
Scholars' Mine Scholars' Mine 

Doctoral Dissertations Student Theses and Dissertations 

Summer 2017 

Contributing factors to child stunting in Guatemala: A systems Contributing factors to child stunting in Guatemala: A systems 

analysis focused on enteric disease transmission and mycotoxin analysis focused on enteric disease transmission and mycotoxin 

exposure exposure 

Lee Emerson Voth-Gaeddert 

Follow this and additional works at: https://scholarsmine.mst.edu/doctoral_dissertations 

 Part of the Environmental Engineering Commons, and the Environmental Health Commons 

Department: Civil, Architectural and Environmental Engineering Department: Civil, Architectural and Environmental Engineering 

Recommended Citation Recommended Citation 
Voth-Gaeddert, Lee Emerson, "Contributing factors to child stunting in Guatemala: A systems analysis 
focused on enteric disease transmission and mycotoxin exposure" (2017). Doctoral Dissertations. 2584. 
https://scholarsmine.mst.edu/doctoral_dissertations/2584 

This thesis is brought to you by Scholars' Mine, a service of the Missouri S&T Library and Learning Resources. This 
work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the 
permission of the copyright holder. For more information, please contact scholarsmine@mst.edu. 

https://library.mst.edu/
https://library.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/doctoral_dissertations
https://scholarsmine.mst.edu/student-tds
https://scholarsmine.mst.edu/doctoral_dissertations?utm_source=scholarsmine.mst.edu%2Fdoctoral_dissertations%2F2584&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/254?utm_source=scholarsmine.mst.edu%2Fdoctoral_dissertations%2F2584&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/64?utm_source=scholarsmine.mst.edu%2Fdoctoral_dissertations%2F2584&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsmine.mst.edu/doctoral_dissertations/2584?utm_source=scholarsmine.mst.edu%2Fdoctoral_dissertations%2F2584&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsmine@mst.edu


 

 

   

 

 

 

CONTRIBUTING FACTORS TO CHILD STUNTING IN GUATEMALA: A 

SYSTEMS ANALYSIS FOCUSED ON ENTERIC DISEASE TRANSMISSION 

AND MYCOTOXIN EXPOSURE 

 

 

by 

 

LEE EMERSON VOTH-GAEDDERT 

 

 

A DISSERTATION 

 

Presented to the Faculty of the Graduate School of the 

 

MISSOURI UNIVERSITY OF SCIENCE AND TECHNOLOGY 

 

In Partial Fulfillment of the Requirements for the Degree 

 

 

DOCTOR OF PHILOSOPHY 

 

in 

 

CIVIL ENGINEERING 

 

2017 

 

Approved by 

Daniel Oerther, Advisor 

Robert Holmes 

V.A. Samaranayake 

Mahelet Fikru 

Dev Niyogi  

 

 

 

 



 

 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



iii 

   

PUBLICATION DISSERTATION OPTION 

 

This dissertation consists of the following five articles which have been submitted 

for publication, or will be submitted for publication as follows and have been formatted 

in the style used by each journal: 

Paper I: Pages 20-38 have been published by Institute of Electrical and 

Electronics Engineers Global Humanitarian Technologies Conference Proceedings. 

Paper II: Pages 39-61 are intended for submission to the Environmental Health 

Perspectives Journal. 

Paper III: Pages 62-79 are intended for submission to the International Journal of 

Epidemiology. 

Paper IV: Pages 80-99 are intended for submission to the Environmental Health 

Perspectives Journal. 

Paper V: Pages 100-117 have been submitted to the Environmental Science and 

Technology Journal.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



iv 

   

ABSTRACT 

 

Child stunting – low height-for-age – is a United Nation’s indicator for chronic 

malnutrition that has been linked to both acute and chronic health problems. Data from 

Guatemala suggests for children under five years of age, 49% are classified as stunted. 

