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ABSTRACT 

 

DNA methylation is an epigenetic modification that can alter gene expression 

without a DNA sequence change. The role of DNA methylation in biological processes 

and human health is important to understand, with many studies identifying associations 

between specific methylation patterns and diseases such as cancer. In mammals, DNA 

methylation almost always occurs when a methyl group attaches to a cytosine followed by 

a guanine (i.e. CpG dinucleotides) on the DNA sequence. Many statistical methods have 

been developed to test for a difference in DNA methylation levels between groups (e.g. 

healthy vs disease) at individual cytosines. Site level testing is often followed by a post hoc 

aggregation procedure that explores regional differences. Although analyzing CpGs 

individually provides useful information, there are both biological and statistical reasons 

to test entire genomic regions for differential methylation. The individual loci may be noisy 

but the overall regions tend to be informative. Also, the biological function of regions is 

better studied and are more correlated to gene expression, so the interpretation of results 

will be more meaningful for region-level tests. This study focuses on developing two 

techniques, functional principal component analysis (FPCA) and smoothed functional 

principal component analysis (SFPCA), to identify differentially methylated regions 

(DMRs) that will enable discovery of epigenomic structural variations in NGS data. Using 

real and simulated data, the performance of these novel approaches are compared with an 

alternative method (M3D) for region level testing. 
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1. INTRODUCTION 

 

1.1. BASICS OF GENETICS 

 The field of genetics involves the study of heredity and genetic variation, which 

includes investigating the properties of genes. Genes are sections of deoxyribonucleic acid 

(DNA) located inside each cell of an organism that encode proteins and play a role in 

determining the nature of living organisms 1. Organisms inherit phenotypic traits or 

characteristics based on the genes transmitted by their parents. For example, the products 

of sexual reproduction often resemble their parents because they have inherited half of their 

genetic material from each parent. Investigating the function of genes at the molecular level 

is part of field a known as molecular genetics, which combines genetics with molecular 

biology. The Central Dogma of Molecular Biology2 offers a way to understand how genes 

are converted to functional information. The Central Dogma describes how genes are 

transcribed to messenger RNA (the transcriptome) that is translated to proteins, which 

mediate most of the cell’s biochemical functions (the proteome). Thus, molecular genetics 

involves not only inheritance but how genes are expressed, which controls how much of 

specific proteins are produced at the cellular level and can ultimately affect phenotypes. 

Many phenotypic traits are complex in nature as they may be determined by multiple genes 

and also influenced by the environment 1, 2. 

 

1.2. GENOMICS 

The field of genomics involves the study of the complete set of deoxyribonucleic 

acid (DNA) in an organism (i.e., the genome) 2. The mapping of genomes for particular 
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organisms enables better understanding of the location of genes and their functions on a 

large scale. The human genome is the complete sequence of genetic information in humans, 

which is stored in each cell’s nucleus and mitochondria. Genetic information is encoded in 

the DNA molecule and is stored on structures called chromosomes (Figure 1.1). DNA is 

double-stranded and is comprised of millions of nucleotides, organic molecules that 

function as subunits and are composed of a nitrogen nucleobase (i.e., guanine (G), adenine 

(A), thymine (T), and cytosine (C)), a five-carbon sugar, and at least one phosphate group 

3. DNA can be annotated into important substructures such as protein-coding genes and 

non-coding sequences (Figure 1.1). These main structures can be further annotated into 

substructures such as exons, introns, CpG islands, and promoter regions that play specific 

roles in different molecular processes 4.  

 

 
Figure 1.1.  Location and Structure of the DNA Molecule in the Human Genome. Figure 

obtained from 5. 
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The first genome-wide DNA sequence in humans, with a total of about three billion 

nucleotide positions, was completed by the Human Genome Project 6 in 2001. DNA 

sequencing determines the order of all the nucleotides for any particular organism. This 

sequence information was initially used in organism specific genome projects, combined 

with computational methods and domain expertise, to map the location of genes and other 

substructures, to be used as reference for future studies of that organism. With advances in 

technology, all of the genetic information from any individual can now be revealed using 

whole-genome sequencing 7. Such genome-wide studies are powerful tools for exploring 

genetic contributions to phenotypic variation and have the potential to allow for important 

health advances, such as personalized medicine, in the future.  

 

1.3. EPIGENETICS 

Epigenetics refers to heritable changes in genetic activity and expression that take 

place without any change in the DNA sequence. The word “epigenetics” comes from the 

Latin “epi,” which means “above” or “on top of” the genetic information. Epigenetics 

encompasses all the information that is contained in the cell and expressed for more than 

one cell generation, as the DNA sequence remains stable 8. In other words, epigenetics is 

“the study of mitotically heritable changes in gene function that cannot be explained by 

changes in DNA sequence” 9. DNA methylation and histone modifications, which involve 

the addition of chemical marks to the DNA or histone proteins, are two key epigenetic 

mechanisms (Figure 1.2) 10. DNA methylation occurs when a methyl (Me) group attaches 

to a cytosine (C) base on the DNA molecule. Histone modifications occur when certain 

chemical groups (e.g. methyl, acetyl) attach to the tails of histone proteins. Epigenetic 



4 

 

 

modifications help to regulate gene expression 11-13 and epigenetic aberrations correlate 

with cancer 14, 15 and other diseases 16-17. Environmental factors can affect epigenetic 

mechanisms. An advantage of this environmental influence is that drugs can be formulated 

to modify epigenetic patterns in cancer cells 18.  

 

 
Figure 1.2.  Two key epigenetic modifications: (1) DNA methylation and (2) histone 

modification. Figure obtained from Qiu (2006) 19. 
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1.4. DNA METHYLATION 

The four DNA nucleotides (adenine (A), cytosine (C), guanine (G), and thymine 

(T)) can be categorized into two classes, the pyrimidine-based nucleotides (C and T) and 

the purine-based nucleotides (G and A). On the double stranded DNA (dsDNA) a purine 

on one strand pairs with a pyrimidine on the other strand. Called complementary base 

pairing, this always occurs where A is paired with T while G is paired with C. The A/T 

pairing is secured by two hydrogen bonds, but the G/C pairing is mediated by three, 

creating a stronger bond 20. The length of the dsDNA is measured by the number of 

nucleotide base pairs (bp), which ranges from a few thousand (i.e., kilo base pairs (kbp)) 

in single-celled organisms to several million (i.e., mega base pairs (Mbp)) per molecule for 

complex organisms 21. 

DNA methylation occurs in most organisms, but not in the budding yeast, 

Saccharomyces cerevisiae, and the nematode worm, Caenorhabditis elegans. It is also 

limited to embryonic development in the fruit fly, Drosophila melanogaster 22, 23. In 

mammals, DNA methylation usually takes place when cytosine (C) is followed by guanine 

(G) in the 5′ − 3′ direction of the DNA sequence. This is denoted as CG or CpG, the latter 

notation showing that cytosine and guanine are connected by a phosphate on one of the 

DNA strands 24. In plants, DNA is methylated in three sequence contexts: CG, CHG and 

CHH (where H = A, T or C). At least three DNA methylation pathways exist in plants and 

each pathway appears to methylate cytosines in different sequence contexts 25.  

In mammals, DNA methylation occurs as the result of a family of de novo DNA 

methyltransferase enzymes (DNMT3) and is maintained during DNA replication by a 

maintenance DNA methyltransferase (DNMT1) 26. Plants also have methyltransferase 
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enzymes, some similar to DNMT1 and other unique to plants 25. At some locations, known 

as CpG islands, the number of CpG sites in relation to the CG content in a sequence of a 

particular length is higher than expected. CpG islands occur upstream of many genes and 

are usually unmethylated 25. Recent research suggests that the relationship between genetic 

variation, DNA methylation, and expression is complex 27.  

DNA methylation plays a key role in many biological processes, including genomic 

imprinting, X-chromosome inactivation, embryonic development, and the silencing of 

transposable elements 22, 28-31. In plants, DNA methylation is essential for genome stability 

and plant development 28, 31. In humans, specific DNA methylation patterns have been 

associated with the development of cancer 14. An overall loss of DNA methylation 

(hypomethylation) that occurs with a gain in methylation (hypermethylation) at the CpG 

islands in promoter regions is often found in cancer cells 14, 17. 

 

1.5. NEXT-GENERATION SEQUENCING TECHNOLOGY 

The introduction of next-generation sequencing (NGS) technology (also known as 

high-throughput sequencing) in the 2000s enabled researchers to conduct genome-wide 

investigations of many different molecular level phenomena, including gene expression 

and epigenetic modifications such as DNA methylation. NGS is a high-throughput 

technology that allows cost-effective processing of millions of sequencing reads in parallel 

32. Although several companies manufacture NGS technologies (e.g. Illumina, Roche 454, 

Life Technologies), there is a set of general processing steps shared between them even 

though their specific technical details may differ (Figure 1.3) 33.   

 



7 

 

 

 
Figure 1.3 Next generation sequencing processing steps for platforms requiring clonally 

amplified templates (Roche 454, Illumina, and Life Technologies). Input DNA is 

converted to a sequencing library by fragmentation, end repair, and ligation to platform 

specific oligonucleotide adapters. Individual library fragments are clonally amplified by 

either (1) water in oil bead– based emulsion PCR (Roche 454 and Life Technologies) 

or (2) solid surface bridge amplification (Illumina). Flow cell sequencing of clonal 

templates generates luminescent or fluorescent images that are algorithmically 

processed into sequence reads. These reads are then aligned to a reference genome and 

evaluated based on the biological mechanism being investigated. Figure modified from 

Voelkerding et al. (2010) 33. 

 

NGS enables the cost-efficient generation of large sequencing data sets based on 

whole genomes at single-base resolution. Today, NGS is used for variant detection by 

resequencing (personnel genomes), transcriptome analysis (RNA-seq), and the discovery 

of epigenetic variations (DNA methylation) 34. NGS methods offer advantages for such 

large-scale studies over the traditional Sanger sequencing developed in 1977. The NGS 

high-throughput platforms have a higher coverage giving a more reliable and accurate 

result compared to those obtained via Sanger Sequencing technology 34. Coverage is one 

of the common measures of the amount of sequence data generated and it refers to the 



8 

 

 

average number of times each base in the genome is sequenced 32. In addition, the next- 

generation sequencing platforms are able to detect methylation levels at individual 

cytosines due to their higher accuracy and sensitivity, making them suitable for epigenomic 

investigations. 

 

1.6. GENOME-WIDE METHYLATION PROFILING APPROACHES 

DNA methylation can be investigated at a genome-wide level using a variety of 

technologies, most notably microarrays and next-generation sequencing (NGS). The focus 

of this work is on NGS technologies as they can cover cytosine sites across the entire 

genome and not just a pre-chosen subset covered by microarrays. NGS entails a series of 

steps as described in section 1.5, including library preparation, amplification, sequencing, 

imaging, and alignment, resulting in millions of sequencing reads per run 33. An 

improvement over microarray technologies, next-generation technologies can cover a wide 

breadth of the genome including repetitive elements 35. Along with these newer sequencing 

technologies, novel approaches have been developed to obtain genome-wide profiles of 

DNA methylation. Some require bisulfite-converted genomic DNA for template 

preparation, such as MethylC-seq and RRBS (reduced representation bisulfite sequencing) 

35, 36; some rely on the enrichment of methylated DNA, such as MeDIP-seq (methylated 

DNA immunoprecipitation sequencing) and MBD-seq (methylated DNA binding domain 

sequencing) 37, 38; and some use methylation-sensitive characteristics of restriction 

enzymes to digest genomic DNA 38. Each method has advantages and disadvantages with 

regard to covered regions, sequencing depth, accuracy, and cost. For example, MeDIP-seq 

and MBD-seq cannot investigate at a single-base resolution, but they can reflect high-to-
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medium methylation of DNA sequences covering broader regions 22. In contrast, whole 

genome bisulfite-based methods such as methylC-seq provide measurements at single 

cytosines and are considered the gold standard, but the cost is still too high for many 

smaller-scale labs to utilize this technique 23. As a compromise, RRBS combines the use 

of restriction enzymes with bisulfite sequencing and NGS to obtain methylation levels at 

individual cytosines in a subset of the genome with high CpG content. This reduces the 

cost at the expense of losing information in some regions. The focus on the methods 

developed in this work are on the bisulfite based methods, described in more details in next 

section.    

 

 1.7. BISULFITE SEQUENCING-BASED METHODS TO PROFILE DNA  

        METHYLATION 

 

Using NGS to quantify DNA methylation at the single based level relies on a 

technique called bisulfite sequencing 39. This technique utilize a process called bisulfite 

conversion of genomic DNA, in which the DNA molecules undergo a bisulfite treatment 

that allows methylated and unmethylated cytosines to be differentiated at single-base 

resolution. Using this method, unmethylated cytosines are converted to uracils (which will 

be read as thymines by the DNA polymerase), leaving methylated cytosines unmodified 39. 

