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ABSTRACT

Accelerated life testing (ALT) is utilized to estimate the underlying failure
distribution and related parameters of interest in situations where the components under
study are designed for long life and therefore will not yield failure data within a
reasonable test period. In ALT, life testing is carried out under two or more higher than
normal stress levels, with the resulting acceleration of the failure process yielding a
sufficient amount of un-censored life-span data within a practical test duration. Usually
one (or more) parameters of the life distribution is linked to the stress level through a
suitably selected model based on a well-understood relationship. The estimate of this
model is then utilized to determine the life distribution of the components under normal
use (design use) conditions. Partially accelerated life testing (PALT) is preferable over
accelerated life testing (ALT) in situations where such a model linking the stress to the
distribution parameters is unavailable. In this study, parametric and nonparametric
bootstrap based methods for obtaining confidence intervals for the parameters of the life
distribution as well as a the lower confidence bound for the mean life under normal
conditions are developed for both the Weibull and Generalized exponential life
distributions under Type | censoring. Monte-Carlo simulation studies are carried out to
study the performance of the confidence intervals based on the proposed methods against
those of intervals obtained using the traditional delta method. Results show that the
bootstrap-based methods performs as well as or better than asymptotic distribution-based

methods in most cases.
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1. INTRODUCTION

When products are designed to be highly reliable and therefore have a long life-
span, standard life testing, where a sample of units is tested under normal use conditions,
will not produce a sufficient number of failures to enable the researcher to obtain good
estimates of the parameters of interest. One solution to the problem is to subject the
specimens in the sample to higher than normal stress levels. The stress factors can be
temperature, humidity, pressure, repetitive flexing at a higher than normal rate, or any
other variable that can accelerate the failure process. Since the goal of the study is to
estimate the parameters of the underlying life distribution and the expected life-span of
the products under normal (design) use conditions, a mathematical model that relate the
stress level to one or more parameters of the life distribution has to be estimated and
then utilized to extrapolate results obtained at high stress levels to those at the normal
level. This model that links stress to the distribution parameter(s), however, must be
based on well-understood and/or empirically verified relationship (Meeker and Escobar
1998, p. 495). When such a model is available, an accelerated life test (ALT) can be
performed where test specimens are subjected to two or more distinct higher than
normal stress levels. The higher stress levels accelerate the failure process, thus yielding
a sufficient number of un-censored failure data within a reasonable test period. When a
reasonable model that links the stress level to distributional parameter(s) is not available,
the partially accelerated life test (PALT) procedure is available as an alternative. In
PALT, the test specimens are subjected to a single high stress level as well as stress at

the normal level.

Each of these accelerated life test methods can be implemented in two different
ways, namely using a constant stress protocol or utilizing a step-stress approach to life
testing. In the constant stress procedure, independent samples of specimens are assigned
to each of the designated high stress levels, and all specimens in a sample are kept at the
assigned stress throughout the experiment. That is, the stress is kept constant within a
sample. For example, in PALT, some specimens may experience normal stress
throughout the experiment while others are subjected to a higher stress level which is

kept constant during the test period. In step-stress method, all specimens are first



subjected to one level of stress for a given period of time, and the test specimens that are
still functional are subjected to a higher stress level. In this study, the focus will be
limited to the constant stress approach so discussions from here on will be on this

method only.

In a certain type of constant stress life testing, a sample of product specimens are
put to test over a pre-specified test period T and the life spans of the items that failed
during this period are recorded. Since not all items on test may fail by time T, the life-
span of some specimens are censored. This type of censoring is called Type | censoring.
Alternatively, the experimenter can wait until a specific number of items fail and then
stop the experiment. For example he/she can wait until 50% of the items fail. In this case
we have what is termed as Type Il censoring. Since the experimenter sets a specific time
at which the experiment will end, the Type | censoring approach is preferable over Type
Il censoring. The experimenter who conducts a Type Il censored experiment will not
have a precise idea when the experiment is going to end because the time it takes for a
specific percentage of items to fail is a random variable. However, the mathematics of
the estimation procedure under Type | censoring can be complicated because the number
of failures, R, is a random variable rather than a fixed number as is the case in Type Il

censoring. The work herein centers on experiments conducted under Type | censoring.

1.1. ACCELERATED LIFE TESTS (CONSTANT STRESS CASE)

In Accelerated Life Tests (ALT), the life-span, X, of a product is assumed to have

a distribution (termed the life-distribution) with a probability density functionf(x,Q),

where 8 = (6,,6,, -, Hp)'is a vector of parameters associated with the distribution such
that one or more of the parameters in 8 are related to the stress S through a relationship
whose functional form is known except for a few parameters. For example, 6, may be
related to S through the function: 6, = g(S, @y, @,) = exp{@, + 9,S}. It is assumed
that the other parameters in 8 are not related to S. To estimate the parameters, two
independent samples of specimens of the product are tested, with one sample

undergoing stress at an accelerated level S, and the other sample subjected to an even



higher stress level Sy. If Spis the stress level at normal (design) use conditions, then we
have the ordering S; < Sp < Sy. From the experimental data, the parameters of the
function g are estimated (in the example above we estimate @, and @;). The parameters
0;,i =2,3,...p are estimated using combined data from both samples because they do

not depend on the stress level. Then, using the estimated function, g, the value of 8, at

the design stress level is estimated by the relationship 8; = g(SD, B, @1) This yields an

estimate of the life-distribution at normal use stress level.

1.1.1 A Brief Review of Relevant Literature. There are a large number of
publications on ALTs and a relatively smaller but an appreciable number also available
for PALTs. For brevity, we will refrain from discussing all of these, but limit the
discussion to a select few of these publications. An excellent coverage of Accelerated
Life tests is given in Nelson (1990). Other books include Mann, Schafer, and
Singapuwalla (1974), Lawless (1982), Viertl (1988), Marvin Rausand and Hsyland
(2004) Michelle, Hoang Jr, and David (2006),Guangbin Yang (2007), Tobias and
Trindade (2011), and Meeker and Escobar (1998).

One of the more recent publications is Jayawardhana and Samaranayake (2003),
that discussed obtaining lower prediction bounds for a future observation from a Weibull
population at design (normal use) stress level, using Type Il censored accelerated life
test data. The scale parameter of the life distribution is assumed to have an inverse
power relationship with the stress level. They showed that the method works well when
the low and high stresses are reasonably far apart. Alferink and Samaranayake (2011)
considered accelerated degradation models and developed confidence intervals for mean
life using the Delta method and the bootstrap, assuming lognormal distribution with
variance dependent on stress. Another interesting paper is Kamal, et al (2013), who
presented a step stress ALT plan that works well. In step stress, the components are first
put at a lower stress and the unfailed components are subjected to higher stress after a
specific period. More recently, Jayawardhana and Samaranayake (2014), obtained
predictive density of a future observation at normal use conditions using ALT method

under lognormal life distribution and Type Il censoring with non-constant variance.



1.2. PARTIALLY ACCELERATED LIFE TESTS (CONSTANT STRESS CASE)

The main drawback of accelerated life tests is the fact that the functional form of
the model that relates stress to the parameters of the life-distribution has to be known.
The form of this function can be dependent on the nature of the material the product
under study is made of or the construction of the product. For some materials such as
electrical insulators, the functional form of g is well known (Nelson, 1990). For some
products, especially those constructed of new materials, such a function may not be
easily assumed. In many situations, Partially Accelerated Life Tests (PALT) can
overcome this problem. In PALT scenario, one set of product specimens are tested at
normal use conditions while the other set is tested under high stress conditions. Rather
than assume a function that links the model parameter 6, with stress, it is assumed that
at higher stress, 6, takes a new value 8] = 36;. That is, the acceleration changes
0, through a multiplicative constant. While the mathematics behind estimating both 6,
and 67 as well as the other parameters of the life distribution is not simple, the PALT
methodology avoids the assumption of the linkage function g thus eliminating the
chance of using an incorrect functional form. The main drawback of the PALT
procedure is that one set of product specimens has to be tested at the normal use stress
level thus forcing the experimenter to increase the product test time T in order to ensure
that a sufficient number of specimens will fail under normal use conditions. This
method, however, is ideal for life testing products such as chemicals, whose usable life-

span is moderately long but may not run into many years.

Within the PALT, the literature works mention. Saxena and Zarrin (2013) used
the Constant Stress Partially Accelerated Life Test (CSPALT) and assumed Type-I
censoring under the Extreme Value Type-III distribution. The Extreme Value Type-III
distribution has been recommended as appropriate for high reliability components. The
authors used the Maximum Likelihood (ML) method to estimate the parameters of
CSPALT model and confidence intervals for the model parameters were constructed.
Note that the CSPALT plan is used to minimize the Generalized Asymptotic Variance

(GAV) of the ML estimators of the model parameters.



Ismail (2013) derived the maximum likelihood estimators (MLEs) of the
parameters of the GE distribution and the acceleration factor when the data are Type-II
censored under constant-stress PALT model. The likelihood ratio bounds (LRB)
method was used to obtain confidence bounds of the model parameters when the sample
size is small. It is also shown that the maximum likelihood estimators are consistent and
their asymptotic variances decrease as the sample size increases. The numerical results
reported in the paper support the theoretical findings and showed that the estimated
approximate confidence intervals for the three parameters are smaller when the sample

size is larger.

Abdel-Hamid (2009), considered a constant PALT model when the observed
failure times come from Burr(c,K) distribution under progressively Type-Il right
censoring. The MLEs of the parameters were obtained and their performance was
studied through their mean squared errors and relative absolute biases. The paper also
showed how to constructed approximate and bootstrap Cls for the parameters. The
bootstrap Cls give more accurate results than the approximate intervals for small sample
sizes, the Student’s-t bootstrap Cls are better than the Percentile bootstrap Cls in the
sense of having smaller widths. However, the differences between the lengths of Cls for

the two methods decrease with the increase in sample size.

In this study, we develop PALT methodologies for constructing confidence
intervals not only for the distribution parameters and the acceleration factor, but also a
lower confidence bound for the mean life, under Type | censoring. Three types of
confidence intervals and bounds are considered. They are the asymptotic
intervals/bounds constructed from the delta-method and those constructed using the
parametric bootstrap or the non-parametric bootstrap. The underlying distributions
considered are the Weibull and the Generalized Exponential (GE). Methods for
obtaining asymptotic or bootstrap-based confidence bounds for the mean life under
PALT are not discussed in currently available literature for any type of life distribution,
censoring scheme. Also, not available in current literature on PALT are bootstrap-based

methods for constructing confidence intervals for distribution parameters of Weibull and



GE distribution and the acceleration factor under Type | censoring. This research aims to
fill this gap.



2. BOOTSTRAP-BASED CONFIDENCE INTERVALS IN PARTIALLY
ACCELERATED LIFE TESTING UNDER THE WEIBULL
DISTRIBUTION

2.1 INTRODUCTION

Products which under normal use conditions last for a long period pose a
problem in determining their mean life using standard life tests because only a very
small fraction of them will fail under a testing period of reasonable duration. In such
situations, practitioners resort to accelerated life tests (ALT). As Nelson (1980) puts it:
“Accelerated life testing of a product or material is used to get information quickly on its
life distribution.” In an ALT scenario, test units are run under two or more high stress
levels to accelerate the failure process conditions yielding failure-time data sooner than
under normal (design, field) use conditions. A model is fitted to the accelerated failure
times and then extrapolated to estimate the life distribution under normal conditions.
Alternatively, a known acceleration factor that adjusts a parameter of the life distribution
to account for the higher stress is utilized for this purpose. This is quicker, cheaper, and
more practical than testing at design use conditions. When there exists a mathematical
model, which specifies the life-stress relationship, or an acceleration factor is known, the
ALT is a very suitable approach to quickly obtain information useful for estimating the
life distribution under normal use conditions. However, there are some situations in
which neither the acceleration factor is known nor do life-stress models exist, or are very
hard to assume. In such cases partially accelerated life tests (PALT) provide a better

approach.

Under the PALT method, a portion of the test units are placed under the normal
use stress conditions and the remaining units are tested under a suitably selected higher
than normal stress level. The life distribution under the higher stress level is assumed to
be the same as that under normal use, but with the scale parameter multiplied by an
acceleration factor. This factor is estimated together with the other distribution

parameters. Since there are more failure data from the units that received higher than



normal stress level, the combined data provide better estimates of the common

parameters.

One drawback of the PALT method is that unlike in the ALT, some units have to
be tested under normal use. Thus this method is not suitable for components that are
very long lasting. But items such as chemicals that have shelf-lives that are measured in

months or a year or two can be tested using this method.

In the following, we develop PALT-based methodologies to obtain confidence
bounds for the mean life and confidence intervals for the acceleration factor as well as
the distribution parameters when the underlying distribution is Weibull. Type |
censoring is also assumed. The methodologies considered are asymptotic methods as
well as those relying on the parametric or the non-parametric bootstrap. This research
extends the work of Ismail (2013) who assumed Type Il censoring and employed only
the traditional large sample approach to obtaining prediction intervals. While Ismail’s
work assumed a Generalized Exponential distribution as the underlying life distribution,
we assume the Weibull in this study. The performances of the three methods are
compared using a Monte-Carlo simulation study.

2.1.1 A Brief Review of Relevant Literature. Partial accelerated life test
(PALT) is the one of methods used for reliability demonstration and prediction of
components at normal conditions using data obtained at accelerated condition. It is a
type of testing method that enables one to quickly get information over a variety of
conditions, and is therefore an important tool for the reliability engineer. A brief outline

of previous work on PALT is given below.

Nelson (1990) showed that the stress can be applied in two ways; as constant
stress over the test period or in a step-stress fashion. In step-stress partially accelerated
life tests (SS-PALT), a test item is first run at normal use conditions and, if it does not

fail for a specified time, then it is subjected to a higher than normal stress level for



another testing period. The SS-PALT were studied extensively by many authors, for
example: Preeti Wanti Srivastava, Mittal (2010), Abdel-Hamid (2009).

However, the constant-stress PALT runs every item at either normal use
condition or accelerated use condition only. Thus, we have two samples and units in
each sample are run at a constant stress level unique to that sample, the levels being
either normal or a pre-determined higher than normal level. Within the literature on
PALTSs, the following studies are worth mentioning. Saxena and Zarrin (2013) used the
constant stress Partially Accelerated Life Test (CSPALT) and assumed Type-I
censoring. The underlying life-distribution they incorporated was the Extreme Value
Type-I11 distribution, which has been recommended as appropriate for high reliability
components. The Maximum Likelihood (ML) method was employed by the authors to
estimate the parameters of CSPALT model and confidence intervals for the model

parameters were also constructed.

Ismail (2013) assumed a constant-stress PALT testing scenario under Type-II
censoring. In addition to asymptotic confidence bounds, likelihood ratio bounds (LRB)
method employed to obtain confidence bounds of the model parameters in small sample
situations. The authors showed that the maximum likelihood estimators are consistent
and their asymptotic variances decrease as the sample size increases. They also
established that the estimated approximate confidence intervals for the three parameters
become narrower with increase in sample size. These asymptotic results were confirmed

using numerical simulations.

A constant PALT model was developed by Abdel-Hamid (2009), for the case
when the underlying life distribution is Burr(c,k). They considered that sample is
subjected to progressive Type-IlI right censoring. The MLEs of the parameters were
obtained and their performance with respect to their mean squared errors and relative
absolute biases were investigated. The author also constructed approximate and
parameters bootstrap-based confidence intervals (Cls) for the parameters. It was shown
that the bootstrap Cls gave more accurate results than the approximate intervals for
small sample sizes, and that the Student’s-t bootstrap Cls have smaller widths than the
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Percentile bootstrap Cls. The differences between the lengths of Cls for the two

methods, however, decreased with on increase in sample size.

2.1.2 The Weibull Distribution. The proposed PALT method is developed for
the case where the underlying life distribution is Weibull. The Weibull probability

density function is given by:

a-1 71”
f(x;a,i):%(%j e@, x>0,a>0,1>0, (1)

And the cumulative distribution function is:

F(x;ac,/i):l—e(ﬂj , (2)
where « is the shape parameter and A the scale parameter.
Note that the Weibull distribution is used extensively in reliability literature because of

the different shapes its hazard function can take based on different shape parameter

values. The hazard (or the failure rate) function of the Weibull distribution is given by:

X a-1
2] ®

2.2 THE PROPOSED PALT METHOD AND BOOTSTRAP INTERVALS

The following assumptions are made regarding the proposed PALT method.

1. The total number of units under test is n.

2. w denotes the proportion of sample units allocated to accelerated condition

3.n(1- 7z) =Nz units, where 7 =1-r, are allocated to normal (field) use conditions.

4. nzr units are allocated to the high stress condition (subject to acceleration)

2.2.1 Likelihood Function under Type I Censoring and Asymptotic C.I.s.
Under Type I censoring, the censoring time, t is fixed but the number of failures
observed during the test duration t is a random variable, say R.

Notation
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Xi - Observed lifetime of item i tested at the normal (field) use conditions.
Yi: Observed lifetime of item j tested at high stress conditions.

% : Indicator function denoting the censoring state of ith observation under normal use

condition, with 5“i - 1if the observation is uncensored.

4 1 Indicator function denoting the censoring state of jth observation under high stress

. 0. =1, ..
condition, with 2 if the observation is uncensored.

Ny- Number of items that failed at normal use condition.
n, : Number of items that failed at high stress condition.

1. The censoring time of the life test (for all units).

<...< X, <7 :Ordered failure times at normal use condition.

(ny)

Yoy S S ¥, ST Ordered failure times at high stress condition.

3 : Denotes the acceleration factor (3 >1).

In type I censoring, t is fixed but the number of failure values observed in time tis a

random variable. The number of items, R, failing before time t is assumed to follow a

T

binomial distribution R ~ Bin(n, p), where p = Fy (r;0,4) =1—e_{zj , under normal

use conditions. Under high stress conditions the number of items failing will have a

(BxY
Binomial Bin(n, p*), distribution where p* = Fy (7,2, 4,8) =1-¢ [AJ . Then, for

observation i under normal use conditions, we have,

1 X <t . —
o, = , 1=12,-,nr (4)
10 0/w
Similarly, for observation j under a high stress condition, we have,
1 <
5&- = yJ T, j:112,"',n7l', (5)
10 0/w
5Ui :1—5ui, 53 zl—gaj'

with



s, ~ Ber(p) = iéui ~ Bin(nz, p),
i=1

S, ~Ber(p)= Zéaj ~ Bin(nz, p).
j=1
We also have, under normal use conditions,

CP(X<x) 1—e7(%j
CP(X<7) ()
1-e '/

F (xa,Ar)=P(X <x|X <7)

Lo
_ —~ X<t
) 1—e_(ZJ
1 X>T,
and
a( x ]“_1 1)
f.(%a lr)= fx(x,a,/l): A4 .

F (Tra,2) 1_6_[%]“

Thus, givenR = n,, the conditional density of the first r failure times under a normal

12

(6)

()

(8)

(9)

use condition is equivalent to the joint density of an ordered random sample of sizen,

from a truncated Weibull distribution, given by

(4
ny My ala ¢
f(Xg o Xy [R=1,) =1, '1:1[ f. (%52 4)=n, ']:l[ -

The joint density of obtaining R = n, ordered observations at the values Xy 2 X

before time t may be expressed as

(10)
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f (x(l),-n,x(nu)): f (x(l),~-~,x(nu) IR= nu)bin(nu;nﬁ, p) =

Therefore, we have )
N ENE R S (A Y
f(xa)""'x(m)“(%j [e (1] ] e H(%] H(%} .

In a fashion similar to the argument made about the joint density of observations under

normal use conditions, givenR =n_ the conditional density of the first r failure times

under acceleration is equivalent to the joint density of an ordered random sample of size

n, from a truncated accelerated Weibull distribution. Therefore, for an item tested at

accelerated condition, the probability density function is given by

a-1 7&“
f(x;a,/l,ﬁ):ﬂﬂ—a(%j e(‘j, x>0, a>0,1>0, f>1,

whereY = g X.
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f(y(l),-..,y(na)|R = na)= n, If[ fr(y(i);a’ﬂaﬂ): na!f[
=t =1

. a - (11
(ﬂaj"a 2%

A

=n,!

Y

The joint density of obtaining R = n, ordered observations at the valuesY, )

W

before time, may be expressed as
(Yo Yoy ) = F (Yo' Yooy [R =1, ) bin(n,; 7z, p°)

Gl a7
|

ey (4T By

j=1

thus,

Ma _&a e ,i&a n, y a-1
f(y(l)""’y(na))OC(ﬂTaj [e{ﬂj \J e i:1{l] H[ﬂlJJ ,
j-1
and the total likelihood function for (X1i5 KBy VB Yot ) A be

th a, T

expressed as follows:
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L=L(@hplx.y) =L, (e 2]x.8, )L, (@ 48,6, ) 7
) H!%H £ ] [e@“ ] Hh_a 2 ) {2 } [(J ] )
A i o

The MLE’s of the parameters can estimated numerically by minimizing the log
likelihood function.