This dissertation tests the following hypotheses, among children in Guatemala 1) 

environmental enteric dysfunction (EED) is correlated with height-for-age, 2) aflatoxin B 

(AFB) exposure is correlated with height-for-age, and 3) AFB exposure is correlated with 

EED. A network analysis was conducted on data from the US Agency for International 

Development (USAID) collected in 2012 to identify trends in a height-for-age model and 

an EED model. These results were then combined with a literature review, field 

observations, and informal interviews to hypothesize two structural equation models 

(SEM). Additionally, a third SEM was hypothesized for the AFB exposure model. The 

models were tested with data collected by the San Vicente Health Center in Totonicapán 

in October 2016 and February 2017. Finally, five geographic specific SEMs were built 

with the USAID 2012 data and tested with USAID 2013 data. Results of the hypotheses 

include 1) mixed findings on a correlation between EED and child height-for-age, 2) a 

confirmed correlation between AFB exposure and child height-for-age, and 3) no 

correlation between AFB exposure and EED. Furthermore, improved prenatal health and 

improved sanitary child play areas were correlated with child height-for-age. For the 

EED model improved water treatment was correlated with reduced EED. Finally, 

improved maize purchase habits, post-harvest practices, and maize storage were 

correlated with a decrease in AFB symptoms. Field practitioners and policy makers must 

account for local and regional suitability for interventions and policies on child health. 
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SECTION 

 

1. INTRODUCTION 

Low height-for-age, or stunting, is a critical public health indicator, and 

preventing stunting has been recognized as a global health priority by the United Nations 

members through the ratification of the Sustainable Development Goals. Goal 2.2 states,  

“By 2030, end all forms of malnutrition, including achieving, by 2025, the 

internationally agreed targets on stunting and wasting in children under 5 years of age, 

and address the nutritional needs of adolescent girls, pregnant and lactating women and 

older persons” 1.  

Stunting is defined by the World Health Organization (WHO) as,  

“a height-for-age ratio less than two standard deviations below the World Child 

Growth Standard mean” 2.  

Stunting is associated with negative long term health consequences including 

physical limitations, retarded cognitive development, increased susceptibility to diseases, 

increased risk of obesity, and premature mortality 3,4. The United Nations Children’s 

Emergency Fund (UNICEF) has cited disease and nutrition as the two primary 

contributing factors to the 23.8% of children stunted globally 5,6. Previous research has 

ranked Guatemala fifth worst in the world for child stunting rates, at 49% of all children 

under the age of five stunted 5. The purpose of this work is to rank order causal factors to 

child stunting in Guatemala.   

Causal factors of child stunting are diverse, dynamic, and interrelated which deem 

the issue of stunting a “wicked” problem 7. To help address wicked problems, systems 

approaches can provide tools in which to capture the complex characteristics of the 

system. Primary factors that have been associated with child stunting -- and are present in 

Guatemala -- include impaired water quality, lack of proper sanitation, insufficient 

hygiene practices 8, toxins in foodstuffs 9, prenatal health 10,11, caloric and energy intake 

12,13, and protein and micronutrient intake 14,15. Each factor may impact the physical 

development of a child in a variety of ways and may include 1) limiting the macro- and 

micro- nutrients that reach the gut, 2) limiting the absorption of those nutrients by the gut, 

or 3) limiting the immune function that protects a child’s gut from infections, among 
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others 16,17. Based on informal interviews with local non-governmental organizations 

(NGOs), academics, and government officials working in Guatemala on child stunting, 

two primary factors currently of interest are fungal toxins in foodstuffs (mycotoxins) and 

low-levels of chronic exposure to enteric pathogens. Aflatoxin B (AFB), a type of 

mycotoxin, is produced by the fungus Aspergillus flavus and A. parasiticus and has been 

classified as a group 1carcinogen by the WHO 18 as it is associated with liver cancer. 

Previous research has reported on the potential association of AFB and Fumonisin B (FB) 

with reduced enteric immune function and child stunting 9. Similarly, enteric pathogens 

from poor water, sanitation and hygiene (WaSH) practices have been associated with 

diarrheal occurrences 19, but recently an increase in research has occurred focused on the 

impacts of enteric infections on environmental enteric dysfunction (chronic inflammation 

in the gut) 20,21. To investigate these associations to child stunting within the larger 

system present in Guatemala, several system analysis approaches were applied to several 

sets of data from the western highlands of Guatemala.   
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2. OBJECTIVES 

The primary goal of this doctoral research is to advance the fundamental 

knowledge within the following three hypotheses. Among children in the western 

highlands of Guatemala between 0 and 5 years of age; 

Hypothesis #1: there is a statistically significant association between the 

severity of the children’s environmental enteric dysfunction (EED) and the ratio 

of the children’s height-for-age. 

Hypothesis #2: there is a statistically significant association between the 

children’s aflatoxin B exposure level and the ratio of the children’s height-for-

age. 

Hypothesis #3: there is a statistically significant association between the 

children’s aflatoxin B exposure level and the severity of the children’s EED. 