When the bisulfite-treated DNA is amplified by a polymerase chain reaction (PCR), it 

yields products in which unmethylated cytosines appear as thymines (Figure 1.4). 

Therefore, when combined with NGS, it is possible to infer the number of cytosine and 

thymine reads at a specific genomic position of a known cytosine site. This results in a 

count of the number of methylated reads and unmethylated reads at single-base resolution 

which could be converted to a methylation percentages at that position. 
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1.8. REDUCED REPRESENTATION BISULFITE SEQUENCING  

Bisulfite sequencing can be combined with NGS for whole genome studies using 

methods such as BS-seq or methylC-seq 40. Although these are considered the gold 

standard, they are often cost prohibitive, especially for large genomes, large sample sizes, 

and small labs. A smaller-scale method developed by Meissner et al. 36 also employs 

bisulfite-converted DNA and provides insights into a subset of the methylome 41. Meissner 

et al. 36 pioneered the reduced representation bisulfite sequencing (RRBS) approach, which 

is more feasible for case-control studies in humans with large sample sizes 42 and for use 

in smaller labs. RRBS digests genomic DNA with a methylation-insensitive restriction 

enzyme, where fragments of a specific length are used to filter the most informative 

genomic subset. Then, a bisulfite conversion of the fragments is undertaken to establish 

DNA methylation levels 45, which ultimately provides DNA methylation patterns in the 

chosen segments of the genome. These restricted fragments often cover core promoters and 

CpG islands 41, which contain key regulatory parts of the genome. Altogether, RRBS 

comprises only ~1% of the underlying whole genome 41. DNA quantities as little as 10-

300 ηg are sufficient to produce accurate DNA methylation levels with RRBS 43. 

Therefore, RRBS is suitable for many clinical samples (e.g., tumors) that only supply a 

small quantity of genomic input DNA material. The following section describes selected 

steps in preparing an RRBS library (see Figure 1.4). 

The first step is to isolate the genomic DNA. Using highly purified genomic input 

DNA is mandatory when generating a high-quality RRBS library 43. Otherwise, 

contaminated DNA molecules might interact with the restriction enzymes, which affect the 

bisulfite conversion 43. The second step is the digestion reaction and fragmentation. 
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Figure 1.4.  Workflow of a RRBS Library Preparation. Image Courtesy of Olbricht (2006) 
44. 

 

Two commercially available enzymes, MspI and TaqI, 43 can be used since they are 

insensitive to CpG DNA methylation, and will thus not bias the methylation measurements. 

However, only MspI produces fragments that contain CpG dinucleotides, at both ends, 

which is important to aid in capturing CpG dense regions while reducing the genomic 

space. One disadvantage of MspI is that a methylated cytosine in the first position of the 

restriction motif C↓CGG hampers the digestion reaction 43.  
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 Some intermediate steps are then taken to prepare the fragments remaining after 

the restriction enzyme digestion for sequencing.  Methylation adapters are ligated to double 

stranded sheared DNA fragments so that the fragments can be hybridized to the flow cell 

for sequencing 45. 

Using RRBS libraries, both single-end and paired-end sequencing can be 

conducted, but adapters must be methylated cytosines to maintain compatibility with the 

subsequent bisulfite conversion. One advantage of paired-end sequencing is that it 

improves the mapping efficiency by fostering unique alignments. However, it can also 

produce inaccurate DNA methylation levels because overlapping pairs produce redundant 

DNA methylation information 46. Before sequencing, fragments are size selected where 

fragments that do not meet a minimum length are filtered out before the remaining 

fragments are bisulfite converted. It has been shown through in silico analyses that a size 

selection for fragments of 40-220 bp that contains the MspI restriction motif C↓CGG 

covers the preparation of most promoter sequences and CpG islands 47. 

In the third main step, the digested and size-selected fragments are bisulfite 

converted as described in section 1.7 and then amplified by PCR. Step four involves 

sequencing the bisulfite converted fragments using a NGS platform. At this time, RRBS 

has only been performed on Illumina platforms 46. In step five, sequenced reads are aligned 

to a reference genome. Finally, in step six, the methylation status of each cytosine is 

determined for all reads and summarized, resulting in a count of the number of methylated 

and the number of unmethylated reads at each cytosine sequenced. Note that in mammals, 

typically only CpG sites are summarized, but all cytosines are of interest in plant 
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1.9. LITERATURE REVIEW FOR STATISTICAL METHODS 

Table 1.1 provides information about various statistical methodologies used to discover 

individual differentially methylated CpG sites and differentially methylated regions for 

bisulfite-based NGS technology. Note that some methods were utilized for whole genome 

bisulfite sequencing studies such as BS-seq 48, while other were only tested on RRBS data. Both 

methods yield data with counts of both methylated and unmethylated reads at each cytosine site 

where data are available. At times, researchers may want to relate individual CpG sites to a 

particular phenotype 49. Early BS-seq studies typically profiled cell lines, but did not collect 

replicates, and used the Fisher’s exact test (FET) to define differentially methylated cytosine 

sites between phenotypic conditions 50. This strategy may be adequate for comparing cell lines, 

but overall, the use of FET should be avoided because FET does not take into account inherent 

biological variations. As such, when using FET in a two-condition comparison, the data must 

be condensed to account for each condition, meaning that any within-condition variability is 

disregarded. Because this process underestimates variability and magnifies differences, the 

false positive rate is much higher. Similarly, using a binomial distribution (e.g., within a logistic 

regression framework, such as methylKit 51) does not enable an accurate estimation of 

biological variability without using an over-dispersion term. Therefore, the optimal statistical 

model for measuring replicated BS-seq 48 DNA methylation is a beta-binomial. Based on the 

methylation proportion at any given site, the observations are binomially distributed, while the 

methylation proportion can vary across experimental units (e.g., patients), in a beta distribution. 

This is advantage can be seen in the latest versions of the BiSeq 48 and methylSig 52 methods, 

which employ beta-binomial assumptions. 
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Table 1.1 Statistical Methods to Detect Differentially Methylated Loci or Regions 

 

Although site level tests can be informative, differentially methylated regions 

(DMRs) have a greater ability to predict phenotypes 53. Another advantage of using DMRs 

is that although differences at any given site may be small and noisy, variations across a 

region can often be more easily detected since neighboring methylation levels are typically 

highly correlated 54. However, methods operating on predefined regions differ from those 

that define regions of differential methylation after site level testing (i.e., the regions are 

not known in advance). Although the false discovery rate (FDR) needs to be controlled 

across the regions tested in both cases, this is nontrivial when the regions are not known in 

advance, making this strategy much more difficult for controlling the false positives. When 

the region is undefined prior testing, it is impossible to extrapolate the region-level FDR 

control from the site-level tests 53. As such, the best approach is to use predefined regions 

which can be defined based on annotation regions (e.g., CpG islands, CpG shores, exons, 

or introns), or defined based on non-annotation regions that are defined based on CpG 

density. These non-annotation based CpG clusters can be defined as follows: (1) CpG sites 

that covered at least 75% of samples are defined as frequently covered CpG sites, and (2) 

a maximum distance of 100 base pairs to the nearest neighbor within a region is accepted. 

The predefined regions are limited to regions with at least 20 frequently covered CpG sites 

50. 

Methods Designed for Determines regions 

or uses predefined 
 

Accounts for  

covariates 
 

Statistical elements 

 
 

BSmooth BS-seq Determines No Bump hunting on smoothed t-score 

BiSeq BS-seq Determines Yes Beta-binomial (Wald test) 

MethylKit BS-seq Predefined Yes Logistic regression 

MethylSig BS-seq 

Determines 

No Beta-binomial (Likelihood-Ratio 

Test) 

MAGI BS-seq Predefined No FET and logistic regression 

M3D RRBS Predefined Yes Kernel-based  
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 At the region-level, there are several statistical methods that can be employed, such 

as methylSig 52, methylKit 51, and others. Of the approaches that determine the regions 

after site-level testing, BSmooth is a widely cited package that looks for runs of smoothed, 

absolute t-like scores beyond a threshold. However, this approach does not contain a 

permutation strategy to control region-level FDR. Because DNA methylation levels 

usually have a strong spatial correlation, if such correlations could be accounted for in a 

region level testing procedure, the statistical power of that approach would increase greatly. 

Interestingly, M3D 55 has proposed such a nonparametric statistical test that would detect 

DMRs from predefined regions based on CpG density, while also accounting for spatial 

correlation. This method uses a radial basis function (RBF) kernel function to derive the 

Maximum Mean Discrepancy (MMD) between the data sets to assess the homogeneity of 

the underlying methylation distribution. MAGI 56 characterizes testing regions using 

existing annotation information, assuming spatial homogeneity across regions, but does 

not adjust for spatial correlations between individual cytosine sites. There are two versions 

of MAGI for site level and region level tests. Each version has the option of a FET if 

replicates are not available or a logistic regression when replication is present. The first 

version (MAGIc) tests for differences between methylation levels at individual cytosine 

sites within each annotated region. The second version (MAGIg) is comprised of two steps: 

(1) using an a priori threshold to classify each cytosine as either methylated or 

unmethylated, and, (2) performing a single FET or logistic regression on the resulting data 

for each region, with the assumption that the resulting data are binomially distributed 56.  

This dissertation focuses on developing methods for DMR testing over predefined 

regions based on CpG density. Functional data analysis techniques are employed to more 
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fully utilize the nature of correlated methylation levels over genomic regions. Two 

techniques, functional principal component analysis (FPCA) and smoothed functional 

principal component analysis (SFPCA), are proposed to identify differentially methylated 

regions (DMRs) that will enable discovery of epigenomic structural variations in NGS data. 

The performance of these novel approaches are compared with the only other method 

(M3D) that investigates shape changes over a predefined region. 

 

1.10. INTRODUCTION TO FUNCTIONAL DATA ANALYSIS   

The main idea of functional data analysis (FDA) 57 involves analyzing data that can 

be represented as curves or functions. Typically, a trajectory of data is collected on one or 

more individuals of the form (𝑡𝑖, 𝑦𝑖) where 𝑦𝑖 represents the quantity of interest at time or 

position𝑡𝑖. Although these observations are collected at discrete points, the idea behind 

FDA is that there is underlying function 𝑥(𝑡) that is smooth such that data at sequential 

points 𝑦𝑖−1, 𝑦𝑖, 𝑦𝑖+1 are linked to each other in some way and likely to exhibit similarity. 

This smoothness property is important for functional data, as otherwise wise it could be 

treated as multivariate data. One or more derivatives of the function 𝑥(𝑡) is assumed to 

exist due to the smoothness, where 𝐷𝑚𝑥(𝑡) indicates the derivative of order 𝑚 at 

argument 𝑡. Studying these derivatives of the function allows the exploration of properties 

such as velocity and acceleration.  

To estimate the function  𝑥(𝑡) and certain number of its derivatives, the discrete 

data 𝑦𝑖 are typically utilized 57. However, the data observed may not be smooth due noise 

or measurement error. When the signal-to-noise ratio is low or sparsely sampled, it is 

helpful to have data from a random sample of individual records so that information can 
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be drawn from similar trajectories to obtain a more stable estimate of a specific curve. In 

functional data analysis, the goal is to represent experimental data collected over time or 

space with a series linear combinations of basis functions that are mathematically 

independent 60. 

A function 𝑋(𝑡) can be represented as 𝑋(𝑡) =  ∑ 𝐶𝑗𝜙𝑗(𝑡)𝐾
𝑗=1 =𝝓(𝒕)𝑪 with 𝐾 known 

basis functions 𝜙𝑗(𝑡) and 𝐶1, … , 𝐶𝐾 are coefficients to be estimated. 𝜙𝑗 are a set of basis 

functions that are mathematically independent and have the property that they can 

approximate any function well by taking a linear combination of a sufficient number  𝐾 of 

these functions. Commonly used basis functions include the Fourier basis for periodic data 

and the B-spline basis for non-periodic data 57.  

The Fourier basis utilizes basis functions that represent sine and cosine functions 

of increasing frequency. The Fourier basis expansion for periodic data is given as: �̂�(𝑡) =

𝑐0 + 𝑐1 sin(𝜔𝑡) + 𝑐2 cos(𝜔𝑡) + 𝑐3 sin(2𝜔𝑡) + 𝑐4 cos(2𝜔𝑡) + ⋯.  