=InL=1In L(a,i,ﬂ|§ ,y)z

:I—ZIna me (a- 12In(2‘j l(;j—zl(ﬂ (13)
+2Ina Zln/i+zmﬁ+ a-1) 3 In[ﬂy‘j i{ﬂyjja—_i (&T

j=1 A =t A j=n,+1 A
=l=(n,+n,)(INaz-In2)+n, |”IB+ZW7.+Z%J i (% - i (%j
i=1 j=1 i=n,+1 j=n,+1

Ny

=1=(n,+n,)(Ina-In1)+n, In,B+Zz//7, +Zz//8J

—(n7—n, )(%}a —(nz - na)(%ja :

The score equations are obtained by differentiating the log likelihood with respect to the
parameters and setting them to zero. These equations are:

AT

—(n7 =n, )ys = (nz—n, )ys =0, a
1+(nﬁ—nu)(%]a +(nn—na)(%]a +§(%}a +i(ﬂ;’j] }o, (15)

o«
= =
oL A

and

] PN i N P TR N
jﬁ_;t 1-(nx na)(lJ 1—1[ /1”_0. (16)

=




16

Now, we have a system of three nonlinear equations in three unknowns &, A,and S.

It is clear that a closed form solution is very difficult to obtain. Therefore, an

iterative procedure must be used to find a numerical solution of the above system.

Asymptotic confidence intervals for parameter 6 = («, 4, ) can be obtained using the

following convergence in distribution result;

Result 2.1
The MLEs obtained from the above procedure has the asymptotic distribution given by

the following convergence result:
\/ﬁ((&—a),(i—ﬂ),(ﬁ’—ﬂ) - (0 I‘l(a,/l,ﬂ)jj,

where the |l = (a,/I,ﬁ) is the fisher information matrix given by

I o
da® 0adl Oadp
o’ ol o°l

dda  0A* AP |
o°l o°l o°l

| 0Poa OPor  op?

Proof: A proof that shows that the regularity conditions needed for asymptotlc normality

Li(a) 1,(ed) 1s(ap)
(a A, ,3) I, (/10{) l,, (/1) I, (/1,3) =
|31(ﬂ0‘) 1., (B2)  1:(P)

for Weibull parameters estimates under Type | censoring in the PALT setup is given in
the appendix. Note that since the Weibull distribution belongs to the log-location-scale
family and the distributions in this family satisfy the regularity conditions needed, the
above asymptotic result does hold for MLE estimators of the Weibull parameters (see
Escobar and Meeker (2000)), but their results do not consider the case where PALT data

are used. Thus, the proof given in the appendix is of importance.

The elements of the 3x3 matrix L1;(0). =123

(0)-1@5).

can be approximated by

From Eq. (13), we get the following:



o’ n +n

OBt o7 -, s +2(07 -1, v ﬂiﬂ’“ +2w2j,
R LS RN CN|
st temorn (4] e ]
ai;3=nﬁnﬂ+Wﬂ+wm—%nﬁ—nd(%ya—@ﬂ—nﬂ(éfy,
aizalﬁ _/11{'" # =(07 =0,y = (v =, ZW‘“ Z%,},

and
azzﬂj;{( _”a)@ng(ﬁ”a}’

where

(] fen(2)]
w3} 3].

Now by employing the standard z-based confidence interval formulations

a+Z,,\17 (&), A+Z,,13(4), B+Z,,13(5),

o)

we obtain the confidence intervals for the parameters based on the

distribution.

(25 (1]

17

(17)

(18)

(19)

(20)

(21)

(22)

asymptotic
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The asymptotic confidence interval for the mean life at normal use conditions is given

by

'[lizy/Z \} ;ar(/&)’

where Var (/1) is obtained using the Delta method.

2.3 THE BOOTSTRAP RESAMPLING METHODS AND THE MONTE-
CARLO PROCEDURE

There are two different methods for generating bootstrap sample data. One is the
parametric bootstrap, where once the parameters of the underlying distribution are
estimated, they are plugged into the assumed distribution and pseudo random numbers
then drawn from this estimated distribution to produce the bootstrap sample. The non-
parametric bootstrap does not assume a set underlying distribution, but resample from
the sample data to produce new samples. The resampling procedure, of course, should
be adopted to fit the underlying structure of the problem. For example, in a regression
setting, resampling must be done on the residuals of a fitted model rather than from the

original data.

In the following, we combine the bootstrap steps with the steps needed to carry
out a Monte-Carlo comparison of the proposed methods of building confidence bounds
and intervals. The steps for the parametric bootstrap and the non-parametric bootstrap
are given separately. Note that the confidence bounds and intervals based on the
asymptotic distribution can be computed at each Monte-Carlo simulation sample and

does no require bootstrap resampling.

2.3.1 The Proposed Parametric Bootstrap Method and the Monte-Carlo
Procedure for Studying its Performance.The Monte-Carlo procedure employed to

study the performance of the parametric bootstrap method is described below. The steps

for the parametric bootstrap method for obtaining confidence bounds for a4 and P
and lower bounds for the mean life are embedded in this procedure and are given in

italics. Note that distributional parameters are varied in the study as follows:
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(@ =15nad2,2=1,4=15and2) \,h u=AT (1 + i) The censoring time was set at

=1, and1.5. Note that without loss of generality, scale parameter A can be set at 1.

(1) For fixed values of n and m, generate a random sample x;,i = 1,2, ...,nm from
the Weibull (a, 1) distribution. This would be considered data from the normal
use sample. Similarly, generate the data sety;,j = 1,2, ..., nm, representing the

sample under the high stress condition, from the Weibull («, 1) distribution.

(2) Use the ML method to estimate the parameters with the same censoring time t
used for both samples. In this study, the nonlinear equations of the maximum
likelihood estimates were solved iteratively using the Newton Raphson method.

(3) Employ the resulting estimates of the parameters and acceleration factor to
construct asymptotic confidence limits with confidence level at y = 0.95. Also,
plug-in the MLEs into the Fisher Information matrix to obtain the asymptotic
variance and covariance matrix of the estimators and then use them in the delta
method to compute the lower bound for mean life.

(4) Replace the unknown parameters, a, 4, in the Weibull distribution for the normal
use case with their MLEs, &, 4, and utilize the estimated distribution to generate
a bootstrap sample x; ,i = 1,2, ..., nw of size nm. Censor the data based on the
censoring time .

(5) Similarly replace the unknown parameters, a, A, 5 in the Weibull distribution for
the high stress case with their MLEs, @&4,8 and utilize the estimated
distribution to generate a bootstrap sample y; ,j = 1,2, ..., nm of size nm. Censor
the data based on the censoring time .

(6) Re-estimate the Weibull parameters of the normal use distribution were using
the combined bootstrap samples. Denote the bootstrap sample-based MLEs of

a,A, B and p obtained at bootstrap step k by @*®,1*® g *Wang &
respectively.

(7) Repeat Steps (4) to (6) 1,000 times. Construct the empirical distributions of the bootstrap
estimates @*®), 1*®), g M) gnd 4** k=1, 2, ..., 1,000

(8) Use the empirical distributions obtained from bootstrap estimates to construct,
confidence interval for «, 4, § using quantiles at (1_7")100% and 1 — (1_7")100% of the
respective empirical distribution as the lower and upper bounds respectively. Use

the (1 —y)100% quantile of the empirical distribution of 4*®) | k=1, 2, ..., 1,000, as
the lower bound for p.

(9) Repeat steps (1) through (8) 1,000 times and compute the average number of
times each parameter fell within the bound(s). This would yield an estimate of the
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expected coverage for each interval. For each parameter except u, the widths of
the two sided interval computed in Steps (3) and (8) are averaged to obtained an
estimate of the expected, width.

2.3.2 The Proposed Nonparametric Bootstrap Method and the Monte-
Carlo Procedure for Studying its Performance.The Monte-Carlo procedure employed
to study the performance of the nonparametric bootstrap method is described below. The
steps for the parametric bootstrap method for obtaining confidence bounds for
a, A, and B and lower binds for the mean life are imbedded in this procedure and given

in italics.

(1) For fixed values of n and =, generate a random sample x;,i = 1,2, ..., nw from the
Weibull (a, 1) distribution. This would be considered data from the normal use
sample. Similarly, generate the data sety;,j = 1,2, ..., nm, representing the sample

under the high stress condition, from the Weibull («, A) distribution.

(2) Obtain a bootstrap resample from each of the two samples generated in Step (1)
above, with each bootstrap sample of size zn (or zn) obtained by sampling with
replacement from the respective sample obtained in (1).

(3) New “bootstrap estimates” @&*,1*,and f* are computed from the combined
bootstrap sample using the ML method as described in Step (2) given in Section
2.3.1. Also estimate the mean life x under normal conditions, accounting for the

censoring.

(4) Repeat the process given in Steps (2) and (3) 1,000 times and obtain the empirical
distributions of @*, 1*, and B*..

(5) Using the empirical distributions of the @*, 1*, and B* obtained from bootstrap
estimates, construct confidence interval for a, A, and S using respective quantiles

at (*TV) 100% and 1 — (1%)100%.

(6) Using the empirical distributions of the mean g* obtained from bootstrap
estimates, construct the lower confidence bound for u is using quantile at
(1-vy)100% .

(7) Coverage probabilities were computed based on 1,000 simulation runs by
repeating Steps (1) — (6).
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Actual Sample Data From Simulated censored samples
Population Or Population Or Process from F(t,8)
Process Used to estimate model Draw 1000 samples, each of
parameters sizen

-

Figure 2.1.Illustrates the parametric bootstrap resampling method



inference.
Actual Sample Data
From Population Or
Process
Used to estimate model

Population Or
Process

parameters
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Simulated censored
samples from F(t,8)

Draw 1000 samples,
each of size n

Figure 2.2. Hlustrates the nonparametric bootstrap resampling for parametric

inference.
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24 MONTE-CARLO SIMULATION RESULTS AND DISCUSSION

All simulations results reported here are for oo = (1.5, and 2) and A = 1, with the
acceleration factor 8 set at 1.5 and 2.0. The censoring parameter T was set at values 1,
and 1.5

The simulation study was conducted using a computer code written in Matlab, and the

simulation results are reported in Table 2.1a to Table 2.31. Tables 2.1a and 2.1b show
the results of the maximum likelihood estimation of («,4,,and i). The estimated
expected values of the MLEs are reasonably close to the true values, even for n=30.
There is no discernible pattern linking the means of the estimates to changes in the
parameter values, at least over the range of parameter values considered in this study.

Tables 2.2 to 2.31 show the performance of the asymptotic, parametric bootstrap, and

nonparametric bootstrap confidence intervals for («,4, and 3)at the 95% confidence

level and the performance of the Asymptotic, Parametric Bootstrap, and Nonparametric

Bootstrap based 95% confidence bound of mean-life under normal conditions.

Table 2.1a Weibull Parameters, Acceleration Factor, and Type | Censoring

~ ~
~ A

T|t|la|A|B| pn | N| « A 1

30 [1.576672 [ 1.043488 [ 1.54321 [ 0.949033
50 | 1.553463 | 1.014072 | 1.565054 | 0.920318
75 | 1.543858 | 0.983789 | 1.485776 | 0.891226
100 | 1.537005 | 1.015341 | 1.539113 | 0.918978

30 [1.615358 [ 0.981995 [ 1.516009 | 0.886497
50 [1.564676 [ 0.986138 | 1.499799 [ 0.890782
75 |1 1.538481 | 1.016195 | 1.531349 | 0.919195
100 | 1.518111 | 1.008931 [ 1.522719 [ 0.911857

1015|1015 0.9027

0.5

1515|1015 |0.9027




N

Table 2.1b Weibull Parameters, Acceleration Factor, and Type | Censoring

0.5

0.667

05

0.667

A

B

u

0.88623

0.88623

0.88623

0.88623

0.88623

0.88623

0.88623

0.88623

~

a
2.10566

A
1.005542

B
1.526783

A

a
0.894765

2.069241

1.015067

1.528142

0.901825

2.03491

1.000411

1.505851

0.887366

2.045635
2.144481

1.009265
0.996427

1.516721
1.516204

0.895606
0.885228

2.082549

1.005506

1.521205

0.892661

2.056499

1.003315

1.51703

0.890216

2.035133
2.097268

0.995743
1.000108

1.498669
1.491671

0.883108
0.889862

2.071283

1.0045

1.505745

0.892569

2.059496

1.009989

1.524947

0.896732

2.032169
2.056806

1.002487
0.969927

1.508073
1.431312

0.889318
0.861615

2.064046

0.992657

1.496456

0.881282

2.031231

0.988086

1.474673

0.877013

2.021136
2.08247

0.998281
1.007274

1.501615
2.033726

0.885341
0.894476

2.060175

1.009152

2.025427

0.930197

2.043235

1.00704

2.02148

0.893325

100

2.030411
2.088419

1.001163
1.002052

2.005237
2.025996

0.888148
0.889443

2.056056

1.003584

2.012276

0.890461

2.042821

1.00153

2.015177

0.888306

100

2.036468
2.032135

1.00281
0.993783

2.011049
1.97212

0.889302
0.882527

2.034193

1.004697

1.992329

0.89193

2.042055

1.000766

2.005288

0.887732

100

2.037142
1.970186

1.005378
0.971658

2.025448
1.919988

0.891691
0.863211

1.980244

0.98249

1.942167

0.872111

2.035332

0.99344

1.990141

0.881122

100

2.023208

1.001917

2.010083

0.888552

4



a=15 A=1, B=1.5, u=0.9027, rn=.5,

Table 2.2 Coverage of Asymptotic 95% C.1.s

=1

25

n | parameter | Lower Bound | Upper Bound | width SD(W) | Coverage
a 1.058891 2.297576 1.238686 | 0.207054 | 0.967
30 A 0.737031 1.535213 | 0.798183 | 0.186898 | 0.956
B 1.04402 2.459394 1.415374 | 0.350738 | 0.969
u 0.711167 0.954
o 1.042634 2.174402 1.131768 | 0.172591 0.966
50 A 0.654653 1.411619 | 0.756966 | 0.104981 | 0.953
B 1.068087 2.288784 1.220697 | 0.212695 | 0.967
u 0.658812 0.959
a 1.088779 2.131125 1.042346 | 0.141036 | 0.965
75 A 0.762073 1.275386 | 0.513312 | 0.069603 | 0.948
B 1.075537 2.114673 1.039136 | 0.184005 | 0.965
u 0.711217 0.9554
a 1.147291 2.019342 | 0.872052 | 0.130529 | 0.960
100 A 0.78837 1.22566 0.437289 | 0.041496 | 0.945
B 1.183164 2.010407 | 0.827243 | 0.105109 | 0.957
i 0.731194 0.952
Table 2.3 Coverage of Parametric Bootstrap 95% C.l.s
a=1.5, A=1, B=L1.5p=0.9027, n=.5, 1=I
n | parameter | Lower Bound | Upper Bound | width SD(W) | Coverage
[0 1.131354 2.141941 1.010587 | 0.135168 0.964
30 A 0.754875 1.532676 | 0.777801 | 0.166295 | 0.954
B 1.059377 2.344477 1.2851 | 0.259647 | 0.968
u 0.717816 0.953
a 1.085333 2.017417 | 0.932085 | 0.108718 | 0.962
50 A 0.663783 1.426243 | 0.762459 | 0.090188 | 0.953
B 1.097772 2.200414 1.102642 | 0.166013 | 0.966
u 0.663387 0.958
a 1.143289 1.985733 | 0.842444 | 0.112366 | 0.959
75 A 0.777822 1.262373 | 0.484551 | 0.062424 | 0.947
B 1.109645 2.089899 | 0.980254 | 0.140481 | 0.964
u 0.722811 0.953
a 1.210594 1.918238 | 0.707644 | 0.091796 | 0.952
100 A 0.796675 1.219792 | 0.423118 | 0.034572 | 0.945
B 1.212475 1.915997 | 0.703522 | 0.084472 | 0.952
i 0.734488 0.952




Table 2.4 Coverage of Nonparametric Bootstrap 95% C.I.s
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a=1.5 A=I1, B=1.5u=0.9027, n=5, 1=1
n | parameter | Lower Bound | Upper Bound | width SD(W) | Coverage

a 1.094575 2.17102 | 1.076446 | 0.172978 | 0.966

30 A 0.746554 1.786962 | 1.040408 | 0.252883 | 0.965
B 1.10094 2.802566 | 1.701625 | 0.307192 | 0.971
u 0.681494 0.956
a 1.194322 2.240323 | 1.046002 | 0.124307 | 0.965

50 A 0.797266 1.480086 | 0.682821 | 0.165115 | 0.951
B 1.119282 2.155023 | 1.035741 | 0.269971 | 0.965
u 0.73212 0.952
a 1.125589 2.033443 | 0.907854 | 0.130005 | 0.961

75 A 0.743859 1.489184 | 0.745326 | 0.03947 | 0.953
B 1.191063 2.113575 | 0.922512 | 0.101411 | 0.962
i 0.712294 0.954
a 1.272253 1.826239 | 0.553986 | 0.095875 | 0.950

100 A 0.762935 1.290845 | 0.527909 | 0.071676 | 0.949
B 1.058365 1.852788 | 0.794424 | 0.195381 | 0.956
i 0.711974 0.954

Table 2.5 Coverage of Asymptotic 95% C.1.s
a=1.5 A=Il, B=1.5 p=0.9027, =n=5, 1=1.5
n | parameter | Lower Bound | Upper Bound | width SD(W) | Coverage

a 1.033085 2.426617 | 1.393531 | 0.180204 | 0.975

30 A 0.678737 1.372683 | 0.693945 | 0.073595 | 0.961
B 1.005162 2.32126 | 1.316098 | 0.206278 | 0.972
i 0.655996 0.959
a 1.14241 2.2658 | 1.12339 | 0.129082 | 0.971

50 A 0.746816 1.404307 | 0.657491 | 0.074644 | 0.960
B 1.029431 2.096434 | 1.067004 | 0.100187 | 0.970
i 0.710759 0.955
a 1.159242 2.022276 | 0.863035 0.1017 | 0.967

75 A 0.745781 1.29498 | 0.549199 | 0.109312 | 0.956
B 1.125778 2.184085 | 1.058307 | 0.090719 | 0.970
u 0.704224 0.955
a 1.231624 1.906322 | 0.674698 | 0.125054 | 0.960

100 A 0.822826 1.223822 | 0.400996 | 0.076077 | 0.949
B 1.204736 1.944556 | 0.73982 | 0.078233 | 0.962
u 0.770035 0.952




Table 2.6 Coverage of Parametric Bootstrap 95% C.1.s
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a=1.5, A=1, Bp=1.5, p=0.9027, =n=5, 1=1.5
n | parameter | Lower Bound | Upper Bound | width SD(W) | Coverage
a 1.044993 2.156078 1111085 | 0.1244 0.971
30 A 0.774367 1.385444 | 0.611076 | 0.052272 | 0.957
B 1.065791 2.195218 1.129427 | 0.126623 | 0.971
u 0.690502 0.957
a 1.20184 2.135915 | 0.934076 | 0.078184 | 0.969
50 A 0.739619 1.346937 | 0.607318 | 0.068972 | 0.957
B 1.188012 2.0868 0.898788 | 0.061109 | 0.968
u 0.726995 0.953
a 1.198535 1.904932 | 0.706397 | 0.041833 | 0.961
75 A 0.788263 1.272586 | 0.484323 | 0.126915 | 0.953
B 1.075457 1.957574 | 0.882117 | 0.093547 | 0.968
I 0.711617 0.955
a 1.279874 1.820302 | 0.540428 | 0.06384 0.956
100 A 0.85188 1.214498 | 0.362618 | 0.063717 | 0.947
B 1.286863 1.823956 | 0.537092 | 0.060072 | 0.955
i 0.788831 0.951
Table 2.7 Coverage of Nonparametric Bootstrap 95% C.I.s
a=1.5 A=Il, B=1.5 pn=0.9027, =n=5, 1=1.5
n | parameter | Lower Bound | Upper Bound | width SD(W) | Coverage
a 1.181807 2.249394 1.067588 | 0.209897 | 0.970
30 A 0.685653 1.327392 | 0.641739 | 0.094274 | 0.958
B 1.04436 2.16286 1.1185 |0.144993 | 0.971
i 0.677046 0.958
a 1.178017 1.970022 | 0.792005 | 0.138289 | 0.964
50 A 0.755765 1.348221 | 0.592456 | 0.108979 | 0.957
B 1.015456 2.094452 1.078996 | 0.191347 | 0.970
i 0.70394 0.956
a 1.215212 1.968906 | 0.753694 | 0.106314 | 0.963
75 A 0.800374 1.273839 | 0.473465 | 0.0537 0.953
B 1.166294 2.090804 0.92451 | 0.11965 0.969
u 0.713027 0.954
o 1.287767 1.806507 0.51874 | 0.097141 0.954
100 A 0.780335 1.236837 | 0.456501 | 0.072061 | 0.951
B 1.189513 1.91431 0.724797 | 0.081611 | 0.962
u 0.731749 0.953