The secondary goal of this research is to rank order the primary contributing 

factors to child stunting within the western highlands of Guatemala and a specific set of 

communities chosen for this studied in Guatemala. These outcomes will allow for 

improved selection of interventions, both technological and policy oriented, for 

development professionals including engineers. To complete the identified goals, four 

objectives were established and a timeline proposed (Table 1):    

1. Develop a methodology that improves accuracy of current models representing 

the causal factors to child stunting  

Improve how data and information can be used with network 

analysis algorithms (NAA), structural equation models (SEM), and system 

dynamics models (SDM) 

2. Use previously collected data to train and test NAAs on child stunting causations 

Categorize immediate and secondary causal factors; assess their 

effects on child stunting at a household level and community level; reduce 

number of potential causal factors to assess; rank-order critical parameters 

in the system 

3. Conduct field assessment using validated survey to test hypothesized correlations 

between causal factors and child stunting (child height-for-age) 
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Data collection using a survey and field tests will be conducted at 

two time-points by the local health center, in San Vicente, Guatemala, and 

include at least 300 children under the age of five and their mothers   

4. Develop geospatial models for water, sanitation, and hygiene based infrastructure 

barriers to infectious disease transmission. Test models utilizing secondary data 

from the western highlands of Guatemala 

 

Table 2.1. Anticipated Project Timeline 

Obj. 
2016 2017 

Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 

1 
Method 

Devel. 
       

2  Model Previous Data     

3  Field Analysis     

4     Model & Eval.   
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3. LITERATURE REVIEW 

Beginning in the 1970s, child stunting, has been promoted as the best long term, 

national level health indictor 22. A child is most vulnerable to stunting within the first five 

years of life 23,24. Several studies suggest that once a stunted child reaches three to five 

years of age, the effects are irreversible 25. The physical growth of a child is complex, but 

has been found to be associated with the short and long term health as well as interactions 

that occur in a child’s small intestine 26,27. These associations can be grouped into three 

categories; first, access to sufficient nutrients; which is highly dependent on feeding 

practices for the child and community access to nutritious foods 28. Second, the immune 

system function of a child; this includes functions such as nutrient allocation to the 

immune system to fight enteric pathogens, pathogens reducing general absorptive 

capacity of the intestinal wall (villi), and the passing of nutrients due to chemical 

imbalances 16,17. Third, access to the correct nutrients; nutrient needs fluctuate depending 

on which type of development stage the child is in, while insufficient intake of a 

particular nutrient can negatively affect child development 29,30. Many of these enteric 

problems are hypothesized to be caused by external environmental factors. This provides 

an opportunity for engineers to engage in identifying the harmful pathways affecting 

children and to develop barriers to reduce enteric problems in children and therefore 

reduce stunting. This dissertation presents the development and testing of models to aid 

in identifying the external pathways affecting child growth and focuses on enteric 

pathogen transmission, mycotoxin exposure routes, and the subsequent impact on child 

growth rates in Guatemala. 

3.1. ENTERIC PATHOGEN TRANSMISSION 

Enteric pathogens can negatively impact a small intestine that is still in 

development by reducing immune response function and hindering proper development 

of the microbiome. One of the most widely recognized symptoms associated with 

increased enteric pathogen loads are diarrheal occurrences 31. Dehydration due to diarrhea 

is currently the second leading cause of death for post neonatal children under the age of 

five 32. It is also correlated with child stunting; for example in one pooled, nine country 

analysis, 25% of all stunting was attributed to more than five doubts of diarrhea during 
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the first two years of life 19. While this correlation is well established in the literature, less 

is known about the relationship between enteric pathogens and the nutrient absorptive 

capacity of the intestinal wall 17. During pathogenic infections, two primary responses 

occur, 1) T-cells, macrophages and other cells attempt to fight the infection while 2) the 

villi which line the gut to absorb passing nutrients, recoil. Recent research has reported 

that with chronic exposure to low levels of pathogens; these nutrient absorbing villi 

remain recoiled, or blunted, indefinitely 16,20. Therefore, when children are consistently 

exposed to unsanitary conditions in and around the home, their ability to breakdown and 

utilize consumed nutrients can potentially be reduced.  

 

Figure 3.1. The 5F diagram showing the common diarrheal disease transmission 

pathways. 