The system is defined by basis functions: { 𝜙1(𝑡) = sin(𝜔𝑡) , 𝜙2(𝑡) =

cos(𝜔𝑡) , … , 𝜙2𝑘−1(𝑡) = sin(𝑘𝜔𝑡) , 𝜙2𝑘(𝑡) = sin(𝑘𝜔𝑡)} , where 𝜙0(𝑡) = 1, the 

constant 𝜔 =
2𝜋

𝑃
 , and 𝑃 is defined as the period of the first sine/cosine pair. If the values 

of 𝑡𝑗 are equally spaced on the interval and the period of the function is equal to the length 

of the interval, then the basis is orthogonal and computing the coefficients becomes easier, 

especially in situation when the Fast Fourier Transformation (FFT) can be applied. 

However, newer methods such as B-spline or wavelets can match or exceed this 

computational efficiency 57.  

The B-spline basis utilizes polynomial segments that are joined end-to-end such 

that the segments are constrained to be smooth where they join. The points at which the 
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segments join are called knots. Over each segment, a spline is a polynomial of order 𝑚 

(order = degree+1). Polynomials in neighboring segments are required to have matching 

derivatives up to order 𝑚-2 to impose smoothness. The number of basis functions will be 

uniquely defined by the sum of the B-spline order and the number of interior knots. Without 

interior knots, the spline becomes a simple polynomial. Note that with increasing order the 

approximation of the function and its derivatives improve such that by order four, the fit is 

very good 57. B-Spline basis functions also have nice computational properties since the 

inner product matrix of K basis functions is band structured. They are used when data are 

not known to be periodic. 

 

1.11. FDA FOR METHYLATION DATA  

Since the methylation levels are often strongly correlated between CpG sites within 

a region, it is natural to represent RRBS data as functional data that can be represented as 

a linear combination of basis functions over a genomic region. This functional 

representation allows the investigation of dominant modes of variation in the data. One 

approach for this is functional principal component analysis (FPCA), where statistics are 

calculated that summarize key features of the functions describing the curve of methylation 

levels over a defined region and test for differences between conditions. In contrast, most 

methylation studies to date either use statistics based on single CpG sites or summarize 

single CpG values within a region of interest. In this work, statistical methods based on 

FDA are developed for methylation data. Using simulated data, the utilities of FDA in the 

context of methylation are explored and compared to other methods used in the literature. 
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1.12. SUMMARY 

The main purpose of this dissertation is to develop novel applications of functional 

data analysis (FDA) procedures for DNA methylation data from RRBS studies. 

Specifically, these FDA methods will enable testing for differentially methylated region 

(DMRs) and pinpoint genomic regions that are likely to be biologically meaningful. 

Testing differentially methylated regions through functional data analysis is described in 

this dissertation for two papers: (1) Testing differentially methylated regions through 

functional principal component analysis and (2) Smoothed functional principal component 

analysis for detecting differentially methylated regions.  

The first paper develops functional principal component analysis (FPCA) based on 

Fourier and B-spline basis functions that successfully tests for differentially methylated 

regions (DMRs) between two groups (e.g., case and controls) in RRBS data. An empirical 

comparison, using a simulation based on real data, shows a significant increase in true 

positive rates for detecting DMRs for the FPCA method in comparison with the M3D 

approach. The FPCA method also shows considerable robustness with respect to coverage 

depth and replication number.  

The second paper develops a smoothed FPCA (SFPCA) for detecting DMRs by 

combining a goodness-of-fit detecting with a roughness penalty to maintain the advantages 

of basis expansion while improving the smoothness. The SFPCA method compares region 

level differences in the average SFPCA scores between the cases and the controls. The 

SFPCA scores take into account all information across all CpG sites in a genomic region, 

capture summary information about dominant modes of variation in the methylation 

profiles, and improve smoothness of estimated functional principal component curves. In 
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comparison to the M3D method, the SFPCA technique had substantially higher true 

positive rates and was robust in relation to coverage depth and replications, using a 

simulation based on real data. 
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ABSTRACT 

DNA methylation is an epigenetic modification that plays an important role in 

many biological processes and diseases. Several statistical methods have been proposed to 

test for DNA methylation differences between conditions at individual cytosine sites, 

followed by a post hoc aggregation procedure to explore regional differences. While there 

are benefits to analyzing CpGs individually, there are both biological and statistical reasons 

to test entire genomic regions for differential methylation. Variability in methylation levels 

measured by next-generation sequencing (NGS) is often observed across CpG sites in a 

genomic region. Evaluating meaningful changes in regional level methylation profiles 

between conditions over noisy site level measurements is often difficult to implement with 

parametric models. To overcome these limitations, this study develops a nonparametric 

approach, based on functional principal component analysis (FPCA), to detect predefined 

differentially methylated regions (DMR). The performance of this approach is compared 

with an alternative method (M3D), using real and simulated data. 

Keywords: functional principal component; epigenomics; DNA methylation; next-

generation sequencing 
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1. INTRODUCTION 

 DNA methylation is an epigenetic modification involved in gene silencing and 

tissue differentiation 1. The role of DNA methylation in human health has been heavily 

researched in cancer studies as specific methylation patterns are associated with cancer 2. 

Methylation can alter the function of genes by adding a methyl (CH3) group to DNA at 

cytosine sites 3. In mammals, DNA methylation almost always occurs when a methyl group 

attaches to a cytosine (C) when followed by a guanine (G) on the DNA sequence (i.e., CpG 

dinucleotides) 3. A number of biological processes in mammals (e.g., the silencing of 

transposable elements, gene expression regulation, genomic imprinting, and X-

chromosome inactivation) involve methylation 4. Although the methylation of CpG 

locations in promoter regions is linked to gene silencing, recent research indicates that CpG 

methylation within genes bodies’ correlates with gene expression in a more complex 

manner 5. 

 To obtain quantitative methylation data with base pair resolution across the 

genome, a bisulfite treatment of DNA is followed by next-generation sequencing (NGS). 

The bisulfite treatment transforms unmethylated cytosine (C) nucleotides into uracils (U), 

which amplify as thymine (T) during a polymerase chain reaction (PCR) 6 while methylated 

cytosines remain unchanged.  The bisulfite treated sample is then sequenced via NGS to 

obtain a library of sequencing reads. After sequencing reads derived from bisulfite treated 

DNA are aligned to a reference genome, the methylation status of a cytosine in the 

reference can be assessed by observing the aligned reads that overlap it. This means that 

when a C in a bisulfite-treated read overlaps a cytosine in the reference, the reference 

cytosine is methylated for that read 7. However, if a T in a bisulfite treated read overlaps 
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cytosine in the reference, then the reference cytosine is unmethylated for that read 7. This 

approach can be applied to the whole genome using methylC-seq 8 or BS-seq 9 methods. 

However, such studies are often costly for organisms with large genome sizes or for case-

control studies where large sample sizes are needed. An alternative way to pair bisulfite 

sequencing with NGS, called reduced representation bisulfite sequencing (RRBS) 10, 

focuses on capturing an informative subset of the genome. RRBS utilizes restriction 

enzymes, such as MspI or TaqI, to cleave at CCGG loci so as to select an informative 

subset of short reads to sequence 7 This process allows for more accurate and specific 

results, with greater coverage of CpG-dense regions, including promotors, CpG islands, 

and repetitive sequences. It reduces the numbers of nucleotides to be sequenced to 1% of 

the genome and thus has a lower cost than sequencing all cytosines genome wide 7. Many 

statistical issues are shared between whole genome methods and RRBS, but the following 

discussion is in the context of RRBS for illustrative purposes. 

An essential issue in DNA methylation analysis is identifying genomic loci or 

regions with varying methylation levels related to distinct biological conditions. The 

individual loci may be noisy (especially in heterochromatin) but the overall regions tend to 

be informative 11. Region-level conclusions are also often more meaningful biologically, 

making it desirable to consider summarizing information across individual loci in a region. 

Recently, new statistical methods and software tools have been created to identify 

differentially methylated regions (DMRs) from RRBS data 12-14. Most of these methods 

search for DMRs by first testing each cytosine site, then applying a post hoc aggregation 

procedure. Post-hoc aggregation reflects the fact that it is unknown which regions are of 

interest before testing, thus a procedure is needed to control the type I error rate while also 
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letting the data guide the search for locations of informative regions. One of the first 

methods developed, BSmooth 15, uses a smoothing process across the genome within each 

sample to improve the accuracy when estimating the methylation level for any single CpG 

site. This smoothing process is beneficial since methylation levels of neighboring cytosines 

are known to be highly correlated 15. BSmooth distinguishes differentially methylated 

regions by combining neighboring differentially methylated cytosines (DMCs), which are 

found using a t-statistic approach, with either a quantile or direct t-statistic cutoff 12. A 

majority of the newer methods, such as BiSeq 16 and methylSig 17, also use local smoothing, 

along with a beta binomial model of methylation at individual cytosine sites; these two 

methods then combine the results of tests at individual loci to compute a measure of 

significance for an estimated DMR. Another method called MethylKit 13 uses annotation 

to provide a statistical test that pools the sequencing reads across an annotated unit (e.g. 

gene) by group. The MethylKit approach is able to test at both the site level and for 

predefined regions based on annotation. With multiple samples, a logistic regression with 

a binary predictor corresponding to condition status is used, which can be expressed as a 

binomial-based test 13. 

 In contrast, the MAGI 18 method tests directly for DMRs instead of computing 

measures of significance for each region based on tests of individual cytosine sites. MAGI 

assumes that methylation homogeneity exists within a predefined region, so no adjustments 

are made for spatial correlations between cytosine sites. Methylation levels at each cytosine 

site for each sample are labeled with a binary representation documenting whether or not 

they exceed a specified decision boundary, with those exceeding the boundary declared 

methylated and those falling below declared unmethylated. A Fisher’s Exact Test (FET) is   
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then performed over each predefined region, counting the number of cytosine sites that 

have changed states between groups 18. A logistic regression is utilized in place of FET 

when replicates are available. 

A newer alternative approach, M3D 19, relies on the Maximum Mean Methylation 

Discrepancy (M3D) method to assess changes in the shapes of methylation profiles within 

the local predefined regions being tested. It applies a machine learning technique called 

Maximum Mean Discrepancy (MMD) 20 to test the homogeneity in underlying 

methylation-generating distributions. The method uses a radial basis function (RBF) kernel 

to construct the MMD between data sets under different conditions in each region being 

tested; this number is modified based on changes in coverage profiles. The M3D statistics 

are compared to a null distribution of observed M3D statistics between replicate pairs 19. It 

has been suggested that the shape of the methylation profile is a crucial factor in predicting 

gene expression, supporting the notion of a functional role for the methylation pattern 21. 

In a review of the literature, it appears that only the M3D method considers differences in 

the shape of the methylation profile over the region. The advantage of the M3D method is 

based on a number of factors. First, the method is sensitive to spatially correlated changes 

in methylation profiles. Second, the method explicitly accounts for difference in coverage 

profiles between conditions. Thirdly, the method models inter-replicate variability along 

the whole genome.    

Building on the strengths of M3D, this research explores the use of functional data 

analysis (FDA) techniques to characterize additional properties of the curve shapes of 

methylation profiles in genomic regions. Since previous studies have indicated the 

importance of methylation profile shape in predicting gene expression the FDA techniques 
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could be advantageous in detecting the profiles that M3D is unable to find.               

Specifically, in this research, a nonparametric approach based on functional principal 

component analysis (FPCA) is introduced to detect differential methylation regions 

(DMRs) from predefined regions, which explicitly accounts for adjusting spatial 

correlations between cytosine sites. FPCA allows investigation of dominant modes of 

variation in the RRBS data using the eigenfunctions of the methylation profile covariance 

function. This method can be employed to test for changes in shape of methylation profiles 

across regions, as opposed to testing only at individual cytosine sites. This study compares 

the performance of FPCA to the only other existing method (M3D) that tests for region 

level shape differences using a simulation based on real RRBS data.  

 

2. METHODS 

 The computational procedure in this section follows the approach of DE-FPCA 22, 

an approach that was developed for gene expression studies. DE-FPCA uses functional 

principal component analysis (FPCA) to decompose gene expression profiles and 

summarize differences in profiles between groups by using a test statistics based on 

functional principal component scores that enables differential expression testing. This 

idea enables finding differences in shape change by representing the expression profile of 

a gene by a functional curve, called a gene expression function, and this approach is 

especially powerful in detecting alternative splicing 22. Although functional data analysis 

techniques appear to offer many advantages to genomic studies, such methods have not 

been explored for analyzing DNA methylation data. FPCA has a natural application to aid 

in solving the issue of testing for differentially methylated regions (DMRs), but the data 
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collected and defining of regions differs from that of gene expression data and thus the 

following formulation is needed in the DNA methylation context.  

In this study, the methylation profile across CpG sites is decomposed within a 

predefined region by using functional principal components and calculating the FPC scores 

to test for DMRs between two groups (e.g., cases and control) of samples. The FPCA scores 

related to an eigenfunction are computed for all observed methylation profiles in each 

genomic region and can indicate eigenfunctions with large variation between two groups. 