Table 2.8 Coverage of Asymptotic 95% C.l.s
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a=2, A=l, B=1.5,p=0.88623, n=5, =1
n | parameter | Lower Bound | Upper Bound | width SD(W) | Coverage
a 1.428128 2.939773 1511645 | 0.060395 | 0.978
30 A 0.770204 1.174486 | 0.404282 | 0.031394 | 0.971
B 1.108281 1.986048 | 0.877767 | 0.066968 | 0.967
i 0.710548 0.973
a 1.481771 2.689149 1.207378 | 0.086403 | 0.963
50 A 0.804323 1.154149 ] 0.349826 | 0.01449 0.963
B 1.163985 1.86008 0.696095 | 0.035691 | 0.958
u 0.73394 0.966
a 1.569334 2.524061 | 0.954727 | 0.029612 | 0.958
75 A 0.832946 1.08939 0.256444 | 0.016714 | 0.953
B 1.215491 1.788695 | 0.573204 | 0.043942 | 0.951
u 0.756085 0.957
a 1.615016 2.469886 0.85487 | 0.051646 | 0.952
100 A 0.828196 1.060944 | 0.232748 | 0.011203 | 0.949
B 1.219649 1.726205 | 0.506556 | 0.02449 0.948
i 0.752861 0.958
Table 2.9 Coverage of Parametric Bootstrap 95% C.l.s
a=2, A=1, B=L5,pu=0.88623, n=5, t=I1
n | parameter | Lower Bound | Upper Bound | width SD(W) | Coverage
a 1.528454 2.785755 1.257301 | 0.077077 | 0.971
30 A 0.798505 1.260899 | 0.462394 | 0.030082 | 0.975
B 1.15374 2.000944 | 0.847204 | 0.077483 | 0.964
u 0.736512 0.961
a 1.611724 2.595878 | 0.984154 | 0.101286 | 0.958
50 A 0.833037 1.237362 | 0.404325 | 0.008988 | 0.971
B 1.200454 1.871415 | 0.670961 | 0.044053 | 0.959
u 0.757589 0.957
a 1.658296 2.478763 | 0.820467 | 0.047923 | 0.956
75 A 0.860875 1.177373 | 0.316498 | 0.010782 | 0.955
B 1.256715 1.828712 0.571997 | 0.047047 0.951
i 0.779962 0.949
a 1.707784 2.424014 0.71623 | 0.038172 | 0.949
100 A 0.856417 1.148437 0.29202 | 0.00501 0.953
B 1.264424 1.766898 | 0.502474 | 0.023945 | 0.947
u 0.775597 0.949




a=2, L=1, p=1.5, n=0.88623, n=.5,

Table 2.10 Coverage of Nonparametric Bootstrap 95% C.I.s

=1

29

n | parameter | Lower Bound | Upper Bound | width SD(W) | Coverage
a 1.529158 2.651451 1.122293 | 0.098632 | 0.965
30 A 0.783752 1.220464 | 0.436712 | 0.027064 | 0.973
B 1.125854 1.898379 | 0.772525 | 0.056806 | 0.961
u 0.715692 0.973
a 1.558791 2.627216 1.068425 | 0.095078 | 0.961
50 A 0.795752 1.148941 | 0.353189 | 0.037386 | 0.964
B 1.151173 1.810551 | 0.659378 | 0.056138 | 0.953
u 0.72729 0.967
a 1.62623 2.416409 | 0.790179 | 0.051491 | 0.953
75 A 0.819761 1.118779 | 0.299018 | 0.02911 0.954
B 1.251547 1.776176 0.524629 | 0.035295 0.949
u 0.75656 0.957
a 1.620668 2.34255 0.721882 | 0.062642 | 0.949
100 A 0.841021 1.141333 | 0.300312 | 0.025753 | 0.954
B 1.232678 1.753693 | 0.521015 | 0.039505 | 0.949
u 0.763656 0.951
Table 2.11 Coverage of Asymptotic 95% C.I.s
a=2, Ai=1, B=L5, p=0.88623, n=5, t=1.5
n | parameter | Lower Bound | Upper Bound | width SD(W) | Coverage
a 1.520019 2.922929 1.40291 | 0.035159 | 0.979
30 A 0.756544 1.245536 | 0.488992 | 0.02013 0.978
B 1.09424 2.028082 | 0.933842 | 0.039966 | 0.978
u 0.707699 0.969
a 1.559902 2.690285 1.130383 | 0.033658 | 0.971
50 A 0.802351 1.227825 | 0.425474 | 0.022293 | 0.966
B 1.16077 1.982451 | 0.821681 | 0.02153 0.967
i 0.738667 0.967
a 1.631716 2.557852 | 0.926136 | 0.04647 0.966
75 A 0.831179 1.170676 | 0.339497 | 0.004215 | 0.955
B 1.216213 1.86435 0.648137 | 0.014805 | 0.957
u 0.764202 0.959
a 1.646833 2.521604 | 0.874771 | 0.035506 | 0.957
100 A 0.850687 1.157054 | 0.306367 | 0.000251 | 0.953
B 1.243681 1.82187 0.578189 | 0.014259 | 0.954
u 0.775236 0.957




Table 2.12 Coverage of Parametric Bootstrap 95% C.I.s
a=2, A=1, B=L.5, u=0.88623, n=.5,

=1.5

30

n | parameter | Lower Bound | Upper Bound | width SD(W) | Coverage
a 1.56777 2.697066 1.129296 | 0.070908 | 0.971
30 A 0.781595 1.229183 | 0.447588 | 0.031947 | 0.967
B 1.145747 1.921492 | 0.775745 | 0.062558 | 0.964
i 0.728119 0.967
a 1.620587 2.521198 | 0.900611 | 0.055174 | 0.964
50 A 0.833704 1.218953 | 0.385249 | 0.031161 | 0.959
B 1.217152 1.90776 0.690608 | 0.045046 | 0.959
u 0.759754 0.962
a 1.670304 2.429366 | 0.759062 | 0.062678 | 0.952
75 A 0.85118 1.159789 | 0.308609 | 0.014821 | 0.953
B 1.258623 1.776935 | 0.518312 | 0.023148 | 0.952
u 0.781167 0.955
a 1.697873 2.407773 0.7099 | 0.053035| 0.948
100 A 0.870352 1.141185 | 0.270833 | 0.006514 | 0.947
B 1.293153 1.746251 | 0.453098 | 0.028371 | 0.946
i 0.784996 0.955
Table 2.13 Coverage of Nonparametric Bootstrap 95% C.l.s
a=2, Ai=1, B=L5, p=0.88623, n=5, t=1.5
n | parameter | Lower Bound | Upper Bound | width SD(W) | Coverage
a 1.606009 2.720998 1.114989 | 0.063759 | 0.970
30 A 0.794537 1.225881 | 0.431344 | 0.026063 | 0.966
B 1.168365 1.905797 | 0.737432 | 0.046977 | 0.963
u 0.735065 0.967
a 1.654509 2.564973 | 0.910464 | 0.051808 | 0.965
50 A 0.843868 1.19489 0.351022 | 0.0103 0.957
B 1.245075 1.837008 | 0.591933 | 0.035625 | 0.955
u 0.76032 0.961
a 1.665246 2.443821 | 0.778575 | 0.055733 | 0.953
75 A 0.864866 1.16557 0.300704 | 0.008555 | 0.952
B 1.291665 1.780783 | 0.489118 | 0.031462 | 0.948
i 0.785837 0.954
a 1.689984 2.363461 | 0.673477 | 0.051352 | 0.943
100 A 0.874408 1.141715 | 0.267307 | 0.010536 | 0.947
B 1.287561 1.769521 0.48196 | 0.01726 0.948
u 0.796818 0.951




Table 2.14 Coverage of Asymptotic 95% C.l.s
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a=2, A=l, B=1.5,p=0.88623, n=.667, 1=1
n | parameter | Lower Bound | Upper Bound | width SD(W) | Coverage
a 1.469722 2.896838 1.427116 | 0.0385 0.978
30 A 0.738007 1.349913 | 0.611906 | 0.020207 | 0.978
B 1.093268 2.083072 | 0.989803 | 0.057317 | 0.975
i 0.688976 0.967
a 1.492544 2.789179 1.296636 | 0.052213 | 0.971
50 A 0.771562 1.320843 | 0.549281 | 0.036053 | 0.964
B 1.136512 2.045376 | 0.908865 | 0.042843 | 0.975
u 0.713673 0.963
a 1.586767 2.612116 1.025349 | 0.028957 | 0.962
75 A 0.826597 1.22184 0.395243 | 0.026544 | 0.957
B 1.201475 1.882793 | 0.681319 | 0.039577 | 0.953
u 0.754699 0.957
a 1.578048 2.545202 | 0.967155 | 0.030645 | 0.958
100 A 0.826024 1.216026 | 0.390002 | 0.020137 | 0.956
B 1.217061 1.897053 | 0.679992 | 0.037355 | 0.951
i 0.75678 0.955
Table 2.15 Coverage of Parametric Bootstrap 95% C.l.s
a=2, A=l, B=L1.5, p=0.88623, n=.667, 1=I
n | parameter | Lower Bound | Upper Bound | width SD(W) | Coverage
a 1.542738 2.695054 1.152316 | 0.071666 | 0.967
30 A 0.754464 1.35406 0.599596 | 0.025528 | 0.975
B 1.123545 2.012949 | 0.889404 | 0.071674 | 0.974
u 0.694204 0.965
a 1.566228 2.637608 1.07138 | 0.073092 | 0.963
50 A 0.784254 1.319521 | 0.535268 | 0.041696 | 0.962
B 1.14788 1.988201 | 0.840321 | 0.061033 | 0.964
u 0.718012 0.962
a 1.642439 2.537224 | 0.894786 | 0.044157 | 0.954
75 A 0.831346 1.217517 0.386171 | 0.030114 | 0.954
B 1.220708 1.848062 | 0.627354 | 0.052174 | 0.949
i 0.759773 0.954
a 1.627974 2.437957 | 0.809983 | 0.048325 | 0.951
100 A 0.836019 1.218105 | 0.382086 | 0.024322 | 0.953
B 1.240228 1.865566 | 0.625338 | 0.051281 | 0.948
u 0.762306 0.953




Table 2.16 Coverage of Nonparametric Bootstrap 95% C.l.s
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a=2, A=l, B=1.5,p=0.88623, n=.667, =1
n | parameter | Lower Bound | Upper Bound | width SD(W) | Coverage
a 1.506926 2.678344 1.171419 | 0.089682 | 0.969
30 A 0.747277 1.340167 0.59289 | 0.052143 | 0.974
B 1.101348 1.982783 | 0.881435 | 0.061581 | 0.973
u 0.685901 0.969
a 1.576145 2.52648 0.950336 | 0.088759 | 0.957
50 A 0.771919 1.302267 | 0.530348 | 0.063096 | 0.962
B 1.158171 1.992152 | 0.833981 | 0.054018 | 0.964
u 0.71257 0.963
a 1.656934 2.418502 | 0.761568 | 0.033334 | 0.949
75 A 0.825347 1.25867 0.433323 | 0.02956 0.959
B 1.224955 1.926176 | 0.701221 | 0.030402 | 0.954
u 0.750564 0.959
a 1.679754 2.412073 | 0.732319 | 0.076219 | 0.947
100 A 0.831369 1.196916 | 0.365547 | 0.029107 | 0.951
B 1.235504 1.828671 | 0.593167 | 0.041163 | 0.945
u 0.765924 0.951
Table 2.17 Coverage of Asymptotic 95% C.l.s
a=2, A=l, B=1.5,p=0.88623, n=.667, 1=1.5
n | parameter | Lower Bound | Upper Bound | width SD(W) | Coverage
a 1.511932 2.745184 1.233251 | 0.027192 | 0.978
30 A 0.71954 1.270625 | 0.551085 | 0.021859 | 0.969
B 1.052062 1.991453 ] 0.939392 | 0.031368 | 0.974
u 0.6759 0.969
a 1.561383 2.630201 1.068818 | 0.027701 | 0.966
50 A 0.746884 1.224853 | 0.477969 | 0.028403 | 0.967
B 1.094703 1.887362 | 0.792659 | 0.035397 | 0.962
u 0.695307 0.967
a 1.647156 2.589251 | 0.942095 | 0.035601 | 0.959
75 A 0.821089 1.201453 | 0.380365 | 0.018444 | 0.957
B 1.207406 1.860281 | 0.652875 | 0.015337 | 0.956
i 0.757438 0.955
a 1.654901 2.494256 | 0.839355 | 0.03133 0.954
100 A 0.821951 1.195714 | 0.373763 | 0.019084 | 0.957
B 1.218479 1.850327 | 0.631848 | 0.016362 | 0.954
u 0.753369 0.957




Table 2.18 Coverage of Parametric Bootstrap 95% C.I.s
a=2, A=l, B=1.5,u=0.88623, m=.667,

=1.5
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n | parameter | Lower Bound | Upper Bound | width SD(W) | Coverage
a 1.558948 2.582157 1.023209 | 0.056101 | 0.965
30 A 0.759619 1.252893 | 0.493274 | 0.031319 | 0.967
B 1.120572 1.905564 | 0.784991 | 0.048903 | 0.962
u 0.704306 0.966
a 1.628638 2.473594 | 0.844956 | 0.044464 | 0.955
50 A 0.772152 1.208786 | 0.436634 | 0.038431 | 0.961
B 1.155274 1.799511 0.644237 | 0.053251 0.955
m 0.717311 0.962
a 1.707015 2.490781 | 0.783766 | 0.050419 | 0.952
75 A 0.845906 1.189656 0.34375 | 0.028677 | 0.954
B 1.261705 1.799855 0.53815 | 0.032134 | 0.951
u 0.780221 0.951
a 1.689858 2.378117 | 0.688259 | 0.052034 | 0.947
100 A 0.843054 1.185081 | 0.342027 | 0.020943 | 0.954
B 1.266483 1.791549 | 0.525066 | 0.02699 0.949
i 0.772328 0.953
Table 2.19 Coverage of Nonparametric Bootstrap 95% C.I.s
a=2, A=l, B=1.5,p=0.88623, n=.667, 1=1.5
n | parameter | Lower Bound | Upper Bound | width SD(W) | Coverage
a 1.601104 2.628303 1.027199 | 0.040553 | 0.965
30 A 0.772562 1.257633 0.48507 | 0.043927 | 0.967
B 1.1283 1.898682 | 0.770382 | 0.057681 | 0.961
i 0.715079 0.963
a 1.646487 2.515288 0.8688 | 0.077675| 0.957
50 A 0.785353 1.204297 | 0.418944 | 0.03367 0.959
B 1.154279 1.85254 0.698261 | 0.066559 | 0.957
i 0.716794 0.963
a 1.675806 2.411131 | 0.735324 | 0.052411 | 0.951
75 A 0.820617 1.184242 | 0.363625 | 0.033534 | 0.956
B 1.224426 1.771015 0.54659 | 0.039734 | 0.951
u 0.747658 0.959
a 1.687046 2.394657 0.70761 | 0.050762 | 0.949
100 A 0.83771 1.162611 | 0.324901 | 0.017601 | 0.951
B 1.259962 1.755438 | 0.495477 | 0.027759 | 0.947
i 0.765106 0.954




Table 2.20 Coverage of Asymptotic 95% C.I.s

a=2, A=1, p=2,pu=0.88623, n=.5, t=I
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n | parameter | Lower Bound | Upper Bound | width SD(W) | Coverage
a 1.483977 2.964364 1.480387 | 0.07662 0.971
30 A 0.760693 1.289926 | 0.529233 | 0.02404 0.969
B 1.452246 2.822865 1.370619 | 0.059191 | 0.974
u 0.703819 0.969
a 1.541615 2.795729 1.254114 |1 0.046893 | 0.969
50 A 0.815671 1.292058 | 0.476386 | 0.034501 | 0.961
B 1.529307 2.718522 1.189215 | 0.039204 | 0.963
u 0.75032 0.963
a 1.605842 2.614159 1.008317 | 0.041621 | 0.958
75 A 0.835775 1.203938 | 0.368163 | 0.032678 | 0.955
B 1.620502 2.561225 | 0.940722 | 0.032304 | 0.955
u 0.764811 0.959
a 1.63589 2.569063 | 0.933173|0.031881 | 0.956
100 A 0.852459 1.192569 0.34011 | 0.011751 | 0.952
B 1.645568 2.488622 | 0.843054 | 0.03875 0.953
u 0.779406 0.954
Table 2.21 Coverage of Parametric Bootstrap 95% C.l.s
a=2,A=1, =2, u=0.88623, n=.5, =1
n | parameter | Lower Bound | Upper Bound | width SD(W) | Coverage
a 1.573883 2.778111 1.204229 | 0.10896 0.968
30 A 0.772769 1.29223 0.519461 | 0.028304 | 0.967
B 1.494966 2.659774 1.164807 | 0.074735 | 0.962
i 0.707184 0.969
a 1.523706 2.607722 1.084016 | 0.234415 | 0.963
50 A 0.785877 1.296655 | 0.510777 | 0.126723 | 0.966
B 1.550444 2.614866 1.064422 | 0.109566 | 0.957
u 0.791947 0.952
a 1.661268 2.491358 | 0.830089 | 0.067737 | 0.952
75 A 0.838859 1.205743 | 0.366885 | 0.038591 | 0.955
B 1.663064 2.463082 | 0.800017 | 0.050784 | 0.949
u 0.770055 0.956
a 1.696021 2.442705 | 0.746684 | 0.042784 | 0.947
100 A 0.856891 1.192207 | 0.335317 | 0.018008 | 0.951
B 1.691015 2.419798 | 0.728783 | 0.05458 0.946
i 0.782631 0.953




Table 2.22 Coverage of Nonparametric Bootstrap 95% C.l.s
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a=2, A=1, B=2,u=0.88623, n=.5, =1
n | parameter | Lower Bound | Upper Bound | width SD(W) | Coverage
a 1.598029 2.799223 1.201194 | 0.065988 | 0.967
30 A 0.797661 1.31236 0.514699 | 0.046478 | 0.967
B 1.561397 2.669822 1.108425 | 0.095103 | 0.961
u 0.738896 0.966
a 1.582964 2.624709 1.041745 | 0.086998 | 0.959
50 A 0.818457 1.280681 | 0.462224 | 0.042453 | 0.959
B 1.610014 2.661945 1.051931 | 0.102445 | 0.956
u 0.759059 0.962
a 1.697661 2.482775 | 0.785114 | 0.073166 | 0.951
75 A 0.847026 1.209156 0.36213 | 0.024926 | 0.954
B 1.653746 2.463097 0.80935 | 0.060862 | 0.951
u 0.769909 0.957
a 1.685963 2.455716 | 0.769753 | 0.067814 | 0.949
100 A 0.865267 1.186219 | 0.320952 | 0.033396 | 0.949
B 1.69385 2.436623 | 0.742773 | 0.064615 | 0.948
i 0.778681 0.955
Table 2.23 Coverage of Asymptotic 95% C.I.s
a=2, A=l, B=2,p=0.88623, n=5, t=1.5
n | parameter | Lower Bound | Upper Bound | width SD(W) | Coverage
a 1.519411 2.909902 1.390492 | 0.061313 | 0.971
30 A 0.774595 1.217566 | 0.442971 | 0.024039 | 0.969
B 1.518904 2.700644 1.181739 | 0.041725 | 0.971
i 0.721357 0.969
a 1.594864 2.727219 1.132355 | 0.051139 | 0.968
50 A 0.81636 1.212945 | 0.396586 | 0.023425 | 0.965
B 1.555829 2.612693 1.056864 | 0.054011 | 0.965
u 0.751918 0.963
a 1.633685 2.583715 0.95003 | 0.050887 | 0.963
75 A 0.837753 1.168198 | 0.330445 | 0.015659 | 0.959
B 1.628016 2.476788 | 0.848772 | 0.033739 | 0.957
i 0.76741 0.961
a 1.666533 2.507369 | 0.840836 | 0.025476 | 0.956
100 A 0.853058 1.160286 | 0.307228 | 0.017121 | 0.954
B 1.644257 2.446682 | 0.802426 | 0.018657 | 0.954
i 0.778088 0.956