 

Numerous studies show that when both children and adults are removed from 

unsanitary conditions, immune function, intestinal absorption, and growth rates return to 

normal 33. Unsanitary conditions refer to an environment where the probability of 

infectious disease transmission is high, usually due to numerous enteric pathogen 

transmission routes having increased loads of pathogens. These transmission routes are 

depicted in a figure called the ‘5F Diagram’ (see Figure 1)34,35. This refers to the 

categories of transmission which include fingers, fluids, foods, floors, and flies. Studies 

conducted specifically within Guatemala have identified sources of pathogens including 

water sources 36–39, sanitation facilities 36,37,40, and hygiene practices 36,41,42. While there 

are many types of pathogens, sources, and pathways, several general trends have been 

identified in Guatemala. First is the complex dynamic between the highlands, lowlands 

and rainy seasons. The lowlands host a less extreme wet and dry season, having rain most 
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of the year. This provides the opportunity for two harvest seasons for farmers, but as a 

consequence, creates abundant standing water commonly home to water borne pathogens 

43. Second are the cultural habits of rural households that impact the health of a child. 

Mothers will often carry their child in a sling for the first year of life which reduces 

exposure to pathogens on the ground, but limits mobility. It is also common practice to 

begin complimentary feeding before the child is six months of age which increases the 

number of transmission pathways for enteric pathogens to affect the child 44,45. Finally, 

percentages of households who have access to improved water and sanitation facilities 

are 92% and 78%, respectively 46. Based on the data and observations from local health 

workers, there is a high probability that a majority of children are consistently exposed to 

enteric pathogens through several different pathogen transmission pathways.   

3.2. MYCOTOXIN EXPOSURE 

There are two types of mycotoxin that have been hypothesized to impact child 

growth; Aflatoxin B (carcinogen, AFB) and Fumonisin B (FB). Both of these mycotoxins 

have been found in high concentrations throughout Guatemala 47. It has been known since 

the 1970s that high levels of AFB exposure can lead to aflatoxicosis as well as liver 

cancer 48. However, within the last 15 years, numerous studies have reported correlations 

between aflatoxin exposure and child stunting. Wild et al. highlighted six studies 

conducted since 2002 that found a link between these two variables 9 however, all six 

were conducted in African countries. Torres et al. have conducted several studies 

measuring levels of AFB and FB in all departments of Guatemala, finding a range of 0-

2600 parts per billion (ppb) with a mean of 63 ppb 47. The FDA limit for AFB in the 

United States is 20 parts per billion (ppb) 49. FB has been shown to affect the 

development of the neural tube in utero 50, but can also affect child growth 51.  

Based on animal models and the few human studies of AFB and FB on child 

stunting, a set of mechanistic pathways have been hypothesized for the relationship 

between AFB and FB exposure and the intestinal health of children. The mechanistic 

theory for AFB and FB is primarily mediated through enteric immune system dysfunction 

via overstimulation. Currently the two primary hypothesized causal pathways of 

mycotoxins on child stunting include 1) reduced nutrient absorptive capacity and 2) the 
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modulation of the insulin-like growth factor which has been shown to be associated with 

child stunting 52,53. 

Outside of the body, there exists a multi-level complex system as well. 

Mycotoxins are given off by fungi that are able to grow in the field (AFB), in storage 

(AFB & FB), in transport (AFB & FB), and in the market (AFB & FB) 9. Specifically, 

within Guatemala, environments differ between highland and lowland communities. This 

creates a situation where, due to certain market forces, mycotoxin laden maize is grown 

in the lowlands, but shipped to the highlands, causing multiple exposure routes 54,55. On 

the national scale, mycotoxin exposure control is challenging due to the vast weakly 

regulated transportation system and the lack of source labeling regulations in Guatemala. 

Poor infrastructure creates longer storage and transport times, while basic pickup trucks 

used in maize transport are not designed for crop transportation. However, this project 

will attempt to bridge the gap between the national level and the enteric functions level, 

by focusing on the household level. Numerous exposure pathways are potentially present 

within this system and begin either through subsistence maize farming or maize acquired 

from a market. Subsistence crops can become infected due to misuse of fertilizers and 

herbicides, cultural harvest/post-harvest practices, weather conditions, poor storage 

facilities, economic pressures from local maize buyers, and through inhalation if mothers 

and children work in contaminated work areas 48,56,57. Exposure of mycotoxins in maize 

acquired from a market in Guatemala may be due to the food transport duration, original 

location, the purchase habits of the mother, or the economic status of the household. This 

project will address two major unknowns associated with mycotoxins; first, the 

association of mycotoxin exposure to enteric pathogens and child stunting. Secondly, it 

will test potential exposure pathways within two systems, subsistence farming and market 

purchases.    