The methylation profile function is defined as follows. Let 𝑡 be the genomic position of 

CpG site within a predefined genomic region and 𝑇 be the length of the genomic region 

being considered. Assume that random samples from two different conditions are collected 

and sequenced via RBBS. There are 𝑛𝐴 case samples and 𝑛𝐵 controls samples. Let 𝑥𝑖(𝑡) 

denote the methylation level for the CpG site at genomic position 𝑡  for the 𝑖th case sample 

with 𝑦𝑖(𝑡) defined similarly for the 𝑖th control sample. Thus 𝑥𝑖(𝑡) and 𝑦𝑖(𝑡) are empirical 

methylation functions 22. 

First, as a brief review of functional principal component analysis (FPCA) 23, 

consider the following. Let 𝑋(𝑡) be a centered, square-integrable function, describing the 

methylation level of CpG sites over the predefined region. Let 𝜙1,𝜙2, … be the 

orthonormal eigenfunctions of the covariance function of 𝑋 (𝑡). By the Karhunen Loève 

theorem 23, the centered process in the eigenbasis functions can be expressed as 𝑋(𝑡) =

 ∑ 𝜉𝑘𝜙𝑘(𝑡)∞
𝑘=1 , where 𝜉𝑘 =  ∫ 𝑋(𝑡) 𝜙𝑘(𝑡) 𝑑𝑡 is the principal component coefficient 

associated with the 𝑘th eigenfunction 𝜙𝑘(𝑡), with 𝐸(𝜉𝑘) = 0, 𝑉𝑎𝑟(𝜉𝑘) = 𝜆𝑘, and 

𝐸(𝜉𝑘𝜉𝑙) = 0 for 𝑘 ≠ 𝑙. The covariance function 𝑅(𝑠, 𝑡) can be written as 𝑅(𝑠, 𝑡) =

𝐶𝑜𝑣(𝑋(𝑠), 𝑋(𝑡)) = ∑ 𝜆𝑘𝜙𝑘(𝑠)∞
𝑘=1  𝜙𝑘(𝑡) 22. 
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The first eigenfunction 𝜙1 represents the principal mode of variation in 𝑋(𝑡) in that 

𝜙1(𝑡) maximizes the variance of 𝜉 =  ∫ 𝑋(𝑡) 𝜙(𝑡) 𝑑𝑡  where 𝑉𝑎𝑟(𝜉) =

𝑉𝑎𝑟[∫ 𝑋(𝑡) 𝜙(𝑡) 𝑑𝑡 ] =  ∫ ∫ 𝜙(𝑠) 𝑅(𝑠, 𝑡) 𝜙(𝑡) 𝑑𝑠𝑑𝑡 22. This 𝜙1(𝑡) represents the 

dominant mode of variation in methylation levels over the region. Similarly, 𝜙𝑘 is the 

function that maximizes 𝑉𝑎𝑟(𝜉) in the functional space that is orthogonal to 𝜙1 , … , 𝜙𝑘−1. 

Using the above information, the eigenfunctions { 𝜙1 , 𝜙2 , …} should satisfy                

                         ∫ 𝑅(𝑠, 𝑡)𝜙𝑘(𝑠)𝑑𝑠 =  𝜆𝑘𝜙𝑘(𝑡),                                                (1)              

where  𝜆1 ≥ 𝜆2 ≥ 𝜆3 ≥ ⋯ for any integer 𝑘 ≥ 1. The eigenfunctions { 𝜙1,𝜙2, ..} can be 

found by solving equation (1) 22. 

  

2.1. PERFORMING FPCA ON DNA METHYLATION DATA 

In the context of this study, FPCA can be performed to find the eigenfunctions and 

corresponding principal components as follows 22. Let 𝑋(𝑡) = [𝑋1(𝑡), 𝑋2(𝑡), … 𝑋𝑁(𝑡)]𝑇 be 

a vector-valued function, with 𝑋𝑖(𝑡) denoting the methylation profile function for the 𝑖𝑡ℎ 

sample among 𝑁 replicates in the predefined region. A set of orthonormal basis functions 

are selected using either a Fourier or B-spline basis. Note that the Fourier basis is typically 

used for periodic data, while B-spline basis is used for non-periodic data. Both will be 

explored since it is unclear which will work best for methylation data.  The chosen basis 

has 𝑃 functions ∆(𝑡) = [𝛿1(𝑡), 𝛿2(𝑡), . . , 𝛿𝑃(𝑡)], where it is assumed that the methylation 

functions 𝑋1(𝑡), … , 𝑋𝑁(𝑡) in the predefined region and eigenfunctions {𝜙1,𝜙2,..} can be 

expressed as a linear combination of 𝛿1(𝑡), 𝛿2(𝑡), … , 𝛿𝑃(𝑡). Now the methylation profile 

function can be expressed as, 𝑋(𝑡) = 𝐶∆(𝑡), where the 𝑖𝑗th element in the matrix 𝐶 is 

𝐶𝑖𝑗 =  ∫ 𝑋𝑖(𝑡) 𝛿𝑗(𝑡)𝑑𝑡, with 𝑖 = 1, … , 𝑁 and 𝑗 = 1, … , 𝑃. Similarly, 𝜙(𝑡) can be expressed 
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as 𝜙(𝑡) = Δ𝑇(𝑡)𝛽, where 𝛽 = [𝛽1, … , 𝛽𝑃]𝑇 with 𝛽𝑗 = ∫ 𝜙(𝑡)𝛿𝑗(𝑡)𝑑𝑡. To find the 

eigenfunctions 𝜙, or equivalently, to determine 𝛽, use Equation (1), which has the 

following equivalent expression 22: 

      𝐸 [(
𝜉1..

𝜉𝑃
) (𝜉1 … 𝜉𝑃)] (

𝛽1..
𝛽𝑃

) =  𝜆 (
𝛽1..
𝛽𝑃

)                    (2) 

Replace 𝐸(𝜉𝑖𝜉𝑗) with its empirical estimate from sample methylation region functions 

𝑋1(𝑡), … , 𝑋𝑁(𝑡) to obtain an empirical version of Equation (2): 

                       
1

𝑁
 𝐶𝑇𝐶𝛽 = 𝜆𝛽.             (3) 

The eigenfunctions can be found by solving for the above multivariate eigenvalue (𝜆) and 

multivariate eigenvector (𝛽). The number of eigenfunctions can be chosen based on the 

percentage of variance explained. In this study, 90% was used, but this can be modified to 

allow different function approximation accuracies 22. 

  

2.2. TEST STATISTIC   

The pooled empirical methylation profile 𝑥𝑖(𝑡) of cases and 𝑦𝑖(𝑡) of controls was 

used to estimate the orthonormal principal component function 𝜙𝑗(𝑡), 𝑗 = 1, … , 𝑘 

(eigenfunctions), employing the basis expansion method 20. Let the corresponding principal 

components associated with 𝜙𝑗(𝑡) be 𝜉𝑖𝑗 and 𝜂𝑖𝑗, for 𝑥𝑖(𝑡) and 𝑦𝑖(𝑡), respectively. The test 

statistic was defined using 𝜉𝑖𝑗
′ 𝑠 and 𝜂𝑖𝑗

′ 𝑠 to evaluate the difference in average principal 

component scores between the case and control samples. Vectors of averages of the 

functional principal component scores in cases and controls are denoted by 𝜉̅ =

[𝜉1̅, … , 𝜉�̅�]𝑇 and �̅� = [�̅�1, … , �̅�𝑘]𝑇, where 𝜉�̅� =
1

𝑛𝐴
∑ 𝜉𝑖𝑗

𝑛𝐴
𝑖=1 , and �̅�𝑗 =

1

𝑛𝐵
∑ 𝜂𝑖𝑗

𝑛𝐵
𝑖=1 , 𝑗 =

1, … , 𝑘. The pooled covariance matrix S is defined as follows:   
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𝑆 =
1

𝑛𝐴+𝑛𝐵−2
(∑ (𝜉𝑖 − 𝜉̅𝑛𝐴

𝑖=1 )(𝜉𝑖 − 𝜉̅)𝑇 + ∑ (𝜂𝑖 − �̅�
𝑛𝐵
𝑖=1 )(𝜂𝑖 − �̅�)𝑇), where 𝜉𝑖 = [𝜉𝑖1, … , 𝜉𝑖𝑘]𝑇, 

𝜂𝑖 = [𝜂𝑖1, … , 𝜂𝑖𝑘]𝑇. Let Λ = (
1

𝑛𝐴
+

1

𝑛𝐵
) 𝑆. Then, the test statistic is defined as 𝑇2 = (𝜉̅ −

�̅�)𝑇Λ−1(𝜉̅ − �̅�). Note that this is a form of a Hotelling’s 𝑇2 statistic. Under the null 

hypothesis of no differential methylation between the case and control group in a specific 

region, 𝑇2 asymptotically follows a central 𝜒(𝑘)
2  distribution, where 𝑘 is the number of 

functional principal components. To accurately estimate the 𝑝-value, it is best to use a large 

number of replicates in each group 22. Note that since the number of regions is determined 

prior to testing, the false discovery rate can be controlled across the entire set of region 

level tests. 

 

3. SIMULATION STUDY 

 

3.1. DATA SOURCE   

To evaluate the performance of the FPCA method a simulation study based on real 

RRBS data was performed. Methylation data of bisulfite-sequenced DNA was obtained 

from 4 patients with acute promyelocytic leukemia (APL) and 12 APL control samples. 

This data set was obtained under accession number GSE42119 (National Center for 

Biotechnology Information) 24. The RRBS data was preprocessed using Bismark version 

0.5 (a reference genome alignment tool) that maps bisulfite treated sequencing reads to a 

genome of interest and performs methylation calls in a single step 25. 
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3.2. SIMULATION PLAN  

To mimic methylation profile changes accurately, a simulation was constructed 

from the RRBS data set described above following the same approach as in M3D 19. The 

regions (CpG clusters) were defined as follows: (1) CpG sites that covered at least 75% of 

samples were defined as frequently covered CpG sites and (2) a maximum distance of 100 

base pairs to the nearest neighbor within a region was accepted. Using these criteria, only 

regions with at least 20 frequently covered CpG sites were used in the analysis 16. The 

simulation study focused on the first 1,000 regions on chromosome 1. Out of the 12 APL 

control samples in the RRBS data, 4 patients were randomly selected to use in the 

simulation study as controls. Four more replicates were simulated 100 times to be the 

testing group (i.e., cases). Of these, 250 of the CpG clusters (predefined regions) were 

randomly selected to apply differential methylation changes. The replicates that acted as 

the testing group (cases) were simulated by first adding or subtracting random Poisson (𝜆 =

1) noise to the total number of reads at each cytosine. Uniform [−0.1 to 0.1] random noise 

was added to cytosine methylation levels. The methylation level 𝐿𝑖, defined as the ratio of 

methylated reads to total reads mapped to a particular cytosine, was adjusted within the 

250 selected, predefined regions 19. The degree of methylation level change was controlled 

by the parameter 𝛼 ∈ [0,1]; new methylation levels were simulated by 𝐿𝑖
𝑛𝑒𝑤 =

(1 − 𝛼)𝐿𝑖
𝑜𝑙𝑑 + 𝛼 when 𝐿𝑖

𝑜𝑙𝑑 ≤ 0.5  for hypermethylation (methylation higher in case than 

control) and 𝐿𝑖
𝑛𝑒𝑤 = (1 − 𝛼)𝐿𝑖

𝑜𝑙𝑑 when 𝐿𝑖
𝑜𝑙𝑑 > 0.5  for hypomethylation (methylation 

lower in case than control) 19.  

 FPCA and M3D were applied to all 100 simulated data sets under various settings. 

For FPCA, both Fourier and B-spline basis were investigated. In general, 15-37 knots, with 
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polynomial order 4, seemed to be a reasonable model for the FPCA-B-spline. To 

investigate the performance of the methods under different degrees of differential 

methylation the alpha parameter was varied as 𝛼 = {0.4,0.6,0.8,1}. To examine the 

robustness of the methods for various experimental design features, two different 

sequencing depths (5 and 20 reads) were simulated and three different replicate numbers 

per group   (3, 8, 12) were simulated. Methods were compared by calculating the average 

type I and type II error rates across 100 data sets as well as the true positive rate (TPR). 

The false discovery rate (FDR) was controlled at 0.05 for all analyses 26. 