Table 2.24 Coverage of Parametric Bootstrap 95% C.1.s
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a=2,A=1, =2, u=0.88623, n=.5, 1=1.5
n | parameter | Lower Bound | Upper Bound | width SD(W) | Coverage
a 1.598659 2.707797 1.109138 | 0.092883 | 0.967
30 A 0.802635 1.193767 | 0.391133 | 0.029194 | 0.965
B 1.632064 2.511551 | 0.879487 | 0.056993 | 0.959
u 0.748624 0.965
a 1.658097 2.545814 | 0.887717 | 0.069414 | 0.958
50 A 0.841991 1.200204 | 0.358213 | 0.032026 | 0.962
B 1.647926 2.457365 | 0.809439 | 0.080083 | 0.955
u 0.7662 0.962
a 1.683376 2.469675 | 0.786299 | 0.076359 | 0.953
75 A 0.862218 1.153746 | 0.291528 | 0.020141 | 0.951
B 1.69323 2.360561 | 0.667331 | 0.05416 0.949
u 0.780868 0.954
a 1.729485 2.393175 0.66369 | 0.045071 | 0.949
100 A 0.87499 1.141151 | 0.266161 | 0.023524 | 0.949
B 1.720341 2.341989 | 0.621648 | 0.042074 | 0.949
u 0.793004 0.951
Table 2.25 Coverage of Nonparametric Bootstrap 95% C.I.s
a=2, A=1, B=2,p=0.88623, n=5, t=1.5
n | parameter | Lower Bound | Upper Bound | width SD(W) | Coverage
a 1.575055 2.729891 1.154836 | 0.089533 | 0.969
30 A 0.80811 1.246761 | 0.438652 | 0.029353 | 0.967
B 1.59222 2.561914 | 0.969694 | 0.07735 0.962
i 0.739658 0.968
a 1.679571 2.574616 | 0.895045 | 0.061833 | 0.959
50 A 0.846712 1.207035 | 0.360323 | 0.024383 | 0.963
B 1.672726 2.480116 0.80739 | 0.055024 | 0.955
m 0.771552 0.958
a 1.699384 2.426089 | 0.726705 | 0.074618 | 0.951
75 A 0.847472 1.1556 0.308127 | 0.019242 | 0.954
B 1.68427 2.42793 0.74366 | 0.055335| 0.951
u 0.780956 0.954
a 1.6863 2.41247 0.726169 | 0.056313 | 0.951
100 A 0.863844 1.16041 0.296566 | 0.023083 | 0.952
B 1.703262 2.339657 | 0.636396 | 0.060274 | 0.947
i 0.784534 0.952




Table 2.26 Coverage of Asymptotic 95% C.I.s
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a=2, A=l, B=2,p=0.88623, n=.667, =1
n | parameter | Lower Bound | Upper Bound | width SD(W) | Coverage
a 1.501868 2.772073 1.270204 | 0.038875 | 0.971
30 A 0.732235 1.290081 | 0.557847 | 0.049982 | 0.967
B 1.399317 2.77564 1.376323 | 0.094227 | 0.971
u 0.68061 0.969
a 1.537503 2.674505 1.137002 | 0.056834 | 0.969
50 A 0.758493 1.270095 | 0.511602 | 0.026488 | 0.963
B 1.458741 2.702765 1.244024 | 0.061638 0.962
u 0.704273 0.962
a 1.634756 2.589415 | 0.954659 | 0.027532 | 0.961
75 A 0.803353 1.233541 | 0.430188 | 0.024894 | 0.954
B 1.58919 2.556285 | 0.967094 | 0.048037 | 0.954
u 0.742476 0.955
a 1.635246 2.518069 | 0.882823 | 0.036994 | 0.956
100 A 0.832208 1.204684 | 0.372476 | 0.033863 | 0.951
B 1.638842 2.516205 | 0.877364 | 0.057793 | 0.951
u 0.760237 0.949
Table 2.27 Coverage of Parametric Bootstrap 95% C.l.s
a=2,A=1, B =2, u=0.88623, =.667, =1
n | parameter | Lower Bound | Upper Bound | width SD(W) | Coverage
a 1.584251 2.566311 0.98206 | 0.07286 0.964
30 A 0.746065 1.292176 | 0.546111 | 0.057218 | 0.965
B 1.449592 2.649389 1.199797 | 0.123255 | 0.959
i 0.687468 0.967
a 1.616916 2.536815 0.9199 | 0.07817 0.958
50 A 0.766718 1.266552 | 0.499834 | 0.03195 0.961
B 1.492434 2.609861 1.117427 | 0.08488 0.956
u 0.70979 0.962
a 1.706257 2.496656 | 0.790399 | 0.046235 | 0.952
75 A 0.809151 1.239306 | 0.430156 | 0.033166 | 0.954
B 1.629579 2.480842 | 0.851263 | 0.063122 | 0.948
u 0.749622 0.953
a 1.683559 2.402323 | 0.718765 | 0.043911 | 0.9948
100 A 0.839364 1.20608 0.366715 | 0.039321 | 0.949
B 1.686397 2.448049 | 0.761652 | 0.07715 0.946
i 0.764513 0.948




Table 2.28 Coverage of Nonparametric Bootstrap 95% C.l.s
a=2, A=1, B=2,u=0.88623, n=.667, =1
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n | parameter | Lower Bound | Upper Bound | width SD(W) | Coverage
a 1.525844 2.653593 1.127749 | 0.072596 | 0.968
30 A 0.754816 1.329374 | 0.574558 | 0.045802 | 0.969
B 1.507521 2.7966 1.289079 | 0.106334 | 0.965
u 0.700187 0.963
a 1.566619 2.58238 1.015762 | 0.06782 0.966
50 A 0.78307 1.257077 | 0.474007 | 0.038776 | 0.959
B 1.514494 2.601731 1.087237 | 0.09075 0.955
m 0.71844 0.959
a 1.672603 2.439149 | 0.766546 | 0.057978 | 0.950
75 A 0.805391 1.23648 0.431089 | 0.035548 | 0.955
B 1.621088 2.548998 0.92791 | 0.06989 0.953
u 0.736908 0.956
a 1.694588 2.415594 | 0.721006 | 0.048877 | 0.949
100 A 0.826174 1.186477 | 0.360303 | 0.024121 | 0.948
B 1.64081 2.412504 | 0.771694 | 0.043612 | 0.947
u 0.756104 0.951
Table 2.29 Coverage of Asymptotic 95% C.l.s
a=2, A=l, B=2,p=0.88623, =667, 1=1.5
n | parameter | Lower Bound | Upper Bound | width SD(W) | Coverage
a 1.478369 2.624401 1.146033 | 0.040713 | 0.971
30 A 0.698611 1.275153 | 0.576542 | 0.025833 | 0.971
B 1.377872 2.614177 1.236306 | 0.03808 0.971
i 0.662728 0.969
a 1.557089 2.526809 0.96972 | 0.017892 | 0.969
50 A 0.748954 1.211557 | 0.462603 | 0.023503 | 0.963
B 1.44547 2.50873 1.06326 | 0.073951 | 0.964
u 0.698295 0.965
a 1.640691 2.544269 | 0.903578 | 0.030188 | 0.963
75 A 0.803109 1.18672 0.383611 | 0.019288 | 0.956
B 1.573525 2.446088 | 0.872562 | 0.027582 | 0.957
u 0.739598 0.959
a 1.674023 2.503273 0.82925 | 0.025159 | 0.958
100 A 0.832987 1.18701 0.354023 | 0.013232 | 0.952
B 1.634495 2.443882 | 0.809388 | 0.034866 | 0.953
i 0.762572 0.956




Table 2.30 Coverage of Parametric Bootstrap 95% C.I.s
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a=2,A=1, B =2, u=0.88623, n=.667, 1=1.5
n | parameter | Lower Bound | Upper Bound | width SD(W) | Coverage
a 1.549899 2.467697 |0.917798 | 0.071158 | 0.965
30 A 0.731346 1.250344 | 0.518998 | 0.038741 | 0.967
B 1.477881 2.474033 | 0.996152 | 0.061427 | 0.963
u 0.688011 0.967
a 1.632197 2.404597 0.7724 |0.043842 | 0.955
50 A 0.783189 1.189062 | 0.405872 | 0.026159 | 0.958
B 1.511334 2.386952 | 0.875618 | 0.106242 | 0.957
u 0.720073 0.961
a 1.690757 2.433836 | 0.743078 | 0.040686 | 0.952
75 A 0.823991 1.174488 | 0.350496 | 0.023103 | 0.952
B 1.640487 2.346654 | 0.706166 | 0.034308 | 0.949
u 0.763419 0.955
a 1.723998 2.398318 0.67432 | 0.033039 | 0.949
100 A 0.864714 1.171753 | 0.307039 | 0.018894 | 0.949
B 1.696336 2.349142 | 0.652807 | 0.04112 0.946
u 0.784101 0.951
Table 2.31 Coverage of Nonparametric Bootstrap 95% C.l.s
a=2, A=1, B=2,pu=0.88623, n=.667, 1=1.5
n | parameter | Lower Bound | Upper Bound | width SD(W) | Coverage
a 1.539082 2.472456 | 0.933374 | 0.05274 0.966
30 A 0.752717 1.231717 0.479 |0.034023 | 0.965
B 1.469029 2.482562 1.013533 | 0.051888 | 0.964
i 0.688344 0.967
a 1.621013 2.448673 | 0.827661 | 0.08118 0.958
50 A 0.773339 1.248316 | 0.474977 | 0.042215 | 0.964
B 1.515091 2.502296 | 0.987205| 0.1304 0.963
u 0.710522 0.962
a 1.70718 2.448783 | 0.741603 | 0.072849 | 0.952
75 A 0.841297 1.188695 | 0.347398 | 0.026076 | 0.951
B 1.687001 2.396295 | 0.709293 | 0.047098 | 0.949
u 0.770576 0.953
a 1.732012 2.404005 | 0.671993 | 0.029558 | 0.949
100 A 0.849432 1.190326 | 0.340894 | 0.025235 | 0.951
B 1.695365 2.353513 | 0.658147 | 0.060011 | 0.946
i 0.769226 0.954
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The simulations results show that all the three methods provide at least 95%
coverage in almost all cases. While the asymptotic confidence intervals for the
parameters « and B provide consistently conservative coverage when the sample size is
30 (e.g. 0.967 and 0.969 respectively in Table 2.2) these intervals provide marginally
less conservative coverage for larger sample sizes (see Tables 2.2, 2.5, 2.8, 2.11, 2.14,
2.17, 2.20, 2.23, 2.26 and 2.29). The same pattern of less conservative coverage with
increasing sample size is seen for the asymptotic confidence intervals for B (see Tables
2.2 through 2.29), except showing a near normal coverage for sample size 30 in Table
2.2. The intervals for «, A, and B based on the parametric and nonparametric bootstrap
show a similar pattern of decreasing coverage with increase in sample size, but in
almost all cases the coverage stays near or above the normal value. In general, the
coverage probabilities of the confidence intervals for «, A, and g do not differ by much

when compared across the mode of construction.

While the coverage probabilities do not show any distinctive differe3nces
between the three methods, inspection of the widths of the confidence intervals for
a, A,and g show some slight differences. In general, the intervals based on the
parametric bootstrap are slightly narrower than those based on the asymptotic
distribution (see Tables 2.2 and 2.3, 2.5 and 2.6) when « =1.5. This phenomenon
disappears when « =2 except for intervals constructed for « (see Tables 2.8 and 2.9
for example). Other than that, one cannot find any discernible pattern that separates the
two bootstrap methods as far as interval widths are concerned. When the ratio of normal
to accelerated sample sizes changes from 0.5 to 2/3, the widths of the asymptotic
intervals for 4 and g increases slightly when the censoring time 7 =1 (see Tables 2.8
and 2.14), but such a pattern is not seen when 7 =1.5(see Tables 2.11 and 2.17). This
increase is also seen for parametric and nonparametric bootstrap-based intervals when
7 =1 (Tables 2.12, 2.13, 2.15, and 2.16).

For a practicing chemist or an engineer, estimation of the mean life under normal

conditions is even more important than building confidence intervals for the distribution
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parameters. Manufacturers of products such as chemicals would like to provide
customers with information on the shelf-life of the product when stored or used under
normal conditions. Usually such assurances are given in terms of a lower confidence
bound for the mean life. Therefore, it is of interest to note how the confidence bounds
for the mean life performed in the Monte-Carlo study. The confidence bounds for mean
life constructed using all three methods show near normal coverage, especially when
the sample size is at or above 75. The coverage probability can be conservative for small
sample sizes, but this occurs only when the shape parameter o = 2. The expected value

of the bounds also do not vary by much across the three methods.

In summary, all three methods produce confidence intervals with reasonable
coverages as well as lower confidence bounds for mean life that are comparable and
provide coverage ranging from conservative to normal . The relative performance of the
asymptotic distribution-based method relative to the bootstrap-based methods is
somewhat surprising, even when the sample size is 30. Further studies, with smaller
sample sizes and a higher level of censoring may differentiate the bootstrap methods

from the asymptotic method.

2.5 CONCLUSIONS AND FUTURE WORK

PALT is a method that is preferable over the ALT procedure when the
accelerating factor is unknown or a suitable model that links parameters of the life
distribution to the stress level is not available. While PALT is not suitable when the
products under test have a very long mean life, it is applicable in situations where the
life-span of tested products is only moderately long. This research extended previous
work to cover Type | censoring in the Weibull case while at the same time developing
bootstrap-based methods for obtaining prediction intervals for distribution parameters
and the acceleration factor. In addition, asymptotic distribution based intervals were also
considered. More importantly, a method of obtaining lower confidence bounds for the
mean life under normal use conditions was also developed. The performance of the

three methods was studies using a Monte-Carlo study. Results show that all methods
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perform reasonable well under all parameter combinations employed in the Monte-Carlo

study.

Future work studying the performance of the three approaches under additional
parameter combinations and censoring levels is warranted. The performance of the
bootstrap methods when estimates other than MLEs, such as the closed form
approximations introduced by Englehardt (1975), are used would be of interest. A
possible generalization of the proposed procedure is to consider the case where the
censoring times are different for the accelerated and normal use samples. Studies on the
robustness of the three methods in the presence of outliers or distributional miss-
specification may also be valuable. Extending the proposed methodologies to Step-
Stress PALT experiments as well as Progressive Step-Stress PALT situations would also
be of added value.
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3. BOOTSTRAP-BASED CONFIDENCE INTERVALS IN PARTIALLY
ACCELERATED LIFE TESTING UNDER THE GENERALIZED
EXPONENTIAL DISTRIBUTION

3.1 INTRODUCTION

Accelerated life tests (ALT) are often used to obtain information about the life
distribution of products that are designed to last a long time under normal use conditions. This
is because, under normal use conditions, only a very small fraction of them will fail
during a feasible testing period. Nelson (1980) drives this point home in his statement:
“Accelerated life testing of a product or material is used to get information quickly on its
life distribution. Test units are run under severe conditions and fail sooner than under
usual conditions. ..... This is quicker and cheaper than testing at usual conditions, which
is usually impractical because life is so long.” In situations where the acceleration factor
is known or one can find a mathematical model describing the life-stress relationship,
ALT is provides a quick way to get a sufficient amount of information to estimate the
life distribution. However, in situations where neither the acceleration factor is known
nor a reasonable life-stress model can be found, partially accelerated life tests (PALT)

provide a suitable approach to estimating the life distribution and related parameters.

Under the PALT method, a subset of the test units are placed under the normal
use (field use, design use) stress conditions and the remaining units are tested under a
suitably selected higher than normal stress level. This provides a statistically viable
approach by assuming that life distribution of the units under the higher stress level is
the same as that of units under normal use, but with the scale parameter multiplied by
an acceleration factor. This factor is estimated together with the other distribution
parameters by utilizing the combined data set. Since there is more failure data from the
units that received higher than normal stress level, the combined data provide better

estimates of the common parameters.

One drawback of the PALT method is that unlike in the ALT, some units have to
be tested under normal use. Thus this method is not suitable for components that are
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very long lasting. But items such as chemicals that have shelf-lives that are measured in
months or a year or two can be tested using this method.

In this paper, we introduce three approaches for the construction confidence
intervals for model parameters and lower confidence bounds for the mean life under
normal use conditions using Type | censored data from a constant stress PALT when
the underlying distribution is Generalized Exponential (GE). The methods introduced
are, namely, intervals and bounds based on the asymptotic distribution of the model
parameters, the parametric bootstrap, and the nonparametric bootstrap. While results
based on the asymptotic distribution is available for the case where the PALT is carried
out for GE data, such results are for the Type Il censoring scenario. In addition, no
bootstrap-based intervals have been developed for cases where the underlying
distribution is GE or when the censoring mechanism is Type I.

3.1.1 A Brief Review of Relevant Literature. Compared to the large number of
publications on ALTSs the publications on PALT is relatively smaller. For brevity, we
will focus only on a limit number of these publications. For details on ALT, we refer the
reader to the excellent coverage of the topic given in Nelson (1990). Other good
references include Mann, Schafer, and Singapuwalla (1974), Lawless (1982), Tobias and
Trindade (2011), and Meeker and Escobar (1998).

A relatively recent publication on ALT is Jayawardhana and Samaranayake
(2003), which discussed obtaining lower prediction bounds for a future observation from
a Weibull population at design (normal use) stress level, using Type Il censored
accelerated life test data. The authors assumed that the scale parameter of the life
distribution have an inverse power relationship with the stress level. They showed that
the method works well when the low and high stresses are reasonably far apart. Alferink
and Samaranayake (2011) considered accelerated degradation models and developed
confidence intervals for mean life using the Delta method and the bootstrap, assuming
lognormal distribution with variance dependent on stress. This contrasts with other
approaches, which assume that the variance if not affected by increasing stress. Another
important publication is Kamal, et al (2013), which presented a step stress ALT plan
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with good performance. In step stress, the components are first put at a lower stress and
the unfailed components are subjected to higher stress after a specific period. More
recently, Jayawardhana and Samaranayake (2014), obtained predictive density of a
future observation at normal use conditions using ALT method under lognormal life

distribution and Type Il censoring with non-constant variance.

Among the publications on PALTSs, the following are worth mentioning. Saxena
and Zarrin (2013) used the Constant Stress Partially Accelerated Life Test (CSPALT)
and assumed Type-I censoring under the Extreme Value Type-I11 distribution. Note that
the Extreme Value Type-IIl distribution has been recommended as appropriate for high
reliability components. The authors used the Maximum Likelihood (ML) method to
estimate the parameters of CSPALT model and confidence intervals for the model
parameters were constructed. Note that the CSPALT plan is used to minimize the
Generalized Asymptotic Variance (GAV) of the ML estimators of the model parameters.

Abdel-Hamid (2009), considered a constant PALT model when the observed
failure times come from Burr(c, k) distribution under progressively Type-Il right
censoring. The MLEs of the parameters were obtained and their performance was
studied through their mean squared errors and relative absolute biases. The paper also
showed how to construct approximate and bootstrap Cls for the parameters. The
bootstrap Cls give more accurate results than the approximate intervals for small sample
sizes, and the Student’s-t bootstrap Cls are better than the Percentile bootstrap Cls in the
sense of having smaller widths. However, the differences between the lengths of Clis for
the two methods decrease with increased sample size.

A publication that motivated the work in this dissertation is by Ismail (2013), who
derived the maximum likelihood estimators (MLEs) of the parameters of the GE
distribution and the acceleration factor when the data are Type-Il censored under
constant-stress PALT model. The likelihood ratio bounds (LRB) method was used to
obtain confidence bounds of the model parameters when the sample size is small. It is

also shown that the maximum likelihood estimators are consistent and their variances
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decrease as the sample size increases. The numerical results reported in the paper
support the theoretical findings and showed that the estimated approximate confidence

intervals for the three parameters are smaller when the sample size is larger.

3.1.2 The Generalized Exponential Distribution. The proposed PALT method
is developed for the case where the underlying life distribution is GE. The generalized
exponential distribution has been introduced and studied quite extensively by Gupta and
Kundu (1999, 2001a, 2001b), and by Ragab and Ahsanullah (2001). The probability
density function and the cumulative distribution function of the generalized exponential
distribution function has the forms:

f(xa2)=ate™(1-e)"  x>0a>0,2>0, (1)

F(xa,2)=(1-e™)", (2)

respectively, where «a is the shape parameter and A the scale parameter.

The GE distribution has certain features which are distinct from the Gamma and
Weibull distributions (see Gupta and Kundu (1999, 2001)). The GE model can be used
as a possible alternative for analyzing skewed datasets. An interesting fact is that both
Gamma and GE distributions have the likelihood ratio ordering property while Weibull
does not. On the other hand, GE and Weibull distributions have the common feature of
having closed form expressions for Cumulative Distribution Function (CDF) and the
hazard function. One aspect that makes the GE distribution outperform the Weibull is
the fact that the convergence of MLE’s of Weibull parameters can be very slow
(Bain(1976)) whereas the asymptotic confidence intervals obtained under the GE
assumption maintain normal coverage even for small sample sizes (Gupta and Kundu
(2001)). Gupta and Kundu (2001) also showed that the hazard function of the GE
distribution has proprieties similar to those of the Gamma and Weibull distributions.