3.3. ADDITIONAL SYSTEM FACTORS 

Several other critical factors that have been reported as significantly correlated 

with child stunting in Guatemala include prenatal health 10,58, caloric and energy intake 

12,13, and protein and micronutrient intake 59. Each of these factors are related with 

breastfeeding and complimentary feeding practices. In total, nutrition plays a significant 
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role in the development of a child however, because of the complex interaction with 

enteric infections, the understanding of the system may be limited 60,23,61.  

3.3.1 Prenatal Health. Prenatal health can be divided into two sections; 

pregnancy health and multigenerational health. During pregnancy many factors 

contribute to the development of the child in utero and these factors also vary in 

importance during each trimester 62,63. Consumption of foods by the mother has direct 

impacts on the child and includes proper nutrients, sufficient calories, exposure to enteric 

pathogens 64, and mycotoxins 65, among others. Critical priorities highlighted by the 

WHO for pregnancy health include having at least four health center checkups, eating 

healthier foods, taking iron tablets and other supplements recommended by a health 

center, and avoiding exposure to insects, among others 66. Several studies investigated 

healthy weight gain based on trimester, however, results varied on identifying a priority 

trimester 67–69. Finally, access to health facilities and proper delivery facilities reduce 

mortality and improve  the health of both the mother and the child 70. Multigenerational 

health factors include physically underdeveloped mother births, underdeveloped birthing 

organs, and potential epigenetic impacts 71. Within Guatemala several factors take 

priority including nutrient consumption, health clinic access, and underdeveloped 

birthing canal 72–74. Two emerging topics include mycotoxin exposure 65 and epigenetic 

effects 75. Children born in Guatemala are on average halfway stunted at birth 11,76. There 

are many factors associated with prenatal health and some play a prominent role in the 

child stunting problem in Guatemala.    

3.3.2 Caloric Intake. According to the Food and Agriculture Organization (FAO) 

caloric and energy intake refers to the consumption of macronutrients to attain a 

sufficient level of calories for one day based upon the passage of food into the mouth. 

There are two processes that regulate what the child actually acquires in the blood stream; 

the rate of food into the mouth and the rate of utilization within the gut. These processes 

become even more important during rapid growth periods of children. Breastmilk and 

complimentary feeding by the mother dictate the rate of food into the mouth of the child, 

while enteric infections dictate the rate of utilization within the gut of the child. For 

children, enteric infections can lead to reduced caloric absorption by the intestine as well 

as a reduced willingness to eat 16,52. If a child does not retain a sufficient number of 
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calories in the blood stream, fat stores are then drained to provide sufficient energy for 

growth and fighting infection. This is often related to acute malnutrition and measured 

through wasting or low weight for height 77. In Guatemala, the percent of children that 

obtain the minimum healthy diversified diet – four food groups – is only 36% for 

children 6-8 months, 49% for children 9-11 months, and 37% for children 12-23 months. 

The typical diet for families living under the domestic poverty line consists primarily of 

tortillas and other maize products, potatoes, black beans, sugar, tomatoes, onions, eggs, 

and coffee 78. The FAO has identified two primary foci at the community level related to 

caloric intake; access and stability. These refer to the basic needs of a community in 

terms of a stable food supply and the ability to purchase these foods 79.     

3.3.3 Protein and Micronutrient Intake. Protein and micronutrient intake has 

become a strong focus for child development. The term ‘hidden hunger’ refers to people 

who obtain sufficient calories, but lack particular micronutrients. This is the most 

common type of malnutrition in Guatemala 78. Both protein and micronutrients play a 

significant role in the growth of children and the proper function of their immune system 