  

4. RESULTS 

 

4.1. SIMULATION RESULTS   

The results using FPCA were compared with the results using M3D. Table 2.1 

summarizes the results obtained for different values of the methylation change strength 

parameter 𝛼 and different basis expansions, based on an average sequencing depth of 20 

reads. The average and standard deviation for the correct number of DMRs is given along 

with type I and type II errors for each method.  Of the 250 truly differentially methylated 

regions (DMRs), FPCA under the Fourier expansion approach identified 229.85 on 

average, with 3.93 falsely called DMRs when 𝛼 =100%. The FPCA under the B-spline 

expansion approach identified 229.03 true DMRs on average, with 4.08 falsely called 

DMRs and M3D identified 224.51 true DMRs on average, with no falsely called DMRs at 

𝛼 = 100%.  

FPCA–Fourier correctly identified 229.02 DMRs on average, while FPCA-Bspline 

correctly identified 227.03 at a methylation level difference of 80%, with 3.07 and 3.41 
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falsely called DMRs on average respectively. M3D called 222.94 true DMRs on average, 

with no falsely called DMRs. At 𝛼 = 60%, the FPCA-Fourier and FPCA-B-spline correctly 

identified 219.82 and 219.05 DMRs on average, respectively, with 2.97 and 3.03 falsely 

called DMRs on average; whereas M3D called 202.95 correct DMRs on average,with no 

falsely called DMRs. At 𝛼 = 40% the FPCA-Fourier and FPCA-Bspline correctly identified 

212.5 and 207.88 DMRs on average, respectively, with 2.47 and 2.46 falsely called DMRs 

on average; whereas M3D correctly called 190.07 DMRs on average, with no falsely called 

DMRs.    

 

Table 2.1.  Results for Average and Standard Deviation (S.D.) of 100 Simulations Based 

on FPCA-Fourier, FPCA-BSpline and M3D on Average Sequencing Depth (20 Reads), 

with Various Levels of Strength of Methylation Change (α) 

Alpha 100% 80% 60% 40% 

Methods 
FPCA-

Fourier 

FPCA-

Bspline 
M3D 

FPCA- 

Fourier 

FPCA-

Bspline 
M3D 

FPCA-

Fourier 

FPCA- 

Bspline 
M3D 

FPCA-

Fourier 

FPCA-

Bspline 
M3D 

Correct 229.85 229.03 224.51 229.02 227.03 222.94 219.82 219.05 202.95 212.5 207.88 190.07 

S.D. 0.796 0.784 0.502 0.840 0.809 0.502 0.783 0.845 0.757 0.833 0.794 0.781 

# Type-1 3.93 4.08 0 3.07 3.41 0 2.97 3.03 0 2.47 2.46 0 

S.D. 0.794 0.977 0 0.877 1.090 0 0.892 0.934 0 0.501 0.900 0 

# Type-2 20.15 20.97 25.49 20.98 22.97 27.06 30.18 30.95 47.05 37.5 42.12 59.93 

S.D. 0.796 0.780 0.502 0.840 0.809 0502 0.783 0.845 0.757 0.833 0.794 0.781 

 

 

In conclusion, all methods had a low average type I error rate with the maximum 

being 0.0054 in FPCA-Bspline when 𝛼 = 100%. It should be noted that M3D did not 

produce any type I errors, making it the most conservative of the methods but at the 

sacrifice of higher type II errors (i.e., lower power). M3D had higher type II errors across 
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all values of 𝛼 than both FPCA methods. Results were similar for FPCA-Fourier and 

FPCA-Bspline, with FPCA-Fourier having slightly lower type II errors and thus giving it 

a slight advantage. Across all methods, there were fewer type II errors as 𝛼  increased from 

40% to 100%, which is expected since it is easier to detect more extreme differences. 

However, it is notable that for small 𝛼 values, 𝛼 = 0.40, 0.60, there are more extreme 

differences between M3D and the FPCA methods. This indicates FPCA can improve DMR 

detection in more difficult situations when “the signal” is low.   

In contrast, Table 2.2 displays the results based on an average sequencing depth of 

5 reads. At methylation strength 100%, FPCA-Fourier and FPCA-B-spline called 223.88 

and 222.5 DMRs on average, respectively, out of the 250 true DMRs, with 5.97 and 6.2 

false DMRs. M3D called only 200.04 true DMRs on average, with no false DMRs. The 

number of truly identified DMRs decreased using FPCA-Fourier, FPCA-Bspline and M3D, 

when decreasing the strength of methylation change from 𝛼 = 80% to 40%, as was also 

observed in Table 2.2. 

  

Table 2.2 Results for Average and Standard Deviation (S.D.) of 100 Simulations Based on 

FPCA-Fourier, FPCA-B-Spline, and M3D on Average Sequencing Depth (5 Reads), with 

Various Levels of Strength of Methylation Change (α) 

Alpha 100% 80% 60% 40% 

Methods 
FPCA-

Fourier 

FPCA-

Bspline 
M3D 

FPCA- 

Fourier 

FPCA-

Bspline 
M3D 

FPCA-

Fourier 

FPCA- 

Bspline 
M3D 

FPCA-

Fourier 

FPCA-

Bspline 
M3D 

# 

Correct 
223.88 222.5 200.04 219.15 219.08 197.13 202.06 211.09 178.00 197.93 200.02 170.05 

S.D. 0.819 0.885 0.815 0.832 0.812 0.824 0.826 0.829 0.804 0.843 0.791 0.808 

# Type-1 5.97 6.2 0 6.05 6.15 0 3.94 3.71 0 4.54 5.07 0 

S.D. 1.041 1.470 0 1.426 1.431 0 0.887 1.112 0 0.8946 1.029 0 

# Type-2 26.12 27.5 49.96 30.85 30.92 52.87 47.94 38.91 72.00 52.07 49.98 79.95 

S.D. 0.819 0.885 0.8155 0.821 0.812 0.824 0.826 0.829 0.804 0.843 0.791 0.808 
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Overall, similar trends were observed at 5 reads as for 20 reads, except that FPCA-

Bspline had slightly lower type II errors than FPCA-Fourier at 𝛼 = 0.4, 0.60 when the 

sequencing depth was 5 reads (this was reversed for 20 reads). Also, all the methods had 

higher type II errors at 5 reads than 20 reads while still maintaining a low type I error rate 

on average. It should be noted that when the sequence depth is 5 reads there are more 

drastic differences between the FPCA and M3D methods even for the largest 𝛼 = 100% 

(i.e., across all 𝛼). 

 

 
Figure 2.1. True Positive Rates Based on the Average over 100 Simulations on Average 

Sequencing Depths of 5 (left graph) and 20 (right graph) Reads verses α Level for 

Controlling the Degree of Differential Methylation for Each of Three Methods: FPCA 

(Fourier Expansion Approach) – Blue, FPCA (B-Spline Expansion Approach) – Red, M3D 

– Green. 

 

 

Figure 2.1  shows the average true positive rates (TPRs) over the 100 simulated 

data sets for varying degrees of differential methylation (𝛼 values) for each of the three 

methods (FPCA-Fourier, FPCA-Bspline, and M3D) and two coverage depth (5 and 20 
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reads). The FPCA-Fourier method had the highest average TPR with an average 

sequencing depth of 20 reads across all 𝛼 values, with FPCA-Bspline yielding similar but 

slightly lower TPRs. However, in an average sequencing depth of 5 reads, FPCA-Fourier 

had the highest average TPR only when 𝛼 = 80%, 100%. For the lower levels of differential 

methylation strength 𝛼 = 0.4, 0.60, the FPCA-B-spline had the highest TPR. Overall, 

FPCA-Fourier and FPCA-B-spline substantially outperformed M3D with regard to TPR in 

both average sequencing depths (5 and 20 reads), across all levels of differential 

methylation strength. The coverage is also important to investigate, since low coverage can 

lead to less stable methylation estimates and prevent statistical significance while high 

coverage costs more to obtain. Figure 2.1 shows that the sequencing depth of 20 has the 

highest average TPR compared to average sequencing depth of 5. However, this difference 

is more drastic for M3D than it is for the FPCA methods. The FPCA methods maintain an 

average TPR between 79% and 90% for a depth of 5 reads; whereas the M3D TPR ranges 

from 68% to 80%. 

 

4.2. ROBUSTNESS IN REPLICATIONS   

To examine the robustness of the FPCA method to changes in replication number, 

simulated data sets were created for differing numbers of replicates per group, using the 

same approach as described as in section 3.2. Control samples from real RRBS data set 

were used as the control groups for 3, 8 and 12 replicates per group. This was possible 

since the data set contained 12 control samples. A set of 3, 8, or 12 replicates were 

simulated as previously described to act as the cases groups. As before, the same 250 

regions were simulated to be true DMRs using 𝛼 = 80% and a coverage of 20 reads. The 



37 

 

 

FPCA-Fourier basis function method was used to identify DMRs with 3, 8 and 12 replicates 

per group since this method performed best for 20 reads and these results were compared. 

The false discovery rate (FDR) was controlled at 5%. The FPCA-Fourier method identified 

179, 193, and 216 true DMRs out of the total of 250, with 3, 8, and 12 replicates per group, 

respectively.  

 

 
Figure 2.2. Venn Diagram of True DMRs Detected with FPCA-Fourier, for 3, 8, and 12 

Replicates Per Group. The Number and Percentage of Type I and Type II Errors is also 

Given for Each Replicate Number. 

 

As shown in Figure 2.2, the overlap between the three sets of true DMRs identified 

accounts for 70% of the total. As was expected, the testing lost power with lower 

replication, with 12 replicates per group identifying the most unique true DMRs and having 

the lowest number of type II errors, and the highest number of type II errors occurred for 

three replicates per group. More similarity was observed between the simulations with 

eight and 12 replicates as they shared 15 true DMRs uniquely, whereas the simulation with 



38 

 

 

three replicates had no unique overlap with eight or 12 replicates. Overall, the type II error 

rates ranged from 13.6% in the 12 replicate cases to 28.4% in the three replicate cases. 

Type I error was low for all three cases with the lowest being 0.13% for 12 replicates and 

the highest being 0.53% for three replicates. This shows that while more replicates are 

better, the FPCA- Fourier method exhibits a reasonable amount of robustness to smaller 

replicate number per group. 

 

4.3. DMRS DETECTED IN REAL DATA   

An analysis was completed using the real RRBS data described in section 3.1 with 

four samples from bone marrow patients with acute promyelocytic leukemia (APL) and 

four control samples (APL in remission). All CpG sites (with at least 20 reads) across all 

samples were used, including all regions with start and stop locations defined as described 

in section 3.2. Since this data set provided a coverage of at least 20 reads, the FPCA-Fourier 

method was applied since it performed the best under that setting and these results were 

compared to M3D. 

Out of 14,000 CpG regions selected for testing, FPCA-Fourier identified 3897 DMRs 

and M3D identified 2603 DMRs total, with 1488 DMRs in common. Figure 2.3 confirms 

that the FPCA-Fourier method identified a clear group of changed profiles between the two 

conditions in the real data sets. The false discovery rate (FDR) was controlled at 0.05 for 

all analyses 26. 
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Figure 2.3. Venn Diagram Comparing the Number of Significant Differentially Methylated 

Regions (DMRs) Identified by the FPCA-Fourier and M3D Methods in the Real APL 

RRBS Data Set. 

 

 

5. CONCLUSION 

This research demonstrates that information from reduced representation bisulfite 

sequencing (RRBS) datasets can be analyzed using higher-order mathematics, specifically 

a functional data analysis approach. Here, a dimension reduction approach is presented, 

based on the Karhunen-Loève transform, to create a hypothesis test for differential 

methylated regions (DMRs) using functional principal components based on the spatial 

features of methylation profiles. This allows the investigation of dominant modes of 

variation in the methylation profile over a region using eigenfunctions of the covariance 

function. The FPCA in this study employs a few principal components that increase the 

power and reduce degrees of freedom in testing to make the underlying biological signals 

stable. An FPCA based on Fourier and B-spline functions was developed that successfully 

detects information from shapes of the methylation curves that cannot be identified by 

traditional multivariate statistics and tests for differentially methylated regions between 
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case and control groups. An empirical comparison, using a simulation based on real data, 

showed a substantial increase in the true positive rate for FPCA in comparison with the 

M3D approach 19, as well as considerable robustness with respect to coverage depth and 

replication. In general, the simulation results were similar for FPCA-Fourier and FPCA-

Bspline, with FPCA- Fourier having slightly lower type II errors across most of the 

simulation settings thus giving it a slight advantage. 

 The good performance of the FPCA method is attributable to a number of factors. 

First, the method takes spatial correlation into account in analyzing the methylation profile. 

Second, the FPCA translates high-dimensional DNA methylation data into a few principal 

components, which greatly reduces the degrees of freedom in testing, while preserving 

most of the underlying biological signals. In contrast M3D, does not perform well in high 

dimensional DNA methylation data within a region.  