These properties are summarized in Table 3.1.



Table 3.1 Properties of the Hazard Function®

Parameters Gamma Weibull GE
a=1 Constant Constant Constant
a>1 Increasing Increasing Increasing

fromOto A from 0 to oo fromOto A
o<1 Decreasing Decreasing Decreasing
from oo to A from co to 0 from oo to A

Table 3.1. Note that the Hazard function of the GE distribution is given by

ate ™ (1—e )"
h(xa,4)= (1_(e/1x)a )
Hazard function

1.5

he(x)
10

0.5

0.0

Figure 3.1. Properties of the Hazard Function?

3.2 THE PROPOSED PALT METHOD AND BOOTSTRAP INTERVALS
The following assumptions are made regarding the proposed PALT method.

! Exponentiated Exponential Family:An Alternative to Gamma and Weibull Distributions(2001)
2 Exponentiated Exponential Family:An Alternative to Gamma and Weibull Distributions(2001)

47
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1. The total number of units under test is n.
2.  denotes the proportion of sample units allocated to accelerated condition
3. n(1 — m) = nmof these units are allocated to normal (field) use conditions.
4. nzr units are allocated to the high stress condition (subject to acceleration)

3.2.1 Likelihood Function under Type I Censoring and Asymptotic C.l.s.
Under Type | censoring, the censoring time, T, is fixed but the number of failures
observed in the time T is a random variable, say R. We assume that the number of items

failing before time <t follows binomial distribution with parameters (m,p) with

p = Fx(7;8), where @ is the vector of parameters of the GE distribution.
Notation:

x;: Observed lifetime of item i tested at the normal (field) use condition.
y;: Observed lifetime of item j tested at high stress condition.

8,;: Indicator function denoting the censoring state of i observation under normal .

use condition, with §,,; = 1 if the observation is uncensored.

84 Indicator function denoting the censoring state of jth observation under high stress

condition, with §,; = 1 if the observation is uncensored.
n,,: Number of items that failed at normal use condition.
n,: Number of items that failed at a high stress condition.

t: The censoring time of the life test (for all units).
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X(1) <+ < Xny) < T: Ordered failure times at normal use condition.
Ya) < < Yn,) < T: Ordered failure times at high stress condition.

B: Denotes the acceleration factor (8 > 1).
The number of items failing before time t follows a binomial distribution R ~ Bin(n, p)

where

p=Fy (riar, ) =(1-e7")".

We let,
1 X <1
5u = ’ |_1,2, ,nﬂ',
|0 0/w
(4)
1 y. <t .
53, = ! 1 J:1121'“1n7z-1 (5)
0 0/w
and 5, =1-3,, 5, =1-5s,.
Then,
8, ~ Ber(p)= >3, ~ Bin(nz, p), (6)
i=1
5, ~Ber(p)=> 5, ~Bin(hz, p), @)

i-1

where p* = Fy (i, 4, 8) = (1—e‘w’ )a , with
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P(x <x) _(1-¢™)
FT(X;a,ﬂ~|T): P(X < X|X ST): PEX Z:; = El_em;a

1_e—ﬂx o (8)
— X<t
= 1_6711)
1 X>T,
and
f(xa )= fy (xia2) _ate ™ (1-e”)" 9)
TR e ey

Thus, given R = n,, the conditional density of the first r failure times is equivalent to

the joint density of an ordered random sample of size n,, from a truncated GE distribution,

{ are ™ (1-e™ )H }

e )

f(X(l),-..,X(nu)|R = nu): n, !1—“[ fr(X(i);a'ﬂ): n, !l_u[
i=1

i=1

(10)

Ny
—/12 X;

B

u (1_ e_lr )anu i1
The joint density of obtaining R = n, ordered observations at the values X, X,

before time, may be expressed as

f(X(l),"',X(nu))z f(X(l),--~,X(nu)|R=nu)bin(nu;n77, p)

A

u (]_—e_h )amu L }

~—

=\ a M e_igxi an P L L a-1
el ey ey | fle ]

Therefore we can write,
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Ny
nzE-n A% My

F (X s Xy ) o (@2)" [1—(1—e“)”‘} e ™ H[(l—e-“i)“‘l}

i=1

Similarly, given R = n, the conditional density of the first r failure times is equivalent
to the joint density of an ordered random sample of size n, from a truncated accelerated
GE distribution.

For an item tested at accelerated condition, the probability density function is given by

a-1

f(xa,1)=aple” (1-e") x>0, >0, 1>0, f>1,
where Y = B~1X and therefore the conditional joint distribution given R =n, is

. o | aipe ™™ (1—e )"
f(y(l),...,y(nu)|R:na):na!H ff(x(j);a,i,ﬁ):na!H (Aﬂr _ )
j=1 j=1 (1—e )

(11)

Ny

ABQYi

W
o e ey

: (1— e )ana j=1

The joint density of obtaining R = n, ordered observations at the values Yy, ..., Y )

before time, may be expressed as
(Yo Yo )= f (Yoo Yo [R =g Jbin(n,inz, p°)
—1,5%)’1

=n, !(O!/Iﬂ)”a g A ﬁ[(l—ewy‘ )al:|(r:2'j - (1_ p*)n,,_na

(1_ o )ana i

(o (@ipfe T e TR e
= —(1-e) [1—(1—e f’)} (1)

(nz—n,)! (1-e )

Therefor we can write,



B i Yi

f (y(1)""' y(na))oc (aﬁvﬂ)na e |:1—(1—e_wr)a} l_a[

and the total Iikelihoodfunctionfor(xl;é o Xz Oy Vi Gy

given by

nrz

( lﬂ|xy) ]i[l_u(a/ux 5)Hl_ul(aiﬂ|yj )

nz

~[fae -] -ty ]

XH{awe (1 )‘“T —(1-e) }

=
n

1] [aze-“i( e ) l} 1- }
}ﬁ[ - e-*ﬂﬂ

<[] arpe ™ 1-e )
i=1

=

=}
o5
l—‘ \ \
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(12)

The MLE’s of the parameters can estimated numerically by minimizing the log

likelihood function.

= InL(a2,8xy)=1,

:Izilna+2lni—iixi +(0‘_1)i|n(1—e’“i)

i=1

_ nf: In(l—(l—e‘“)a)+ilna+ilnl+ilnﬁ
iy +1 -1 -1 -1

nz

_wgyj +(a—1)§ln(1—e_’wy")— Z |n(1—(1—e“”)“),

=l=n,(Ina+In2)+n, (Ina+Ini+Ing) Z[ix. ﬂiyj]

+(a —D[iln(l—e‘“i )+ i'”(l—ewy, )} EEEE

—(n;?—nu)In(l—(l—e‘“)a)—(nn—na)ln(l—(l—e‘“’)a).

The Score equations become

(13)
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N, _aAr\* _ aAT
(;3; n, ;n Zln(l o ) (n7 - n)(l e ) In_(j ae )
(1—(1—e ‘) )
Ny 1—e ) In(1=e "
In(1-e™" _ _o
+,Z-1: n( e )+(n7r n,) (1_(1_ewr)“)
ol _n,+n, S Ly oxe e (1—e’ﬂ)tH
or A ;X'Jr(a_l);(l—e‘“ra(n” ) (1—(l—em)“)
N, n, — i —ABr _ a-ABT a-1
e va(mn,) e (15)

(1— (1-e7)" )

—apy; o (1_ o )“’1

R TG ey

2 (1—(1—e*ﬁf)“) -° (16)

Now, we have a system of three nonlinear equations in three unknowns a, 4, and g. It is
clear that a closed form solution is intractable. Therefore, iterative procedure can be used

to find a numerical solution of the above system.

The asymptotic confidence intervals for the parametersQ:(a,/I, ﬂ) can be obtained

using following hypothesized convergence in distribution result:

\M[(&—a),(i—/l),(ﬁ—ﬂ) »(Q, I‘l(a,z,ﬂ)n,
where the | =(a, 4, ) is the Fisher information matrix given by

E! ol ol ]
da® 0adl Oadf
2l o o
(e A B8)=|1, (4 (4 A8) | = .
(2 5) |21( ) 1z(4) :3(ﬂ) 010a 0. 0i0B
o%l o°l o°l
| 0poa opoi  op |
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Note that Gupta and Kundu (1999), focusing on the three parameter GE
distribution (in our case it is assumed that the location parameter is zero), stated the
asymptotic normality of the MLEs under the assumption that the shape parametera > 2,
and mentioned that further investigation is needed for the case @ <2 . They indicate that
the regularity conditions can be established using techniques similar to those employed
for the gamma and the Weibull families. The above authors, however, studied the
behavior of the estimators for & <2 using Monte-Carlo simulation in Gupta and Kundu
(2000), and did not detect any anomalous behavior when « <2. Also, their results are
for Type Il censored data and does not consider the PALT scenario. Ismail (2013),
however, assumed the above asymptotic result and obtained reasonable confidence
intervals for distribution parameters under Type-11 censoring. Based on these empirical
findings, we will assume that the above result holds in the PALT situations under Type |
censoring and also when « <2. As simulation results given later show, this assumption
does not lead to poorly performing confidence intervals.

The elements of the 3x3 matrix I,

(0?, i,ﬁ), I, j=1,2,3, can be approximated by

l; (&,i,ﬁ’), where

- 0(0)
Iij (0) = aelagj |€:é '
From Eq. (12), we get the following:

2l n,+n, (nT-n)ysin(yi) (nz-n,)wgIn(yd)
2 CE 2 + 2 ! (17)
da o Wy Vs

n, 2 (o= af e e
s;lz :%Jr(a_l {;X‘ZEM}—T a(nZ —n, )y, { on;e2 wie 2}
l_ [_“((e_h ~1)e ) } (e -1)
a —/Iﬁr} N
o S

o fra(nm—n, yg {—a +e P —yle
i=1

[1-pee™ ]y

(18)




82|2 :n—a2+(a—1)/12 {i y?e_wyj}_ﬁﬂza(nﬂ—na)y/;‘ {_a +2e—/1,32' _wge-wr}
op- B i-1 [1—‘//59_/%] W
(19)
pd B n, lnge—lﬂyj z'/l(nzr—na){al//g |n(l//6)+l//g‘ _l//ga}
oaop K= Vs, B e (efiﬂr _1)

0aod Iy i1 Y3 ‘//f(e_h —1)

B(nr—n,)yg {~an(l-e ) +1-y |

o D xie +iﬂy’?ewyj +ra(n77—nu)l//2“ {—aln(://z)+1—y/§}

+ '
vie™ 1
g e _pyie payie
0poA = T Vs Vs

ra(nz - na){y/g (-aAtB—e " +1+ pAre " - ﬁm)}
Vs (e—/lﬂr _1)2
2 B(nr—n, )y {1-vg —ayg |
we (e 1)

py =1-e"7, v, =1-e", Yij =1-e",

vy =1-(1-e7" )", yy=1-(1-e")

a
)

We =1- e,

and employing the standard z-based confidence interval formulations,

a+Z ,\17(a), iizm‘/l;(i), ﬂAiZy/z‘/ls’gl(ﬁA’).
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(20)

(21)

(22)

The asymptotic confidence interval for the mean life at normal use condition is given by

'[li_z}'/?- \} ;ar(ﬁ)’

where Var ( /z) is obtained using the standard delta method.

3.3 THE BOOTSTRAP SAMPLING METHODS

There are several different methods for generating the needed bootstrap samples data
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3.3.1 The Proposed Parametric Bootstrap Method and the Monte-Carlo
Procedure. The Monte-Carlo procedure used for the simulation study is given below.
The steps for the parametric bootstrap method that can be utilized to obtain confidence
bounds for a, 4, and B and lower binds for the mean life is imbedded in this procedure

and are given in italics.

Distribution parameters are varied in the study as following (¢ = 1.5,and 2,1 =
1, p=15and2) and u = 1/A[Y(a + 1) —(1)] where Y (.) Digamma function is
presented here. The censoring time was set at = =1, and 1.5. The n test items were
divided into (a) equal sample proportions by setting = = 0.5, such that 1/2 the items are
allocated at accelerated condition and the remaining 1/2 are allocated to the normal use
condition and (b) by setting = = 0.667 such that 1/3 the items are allocated at accelerated

condition and the remaining 2/3 are allocated to the normal use condition.

(1) Generate random samples from the GE distribution by using the transformation

X; = (_71) ln[l - ul@/“)], i =1,2,..,nwhere u;s are random sample from a

uniform (0, 1) distribution. Similarly, generate data for the high stress condition
by replacing A with SA. Employ censoring time t for both samples.

(2) Employ Maximum likelihood method to estimate the parameters with the same
censoring time t used for both samples. [The nonlinear equations of the maximum
likelihood estimates were solved iteratively using Newton Raphson method. ]

(3) Use the resulting estimates of the parameters and acceleration factor to construct
asymptotic confidence limits with confidence level at y = 0.95 and also the
asymptotic variance and covariance matrix of the estimators (for use in the delta

method based confidence bounds).

(4) Used the estimated parameters &, 1, and S to generate data from the estimated
normal use and accelerated GE distribution using the transformation x; =
(— %) ln[l — ul@/a)] ,[A isreplaced by B4 for the accelerated sample.]

(5) Repeat Step (4) to obtain 1,000 bootstrap samples.
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(6) Obtain MLEs of the GE parameters and the acceleration factor using each
bootstrap sample and label these &*, 1*, and S*.
(7) Using the empirical distributions of the estimates &*, 1*, and * obtained from

bootstrap estimates, construct confidence interval for a,A, 8 using respective
quantiles at (kTy)lOO% and 1 — (1;—’/)100%.

(8) Using the empirical distribution of the estimated means f*, obtained from
bootstrap samples, construct lower bound confidence bound for u using quantile

at (1 —y)100%

(9) Coverage probabilities were computed based on 1,000 simulation runs by
repeating Steps (1) through (7) 1,000 times.

3.3.2 The Proposed Nonparametric Bootstrap Method and the Monte-
Carlo Procedure.The Monte-Carlo procedure used for the simulation study is given
below. The steps for the nonparametric bootstrap method that can be utilized to obtain
confidence bounds for a, A, and B and lower bounds for the mean life is imbedded in
this procedure and are given in italics.

(1) Generate random samples from the GE distribution by using the transformation

X; = (_71) ln[l — ugl/“)], i =1,2,..,nwhere u;s are random sample from a

uniform (0, 1) distribution. Similarly, generate data for the high stress condition
by replacing 4 with gBA. Employ censoring time t for both samples.

(2) Obtain a bootstrap resample from each of the two samples generated in Step (1)
above, with each bootstrap sample of size zn (or zn) obtained by sampling with

replacement from the respective sample obtained in (1).

(3) New “bootstrap estimates” &*,1*,and §* are computed from the combined

bootstrap sample using the ML method. Also estimate the mean life x under

normal conditions, accounting for the censoring.

(4) Repeat the process given in Steps (2) and (3) 1,000 times and obtain the empirical
distributions of @*, 1*, §*, and fi*.
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(5) Using the empirical distributions of the &@*, 1*, and §* obtained from bootstrap

estimates, confidence interval for a,A,and  is constructed using respective

quantiles at (PTy)lOO% and 1— (PTV)lOO%..

(6) Using the empirical distributions of the mean fg* obtained from bootstrap
estimates, construct the lower bound confidence interval for using quantile at
(1 —y)100%.

(7) Coverage probabilities were computed based on 1,000 simulation runs obtained

by repeating Steps 1 -7.
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Actual Sample Data

) Simulated censored
From Population Or

Population Or samples from F(t,8)

Process
Process Used to estimate model Draw %}OOfO gamples,
parameters each ot sizen

Figure 3.2.1llustrates the parametric bootstrap resampling method
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Simulated censored
samples from F(t,8)

Draw 1000 samples,
each of size n

Figure 3.3. Hlustrates the nonparametric bootstrap resampling for parametric

inference.
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3.4 RESULTS AND DISCUSSION

Only select results from the simulation experiments are reported below for
brevity. All simulations results reported here are for oo = (1.5, and 2) and A =1, with the
acceleration factor {3 is set at 1.5 and 2.0. The censoring parameter Tt was set at values 1,
and 1.5

By conducting the steps given in Section 3.2 using a computer program written in
the Matlab, the simulation results reported in Tables 3.2 to Tables 3.32 are obtained.
Tables 3.2 and 3.3 show the maximum likelihood estimates of (o, A, 3,and ). The
estimated expected value of the MLEs for o are close to the true value for when the
sample size is 100 but show a slight upwards bias for smaller sample sizes. A similar

pattern is observed for estimates of S when the censoring time is 1. The results improve
when the censoring time increases to 1.5 or when « increases to 2. Estimates of 4 and

A are quite reasonable when the sample size is greater than 30. In general, when the
sample size increases the estimates of the parameters approach the true values. Tables
3.4 to 3.32 show the simulation result of (asymptotic, parametric bootstrap, and
nonparametric bootstrap) of 95% confidence interval for (a, A, and ) and the lower 95%
confidence bound of (asymptotic, parametric bootstrap, and nonparametric bootstrap)

for the mean.

Table 3.2a GE Parameters, Acceleration Factor, and Type | Censoring

~

A

~

|1t | a B i n a B i
30 | 1.740536 | 1.098127 | 1.625868 | 1.385353
50 | 1.675096 | 1.082763 | 1.570141 | 1.330857
L1s 15 1.2804 75 |1.634216 | 1.062605 | 1.532303 | 1.314904
5 100 | 1.570929 | 1.027731 | 1.546379 | 1.30996
' 30 |1.708948 | 1.071374 | 1.57073 | 1.33327
50 | 1.673527 | 1.073493 | 1.548163 | 1.312707
1515 151.2804 75 | 1.622074 | 1.052761 | 1.536937 | 1.305793
100 | 1.568747 | 1.023732 | 1.534235 | 1.305156




Table 3.2b GE Parameters, Acceleration Factor, and Type | Censoring

.667

.667

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5

30

~

(04

2.318859

A
1.095341

B
1553225

A

Q
1.551502

50

2.24871

1.079897

1.52247

1.528549

75

2.134716

1.041066

1.529489

1.527969

100
30

2.122318
2.282045

1.038666
1.095051

1.533429
1.538302

1.52009
1.498027

50

2.179126

1.05482

1.519219

1.509462

75

2.09156

1.019907

1.527478

1.526625

100
30

2.117973
2.278941

1.039584
1.080764

1.516357
1.590074

1.502626
1.579644

50

2.20633

1.05488

1.564727

1.561578

75

2.115322

1.030532

1.525772

1.543245

100
30

2.1418
2.211647

1.036304
1.062217

1.551029
1.541497

1.536084
1.537559

50

2.175302

1.040722

1.554918

1.54164

75

2.122398

1.037873

1.521313

1.519886

100
30

2.096505
2.399464

1.024071
1.120903

1.531034
2.124475

1.524627
1.589719

50

2.250541

1.06822

2.098928

1.571614

75

2.172331

1.065452

2.028721

1.511861

100
30

2.160057
2.385585

1.048692
1.097882

2.034841
2.105311

1.526222
1.553023

50

2.258429

1.075495

2.035044

1.513903

75

2.173423

1.061296

2.028121

1.502438

100
30

2.111775
2.400406

1.041332
1.136162

2.008467
2.12515

1.499085
1.599587

50

2.238159

1.096672

2.054929

1.544576

75

2.134428

1.039408

2.051435

1.562317

100
30

2.110595
2.339819

1.037786
1.1254

2.033213
2.008896

1.529881
1.517782

50

2.23878

1.095246

1.991892

1.501189

75

2.147047

1.056632

2.029514

1.516827

100

2.106217

1.03097

2.0268

1.518701
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Table 3.3 Coverage of Asymptotic 95% C.1.s
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a=1.5 A=1, B=1.5u=1.2804, =5 =1
n | parameter | Lower Bound | Upper Bound | width SD(W) | Coverage
a 0.886303 3.665721 2.779418 | 0.738984 | 0.978
30 A 0.423517 1.949804 1.526287 | 2.016739 | 0.965
B 1.000001 2.749131 1.74913 | 2.097398 | 0.973
u 0.906484 0.956
a 0.955879 2.983422 2.027543 | 1.469277 | 0.974
50 A 0.550844 1.806479 1.255635 | 1.977485 | 0.960
B 1.001205 2.310694 1.309489 | 2.494733 | 0.961
u 0.946696 0.955
a 1.013576 2.686825 1.673249 | 0.764873 | 0.968
75 A 0.587548 1.653909 1.066361 | 1.619368 | 0.954
B 1.031394 2.206177 1.174782 | 1.70078 0.957
u 1.006098 0.955
a 1.103747 2.330024 1.226278 | 0.547898 | 0.959
100 A 0.664616 1.473539 0.808923 | 1.27331 0.949
B 1.106806 2.099396 0.99259 | 0.979626 | 0.952
i 1.053292 0.948
Table 3.4 Coverage of Parametric Bootstrap 95% C.I.s
a=1.5 A=Il, B=1.5 p=1.2804, n=.5, 1=1
n | parameter | Lower Bound | Upper Bound | width SD(W) | Coverage
a 1.331254 2.149819 0.818565 | 0.145201 | 0.949
30 A 0.391843 1.80441 1.412567 | 0.049314 | 0.963
B 0.743076 2.50866 1.765583 | 0.115011 | 0.973
i 1.014195 0.954
a 1.308252 2.041941 0.733689 | 0.083439 | 0.947
50 A 0.439819 1.725707 1.285888 | 0.04242 0.961
B 0.828421 2.311862 1.483442 | 0.105412 | 0.964
i 1.012725 0.954
a 1.311399 1.957033 0.645634 | 0.10657 0.946
75 A 0.473016 1.652194 1.179178 | 0.050176 | 0.957
B 0.897685 2.16692 1.269235 | 0.068122 | 0.961
u 1.011334 0.954
a 1.309674 1.832185 0.522512 | 0.081731 | 0.945
100 A 0.54133 1.514132 0.972802 | 0.038495 | 0.951
B 1.022915 2.069844 1.046929 | 0.03674 0.953
u 1.017121 0.953