80,81. Depending on the type of nutrient (Vitamin A, Iron, Zinc, etc.), the small intestine 

absorbs them at different locations along its wall into the blood stream. These nutrients 

are then put to use in one of two general ways within children; either for growth and 

development or to strengthen the immune system during an infection 77,82. A child 

receives a number of significant benefits from breastfeeding including a specific set of 

nutrients for infants, specific saccharides that initiate particular bacterial growth in the 

healthy formation of the gut microbiome, and protection from infectious disease through 

transmission pathway blocking and supplementation of Immunoglobulin A (IgA) for gut 

health 83. A significant concern is when the mother does not consume the proper nutrients 

or sufficient nutrients and is not able to either provide sufficient breastmilk or her 

breastmilk lacks all the necessary nutrients. The second part of consumption for a child is 

the complimentary feeding transition. The WHO strongly recommends exclusive 

breastfeeding until six months of age and then beginning complimentary feeding until the 

child is two years of age 84. Proper micronutrients and protein are equally as critical in the 

complimentary food, but is often what is limited either due to local resources 78 or lack of 

understanding by the mother 85. Within Guatemala 49.6% of children are exclusively 
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breastfed until six months, by age two only 46.2% of children are still breastfeeding, and 

children commonly lack iron, Vitamin A, and iodine 86.  

3.4. OTHER POTENTIAL FACTORS  

Finally, a number of other factors that are of interest to the public health field and 

potentially linked to child stunting include epigenetics, ethnical and cultural practices, 

geographical and logistical systems, and physical and psychological abuse 87–89. Utilizing 

the new WHO Child Growth Chart Standards potentially reduces the confounding effect 

of epigenetics and several studies argue environmental factors within the current 

generation capture the largest variance of height-for-age changes among children 90,91. 

Ethnicity, cultural practices, and logistics will be incorporated into the study design to 

control for potential confounding effects.  

3.5. SYSTEMS ANALYSIS 

Systems analysis approaches often have one or more of the following 

characteristics in common including 1) nonlinearity, 2) feedback loops, 3) time delay 

effects, and 4) model development 92. The proper design and application of a systems 

analysis tool is critical for reliable inferences of the problem being addressed. Structural 

equation modeling (SEM) is a multivariate statistical tool that allows for a potentially 

more accurate mathematical design of the real complex system. To improve and compare 

the validity and accuracy of the set of equations designed to assess the influence of causal 

factors on child stunting, network analysis algorithms (NAA) and geospatial models will 

also be utilized.    

3.5.1 Structural Equation Modeling. SEM is a statistical technique that has two 

defining characteristics which provide unique insight into specific systems, factor 

analysis and path analysis. Latent or hidden variables are concepts that cannot be 

captured in one observable variable. Common examples of latent variables include the 

intelligence quotient (IQ), happiness, and even wealth. Outcome (manifested) variables 

are collected which are hypothesized to be independently influenced by the underlying 

latent construct or variable. One can think of these observed variables as symptoms a 

doctor would use to diagnose or measure the severity of an internal illness in a patient 93. 
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These latent variables can then be integrated into a model which combines observable 

variables (covariates) and subsequently how both of these types of variables affect one 

endogenous variable. The second defining characteristic is path analysis, where both 

direct correlations between an exogenous variable and the endogenous variable can be 

captured, but indirect correlations through mediating variables can also be captured. This 

is done by comparing the covariance matrix of a hypothesized set of variables (the 

model) to the covariance matrix of the data collected to test the model. Fit of the model is 

measured using four metrics including the chi-square value, the root mean error of 

approximation, the confirmatory factor index, and the tucker-lewis index. The 

combination of these two techniques can allow for certain complex systems to be more 

accurately modeled 94. Further discussion of specific methodologies are presented within 

each Paper.  

The aim of this study is to utilize this modeling technique to improve the accuracy 

and applicability of our current models used in diagnosing problems in the child health 

sector of Guatemala. Data from two time-points will be used to test 1) cross sectional 

SEMs and 2) two time-point SEMs. The statistical methods used to develop and test each 

of these types of SEM applications are the same. This application of SEM is used in 

Papers II, III, and IV to build height-for-age (stunting) models, EED models, and AFB 

models.  

3.5.2 Network Analysis Algorithms. NAA has become more popular with the 

advancement of computational power in computers and the increased access to large 

amounts of data. There are a number of different types of algorithms used in NAA but the 

weighted correlation algorithm will be utilized in this dissertation. Secondary data 

sources available from Guatemala include regional household surveys from the US 

Agency for International Development and Guatemalan Government from 2012 and 

2013. Utilizing these data, a directed path algorithm within the weighted correlation 

algorithm family will be applied to force a large number of variables to decide how to 

hierarchically associate themselves with child height-for-age in the most optimal way 

possible. This is theoretically different from SEM, as the hypothesized SEM model 

represents a notable-null hypothesis approach (h0≠0) however, the NAA can handle a 
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larger number of variables and data points. This output from the NAA, field observations, 

expert opinion, and a literature review will be utilized to inform the hypothesized SEMs.  

