800°C while successfully increasing the work of fracture at all temperatures tested. 
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Figure 1. Mesostructure of a ZrB2/C-10 vol% ZrB2 laminate composite. 

 

 

Figure 2. Microstructure of the strong layer showing ZrB2 grains, second phases, and 

porosity. 
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Figure 3. Microstructure of the weak layer. Brighter regions are clusters of ZrB2 in the 

graphite matrix. 

 

 

Figure 4. Flexure strength as a function of temperature for ZrB2/C-10vol% ZrB2 

laminates.  
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Figure 5. Fracture surface of a laminate specimen fractured at room temperature. 
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Figure 6. Flexure load vs extension for bars at room temperature (top) and 2000°C 

(bottom). 
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Figure 7. Cross section of bars tested at room temperature (top) and 2000°C (bottom). 

The bottom of each image is the tensile surface of the specimen. 

 

 

Figure 8. Cross section of bar tested at 1400°C showing crack path through the graphite 

layer. Arrows point to the crack travelling through the center of the weak phase. 
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Figure 9. Inelastic work of fracture and fraction of work of fracture that was inelastic as a 

function of temperature. Diamonds correspond to the measured inelastic work of fracture, 

and the squares correspond to the ratio of the inelastic work of fracture to total work of 

fracture. 
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Table 1. Compositions of strong and weak layers for ZrB2-based laminates. 

  Volume Fraction 

Material 

Strong 

Phase 

Weak 

Phase 

ZrB2 0.524 0.037 

Graphite - 0.336 

B4C 0.015 - 

Carbon 

Black 0.020 - 

EEA 0.354 0.579 

HMO 0.080 0.039 

MPEG 0.008 0.008 

Total 1.001 0.999 

 

Table 2. Crosshead displacement loading rates and strain rates for flexure testing at 

elevated temperatures. 

Temperature 

(°C) 

Crosshead 

displacement 

(mm/min) 

Strain 

Rate 

23 0.1 0.00125 

1400 0.2 0.0025 

1600 0.4 0.005 

1800 0.6 0.007 

2000 1.5 0.017 

 

Table 3. Mechanical properties of ZrB2-based laminate specimens. 

Temperature Strength 

Inelastic Work 

of Fracture 

Ratio of Inelastic 

to Total Work of 

Fracture 

°C MPa kJ/m2  

23 260 ± 36 0.6 ± 0.5 0.38 

1400 314 ± 54 2.1 ± 1.6 0.30 

1600 311 ± 10 2.5 ± 2.7 0.31 

1800 225 ± 10 1.2 ± 2.2 0.19 

2000 144 ± 14 0.19 ± 0.28 0.05 
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3. CONCLUSIONS 

 

This research focused on the fabrication and properties of transition metal 

diboride based ceramics with engineered architectures. Foam and laminate structures 

were made from TiB2 and ZrB2 respectively, and then tested to determine their 

properties. Testing for each specimen was performed to find the answers to the questions 

raised in the introduction. 

Can a TiB2 foam that retains a high intrinsic hardness be produced? What strength 

values would this structure exhibit? 

The first paper focused on the fabrication of a TiB2 foam, and showed that it is 

possible to produce TiB2 foams. Testing the hardness of the foam specimens also 

revealed that the material behaved similarly to dense TiB2, with hardness values around 

17 GPa. This is comparable to other studies for TiB2 ceramics in which the measured 

hardness value for these specimens was lower than the intrinsic hardness due to 

microcracking. Microcracking was likely to be present in this specimen, because the 

grain size was large enough that anisotropic thermal stresses between grains induce 

fractures in the microstructure. 

Will a laminate of ZrB2/ C–10 vol% ZrB2 deflect cracks at room and high temperatures? 

What is the work of fracture for specimens that do deflect cracks? 

In the second paper, a laminate was produced composed of ZrB2 and C. Testing 

was performed at temperatures ranging from room temperature to 2000°C, and laminates 

showed a larger degree of crack deflection at lower temperatures than higher 

temperatures, as evidenced by the work of fracture measured at each temperature. The 
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ratio of the inelastic work of fracture to the total work of fracture decreased as the 

temperature increased. 

How do the ZrB2/ C–10 vol% ZrB2 laminates fail, and do they exhibit similar strength to 

homogenous ZrB2 at all temperatures? 

Laminate specimens were tested in 4-pt flexure to determine their strength at 

different temperatures. The strength of the laminates was maintained from room 

temperature up to 1600°C, at around 260 MPa.  Strength decreased when tested at 

temperatures 1800°C and above. The decrease in strength is similar to the behavior seen 

in high temperature tests of homogenous ZrB2 specimens. After analyzing fracture 

surfaces, it was determined that the critical flaw was the grain size of the strong phase 

material. The laminate specimens exhibited a maximum grain size of around 30 µm, 

which is consistent with the strength predicted using Griffith flaw size equations under 

the assumption that the critical flaw is along the edge of the specimen. 
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4. FUTURE WORK 

 

The focus of this research was on producing a structurally stable foam and a 

laminate material using diboride ceramics.  

For the TiB2 foams, it is important to control the grain size and relative density. 

Beyond influencing the strength of the specimens, a large grain size causes significant 

microcracking in TiB2. This effect has been seen in materials with a grain size as small as 

approximately 5 µm. Reducing the grain size below this threshold should increase the 

strength and the hardness of the foams, potentially increasing its usefulness. Performing a 

study on the properties of a foam with a small grain size should give a better idea of the 

performance of this material. 

Another important factor controlling the mechanical properties of foam materials 

is the average thickness of the struts. As the strut size increases, the strength and modulus 

of the foam are increased along with the bulk density. A series of experiments evaluating 

the strength and porosity of the foam structures as a function of strut thickness would 

show the tradeoff between the density and strength of the foam. This information would 

be useful in determining the different strut thickness necessary for foams to be used in 

various applications. 

For foam materials, another factor that can be controlled is the amount of material 

within the struts. This is primarily an issue for materials produced using the replication 

technique, where burnout of the polymer structure leaves additional porosity inside the 

struts of the foam. It may be possible to infiltrate the struts with additional slurry after 

burnout, raising the overall density but leaving the amount of open porosity unaffected. 
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For the ZrB2 laminates, reducing the grain size will result in an increased strength 

across all temperatures. In the tested specimens, the strength limiting feature was the 

large grain size and so a reduction in the grain size will result in an increase in strength. 

The grain size may be decreased through further milling the powder or through the 

addition of additional secondary phases. 

The mechanical properties of laminates may also vary with different relative layer 

thicknesses. It is possible that decreasing the thicknesses of both layers and keeping the 

same volume ratio of the strong and weak phases, would result in a greater amount of 

crack deflection due to the increased number of interfaces. To test this hypothesis, a 

series of experiments focused on flexure testing laminates with different layer thicknesses 

can be tested, though care must be taken to avoid discontinuities occurring when the layer 

thicknesses decrease. 
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