Table 3.5 Coverage of Nonparametric Bootstrap 95% C.I.s
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a=1.5 A=1, B=1.5u=1.2804, =5 =1
n | parameter | Lower Bound | Upper Bound | width SD(W) | Coverage
a 1.252881 2.228192 | 0.975311 | 0.173224 | 0.951
30 A 0.256597 1.939656 1.683059 | 0.061136 | 0.969
B 0.574031 2.677705 | 2.103674 | 0.179796 | 0.974
i 1.045158 0.951
a 1.238005 2.112187 | 0.874182 | 0.132915 | 0.950
50 A 0.316702 1.848824 1.532122 | 0.061149 | 0.965
B 0.686389 2.453894 1.767505 | 0.15137 0.973
u 1.047231 0.951
a 1.249583 2.018849 | 0.769266 | 0.127347 | 0.948
75 A 0.360116 1.765094 1.404978 | 0.05818 0.962
B 0.776162 2.288443 1512281 | 0.08068 0.964
u 1.0460111 0.951
a 1.259646 1.882213 | 0.622567 | 0.107027 | 0.946
100 A 0.44819 1.607272 1.159083 | 0.050324 | 0.956
B 0.922677 2.170082 1.247405 | 0.044463 | 0.960
i 1.047725 0.949
Table 3.6 Coverage of Asymptotic 95% C.1.s
a=1.5 A=Il, B=1.5 pu=1.2804, n=5, 1=1.5
n | parameter | Lower Bound | Upper Bound | width SD(W) | Coverage
a 0.933868 3.407471 | 2.473602 | 1.290271 | 0.984
30 A 0.567705 1.774346 1.206641 | 1.799216 0.96
B 1.000349 2.445438 1.445089 | 5.322325 | 0.975
i 0.970362 0.957
a 0.981381 2.82447 1.843089 | 0.605814 | 0.980
50 A 0.594318 1.639513 1.045195 | 1.346216 | 0.962
B 1.030054 2.31746 1.287407 | 1.840845 | 0.969
i 0.984372 0.956
o 1.071548 2.518645 1.447097 | 0.757173 0.975
75 A 0.668835 1.543877 | 0.875043 | 2.094424 | 0.960
B 1.064394 2.180605 1116211 | 2.583192 | 0.963
u 1.01071 0.955
a 1.108671 2.288746 1.180075 | 0.361684 | 0.964
100 A 0.705641 1.397243 | 0.691602 | 0.940337 | 0.955
B 1.165785 2.031982 | 0.866197 | 1.344257 | 0.959
u 1.065617 0.952




Table 3.7 Coverage of Parametric Bootstrap 95% C.1.s
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a=1.5 A=1, B=1.5u=1.2804, =5 =15
n | parameter | Lower Bound | Upper Bound | width SD(W) | Coverage
a 1.382336 2.03556 0.653224 | 0.106312 | 0.954
30 A 0.505363 1.637384 1.13202 | 0.049502 | 0.963
B 0.694585 2.446875 1.75229 | 0.046163 | 0.979
u 1.013786 0.955
a 1.410145 1.93691 0.526765 | 0.088477 | 0.949
50 A 0.558426 1.58856 1.030134 | 0.054323 | 0.962
B 0.834799 2.261527 1.426728 | 0.050832 | 0.974
u 1.012222 0.955
a 1.390069 1.854078 | 0.464009 | 0.065731 | 0.948
75 A 0.552144 1.553378 1.001234 | 0.04045 0.961
B 0.855868 2.218006 1.362138 | 0.069633 | 0.973
i 1.012077 0.955
a 1.373397 1.764096 | 0.390699 | 0.046292 | 0.947
100 A 0.588992 1.458472 ]0.869481 | 0.02252 0.959
B 0.933072 2.135398 1.202326 | 0.040381 | 0.965
i 1.010425 0.955
Table 3.8 Coverage of Nonparametric Bootstrap 95% C.1.s
a=1.5 A=Il, B=1.5 pn=1.2804, n=5 1=1.5
n | parameter | Lower Bound | Upper Bound | width SD(W) | Coverage
a 1.319793 2.098102 | 0.778309 | 0.1715 0.957
30 A 0.396978 1.745769 1.34879 | 0.073165 | 0.971
B 0.526812 2.614647 | 2.087835 | 0.068938 | 0.981
i 1.045852 0.954
a 1.35971 1.987344 | 0.627635 | 0.117548 | 0.953
50 A 0.459796 1.68719 1.227394 | 0.056736 | 0.967
B 0.698198 2.398128 1.699931 | 0.066081 | 0.978
i 1.045817 0.954
a 1.345643 1.898504 | 0.552861 | 0.088861 | 0.951
75 A 0.456281 1.64924 1.192959 | 0.047648 | 0.965
B 0.72545 2.348423 1.622973 | 0.102484 | 0.978
u 1.047438 0.953
a 1.33599 1.801504 | 0.465514 | 0.043429 | 0.948
100 A 0.505743 1.54172 1.035977 | 0.030483 | 0.962
B 0.817956 2.250514 1.432558 | 0.080309 | 0.974
u 1.047012 0.953




Table 3.9 Coverage of Asymptotic 95% C.1.s
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a=2, A=1, B=1.5 p=1.5, n=5, 1=1
n | parameter | Lower Bound | Upper Bound | width SD(W) | Coverage
a 1.124812 5.488589 | 4.363777 | 0.255789 | 0.981
30 A 0.45653 2.015863 1.559333 | 0.069615 | 0.961
B 1.000825 2.534655 1.53383 | 0.20974 0.958
i 1.065479 0.957
a 1.212398 4513783 | 3.301385 | 2.134716 | 0.976
50 A 0.522441 1.854566 1.332125 | 1.041066 | 0.957
B 1.001737 2.321992 1.320255 | 1.529489 | 0.957
i 1.081032 0.956
a 1.263107 3.871243 | 2.608136 | 0.093859 | 0.972
75 A 0.574729 1.664997 1.090268 | 0.058044 | 0.954
B 1.104767 2.196196 1.091429 | 0.087538 | 0.954
i 1.163424 0.954
a 1.31801 3.525307 | 2.207297 | 0.104948 | 0.968
100 A 0.604603 1.584901 | 0.980298 | 0.041411 | 0.952
B 1.110492 2.120666 1.010174 | 0.112572 | 0.953
i 1.189367 0.953
Table 3.10 Coverage of Parametric Bootstrap 95% C.l.s
a=2, A=1, B=L.5,p=1.5 =n=51=1
n | parameter | Lower Bound | Upper Bound | width SD(W) | Coverage
a 1.694165 2.943554 1.249389 | 4.30871 0.956
30 A 0.320408 1.870273 1.549865 | 5.301323 | 0.961
B 0.595046 2.511404 1.916358 | 7.503472 | 0.967
i 1.0316127 0.958
a 1.780996 2.716424 | 0.935428 | 0.974083 | 0.953
50 A 0.478922 1.680873 1.201951 | 1.425656 | 0.956
B 0.811726 2.233213 1.421487 | 1.743399 | 0.957
i 1.0316179 0.958
o 1.745389 2.524044 | 0.778655 | 0.785926 | 0.948
75 A 0.494851 1.582482 1.087631 | 1.278039 | 0.954
B 0.957679 2.101298 1.143619 | 1.105818 | 0.954
i 1.0326788 0.958
a 1.744137 2.5005 0.756363 | 0.85133 0.947
100 A 0.511075 1.571056 1.059981 | 1.492294 | 0.954
B 0.962567 2.104292 1.141725 | 1.437931 | 0.954
i 1.032988 0.958




Table 3.11 Coverage of Nonparametric Bootstrap 95% C.l.s
a=2, A=1, B=1.5,p=1.5, n=5,1=1
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n | parameter | Lower Bound | Upper Bound | width SD(W) | Coverage
a 1.251818 4411799 | 3.159981 | 0.351353 | 0.979
30 A 0.478803 1.943141 1.464338 | 0.085403 | 0.958
B 1.005472 2.691726 1.686254 | 0.244308 | 0.964
i 1.064006 0.957
a 1.288635 3.74735 2.458715 | 0.241691 | 0.971
50 A 0.570361 1.633126 1.062765 | 0.080249 | 0.954
B 1.046718 2.272096 1.225378 | 0.127038 | 0.956
i 1.127359 0.955
a 1.367648 3.21649 1.848842 | 0.109827 | 0.966
75 A 0.608303 1.53222 0.923917 | 0.055685 | 0.951
B 1.109874 2.164214 1.05434 | 0.1211 0.954
i 1.180841 0.953
a 1.421612 3.17387 1.752258 | 0.127457 | 0.965
100 A 0.653574 1.464142 | 0.810568 | 0.042688 | 0.949
B 1.125632 2.122699 | 0.997067 | 0.057624 | 0.952
i 1.203878 0.952
Table 3.12 Coverage of Asymptotic 95% C.l.s
a=2, A=l, B=1.5, p=1.5,n=.5, 1=1.5
n | parameter | Lower Bound | Upper Bound | width SD(W) | Coverage
a 1.203329 4.645745 | 3.442416 | 0.130657 | 0.979
30 A 0.582958 1.742203 1.159245 | 0.072167 | 0.965
B 1.032079 2.33018 1.298101 | 0.039626 | 0.966
i 1.11376 0.956
a 1.269906 3.929247 | 2.659341 | 0.142574 | 0.974
50 A 0.636697 1.620818 | 0.984122 | 0.056806 | 0.963
B 1.060733 2.146322 1.085589 | 0.060346 | 0.964
i 1.1796 0.955
a 1.35047 3.349937 1.999467 | 0.05589 0.972
75 A 0.653978 1.486139 0.83216 | 0.024997 | 0.958
B 1.098455 2.027858 | 0.929403 | 0.038901 | 0.961
i 1.212948 0.952
a 1.412011 3.294311 1.882299 | 0.089669 | 0.971
100 A 0.708374 1.456289 | 0.747916 | 0.029385 | 0.954
B 1.151063 2.002362 0.8513 | 0.045278 | 0.959
u 1.212369 0.952




Table 3.13 Coverage of Parametric Bootstrap 95% C.l.s
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a=2, A=1, B=1.5, p=1.5, =15
n | parameter | Lower Bound | Upper Bound | width SD(W) | Coverage
a 1.919609 2.644481 | 0.724872 | 0.523763 | 0.953
30 A 0.662232 1.447409 | 0.785177 | 0.952636 | 0.956
B 0.977084 2.09952 1.122436 | 1.199089 | 0.965
i 1.32115 0.951
a 1.852541 2.505711 | 0.653171 | 1.305673 | 0.951
50 A 0.703134 1.486967 | 0.783833 | 2.348957 | 0.956
B 0.984396 2.054043 1.069647 | 2.643919 | 0.964
i 1.320038 0.951
a 1.859323 2.323797 | 0.464474 | 0.37725 0.947
75 A 0.731617 1.308196 | 0.576579 | 0.685785 | 0.949
B 1.126363 1.928592 0.80223 | 1.217863 | 0.957
u 1.338596 0.949
a 1.913367 2.322579 | 0.409212 | 0.217596 | 0.946
100 A 0.794288 1.28488 0.490591 | 0.46561 0.948
B 1.188489 1.844225 | 0.655736 | 0.695918 | 0.951
u 1.323883 0.951
Table 3.14 Coverage of Nonparametric Bootstrap 95% C.I.s
a=2, A=1, B=15, p=L.5, =1.5
n | parameter | Lower Bound | Upper Bound | width SD(W) | Coverage
a 1.251818 4.411799 | 3.159981 | 0.351353 | 0.978
30 A 0.478803 1.943141 | 1.464338 | 0.085403 | 0.967
B 1.005472 2.691726 | 1.686254 | 0.244308 | 0.969
U 1.064006 0.958
a 1.288635 3.74735 | 2.458715 | 0.241691 | 0.973
50 A 0.570361 1.633126 | 1.062765 | 0.080249 | 0.964
B 1.046718 2.272096 | 1.225378 | 0.127038 | 0.966
U 1.127359 0.956
a 1.367648 3.21649 | 1.848842 | 0.109827 | 0.971
75 A 0.608303 1.53222 | 0.923917 | 0.055685 | 0.961
B 1.109874 2.164214 | 1.05434 0.1211 0.964
v 1.180841 0.954
o 1.421612 3.17387 | 1.752258 | 0.127457 0.970
100 A 0.653574 1.464142 | 0.810568 | 0.042688 | 0.957
B 1.125632 2.122699 | 0.997067 | 0.057624 | 0.963
u 1.203878 0.953




Table 3.15 Coverage of Asymptotic 95% C.I.s

a=2, A=l, B=L5 p=1.5 =667, =1
n | parameter | Lower Bound | Upper Bound | width SD(W) | Coverage
a 1.154164 5.039237 | 3.885073 | 0.324596 | 0.979
30 A 0.43768 1.97847 1.54079 | 0.092184 | 0.966
B 1.001028 2.757582 1.756553 | 0.117573 | 0.969
i 1.039089 0.958
a 1.229204 4.292912 | 3.063708 | 0.160972 | 0.978
50 A 0.489315 1.841252 1.351937 | 0.089279 | 0.961
B 1.014078 2.484245 1.470167 | 0.08339 0.963
i 1.07771 0.956
a 1.30664 3.55098 2.244339 | 0.164655 | 0.972
75 A 0.552958 1.620801 1.067843 | 0.042779 | 0.957
B 1.064717 2.252631 1.187913 | 0.142825 | 0.958
i 1.140656 0.954
a 1.377051 3.475573 | 2.098522 | 0.071369 | 0.971
100 A 0.603089 1.597809 | 0.994721 | 0.041832 | 0.955
B 1.11633 2.204177 1.087848 | 0.071244 | 0.957
i 1.15184 0.953
Table 3.16 Coverage of Parametric Bootstrap 95% C.l.s
a=2, A=1, B=15, p=1.5 n=667, =1
n | parameter | Lower Bound | Upper Bound | width SD(W) | Coverage
a 1.881184 2.676698 | 0.795514 | 0.771997 | 0.951
30 A 0.544195 1.617332 1.073136 | 1.379114 | 0.957
B 0.825775 2.354374 1.528599 | 1.759849 | 0.966
i 1.316223 0.949
a 1.865775 2.546885 0.68111 | 0.537325 | 0.948
50 A 0.57059 1.53917 0.96858 | 1.159222 | 0.954
B 0.884242 2.245212 1.36097 | 1.510346 | 0.961
i 1.319241 0.949
o 1.852858 2.377786 | 0.524928 | 0.27227 0.947
75 A 0.638843 1.42222 0.783377 | 0.73819 0.951
B 0.969072 2.082472 1.113401 | 1.056698 | 0.958
i 1.324147 0.948
a 1.898036 2.385564 | 0.487527 | 0.25388 0.946
100 A 0.675433 1.397174 | 0.721741 | 0.653684 | 0.949
B 1.034355 2.067703 1.033348 | 0.996751 | 0.956
i 1.328961 0.948




Table 3.17 Coverage of Nonparametric Bootstrap 95% C.l.s
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a=2, A=1, B=1.5, p=1.5, =667, 1=1
n | parameter | Lower Bound | Upper Bound | width SD(W) | Coverage
a 1.26568 4.129411 2.863731 | 0.271449 | 0.977
30 A 0.484636 1.840151 1.355515 | 0.13168 0.961
B 1.001162 2.504954 1.503792 | 0.092099 | 0.965
i 1.058091 0.957
a 1.390639 3.947453 2.556814 | 0.133658 | 0.975
50 A 0.541281 1.748228 1.206947 | 0.082081 | 0.959
B 1.012852 2.395613 1.382761 | 0.148703 | 0.962
i 1.077546 0.956
a 1.434628 3.28381 1.849182 | 0.179964 | 0.970
75 A 0.650661 1.560505 0.909844 | 0.102515 | 0.952
B 1.111393 2.134884 1.023491 | 0.066214 | 0.956
i 1.161951 0.952
a 1.406637 3.110757 1.70412 | 0.122568 | 0.968
100 A 0.630473 1.502043 0.87157 | 0.082322 | 0.952
B 1.143815 2.129617 0.985802 | 0.077929 | 0.955
i 1.184248 0.951
Table 3.18 Coverage of Asymptotic 95% C.l.s
a=2, A=1, PB=1.5, p=L.5 n=.667, 1=1.5
n | parameter | Lower Bound | Upper Bound | width SD(W) | Coverage
a 1.232809 4.457629 3.22482 | 0.181657 | 0.979
30 A 0.54125 1.733208 1.191958 | 0.052937 | 0.956
B 1.001427 2.382551 1.381125 | 0.068153 | 0.968
i 1.083422 0.958
a 1.260234 3.903778 2.643544 | 0.07673 0.977
50 A 0.562567 1.635615 1.073047 | 0.071044 | 0.963
B 1.06169 2.281618 1.219928 | 0.053243 | 0.965
I 1.133477 0.956
a 1.337075 3.459852 2.122777 | 0.084385 | 0.975
75 A 0.638029 1.539833 0.901804 | 0.042428 | 0.957
B 1.086239 2.087624 1.001385 | 0.065787 | 0.961
i 1.171499 0.953
a 1.399008 3.275216 1.876208 | 0.072845 | 0.974
100 A 0.669059 1.449411 0.780353 | 0.037839 | 0.955
B 1.140491 2.050325 0.909834 | 0.048918 | 0.957
i 1.212545 0.951




Table 3.19 Coverage of Parametric Bootstrap 95% C.1.s
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a=2, A=1, B=1.5, p=1.5, =667, 1=1.5
n | parameter | Lower Bound | Upper Bound | width SD(W) | Coverage
a 1.905518 2.517776 0.612258 | 0.226052 | 0.950
30 A 0.739691 1.384743 0.645052 | 0.601005 | 0.951
B 1.0212 2.061794 1.040595 | 1.295443 | 0.962
u 1.321983 0.949
a 1.911204 2.439399 0.528195 | 0.237054 | 0.948
50 A 0.757291 1.324153 0.566862 | 0.7951 0.949
B 1.083335 2.026501 0.943166 | 1.481413 | 0.959
u 1.325385 0.948
a 1.915097 2.3297 0.414603 | 0.185886 | 0.946
75 A 0.805611 1.270135 0.464524 | 0.644159 0.947
B 1.152093 1.890533 0.73844 | 1.358236 | 0.954
u 1.325509 0.948
a 1.9096 2.283411 0.373811 | 0.108726 | 0.945
100 A 0.812185 1.235958 0.423774 | 0.439657 | 0.946
B 1.193668 1.868399 0.674732 | 0.878456 | 0.952
I 1.327446 0.947
Table 3.20 Coverage of Nonparametric Bootstrap 95% C.l.s
a=2, A=1, B=1.5, p=1.5, mn=.667, 1=1.5
n | parameter | Lower Bound | Upper Bound | width SD(W) | Coverage
o 1.269203 3.87178 2.602577 | 0.134755 0.977
30 A 0.547979 1.70635 1.158371 | 0.0731 0.965
B 1.004247 2.260736 1.256489 | 0.097995 | 0.966
i 1.083247 0.958
a 1.410204 3.556727 2.146523 | 0.139628 | 0.975
50 A 0.642983 1.556018 0.913035 | 0.064789 | 0.958
B 1.090268 2.235839 1.145571 | 0.072421 | 0.964
i 1.145845 0.955
a 1.407773 3.034033 1.62626 | 0.123123 | 0.971
75 A 0.662992 1.443012 0.78002 | 0.046011 | 0.955
B 1.127706 2.140591 1.012885 | 0.059599 | 0.962
i 1.190708 0.952
a 1.446856 2.916606 1.46975 | 0.093843 | 0.969
100 A 0.69255 1.394713 0.702163 | 0.045603 | 0.953
B 1.14157 1.985018 0.843448 | 0.066669 | 0.956
i 1.2051 0.951