The methodology proposed and illustrated here builds on the interpretation of next-

generation sequencing data. The FPCA method can be applied in cancer research as well 

as in the pursuit of therapies to combat or prevent lupus, muscular dystrophy, and other 

diseases. In fact, because hypermethylation occurs early in colon cancer, detection of 

hypermethylation could be an important indicator of potential health problems, which 

might be detected using the FPCA method. In addition, future studies are needed to 

investigate the use of other functional data analysis techniques, such as functional linear 

regression or functional canonical correlation analysis, as well as incorporating smoothing 

penalties into the analysis. Although the FPCA framework was investigated using RRBS 

data, it should scale up well for utilization in whole genome bisulfite sequencing studies, 

but this should be investigated more fully. Finally, although the FPCA method exhibited 
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robustness in detecting DMRs under 1ow coverage and replications in two groups, it is of 

interest to extend the method to work for experiments that require testing for differences 

between more than two groups or that have covariate information. 
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ABSTRACT 

DNA methylation is a key, heritable, epigenetic modification that can alter gene 

expression without a DNA sequence change. Most instances of DNA methylation in 

mammals take place when a methyl group attaches to a cytosine when followed by a 

guanine (CpG dinucleotides) on the DNA sequence. DNA methylation can be measured 

throughout the genome at individual cytosine sites by combining bisulfite sequencing with 

next-generation sequencing (NGS). Although the measurements are taken at the site level, 

researchers are often interested in testing for methylation differences over genomic 

regions. Although DNA methylation has been well researched, little statistical research has 

been conducted to develop methods that will discover epigenomic structural variations 

using NGS data to identify predefined differentially methylated regions (DMRs). This 

study addresses this critical gap in the literature, by creating a new strategy that evaluates 

predefined methylation regions (DMRs) using smoothed functional principal component 

analysis (SFPCA). This study compares the performance of SFPCA to FPCA without 

smoothing and to an existing method, M3D, using real and simulated data.   

mailto:OlbrichtG@mst.edu
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1. INTRODUCTION 

DNA methylation has been researched in depth because it is an important, heritable, 

epigenetic modification that can alter gene expression without changing the DNA 

sequence. In mammals, DNA methylation is almost always the result of a methyl (CH3) 

group attaching to a cytosine when followed by a guanine (CpG dinucleotides) on the DNA 

sequence. Methylation can modify the way genes function after a methyl group has been 

added to the DNA. DNA methylation is one of the best characterized epigenetic 

modifications and its connection to human health has been heavily studied but is not yet 

fully understood 1. In mammals, it is involved in various biological processes including the 

silencing of transposable elements, regulation of gene expression, genomic imprinting, and 

X-chromosome inactivation 1. The methylation of CpG locations in promoter regions is 

often associated with gene silencing; however, recent research suggests that the correlation 

between CpG methylation with gene bodies and gene expression is more complex 2. 

The most thorough method for measuring DNA methylation is bisulfite sequencing 

combined with next-generation sequencing (NGS), which has the advantage of quantifying 

single-base cytosine methylation levels across the entire genome 25. In bisulfite sequencing, 

DNA is treated with sodium bisulfite, which converts unmethylated cytosine residues to 

uracil, but which does not affect the 5` methylcytosine residues. After PCR amplification, 

the uracils are converted to thymines, thus enabling a distinguishing between methylated 

and unmethylated cytosines. Bisulfite converted DNA fragments are then sequenced via 

NGS and aligned to a reference genome. The percentage of methylation at each cytosine 

position is found by calculating the ratio (C/C+T), that is the number of methylated reads 

(C) divided by the total of all methylated and unmethylated reads (C+T). Several 
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techniques can be used for high-throughput bisulfite sequencing, including reduced 

bisulfite sequencing (RRBS) 3, whole-genome shotgun bisulfite sequencing methods (BS-

seq, methylC-seq) 4, 5, and target capture bisulfite sequencing7. Although the whole genome 

methods such as BS-seq and MethylC-seq provide the most complete information, cost is 

still a limitation for many studies. Alternatively, RRBS allows for the use of restriction 

enzymes, such as MspI or TaqI, to cleave at CCGG loci so as to choose an informative set 

of short reads to sequence 8. This process provides more accurate and specific results within 

specific subsets of the genome, with greater coverage of CpG-dense regions, and is less 

expensive than sequencing all cytosines genome wide. 

A major problem in computational epigenomics is that epigenetic signals are poorly 

understood. However, new statistical methods and software tools that identify differentially 

methylated sites and regions (DMRs) 8-10 have been developed recently to aid in 

understanding these complex data. Although many initial methods focused on testing 

individual cytosine sites, there are biological and statistical benefits of testing regions 

instead of sites. While the site level data may be noisy, the overall regions tend to be more 

informative and there are fewer of them to test, easing the burden of the multiple testing 

problem. Additional advantages of using DMRs are that although differences at any given 

site may be small, variations across a region can be detected more easily due to the high 

correlation neighboring sites 11 and DMRs potentially have a greater ability to predict 

phenotypes.  

Region level testing methods can be categorized into those that operate on 

predefined regions verses those that define the region after site level testing has taken place, 

and thus cannot be defined in advance. Both methods need to control the false discovery 
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rate (FDR) at the region-level, but when the number of regions is not determined prior to 

testing this task is non-trivial, making it more difficult to control for multiple test for such 

methods. For example, when the regions are undefined before testing, it is impossible to 

extrapolate the region-level FDR control from the site-level tests in the region. As such, 

the best approach is to use predefined regions, defined based on annotation regions (e.g., 

CpG islands, CpG shores, introns, and exons), or defined based on a non-annotation criteria 

(Figure 3.1) 12. Often, non-annotation regions are defined based on locating regions with a 

certain minimum CpG density within a specific genomic window. 

 

 
Figure 3.1. Illustration of Predefined Regions Based on Annotation and Non-Annotation 

Profiles. Image modified from Baumann and Doerge 12. 

 

Both types of predefined regions have pros and cons. Annotation based regions may 

have a direct biological meaning but if the CpG sites are sparse or separated by more than 

1000 bp, the known correlation in methylation levels between neighboring sites may be 

diminished for different parts of the region. When regions are defined based on CpG 

density within a certain neighborhood this problem is alleviated, at the sacrifice of 
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potentially less biologically meaningful regions. This can be somewhat overcome by 

determining which annotation units overlaps with the defined region.  

Many approaches can be employed to define DMRs. Many region-level methods 

first test each cytosine site to search for DMRs, then follow the site level results with post-

hoc aggregation. These are the methods mentioned previously where the regions being 

tested are not known in advance, and a method is needed to control the type I error rate 

while also letting the data determine where to look. BSmooth 8, which is a widely cited 

method, employs a smoothing process of methylation levels across the genome for each 

sample, which improves the accuracy of the methylation level estimate for any single CpG 

site. To discover DMRs, BSmooth combines individual cytosines with ranked (significant) 

differentially methylated cytosines (DMCs), which are found using t-statistics or a linear 

model, with a quantile or direct t-statistic cutoff 8. Most of the newer approaches (e.g., 

BiSeq 13 and methylSig14) use local smoothing, with a beta binomial model of methylation 

levels at individual cytosine sites. Both BiSeq and methylSig aggregate the results of tests 

at discrete loci when computing a measure of significance for estimating DMRs.  

             Among methods that use predefined regions, MethylKit uses annotation to provide 

a statistical test that pools the sequencing reads across an annotated unit (e.g., gene) by 

group. When using multiple samples, a logistic regression with a binary predictor 

corresponding to the condition is applied, which can be expressed as a binomial-based test 

10. Thus methylKit still relies on post-hoc aggregation of site-level tests but the regions 

where aggregation takes place are known in advance due to annotation information. In 

contrast, the methylation analysis using genome information (MAGI) tests directly for 

DMRs across annotation units rather than computing measures of significance for each 
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region based on an examination of individual cytosine sites. This difference in methods 

results from the assumption, under MAGI 12, that the regions are homogeneous in terms of 

methylation and require no adjustments for spatial correlations between cytosine sites. 

Methylation levels at each cytosine site are labeled with a binary representation showing 

whether or not they exceed a specified decision boundary. A Fisher’s Exact Test (FET) for 

unreplicated experiments or a logistic regression when replicates are available is performed 

over each region, which counts the number of cytosine sites that have changed states 12.  

              An alternative method, M3D 15, relies on the Maximum Mean Methylation 

Discrepancy (MMD) method to assess changes in the shapes of methylation profiles within 

the local predefined regions being tested. Regions are defined in M3D based on CpG 

density rather than annotation. M3D applies a machine learning technique (MMD) 23 to test 

the homogeneity in underlying methylation-generating distributions. The method uses a 

radial basis function (RBF) kernel function to construct the MMD between data sets in 

each region being tested and this number is modified based on changes in coverage profiles. 

The M3D statistics are compared to a null distribution of observed M3D statistics between 

replicate pairs 15. It has been suggested that the shape of the methylation profile is a crucial 

factor in predicting gene expression, supporting the notion of a functional role for the 

methylation pattern 23. This is one of the advantages of M3D’s idea of looking at the 

differences in shape change over a predefined region in methylation profile.  In a review 

of the literature, it appears that only the M3D method utilizes the shape of the methylation 

profile over the region (Figure 3.2). 
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Figure 3.2. Methylation Profiles of Predefined Regions Identified by the M3D Method in 

a Comparison of Leukemia and Human Embryonic Stem Cells (ESC). Figure from Mayo 

et al.  15. 

 

            Although M3D offers certain advantages, there may be more information that can 

be captured about the shape of the methylation profile over a region than is used in M3D. 

In the previous paper (Section 2), a functional principal component analysis (FPCA) 

approach was proposed to capture dominant modes of variation in the methylation level 

across a region. FPCA was shown to greatly improve power to identify DMRs over M3D, 

indicating the benefit of considering additional aspects of the curve shape beyond those 

used in M3D. However, the observed methylation profiles are typically not smooth, which 

lead to substantial variability in the estimated functional principal component curves. 

When the epigenetic methylation function changes rapidly within the genomic region, the 

basis expansion in the FPCA may not provide a good estimate of the genetic variation, thus 

potentially decreasing the power of FPCA. In this study, this limitation was overcome by 

developing a smoothed FPCA (SFPCA) for testing DMRs by combining a goodness-of-fit 

measure with a roughness penalty on the functional principal component weight functions 



52 

 

 

to maintain the advantages of basis expansion. SFPCA explicitly accounts for adjusting 

spatial correlations between cytosine sites. Rather than only testing at individual cytosine 

sites, this method can find changes in methylation profiles across predefined regions based 

on CpG density. This study compares the performance of SFPCA to FPCA without 

smoothing and to the existing method (M3D) for shape changes in predefined regions, 

using real and simulated data. 

 

2. METHODS 

 

2.1 SMOOTHED FUNCTIONAL PRINCIPAL COMPONENT ANALYSIS 

 In this section, a smoothed functional principal component analysis (SFPCA) is 

developed for testing for region-level differential methylation. SFPCA has been shown to 

be beneficial in other areas of genomics, specifically in association studies where it can be 

used for testing across the entire allelic spectrum (rare and common) of genetic variation 

18. One goal of this paper was to employ SFPCA for a group test across a genomic region. 

In this approach, smoothed functional principal component scores take information across 

all variants in the genomic region into account, hence including all single variant variation 

while constructing a region level test 18. This SFPCA method could be highly beneficial 

for DNA methylation data, yet no functional data analysis techniques have currently been 

developed for region level differential methylation detection. Here, an SFPCA method is 

developed for summarizing the methylation profile in region.  

DNA methylation levels are often strongly spatially correlated between 

neighboring CpG sites 28. The SFPCA developed below serves as dimension reduction 

approach of the finite methylation profile using the Karhunen-Lo�́�ve transform to show the 
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variability existing between RRBS datasets under differing conditions with respect to a 

defined region of interest 18. This allows the investigation of dominant modes of variation 

in the data using the eigenfunctions of the methylation profile covariance function. Let 𝑡 

be a genomic position of a cytosine site within a genomic region, and let 𝑇 be the length of 

the genomic region under consideration. If the CpG density of the genomic region is high, 

the region [0, T] can be rescaled to [0, 1]18, where 𝑡 is a continuous variable over the 

interval [0,1]. Assume that RRBS data are collected on samples in two conditions (e.g., 

cases and control) with 𝑛𝐴 case samples and 𝑛𝐵 control samples. 

Let 𝑋(𝑡) be the centered, epigenetic methylation function to describe each region. 