Table 3.21 Coverage of Asymptotic 95% C.I.s
a=2, A=1, B=2, p=L.5 =n=5, =1

n | parameter | Lower Bound | Upper Bound | width SD(W) | Coverage
o 1.180678 5.254714 | 4.074036 | 0.982995 | 0.983
30 A 0.506592 1.988138 | 1.481546 | 1.347648 | 0.963
B 1.247111 3.310564 | 2.063453 | 2.46987 0.972
i 1.066164 0.958
o 1.254238 4.207019 | 2.952782 | 0.779648 | 0.978
50 A 0.525802 1.756541 | 1.230739 | 0.921677 | 0.957
B 1.35092 3.189649 | 1.838729 | 1.702697 | 0.967
i 1.139075 0.955
o 1.345242 3.560474 | 2.215231|0.641804 | 0.974
75 A 0.630792 1.641162 1.01037 | 0.984202 | 0.955
B 1.41278 2.846945 | 1.434165 | 1.982925 | 0.962
i 1.166284 0.953
a 1.423207 3.352306 | 1.929098 | 0.740477 | 0.970
100 A 0.656122 1.526605 | 0.870483 | 1.059187 | 0.952
B 1.503427 2.710758 | 1.207332 | 1.952878 | 0.956
0 1.229383 0.952

Table 3.22 Coverage of Parametric Bootstrap 95% C.1.s
a=2, A=1, B=2, p=15, n=5, =1

n | parameter | Lower Bound | Upper Bound | width SD(W) | Coverage
a 1.892279 2.906649 1.01437 | 0.235433 | 0.955
30 A 0.557248 1.684558 1.12731 | 0.066727 | 0.955
B 1.152335 3.096615 1.944281 | 0.160542 | 0.971
i 1.16297 0.953
a 1.841297 2.659786 | 0.818489 | 0.172752 | 0.950
50 A 0.620751 1.515689 | 0.894938 | 0.04958 0.952
B 1.31134 2.886517 1.575178 | 0.101799 0.964
i 1.139042 0.955
a 1.828085 2.516577 | 0.688491 | 0.130191 | 0.947
25 A 0.661838 1.469066 | 0.807228 | 0.041491 | 0.949
B 1.331545 2.725896 1.394352 | 0.07054 0.961
i 1.120542 0.956
a 1.866915 2.453198 | 0.586283 | 0.075365 | 0.945
100 A 0.72914 1.368244 | 0.639104 | 0.024837 | 0.946
B 1.483533 2.586148 1.102614 | 0.048198 | 0.955
i 1.110236 0.956




Table 3.23 Coverage of Nonparametric Bootstrap 95% C.l.s
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a=2, A=1, B=2, p=L.5 =n=5, =1
n | parameter | Lower Bound | Upper Bound | width SD(W) | Coverage
a 1.795159 3.00377 1.208611 | 0.361801 | 0.956
30 A 0.449315 1.792492 1.343178 | 0.093729 | 0.959
B 0.96618 3.28277 2.31659 | 0.241459 | 0.975
i 1.323013 0.951
a 1.762931 2.738152 0.975221 | 0.2239 0.954
50 A 0.535066 1.601375 1.066309 | 0.060284 | 0.955
B 1.160525 3.037332 1.876807 | 0.110246 | 0.969
i 1.31011 0.951
a 1.762166 2.582496 0.82033 | 0.180288 | 0.950
75 A 0.58455 1.546353 0.961803 | 0.047957 | 0.954
B 1.198043 2.859398 1.661355 | 0.092702 | 0.965
i 1.340352 0.949
a 1.810782 2.509332 0.69855 | 0.0834 0.947
100 A 0.66795 1.429435 0.761486 | 0.029565 | 0.948
B 1.377964 2.691717 1.313753 | 0.069997 | 0.958
i 1.329761 0.951
Table 3.24 Coverage of Asymptotic 95% C.l.s
a=2, A=l, B=2, p=1.5, =5 =15
n | parameter | Lower Bound | Upper Bound | width SD(W) | Coverage
a 1.11577 5913243 | 4.797474 | 0.580694 | 0.984
30 A 0.517366 1.982876 1.46551 | 0.931705 | 0.970
B 1.194996 3.683123 2.488127 | 1.731279 | 0.975
i 1.04588 0.959
a 1.339687 3.971925 2.632239 | 0.310943 | 0.978
50 A 0.669776 1.636548 0.966772 | 0.619589 | 0.961
B 1.394634 2.880582 1.485948 | 1.649991 | 0.967
i 1.178838 0.952
a 1.413564 3.616671 2.203107 | 0.372951 | 0.974
75 A 0.713172 1.538877 0.825706 | 0.556209 | 0.957
B 1.462322 2.740709 1.278387 | 1.557488 | 0.964
i 1.202326 0.951
o 1.467187 3.153735 1.686548 | 0.109747 0.972
100 A 0.754687 1.399557 0.64487 | 0.290948 | 0.952
B 1.528815 2.568824 1.04001 | 0.56538 0.961
i 1.263944 0.949




Table 3.25 Coverage of Parametric Bootstrap 95% C.l.s
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a=2, A=1, B=2, p=L.5 =n=5, 1=15
n | parameter | Lower Bound | Upper Bound | width SD(W) | Coverage
a 2.020808 2.750363 | 0.729555 | 0.223073 | 0.955
30 A 0.766721 1.429044 | 0.662323 | 0.056178 | 0.953
B 1.406384 2.804238 1.397854 | 0.138132 | 0.967
i 1.166141 0.953
a 1.991935 2.524924 | 0.532989 | 0.1023 0.949
A 0.808887 1.342104 | 0.533217 | 0.035152 | 0.949
S0 B 1.492788 2.577299 1.084511 | 0.079342 | 0.962
i 1.136777 0.954
a 1.951479 2.395367 | 0.443888 | 0.142408 | 0.948
75 A 0.842167 1.280425 | 0.438259 | 0.071572 | 0.948
B 1.594817 2.461425 | 0.866607 | 0.088798 | 0.959
i 1.12091 0.955
a 1.950381 2.273168 | 0.322786 | 0.078887 | 0.945
100 A 0.881478 1.201186 | 0.319709 | 0.030296 | 0.945
B 1.716333 2.300601 | 0.584269 | 0.068257 | 0.951
M 1.105877 0.956
Table 3.26 Coverage of Nonparametric Bootstrap 95% C.I.s
a=2, A=1, B=2, p=L5, n=5, 1=1.5
n | parameter | Lower Bound | Upper Bound | width SD(W) | Coverage
a 1.950957 2.820214 | 0.869257 | 0.350217 | 0.959
30 A 0.703307 1.492458 | 0.789151 | 0.065922 | 0.956
B 1.272547 2.938076 1.665529 | 0.180675 | 0.971
w 1.311975 0.947
a 1.940904 2.575955 | 0.635051 | 0.17827 0.952
50 A 0.757834 1.393157 | 0.635322 | 0.037498 | 0.952
B 1.388952 2.681135 1.292183 | 0.111022 | 0.965
i 1.321858 0.946
a 1.908979 2.437867 | 0.528888 | 0.176183 | 0.949
75 A 0.800206 1.322386 | 0.522181 | 0.100848 | 0.949
B 1.511844 2.544398 1.032553 | 0.11485 0.961
i 1.333867 0.945
a 1.919476 2.304073 | 0.384596 | 0.101437 | 0.947
100 A 0.850867 1.231797 | 0.380929 | 0.04092 0.947
B 1.660392 2.356542 0.69615 | 0.094245 | 0.954
i 1.332677 0.945




Table 3.27 Coverage of Asymptotic 95% C.l.s
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a=2, A=1, B=2, p=L.5 =n=.667, =1
n | parameter | Lower Bound | Upper Bound | width SD(W) | Coverage
a 1.18527 5.169248 | 3.983978 | 0.764236 | 0.983
30 A 0.485836 2.144273 1.658437 | 1.246684 | 0.969
B 1.197337 3.762314 | 2.564977 | 1.838645 | 0.976
i 1.019534 0.961
a 1.265367 4.094663 | 2.829295 | 0.53232 0.979
50 A 0.533431 1.84381 1.310379 | 0.761906 | 0.962
B 1.301443 3.129461 1.828018 | 1.449937 | 0.972
i 1.074997 0.957
a 1.34338 3.477807 | 2.134427 | 0.554648 | 0.973
75 A 0.594233 1.613714 1.019481 | 1.09164 0.956
B 1.404189 2.959669 1.55548 | 2.097117 | 0.967
i 1.154882 0.953
o 1.441018 3.172844 1.731826 | 0.210842 | 0.971
100 A 0.66922 1.529088 | 0.859869 | 0.425829 | 0.953
B 1.449447 2.746254 1.296807 | 0.910654 | 0.961
u 1.191878 0.951
Table 3.28 Coverage of Parametric Bootstrap 95% C.l.s
a=2, A=1, B=2, p=L5, n=.667, 1=1
n | parameter | Lower Bound | Upper Bound | width SD(W) | Coverage
a 2.008872 2.79194 0.783068 | 0.216999 | 0.951
30 A 0.697514 1.574811 | 0.877297 | 0.059573 | 0.954
B 1.37921 2.871089 1.491879 | 0.340091 | 0.964
i 1.163706 0.952
a 1.924886 2.551433 | 0.626548 | 0.084447 | 0.946
50 A 0.750658 1.442686 | 0.692029 | 0.039608 | 0.948
B 1.412114 2.697744 1.28563 | 0.106689 | 0.959
i 1.13942 0.955
o 1.856146 2.41271 0.556563 | 0.117915 | 0.945
75 A 0.712056 1.366759 | 0.654704 | 0.050946 | 0.947
B 1.433622 2.669249 1.235628 | 0.088742 | 0.957
i 1.118694 0.956
a 1.906126 2.315065 | 0.408939 | 0.069336 | 0.941
100 A 0.815369 1.260203 | 0.444834 | 0.04016 0.943
B 1.584649 2.481777 | 0.897128 | 0.084253 | 0.954
i 1.108328 0.956




Table 3.29 Coverage of Nonparametric Bootstrap 95% C.l.s
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a=2, A=1, B=2, p=L.5 =n=.667, =1
n | parameter | Lower Bound | Upper Bound | width SD(W) | Coverage
a 1.933897 2.866914 0.933017 | 0.263416 | 0.955
30 A 0.613517 1.658807 1.04529 | 0.077511 | 0.956
B 1.236371 3.013929 1.777558 | 0.431662 | 0.971
i 1.329451 0.948
a 1.864897 2.611422 0.746525 | 0.112463 | 0.949
50 A 0.6844 1.508944 0.824545 | 0.049949 | 0.952
B 1.289022 2.820836 1.531815 | 0.144096 | 0.965
i 1.319644 0.949
a 1.802858 2.465998 0.663139 | 0.147549 | 0.947
75 A 0.649371 1.429444 0.780072 | 0.061241 | 0.951
B 1.315317 2.787554 1.472237 | 0.120466 | 0.963
i 1.325531 0.948
a 1.866972 2.354219 0.487247 | 0.08616 0.944
100 A 0.772779 1.302794 0.530015 | 0.055875 | 0.945
B 1.498753 2.567672 1.068919 | 0.12288 0.956
i 1.322481 0.948
Table 3.30 Coverage of Asymptotic 95% C.l.s
a=2, A=l, B=2, p=1.5, 1=667, 1=1.5
n | parameter | Lower Bound | Upper Bound | width SD(W) | Coverage
a 1.237376 4.600557 3.36318 | 0.449652 | 0.981
30 A 0.608433 1.870604 1.262172 | 0.932927 | 0.969
B 1.221473 3.041747 1.820275 | 1.995731 | 0.975
i 1.05579 0.959
a 1.347492 3.843713 2.496221 | 0.185363 | 0.978
50 A 0.656041 1.675728 1.019688 | 0.571424 | 0.965
B 1.346022 2.92537 1.579348 | 1.208899 | 0.974
i 1.111593 0.955
a 1.392674 3.386375 1.993702 | 0.111297 | 0.976
75 A 0.681337 1.554317 0.872979 | 0.47853 0.963
B 1.402039 2.776832 1.374793 | 1.352452 | 0.972
u 1.153385 0.952
a 1.463351 3.086464 1.623113 | 0.069089 | 0.974
100 A 0.724027 1.397377 0.673351 | 0.277008 | 0.957
B 1.571962 2.667108 1.095146 | 0.701327 | 0.966
i 1.259611 0.949




Table 3.31 Coverage of Parametric Bootstrap 95% C.l.s

7

a=2, A=1, B=2, p=L.5 =n=.667, t=1.5
n | parameter | Lower Bound | Upper Bound | width SD(W) | Coverage
a 2.024841 2.654797 | 0.629956 | 0.174726 | 0.956
30 A 0.823314 1.427485 0.60417 | 0.065627 | 0.955
B 1.42803 2.589763 1.161733 | 0.105384 | 0.968
i 1.164098 0.951
a 1.996617 2.480943 | 0.484325|0.121479 | 0.951
A 0.884618 1.305873 | 0.421255 | 0.030382 | 0.949
S0 B 1.617316 2.441713 | 0.824397 | 0.113162 | 0.959
i 1.138449 0.953
a 1.945004 2.349089 | 0.404085 | 0.128183 | 0.948
75 A 0.868486 1.244779 | 0.376293 | 0.055322 | 0.947
B 1.58077 2.403015 | 0.822246 | 0.056835 | 0.959
i 1.128913 0.954
a 1.945608 2.266826 | 0.321218 | 0.041146 | 0.946
100 A 0.898642 1.163298 | 0.264656 | 0.025534 | 0.944
B 1.741905 2.311696 | 0.569791 | 0.037611 | 0.954
i 1.107509 0.956
Table 3.32 Coverage of Nonparametric Bootstrap 95% C.I.s
a=2, Ar=1, B=2, p=l5, n=.667, 1=1.5
n | parameter | Lower Bound | Upper Bound | width SD(W) | Coverage
a 1.964526 2.715112 | 0.750586 | 0.258982 | 0.957
30 A 0.765468 1.485331 | 0.719862 | 0.073161 | 0.958
B 1.3168 2.700993 1.384193 | 0.143171 | 0.972
u 1.305051 0.947
o 1.950246 2527314 0.577069 | 0.144537 0.954
50 A 0.844285 1.346206 | 0.501921 | 0.037447 | 0.952
B 1.538384 2.520645 | 0.982261 | 0.149884 | 0.965
i 1.319397 0.946
a 1.906316 2.387778 | 0.481462 | 0.167801 | 0.951
75 A 0.832458 1.280807 | 0.448349 | 0.071815 | 0.950
B 1.502044 2.481741 | 0.979697 | 0.081917 | 0.964
i 1.32296 0.946
a 1.914853 2.297581 | 0.382727 | 0.047641 | 0.947
100 A 0.873303 1.188637 | 0.315334 | 0.027154 | 0.946
B 1.68735 2.36625 0.6789 | 0.043447 | 0.957
i 1.332709 0.945
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Looking at the performance of the confidence intervals for the distribution
parameters and the acceleration factor, one clear observation that can be made is that the
coverage of all three types of intervals are conservative for small sample sizes and that
the coverage probabilities drop towards the normal or slightly below normal levels as
the sample size increases. When the sample size is 30, the asymptotic intervals for the
shape parameter « remains above normal, and in some cases it becomes highly
conservative (see Tables 3.3, 3.6 for example). In addition, the width of the interval for
a is quite wide relative to the widths of intervals based on the bootstrap methods. While
this width decreases with sample size, it remains much wider than the bootstrap intervals
for any of the sample sizes considered in this study. Among the bootstrap methods, the
parametric intervals fora are consistently narrower than the intervals based on the
nonparametric method even though occasionally the coverage dips slightly below the
normal level (e.g. Table 3.13, sample size >75). The latter intervals for o are
conservative even for large sample sizes (e.g. Table (3.17), but in other cases they tend
to be slightly liberal (e.g. Table 3.5, n=100). Overall, for intervals estimation of the
shape parameter « , the parametric bootstrap method has good properties that mean the
width of the confidence interval is narrowest compared to the intervals based on other
methods while at the same time, the coverage does not drop much below the normal
level. If slightly liberal intervals for « are a concern, then the recommendation is to use
nonparametric intervals when the sample size is fifty or more, and use the parametric

bootstrap intervals when the sample size falls below fifty.

Results on the intervals for the scale parameter A show that, in general, the
parametric bootstrap methods yields narrower intervals for small sample sizes 3.15 —
3.17), but there are a few exceptions (e.g. Tables 3.9 — 3.11). In addition, the coverage of
the parametric bootstrap-based intervals does not fall below normal for small sample
sizes. When the sample size is >75, however, the asymptotic distribution-based
intervals are narrower than those obtained using the other two methods when the sample
size is 100 (e.g. Tables 3.3 — 3.5), but this is not always the case (for example see Tables
3.12 and 3.13; Tables 3.27 and 3.28). However, in some instances when this happens,
the coverage of the parametric bootstrap intervals is liberal. The nonparametric
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bootstrap-based intervals tend to provide intervals that are wider than their parametric
counterparts but they also tend to be come liberal for large sample sizes (e.g. Table
3.29). Therefore, for intervals estimation of A, parametric intervals are recommended
for sample sizes below 75 and the asymptotic distribution based intervals are

recommended for larger sample sizes.

Intervals estimates for the acceleration factor S show conservative coverage for

all three types of intervals when the sample size is 30. This conservative coverage
decrease as the sample size increases, but never becomes liberal as was the case for
other parameters. For sample size 30 with the shape parameter o =1.5, the asymptotic
and parametric bootstrap methods provide less conservative coverage than the
nonparametric bootstrap-based intervals. When the shape parameter in increased to 2,
the parametric bootstrap-based intervals are the narrowest in general when the sample
size is 30, while maintaining appropriate coverage (Tables 3.9 through 3.32). When

a =2, the parametric bootstrap-based intervals are narrower than the other two types of

intervals for sample sizes 50 and 75, and they maintain coverage at or above the normal
level. When a =1.5 and the sample size is 100, the asymptotic distribution-based
intervals are narrowest (see Tables 3.3 — 3.8). When the shape parameter is equal to 2
and the sample size is 100, the parametric bootstrap method tends to consistently
produce narrower intervals. Overall, the parametric bootstrap-based intervals can be
recommended for the acceleration factor.

For constructing 95% lower confidence bounds for the mean life under normal

use conditions, no discernible difference is seen between the three methods when

a=15 (see Tables 3.3 — 3.8). The estimates of the expected value of the lower bound
are very close to one another for sample sizes 75 and 100. The asymptotic distribution-
based bounds are somewhat lower than the bounds based on the bootstrap methods when

the sample size is 30 or 50. When ¢ =2 andthecensoringtime z=1, poy the
asymptotic method and the nonparametric bootstrap-based method provide bounds with
slightly above normal coverage with expected values are close to each other while the

parametric bootstrap-based bounds display slightly lower expected values with slightly
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higher than normal coverage (Tables 3.9 — 3.11). When the censoring time increases to
1.5 with @ remaining at the value 2, the asymptotic and nonparametric methods
provides bounds with very close expected values and coverages which are slightly above
normal , but the parametric method yields bounds that are higher with closer to normal
coverage (Tables 3.12 — 3.14). The above results were obtained for the case where the
size of the normal use and accelerated samples are the same and the acceleration factor
is set at 1.5. When the proportion of the sample allocated to the accelerated condition
was increased from % to 2/3, the same pattern is seen irrespective of the censoring time,
but the coverage of the parametric bootstrap-based bounds drops slightly below normal
when the acceleration factor remains at 1.5 (Tables 3.15 — 3.17 and 3.18 — 3.20). When
the acceleration factor is increased to 2, however, it is the nonparametric bootstrap that
yields higher bounds with slightly above normal coverage decreasing to slightly below
normal as the sample size increases. (Tables 3.21 — 3.23). From the above results it is
apparent that the bounds based on the asymptotic method would suffice if slightly
conservative bounds that in some cases are less sharper than other types of bounds are
acceptable. However, the bootstrap methods provide sharper bounds in some cases but
which of the bootstrap methods perform better depends on the values of the underlying

parameters. Since the practitioner will have no idea what the true value of @ and the

acceleration factor # are, but have control over the censoring time 7, it is
recommended to use the parametric bounds when using a relatively high censoring time
but the sample is divided equally between the normal use and accelerated use. When 7
is close to 2/3 and one has some an idea that the acceleration factor should be high, the

nonparametric bootstrap may be a good choice.