In this study, the epigenetic methylation function represents methylation levels of CpG 

sites described over a predefined region. When using functional principal component 

analysis (FPCA) 16, the variation in the epigenetic methylation function can be expressed 

with a linear combination of the functional values: 

𝑓 =  ∫ 𝜉(𝑡)𝑋(𝑡)𝑑𝑡
1

0
     (1) 

where 𝜉(𝑡) is a weight function. The functional principal components can be found by 

finding the weight function 𝜉(𝑡) that maximizes the variance of  𝑓 16: 

𝑣𝑎𝑟(𝑓) = ∫ ∫ 𝜉(𝑠)𝑅(𝑠, 𝑡)
1

0

1

0
𝜉(𝑡)𝑑𝑠𝑑𝑡    (2) 

where 𝑅(𝑠, 𝑡) describes the covariance function of each epigenetic methylation function 

for each predefined region. The methylation profiles are not normally smooth, which 

causes there to be considerable variability when estimating the functional principal 

component curves. A roughness penalty is used in combination with the functional 

principal component weight functions to aid with smoothness of the functional principal 
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component 18. In this study, the roughness penalty on the functional principal component 

weight functions utilizes the integrated, squared second derivative.  

The smoothed functional principal components can be found by solving the 

following integral equation 18: 

                                       ∫ 𝑅(𝑠, 𝑡)
1

0
𝜉(𝑠)𝑑𝑠 = 𝜌[𝜉(𝑡) + 𝜆 ∥ 𝐷2𝜉(𝑡) ∥2]  (3) 

Where 𝜆 is a smoothing parameter that balances the function roughness and the fit. To 

reduce the SFPCA to an unsmoothed FPCA, set 𝜆 = 0. 

 

2.2. COMPUTATION FOR SFPCA  

The principal component function is an eigenfunction that is an integral function 

and is difficult to solve in closed form. To solve for the eigenfunction in Eq. (3), first 

convert the continuous eigenanalysis to an appropriate discrete eigenanalysis 16. To obtain 

this conversion, Fourier basis function methods can be used 18. 

Let 𝛿𝑗(𝑡) be a series of Fourier basis functions. For each 𝑗, define 𝜔2𝑗−1 = 𝜔2𝑗 =

2𝜋𝑗. Then, expand the epigenetic methylation function as a linear combination of the basis 

function 𝛿𝑗: 

𝑋(𝑡) =  ∑ 𝐶𝑗𝛿𝑗(𝑡)𝑇
𝑗=1       (4) 

Let 𝑋(𝑡) = [𝑋1(𝑡), … … … . , 𝑋𝑁(𝑡)]𝑇 be a vector-valued function, with 𝑋𝑖(𝑡) be a 

centered, square-integrable function, in this case describing the methylation level of the 𝑡𝑡ℎ 

CpG site in the predefined region for 𝑖𝑡ℎ sample for N replicates. Then, select an 

orthonormal Fourier basis with 𝑇 functions 𝛿(𝑡) = [𝛿1(𝑡), 𝛿2(𝑡), … , 𝛿𝑇(𝑡)]𝑇. The joint 

expansion of the N methylation profiles can then be expressed as follows 18: 

𝑋(𝑡) = 𝐶𝛿(𝑡)            (5) 
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where 𝐶 is a coefficient matrix and the covariance function of the methylation profiles can 

be represented as 

𝑅(𝑠, 𝑡) =
1

𝑁
𝛿𝑇(𝑠)𝐶𝑇𝐶𝛿(𝑡).                 (6) 

Also, the eigenfunction can be written as  

𝝃(𝒕) = ∑ 𝒃𝒋 𝜹𝒋(𝒕)𝑻
𝒋=𝟏  and 𝑫𝟒𝝃(𝒕) = ∑ 𝝎𝒋

𝟒𝒃𝒋 𝜹𝒋(𝒕)𝑻
𝒋=𝟏  or 

𝝃(𝒕) = 𝜹(𝒕)𝑻𝒃 and 𝑫𝟒𝝃(𝒕) = 𝜹(𝒕)𝑻𝒗𝟎𝒃   (7) 

where 𝒃 = [𝒃𝟏, … . , 𝒃𝑻]𝑻 and 𝒗𝟎 = 𝒅𝒊𝒂𝒈(𝝎𝟏
𝟒, … . , 𝝎𝑻

𝟒).  

The right term can be expanded in Eq. 3 as  

𝝃(𝒕) + 𝝀 ∥ 𝑫𝟐𝝃(𝒕) ∥𝟐=  𝜹(𝒕)𝑻𝒗−𝟐𝒃.     (8) 

where 𝒗 = 𝒅𝒊𝒂𝒈((𝟏 + 𝝀𝝎𝟏
𝟒)−

𝟏

𝟐, … . , (𝟏 + 𝝀𝝎𝑻
𝟒)−

𝟏

𝟐). 

Substituting Equations 6 and 7 for 𝑹(𝒔, 𝒕) and 𝝃(𝒕) into the eigenequation (Eq. 3), results 

in the following 18: 

𝟏

 𝑵
 𝑪𝑻𝑪 𝒃 = 𝝆 𝒗−𝟐𝒃.      (9) 

which can be written as 

                    [𝒗 (
𝟏

𝑵
𝑪𝑻𝑪) 𝒗] [𝒗−𝟏𝒃] =  𝝆 [𝒗−𝟏𝒃] , or 𝒗 (

𝟏

𝑵
𝑪𝑻𝑪) 𝒗𝒖 = 𝝆𝒖              (10) 

where 𝒖 = 𝒗−𝟏𝒃. Therefore, 𝒃 = 𝒗𝒖 and 𝝃(𝒕) = 𝜹(𝒕)𝑻𝒃 is a solution to eigenequation 

(Eq. 3) 18. 

 

2.3. TEST STATISTIC   

To estimate the set of orthonormal principal component functions 𝜉𝑗(𝑡), 𝑗 =

1,2, … 𝑘 (eigenfunctions), let the pooled methylation profiles 𝑥𝑖(𝑡) denote the methylation 

level for the CpG site at genomic position 𝑡 for 𝑖th case sample. Similarly define 𝑦𝑖(𝑡) for 
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the 𝑖th control samples. By the Karhunen-Lo�́�ve decomposition 16, the smoothed functional 

principal component score can be obtained by 𝛽𝑖𝑗 =< 𝑥𝑖(𝑡), 𝜉𝑗(𝑡) > and 𝜂𝑖𝑗 =<

𝑦𝑖(𝑡), 𝜉𝑗(𝑡) >, where 𝑗 = 1,2, … 𝑘. Let the average vectors of the functional principal 

component scores in the cases and controls be �̅� = [�̅�1, … . , �̅�𝑘] and �̅� = [�̅�1, … . , �̅�𝑘]. The 

pooled covariance matrix can be defined as 𝑆 =
1

𝑛𝐴+𝑛𝐵−2
[(∑ (𝛽𝑖 − �̅�

𝑛𝐴
𝑖=1 )(𝛽𝑖 − �̅�)𝑇 +

∑ (𝜂𝑖 − �̅�
𝑛𝐵
𝑖=1 )(𝜂𝑖 − �̅�)𝑇)], where 𝛽𝑖 = [𝛽𝑖1, … , 𝛽𝑖𝑘]𝑇,𝜂𝑖 = [𝜂𝑖1, … , 𝜂𝑖𝑘]𝑇. Let Λ = (

1

𝑛𝐴
+

1

𝑛𝐵
) 𝑆. Then, the Hotelling 𝑇2 statistic test is defined as 𝑇2 = (�̅� − �̅�)𝑇Λ−1(�̅� − �̅�). Under 

the null hypothesis of no differential methylation in the region between the case and control 

group, 𝑇2 asymptotically follows a central 𝜒(𝑘)
2  distribution, where 𝑘 equals the number of 

functional principal components. For the most accurate estimate of the 𝑝-value, a large 

number of replicates in each treatment group should be used 17. The false discovery rate 

can be controlled across all of these region level tests. 

 

3. SIMULATION STUDY 

 

3.1. DATA SET   

To evaluate the performance of the SFPCA method, a simulation study based on 

real RRBS data was performed. Methylation data of bisulfite-sequenced DNA was 

obtained from 4 patients with acute promyelocytic leukemia (APL) and 12 APL control 

samples 20. This data set was obtained under accession number GSE42119 (National Center 

for Biotechnology Information) 21. The RRBS data were preprocessed using Bismark 

version 0.5; a reference genome alignment tool that maps bisulfite treated sequencing reads 

to a genome of interest and performs methylation calls in a single step 25. 
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3.2. SIMULATION PLAN   

Using the simulation approach in M3D 1, and employing actual RRBS data, a 

simulation was created to accurately imitate methylation profile changes. The regions 

(CpG clusters) were defined as follows: (1) CpG sites that covered at least 75% of samples 

were defined as frequently covered CpG sites and (2) a maximum distance of 100 base 

pairs to the nearest neighbor within a region was accepted. Only regions with at least 20 

frequently covered CpG sites were used in the analysis18. This investigation looked at the 

first 1,000 regions on chromosome 1. Four biological replicates based on the controls in 

the APL RRBS data set described above were randomly chosen out of the 12 as the control 

group.  Four replicates were simulated 100 times to be the case group. Differential 

methylation changes for the case group were applied to 250 randomly chosen CpG clusters 

(predefined regions). To create the case group, data for the replicates were simulated by 

first adding or subtracting random Poisson (𝜆 = 1) noise to the total number of reads at 

each cytosine. Uniform [-0.1 to 0.1] random noise was added to cytosine methylation 

levels. The methylation level 𝐿𝑖, which was defined as the ratio of methylated reads to the 

total reads mapped to an individual cytosine site, was adjusted for all cytosine sites within 

the 250 selected, predefined regions 15. The parameter 𝛼 ∈ [0,1] was used to control the 

degree of methylation level change. To simulate methylation level changes in the 250 

regions, the following equations were used. If 𝐿𝑖
𝑜𝑙𝑑 ≤ 0.5 :  

then 𝐿𝑖
𝑛𝑒𝑤 = (1 − 𝛼)𝐿𝑖

𝑜𝑙𝑑 + 𝛼  for hypermethylation (higher methylation in cases)      (11)                                                                      

else  𝐿𝑖
𝑛𝑒𝑤 = (1 − 𝛼)𝐿𝑖

𝑜𝑙𝑑     for hypomethylation (lower methylation in cases).           (12)                                                                                                   

The false discovery rate (FDR) was controlled at 0.05 for all analyses 21.  
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           To investigate the performance of SFPCA, a large scale simulation was performed 

under various settings. The average type I and type II error rates as well as the average true 

positive rate was calculated across the 100 simulated data sets. Performance of SFPCA was 

compared to the existing method (M3D) for predefined regions, as well as to an FPCA 

without the smoothing technique. The Fourier basis expansion was used for both FPCA 

and SFPCA using 15-35 basis functions. Different degrees of differential methylation were 

considered by varying the alpha parameter for 𝛼 = {0.4,0.6,0.8,1}. To examine the 

robustness of the methods for various experimental design features, two different 

sequencing depths (5 and 20 reads) were simulated and three replicate numbers per group 

(3, 8, and 12) were simulated.  

 

4. RESULTS 

  

4.1. SIMULATION RESULTS   

To assess the performance of SFPCA, results from the simulation study were 

compared with results from M3D and Functional Principal Component Analysis (FPCA) 

without smoothing. The average type I error, type II error and correct number of true DMRs 

identified over 100 simulated data sets under varying differential methylation strength 

parameters 𝛼 (based on an average sequencing depth of 20 reads) under the Fourier basis 

expansion for both FPCA and SFPCA are illustrated in Table 3.1.  

With a total of 250 true DMRs at 𝛼 = 100%, SFPCA found 239.87 true DMRs on 

average, with 2.20 falsely called DMRs; FPCA found 229.85 true DMRs on average, with 

3.93 false positives. Using M3D located 224.51 true DMRs on average, and found no false 

positives. At a differential methylation strength of 80%, SFPCA correctly called 237.03 on 
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average, with 2.11 false positives, while FPCA correctly called 229.02 on average, with 

3.41 false positives. M3D correctly identified 222.94 DMRs on average, and found no false 

positives. At a methylation strength of 60%, SFPCA correctly identified 226.97 DMRs on 

average, with 2.48 false positives, whereas FPCA correctly identified 219.05 DMRs on 

average, with 2.97 false positives on average. At methylation 60%, M3D correctly 

identified 202.95 DMRs on average, and found no false positives. At a differential 

methylation strength of 40%, SFPCA found 215.00 true DMRs on average, with 2.02 false 

positives, while FPCA found 212.5 true DMRs on average, with 2.47 false positives. In 

contrast, M3D correctly identified only 190.07 DMRs on average, but had no false 

positives.  

 

Table 3.1.  Results for Average and Standard Deviation (S.D.) of 100 Simulations Based 

on SFPCA, FPCA, and M3D on Average Sequencing Depth (20 Reads), with Various 

Levels of Strength of Methylation Change (α) 

 

Table 3.2 illustrates the sensitivity of the methods to fewer reads (average 

sequencing of 5 reads) based on systematically altering the strength of the methylation 

level difference 𝛼. The SFPCA method performed well for all of the 𝛼 values at an average 

Alpha 100% 80% 60% 40% 

Methods SFPCA FPCA M3D SFPCA FPCA M3D SFPCA FPCA M3D SFPCA FPCA M3D 

# Correct 239.87 229.85 224.51 237.03 229.02 222.94 226.97 219.05 202.95 215.00 212.5 190.07 

S.D. 0.774 0.796 0.502 0.797 0.809 0.502 0.822 0.783 0.757 0.804 0.833 0.781 

# Type-1 2.20 3.93 0 2.11 3.41 0 2.48 2.97 0 2.02 2.47 0 

S.D. 0.752 0.794 0 0.827 1.090 0 0.702 0.892 0 0.816 0.501 0 

# Type-2 10.13 20.15 25.49 12.97 20.98 27.06 23.03 30.95 47.05 35.00 37.5 59.93 

S.D. 0.774 0.794 0.502 0.797 0.804 0.502 0.822 0.783 0.757 0.804 0.833 0.781 
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sequence depth of 5 and 20 reads compared to other methods. In summary, all methods had 

low average type I error rate with the highest occurring in FPCA at a coverage of 5 reads 

(Table 3.2) with average type I error rate of 0.008. M3D was the most conservative of the 

methods as it did not produce any type I errors, but all methods controlled the type I error 

rate well below 0.05. Across all settings, M3D had the highest type II error rate on average. 

SFPCA and FPCA had similar type II error rates on average, but SFPCA had a slight 

advantage as it always yielded lower type II errors across all settings. 

 

Table 3.2.  Results for Average and Standard Deviation (S.D.) of 100 Simulations Based 

on SFPCA, FPCA, and M3D on Average Sequencing Depth (5 Reads), with Various 

Levels of Strength of Methylation Change (α) 

 

Figure 3.3 shows the average true positive rates (TPRs) for varying degrees of 

differential methylation (𝛼 values) for each of the three methods (SFPCA, FPCA, and 

M3D) and two coverage depths (5 and 20). The SFPCA method had the highest average 

TPR at an average sequencing depth of 5 and 20 reads across all levels of 𝛼. Overall, 

SFPCA and FPCA substantially outperformed M3D with respect to TPR at both average 

Alpha 100% 80% 60% 40% 

Methods SFPCA FPCA M3D SFPCA FPCA M3D SFPCA FPCA M3D SFPCA FPCA M3D 

# Correct 225.07 223.88 200.04 221.14 219.15 197.13 211.88 202.06 178.00 202.9 197.93 170.05 

S.D. 0.831 0.819 0.815 0.791 0.832 0.824 0.782 0.826 0.804 0.834 0.843 0.808 

# Type-1 4.95 5.97 0 4.95 6.05 0 3.56 3.94 0 4.99 4.54 0 

S.D. 1.320 1.041 0 1.439 1.426 0 1.139 0.887 0 1.431 0.8946 0 

# Type-2 24.93 26.12 49.96 28.86 30.85 52.87 38.12 47.94 72.00 47.1 52.07 79.95 

S.D. 0.831 0.819 0.8155 0.791 0.821 0.824 0.782 0.826 0.804 0.834 0.843 0.808 
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sequencing depths (5 and 20 reads), and all levels of differential methylation strength. 

SFPCA and FPCA performed similarly, with SFPCA always having a slight advantage that 

is more magnified at larger alpha values in 20 reads. All methods have larger TPR for 20 

reads compared to 5 reads. However, the TPR for SFPCA and FPCA are always above 

80% under both coverage levels. It is also true that TPR increases as the strength of 

methylation difference (𝛼) increases, but both SFPCA and FPCA consistently maintain 

high average TPR greater than 80% indicating their ability to perform well even when the 

“signal” is smaller. 

  

 
Figure 3.3.  True Positive Rates Based on the Average over 100 Simulations on Average 

Sequencing Depths of 5 (left graph) and 20 (right graph) Reads verses α Level for 

Controlling the Degree of Differential Methylation Region for Each of Three Methods: 

Smoothed Functional Principal Component Analysis (SFPCA-Red), Functional Principal 

Component Analysis (FPCA-Blue) and M3D-Green. 

 

 

4.2. ROBUSTNESS IN REPLICATIONS  

To examine the robustness of the SFPCA method to changes in replication number, 

simulated data sets were created for differing numbers of replicates per group, using the 

same approach as described as in section.3.2. Control samples from the real RRBS data set 

were used as the control groups for 3, 8 and 12 replicates per group. This was possible 
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since the data set contained 12 control samples. A set of 3, 8, or 12 replicates were 

simulated as previously described to act as the cases groups. As before, the same 250 

regions were simulated to be true DMRs using 𝛼 = 80% and coverage of 20 reads. The 

SFPCA method was used to identify DMRs with 3, 8 and 12 replicates per group and these 

results were compared. The false discovery rate (FDR) was controlled at 5%. The SFPCA 

method identified 195, 195, and 228 true DMRs out of the total of 250, with 3, 8, and 12 

replicates per group, respectively. 

 

 
Figure 3.4. Venn Diagram of True DMRs Detected with SFPCA for 3, 8, and 12 Replicates 

per Group.  

 

As shown in Figure 3.4, the overlap between the three sets of true DMRs identified 

accounts for 75% of the total. As was expected, the testing lost power with lower 

replication, with 12 replicates per group identifying the most unique true DMRs and having 

the lowest number type II error, and the highest number of type II errors occurred for 3 and 

8 replicates per group. Overall the type II error rates ranged from 8.8% in the 12 replicate 
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cases to 22% for 3 and 8 replicates per group. Type I error was low for all three cases with 

the lowest being 0.13% for 12 replicates and the highest being 0.53% for 3 replicates. This 

shows that while more replicates are better, the SFPCA method exhibits a reasonable 

amount of robustness to smaller replicate numbers per group.   

 

4.3. APPLICATION TO REAL DATA   

An analysis was completed using the real RRBS data described in section 3.1 with 

four samples from patients with acute promyelocytic leukemia (APL) and four control 

samples (APL in remission). All CpG sites (with at least 20 reads) in both samples were 

used, including all region start and stop locations defined as in the simulation section.  

 

 
Figure 3.5. Venn Diagram Comparing the Number of Significant Differentially Methylated 

Regions (DMRs) Identified by the SFPCA, FPCA, and M3D Methods in the APL RRBS 

data set. 

 

 

The false discovery rate was controlled at 5% for all analyses. Out of 14,000 CpG 

regions selected for testing, SFPCA and FPCA identified 3,987 and 3,897 DMRs, 

respectively, whereas M3D identified 2603 DMRs (Figure 3.5).  Note that 1225 DMRs 
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were identified by all three methods, but there was much more overlap in the SFPCA and 

FPCA results than with both methods and M3D. These results align with simulation results 

the showed similarity between SFPCA and FPCA with M3D having large type II errors 

and identifying fewer DMR overall. 

 

5. CONCLUSION 

This study reveals that reduced representation bisulfite sequencing (RRBS) datasets 

can be analyzed using higher-order mathematics, using a functional data analysis approach. 

Region level differential methylation tests can be formed by using functional principal 

components that capture spatial features of methylation profiles. In this work, a smoothed 

functional principal component analysis (SFPCA) based on Fourier basis functions was 

developed to  accurately identify differentially methylated regions (DMRs) between two 

conditions (e.g cases and control) with RRBS data. Using a simulation study based on real 

data, the SFPCA exhibited higher average true positive rates (TPR) when compared with 

FPCA without smoothing and M3D. Since low coverage can prevent statistical significance 

and high coverage can be costly to perform, simulations investigated how coverage depth 

along with different replicate numbers affected performance of the methods. SFPCA was 

substantially robust in relation to both coverage depth and replication maintaining high (> 

78%) TPR across all settings. Overall, the SFPCA  based on the Fourier basis expansion 

method surpassed performance of both the FPCA and M3D approaches in the simulation 

based on real data, as it accurately discovered more true differentially methylated regions, 

while maintaining a low type I error rate. Although SFPCA and FPCA exhibited similar 
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results, SFPCA always slightly surpassed FPCA and both approaches surpassed M3D in 

their ability to accurately detect true DMRs.  

 Even though M3D is sensitive to spatially correlated changes in methylation, it still 

does not allow the investigation of the dominant modes of variation in RRBS data. 

However, one of the best advantages of FPCA methods is to investigate the dominant 

modes of variation in RRBS data using the eigenfunctions of the methylation profile 

covariance function. The addition of a roughness penalty on the functional principal 

component weights to improve the smoothness appeared to be beneficial when comparing 

FPCA with SFPCA. The SFPCA method is superior to other currently used methods 

because the SFPCA scores (1) takes into account higher order properties of curve trajectory 

shapes when analyzing the methylation profiles and (2) accounts for correlations across all 

cytosine sites in the region. Further, the SFPCA statistic provides a region level comparison 

of the average SFPCA scores between cases and control groups by reducing information 

across multiple sites to a single region level test. The SFPCA approach builds on the 

interpretation of next-generation sequencing data by translating high-dimensional DNA 

methylation data into a few key factors. This greatly reduces the degrees of freedom in 

testing, yet it preserves the majority of the underlying biological signals. 

 Building on this research, the use of other functional data analysis techniques, (e.g., 

functional linear regression or functional canonical correlation analysis) can now be 

investigated. Extending the method to more complex experimental designs with more than 

two groups or covariates would be advantageous. Furthermore, although the effectiveness 

of SFPCA was investigated using RRBS, it should also work for whole genome studies but 

this needs to be more fully explored. Finally, although the predefined regions were defined 
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based on CpG density, it is also possible to apply the SFPCA method to regions based on 

functional annotation (e.g., CpG islands, CpG shores, and UTRs). Future studies would 

determine how the difference in CpG density in annotation regions affect the method 

performance. 
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4. SUMMARY AND FUTURE WORK 

 

The main purpose of this dissertation is to provide a novel statistical framework for 

identifying differentially methylated regions that contribute to biologically meaningful 

interpretation of reduced representation bisulfite sequencing (RRBS) data. Specific 

methods from functional data analysis (FDA) can be beneficial since they utilize 

correlation between neighboring cytosines and capture dominant modes of variation in 

methylation trajectories over a region. Testing differentially methylated regions through 

functional principal component analysis (FPCA) is described in Section 2. This research 

developed an FPCA method based on Fourier and B-spline basis functions that successfully 

tested for differentially methylated regions (DMRs) between the case and control groups 

in the RRBS data. An empirical comparison of FPCA to the only other similar type of 

region level test that explored curve shape differences, M3D1, was made via a simulation 

based on real data. FPCA showed a significant increase in true positive rates in comparison 

with M3D, as well as considerable robustness with respect to coverage depth and 

replications. The FPCA based on the Fourier and B-spline methods both outperformed 

M3D as they both accurately detected more DMRs across all simulation settings. FPCA-

Fourier and FPCA-Bspline perform similarly overall, except that FPCA-Fourier had 

slightly lower type II errors than FPCA-Bspline when the sequencing depth was 20 reads 

and this was reversed for lower degrees of differential methylation for 5 reads. Both 

methods maintained a type I error rate below 0.05.  

 Since the methylation profiles are typically not smooth across a region, this leads 

to substantial variability in the estimated functional principal component curves. Thus, 
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further improvements to the FPCA method were developed in Section 3 via a smoothed 

functional principal component analysis (SFPCA) for detecting differentially methylated 

regions. This smoothed FPCA identifies DMRs by combining a goodness-of-fit measure 

with a roughness penalty to maintain the advantages of basis expansion. The SFPCA is 

used to compare differences within a region in the average SFPCA scores between the 

variation of cases and controls. In this study, the SFPCA scores take into account all 

information across all CpG sites in a predefined genomic region based on CpG density. In 

comparison to the currently available M3D method, the SFPCA technique had 

significantly higher true positive rates (TPR) and was robust in relation to coverage depth 

and replications, using a simulation study based on real data. The SFPCA method also 

showed slight improvements in the TPR when compared to FPCA without smoothing, 

indicating that this additional model component was beneficial in capturing an important 

aspect of the DNA methylation profile over a region level.   

In future research, the SFPCA and FPCA framework could be expanded to 

incorporate a test for more complex experimental designs that involve more than two 

groups or that include covariates such as age, sex or medical related information.  

Furthermore, this technique could be tested where the functional annotation information is 

used to define the regions (e.g., CpG islands, CpG shores, UTRs, introns, and exons). An 

investigation into how the CpG density within annotation regions differs and will affect 

the testing performance will be beneficial to understanding the difference in the two 

options. Also the SFPCA and FPCA could be expanded to plants data where the DNA 

methylated occurred in three sequence contexts: CG, CHG and CHH (where H=A, T or 

C). 
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