3.5 CONCLUSIONS AND FUTURE WORK

PALT have advantages over the ALT procedure under two scenarios: (1) when
the accelerating factor is unknown or (2) a suitable model that links parameters of the
life distribution to the stress level is not available. However, a drawback to PALT is that
it is not suitable when the products under test have a very long mean life. This is because
part of the sample is tested under normal use conditions and components with a very
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long expected life span may not fail at all during a reasonably chosen test period. It is.
However, applicable in situations where the life-span of tested products is only
moderately long. This is mostly the case in the chemical industry, where the shelf-life of
a specialty chemical may be only a few months to an year long. This research
contributes to the area of PALT by generalizing an existing procedure that considers
testing products with a generalized exponential distribution. While the previous work
considered Type Il censoring, the more difficult case of Type | censoring was
considered in this paper. In addition, this paper develops two bootstrap-based methods
for obtaining confidence intervals for the distribution parameters and the acceleration
factor. Moreover, it utilizes the three methods to obtain lower confidence bounds for the
mean life of the product under normal use conditions. Monte-Carlo simulation Results
show that one or more of the methods perform very well under a wide variety of

conditions.

Future work would involve developing a theoretical justification for using the
result of asymptotic normality for maximum likelihood estimates derived from a PALT
scenario under Type | censoring scheme, while at the same time extending the results for
the case where the shape parameter is less than or equal to two. Additional extensions
would involve generalizing the test situation to include two censoring times for the two
sub-samples, and investigating the behaviour of the proposed procedures under a wider

set of distributional and test parameters.
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4. CONCLUSION

Partially accelerated life tests (PALT) have advantages over the accelerated life
test (ALT) procedure when either (1) the accelerating factor is unknown or (2) a suitable
model that links parameters of the life distribution to the stress level is not available.
PALT, however, has a drawback in the sense that it is not suitable when the products
under test have a very long expected life. If the products have a long life, then the portion
of the test sample that is tested under normal use conditions may not produce a few
failures at best during a reasonably chosen test period. It is, however, applicable in
situations where the life-span of tested products is only moderately long. This is mostly
the case in the chemical industry, where the shelf-life of a specialty chemical may be only

a few months to a year long.

This research consisted of two main studies. The first study extended a currently
available method, for construction confidence intervals for distributional parameters of
the underlying Weibull distribution and the acceleration factor, to cover Type I
censoring case. It also developed two bootstrap-based methods for obtaining prediction
intervals for distribution parameters and the acceleration factor. In addition, asymptotic
distribution based intervals were also considered. More importantly, a method of
obtaining lower confidence bounds for the mean life under normal use conditions was
also developed. The performance of the three methods was studies using a Monte-Carlo
study. Results show that all methods perform reasonable well under all parameter

combinations employed in the Monte-Carlo study.

The second study contributes to the area of PALT by generalizing an existing
procedure that considers testing products with a generalized exponential distribution.
While the previous work considered Type Il censoring, the more difficult case of Type |
censoring was considered in this paper. In addition, this paper develops two bootstrap-
based methods for obtaining confidence intervals for the distribution parameters and the
acceleration factor. Moreover, it utilizes the three methods to obtain lower confidence

bounds for the mean life of the product under normal use conditions. Monte-Carlo
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simulation Results show that one or more of the methods perform very well under a

wide variety of conditions.
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APPENDIX

Result 2.1 given in Section 2 can be proved using the Theorem B.41 in Meeker and
Escobar (1998) which gives the regularity conditions necessary for the asymptotic
normality of the MLEs.
Regularity Conditions for Location-Scale Distributions

When Y [or a transformation of T such as Y=Ilog(T)] is location-scale with pdf,
N A B B “ -
f,(y;0)=—+¢ ,0=(u,0), —0<y<ow, —o< u<oo,o>0,the “regularity
o O

conditions can be expressed as follows:

* ¢(z)>0 forall —o<z <o

e The following limits hold:

lim [22 X%(Z)i| =0
2w 0z

» The second derivative 0°¢(z)/éz” is continuous.

e The matrix

c {_ & '09[¢(2)J},

060y’
is positive definite and all its elements are finite.

First we show that the log of the Type I censored Weibull variables have a location-scale
Family.
Let X ~W(4,a), Y=In(X),and z,=In(7)

Y has a location-scale distribution, namely its cumulative distribution function (cdf) is
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P(n(X)<y)
P(In(X)<1z,)

Bl
1-exps—| —
_P(x<e') { A

P(X <e®) { o% }
1-exp<s— /1}
n(4)

o) el

RN

with location parameter u =In(1) and scale parameterb = 1 since
(04

P(Y<y <z,)= P(In(X)s y||n(x)gfo):

H(ylr)=P(Y < yY <7,)=P(u+bZ < ylu+bZ <7,)= P[Z < y;“

ZSTO_U
b

£y - : 1_eXp{_e(YbUJ} 1-exp{-e’
et )zl_eXp{_em} Tl

where CD(Z‘T*) is the CDF of a Gumbel with Type I censoring. Therefore,

:(D(_y—u
b

¢(Z‘z'*) _ 8(13(2) 0 [1exp{e(2)}] _ e’ exp{_e(l)}

az & 1—exp{—e’*} 1—exp{—ef’}'

8¢(z‘r*) E[ez exp{—e(z)}J_ —exp{z—e(z)}(eZ -1) |

o o 1—exp{—e’*} 1—exp{—e’*}

where (Iﬁ(z‘r*) is the standard Gumbel Distribution with Type | censoring.

We need show Zli%rp{z2 x@] =0,



which is equivalent to lim

Z—0

[2 a¢(u*)_ _ {szexp{ze(z)}(ezlq=

77 x =lim 1—exp{—e’}

az 7—00

and therefore,

75— oz P

lim | 22 x o9(z[") = lim {zzx ~e{zej(e 1)} —0.

1—exp{—e’*}

is continuous. Note that

Ma_{p{_“}J az[—exp{z : }(HJ

We also need to show that

o2 oz 1—exp{—ef*} 1 exp{ e’ }
exp{z —e(z)}(—SeZ +e +l)
B 1—exp{—e’} '
The distribution under the acceleration factor gis:
X ~W (4,a) Y =p7X. T=In(Y)=In(p"X). Therefore,
Y has a location-scale distribution, and its cumulative distribution function (cdf) is
P(In(87*X)<t)
_ -1 -1 _
P(T <t[T <7,)= P(In(ﬂ X)<t|in( x)sTo)_ RIS

l—exp{—(ﬂetja}

_P(BX <€)  P(X<pe) A

T P(pX <e®)  P(X <pfe?) { e }
1-exp —( P j

) 1—exp{—exp[t_m(%¥ In(ﬂ)}} ) 1—exp{—exp(t;uj}
1_exp{_exp(ro—In(?ﬂn(ﬂ)}} 1—exp{—exp(%b_uj}

with location parameter u =In (/1)— In(4) and scale parameterb = l.
o

Now let T =bZ +b :>Z_TTu Then
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o 215

_ 1-exp{—exp(z)} |
1—exp{—exp(r* )}

where @(Z‘r*) is the CDF of a Gumbel with Type I censoring and " :T"T

is implies that ¢(z|z" _o0(2) _ o | 1-exp{-exp(2)] _ez[exp{—exp(z)}]
Th pl '[ht¢( ‘T)_ oz 5(19XP{eXp(r*)}]1exp{exp(r*)}

and that

a¢(z‘r*):£ ez[exp{—exp(z)}] :—exp{z—ez}[exp(z)—l]
o1 o 1—exp{—exp(r*)} 1—exp{—exp(r*)} ’

where ¢(z‘r*) is the standard Gumbel Distribution with Type | censoring.

Then we show that the condition

i {zzfﬂz\f)]o

Z—>+o0 oz

M}.im

Z—0

Z—0

holds as follows: Iim{z2 X
0z

{zz ) —e" (e -1)

1—exp{—exp(r* )}} =0 and

lim [zz x 8¢(Z‘r*)} = lim {zz x e (et }o.

o oz o 1-exp {—exp (r* )}

og(2|")

>— Is continuous. Note that

Also we need show that

82¢(z‘r*)_ o2 [ exp{z—e’ }i(exp{zez}[exp(z)ﬂ]
1—exp{—exp(r*)} oz 1—exp{—exp(r*)}
:exp{z—ez}[—3ez+e22+1}
1—exp{—exp(r*)}

0z° 0z°

87



88

Clearly, the above function is continuous.
In addition, we wish to show that

lim ZZXM T (1) -0.
250 oz 20 1—exp{ exp(r )}
In order to show this we examine Zlirirlo[z2 x -2 ¢ 1)}

Applying the quotient rule, we write lim [zz x—e"” ( 1)}

Z—>—©

lim — z%* (ez—l) Iim—zzez(eZ —1) lim — z%* (eZ —1)
7—>—00 — 7—>—00 — 7—>—00
lim e orm? e°

Z>—x -

_ - Ze (ez _1)_ = lim — 2%’ (eZ —1).

eO ZI—>—©

—0

By the product rule,
lim 7%* (1—ez):(zlirl zzez)zliql(l—ez):(zlirﬂo zzez)(l—e"”):(zlirﬂo zzez).

2
. A o2
To prepare product z%e* for solution by L'Hdpital's rule, we write it as—.
e

Applying L'Hopital's rule, we obtain,

d ,
z° - 22
lim—=lim 92 — |im == = lim-2ze > =-2 lim ze™
-0 @~ 7—>—0 d _7 -0 —@" 7—>—0 7—>—0
dz

To prepare the product ze * for solution by L’Hopital’s rule, write asé:
e

Applying L'Hdpital's rule, we obtain,

d d. .
—2Iim—z— 2 lim -9z _ =-2lim——=2lime*=2e~ =0,
75— @ 7—>—® d _s 75— @ Z—>—0
dz
o e (e
which implies lim| z° x =0. 1)

250 1- exp{—exp(r* )}
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e 6¢(z r*) |, e (el
In order to show that lim| z° x =lim| z° x =0, we look at
70 62 70 1—eXp{—eXp(r )}
lim [zz x ¢ (eZ —1)} =lim [—zzezz’ez +7%7 } =lim z%e** —lim z%e***
750 Z—0 Z—0 z—>®
Zzez ZZeZZ
=lim———-lim——.
7> ee 7—®© ee
Applying L'Hépital's rule, we obtain,
d 2.2 d 2.2z
— 7% — 7%
. Zzez . Zzezz . dz . dz
lim———lim—=Ilim=—4%——-lim=5%5——
Z—>0 ee 70 ee 70 i ol 7w i ol
dz dz
. 2ze* + 7% . 2ze* +27%*
=1lim - —lim -
750 ee +z 7—>0 ee +z
. 2ze* +7%? . ze% 4+ 7%%
=1lim - —2lim -
750 ee +2z 750 ee +z
_ef(2z+2%) e (z+77)
=lim——~-2lim -
Z—>0 ee +z 7o ee +z
_ (22+22) _ (z+zz)
=lim —_2lim——~.
Z—®© ee 7w ee -z

Also, applying L'Hépital's rule, we obtain,

2 2 a 27+ 7% a4 7+ 7%
=|im(22+zz )—2|im(z+zz )_Iim dz( ) 21im dz( )
el et oo @t o 9 ieez > ieez—z

dz dz
:“m(2+22)_ | (1+2z)

Again, applying L'Hépital's rule, we get that
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d d
—(1+z —(1+2z2
i 22 22) i _228) i )y 0
e e (e ) Eeue : gt (ez 1)
. 2
=2lim— —2lim
o ee (e +1) 72— e 2a? 4 (g? _1) et 2
2 4 _2_ 4,
e (e +1) e 4 (e” —1)2 e ® ’
And therefore lim| 2% x Bl (ez _1) =0 (2)

o l—exp{—exp(r*)}

From (1) and (2) we obtain,

lim | 2% x Bl (ez—l)
20 l—exp{—exp(r*)}

o*log| 4(z)]

eleali]

=0.

We need to show further that E {— } is positive definite and all its

elements are finite.
First we need find ML function of the location-scale Distribution.
In Type I censoring, T is fixed but the number of failure values observed in time T is a

random variable. The number of items, R, failing before time t is assumed to follow a

binomial distribution R ~ Bin(n, p), where

Ty —

p=F, (7;u,b) =1—exp{—exp( uj} :1—exp{—exp(r*)}, under nominal use

conditions. Under high stress conditions the number of items failing will have a

Binomial Bin(n, p"), distribution where

*

u j} :1—exp{—exp(r*)} .Then, for observation

Ty —

p = F, (ro;u*,b) :1—exp{—exp(

i under nominal use conditions, we have,



5, =1-6u, &, =1-5a,
with
o, ~ Ber(p)= Zéui ~ Bin(nz, p), 5, ~ Ber(p)= Zéaj ~ Bin(nz, p).
i=1

i

We also have, under nominal use conditions,

Fool )
l-expy—exp| ——
b f<fou
t—u|z,—u . —u)l’ B
o —|-° =<1- - 0
( b b J 1 exp{ exp( b j}
1 t>T°_u
b
o 00(z) of1-e” e’e™®
¢(ZT ): 85 ):E( 797* J: o ]
1-e 1-e

where ¢(Z‘r*) is the standard Gumbel distribution.

. t—u
Also, letting z :T we have,

U N ep ] —exp[ Y
e ) pffxpj{i(:ﬁf} :
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Thus, givenR = n,, the conditional density of the first r failure times under the

nominal use condition is equivalent to the joint density of an ordered random sample of

Iy

e'nzuliexp{ expz }
=”'ﬁ et expl-exp(z); |_ |

sizen, from a truncated Weibull distribution, given by

=n)=n1[ T4 (s

¢T(Z(1)’.”’Z(nu)|R:nu):¢r(t(l)’ it

Monl ol reel el

The joint density of obtaining R = n, ordered observations at the values Zay 2 2

before time t may be expressed as,

&, (2(1)""1Z(nu)):¢r(z(1)v“'a Z(n,) |R = nu)bin(nu;nﬁi p)

Ny

ool oedin) e ey

[reeesl)]

Ny

2
, &7 exp —eXpZ (z N nz-n
_ (n ) { }1 exp{ exp(r*)})u(eXp{—eXp(r*)}) u

(n7 - [1 exp{ exp(r }]

(AN exp{_expz }exp{ exp(e))) "

(n;z n,)

=N

Therefore, we can state that,

nrz)! ili dl )\
qﬁr(z(l),...,z(nu))z(n(_lee'1 exp{—epo(zi)}(exp{—exp(r )})

iztu B -,
et Yo a2

Similarly to the argument made about the joint density of observations under nominal use

conditions, givenR =n_ the conditional density of the first r failure times under

acceleration is equivalent to the joint density of an ordered random sample of size n,
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from a truncated accelerated Weibull distribution. Therefore, for an item tested at

accelerated condition, the probability density function is given by

Ferl(5)

1-exp<—exp ,
b t'gro_u

70;“ j= 1—exp{—exp(r°;u j} °

7,—U

(D(t’—u’
b

1 t'>

T*') _ aCD(Z') :i[]__e—e(z’) J: ez’e_ez,

= azl azl l_e_er* 1_e761

which yields ¢(z'

where ¢(z’ r*') is the standard Gumbel distribution.

!

—u
% . and therefore,

t'—u’
€ — |e €
t’—U’|TO urj: Xp( b j Xp{ Xp( b j}

Tﬂ):"{ b | b { }
1-exps—exp| —+—

The joint density of obtaining R = n, ordered observations at the valuesY,,, ,---,

! !

Also, z’=t ;u . and 77 =

¢(z'
Y(na)

before time, may be expressed as,

b, (21 2oy) = 8, (2 2y [R =, )bin(n,:n7, p)

| i=1 - (n J pnu (1_ p)nzr—nLI

e
o) © exp{ esz Z', }(1 exp| - exp(r*')}jnu (exp{‘exp(r“)})w

(nz—n,)! [1_exp{—exp(r*' )}}
- (n—ﬁ)!)e;z{ exp {— expi(zi')}(exp{—eXp(T*')DMnu :

(nz-n,)! =
Therefore, we can state that

—~




. (2 ZEm)):%ei | exp{‘epo }(exp{_exp(fﬂ)})nﬁm

u =1

¢, (Z('l),---, Z('nu))=¢r (tél)""’t('nn)

oo o f-on( =2 |

and the total likelihood function for(t,,d, ,...,t

=L(olt )=, (w8, )L, (Wbft.6, )= L, (wblt) L, (wb.At).0, )

[+ oo o] H [oof-enf=52) )
97 ot
11 o oo S5 1] [on{-e0( %52
1 W exp{‘“p[” bujﬂ. n ﬂ“p{ o[ =5

”" SN

Nz YU,z nz! Ya,,

& exp{_expi(“ ;“’}}Mexp{—expt =i

The MLE’s of the parameters can be estimated numerically by minimizing the log

likelihood function. The log likelihood is expressed as,

8yt 8y vty 8, ) is as follows,
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InL=InL(O]t .t')=1

Zn(t u]exp{ Zexp(t H oo
A ol 'J}HeXp{ :’J}ﬂ"”"ﬂ
S5 (5B |
ooz oo expmm"”}
350 ool 4523552 Srom( 5

_(nﬁ—nu)exp(f"b_uJ—(nzz—na)exp(To;u'j,

where u'=u+In(4).

Il
5

i

The normal equations are obtained by differentiating the log likelihood with respect to

the parameters and setting them to zero. The Score equations are:

o -n, 1 t-u) n, 1 ti—u
—=—"4 ' 24— ex
du b bizm ( b j p;{ ]
+(nn—nu)exp(ro—uj+(nﬂ—na)exp(ro—u j
b b b b
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a  n 1 ti-u") (nz-n,) 7, -’
and =——a+ ex 2l exp| =2 =0.
v pz[ j b p( b ]

We also derive the second derivatives:
s el el
W5 e ( )
e E R p(b]
j (nz—-n,) |

) o)

b b

(o

&l -n,  (ti-u") (nz-n,) 7, -\’
=—2gx — ex ,
ouou’ b’ p;( b ] b? Pb
ol n Lt —u’ t—u’ . —U . —u’
_a_»9 J exp| - —2(nz—n_)| 2 0 :
s 25 ool T atm [ o[ %5

ol & (t.
—=-N,) exp| -
ou’ ,Z::‘

and

w2 el J{(tsz ()
=55 J 2“( N )
-om-nes{ 552 ”JZ )
| { ob;“'j},




97

E[aii'} 23

e 'Jéw(“;“i{ ”&“Tﬂ(”b‘f’}}
w55 )
soe-n (5 (35 {75

Further simplifying the first and second parts,
2
n, t—U n, t—U t—u t—u
-2 ' + ) exp| — 3§ Y= +2| -
g(b3jgp(bj{[b2J (bs)}
Ny _ Ny _ 02 C0\2 B
(5l - 5 )
i=1 b i=1 b 21 b b b




Al s s 5]

BT

i

b

(55

Similar si9mplification of the third and fourth parts yield:

2! 3

—u

3
; —Uu
NI
I b

=G o252

b

)
2
Ll (t—u t —u t —u 1(t—-u 1(t—-u
1 2 ] 1 _ ] _ 1
@K ) ' JH( Pl vl
+i il +(nz-n )exp(ro_ulj (1"_”') +2(T°_u’
=5\ b’ : b b’ b?
B 2
WIS T t! —u’ ti—u’ 1(t —u 1(t -
i 2| [ j Rl B i
(G AT )5 5




Expanding the second and forth parts using the Taylor series we obtain,

23 o010 bzz{ (525 )

2
—u g ti-u") 1t -u
bZZEXp( ] b? £ {“[ b }Z( b J+}

-0?l 18 (t —u
Thus, E = E{= i
L‘u@b} % Z( b

i=1

LE(ou) (U () 18
N ex + L=

+(n7r—nu)(ro—u exp(ro —uj+(nﬂ—nu)exp(fob_u

Thus,

ol —n (- t—u’ 7, —U’ T
= =E| 2 +2) | L~ |exp| =— |+2(nz—n,)| > |exp| -
[abaul {bz + ,Z'( = J p[ . ) (nz a)( ; j p(
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because 2(n7r—na)(rob_3u ]exp(%;u jzz(nn—na)(%b;“ j

2(n7;2—na) >% and %0 —u’

0l -n, . &(tj-u t-u
E =E{ 2 +2) [ L~ |exp| -
[8bau’} b JZ[ b® J p( b j
! ! 2
+2(n7r—na)[ro—u ]+(nﬂ_na)(%;uj +--3>0.

b? b b?

Because >0 we obtain,

This completes the proof of Result 2.1.
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