3.5.3 Geospatial Modeling. Finally, geospatial modeling will be conducted in 

collaboration with the US Agency for International Development (USAID) and the 

Guatemalan Government. Geographic data from 2012 will be utilized from the western 

highlands of Guatemala to build regional SEMs for five departments including 

Huehuetenango, San Marcos, Quiche, Totonicapán, and Quetzaltenango. The geospatial 

models will focus on infectious diseases transmission barriers and potential negative 

outcomes such as diarrhea, EED, and child stunting. Once built, geographic data from 

2013 will be utilized to test and potentially validate all SEMs and investigate 1) regional 

similarities in the western highlands, 2) regional trends between groups of departments, 

3) and site specific characteristics for each department. If other data is available from the 

community site this study utilizes or other studies sites, the applicable department model 

will be tested against that data. This methodology for the development and validation of 

these models is presented in Paper V.  
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4. PRELIMINARY FINDINGS 

4.1. SEM AND ENTERIC INFECTIONS IN GUATEMALA 

Recent research by our team demonstrated the applicability of the primary 

modeling technique, structural equation modeling, on causal factors to diarrheal 

occurrences among children from Guatemala and Brazil. Both studies utilized the SEM 

methodology to rank order variables associated with diarrheal occurrences. These studies 

provide the foundation for the EED model. The SEM methodology will also be used to 

analyze the mycotoxin exposure system and the child stunting system.  

Divelbiss et al. conducted an evaluation of the effectiveness of a biosand filter  to 

reduce diarrheal occurrences in households located in the Ixcan region of Quiche, 

Guatemala 99. The team hypothesized an initial model based on field observations and 

literature reviews. Three rounds of data collection were conducted to test and improve the 

model. Once fit statistics showed adequate fit of the data to the model, parameter 

estimates could then be evaluated. Figure 2 shows the final model and associated 

parameter estimates for each relationship within the model.  

The model depicts the significant relationships with diarrheal occurrences and the 

significant relationships with a household’s ability to operate and maintain their filter 

properly. While the filter did help reduce diarrheal occurrences (-0.119), household 

education (-0.170) and improved water source (-0.169) were most important. For 

operating and maintaining a filter, only soap present in home correlated positively, 

suggesting there are associations with hygiene practices and filter operation practices. 

Additional water treatment had the largest negative effect on operating the filter properly. 

This method was then validated in subsequent work utilizing the same tool, but adjusted 

for a different environment in Brazil.  
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Figure 4.1. Final Guatemala hybrid model (structural and measurement). The 

standardized and unstandardized (listed in parentheses) parameter estimates are listed 

next to the associated pathway. * p < 0.05, ** p < 0.1, # p < 0.15, measurement error terms 

(e) were removed to reduce congestion. Ovals are latent variables, rectangles are 

observed variables, and arrows depict hypothesized relationships. Weight added to 

arrows for emphasis; color indicates direction of influence, red is negative influence, 

green is positive influence. 

4.2. SEM APPLICATION IN BRAZIL 

For the study conducted in Brazil the SEM model and associated survey from 

Guatemala was contextualized for the state of Para 100. Three villages along the Amazon 

River northwest of Santarem, Para, Brazil were studied. Two iterations of data collection 

were needed to reach a parsimonious model. Figure 3 depicts the relationships within the 

system impacting both filter operation and maintenance and diarrheal occurrences 101. 

The results showed that the filter had little impact on diarrheal occurrences, while 

household education and sanitation facilities had the largest beneficial effect sizes. One 

possible reason for the low impact of the operation and maintenance of filters on 

diarrheal occurrences may have been due to the strong negative impact from additional 

treatment technologies. Previous research has reported that too many treatment 

technologies may overwhelm the user, reducing overall disease protection. 
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Figure 4.2. Final Brazil hybrid model (structural and measurement) with final 

parameter estimates of hypotheses. Dashed arrows identify insignificant relationships 

(p>0.20). Standardized estimates given in bold, unstandardized estimates are in 

parentheses with p-values and confidence intervals. Overall model fit was good (χ2 

p>.617; RMSEA = .000 [CI: 0.000-0.093]; CFI = 1.00; TLI = 1.08). 

 

In addition to the SEM data and analysis, secondary data and several basic 

statistical techniques were applied to confirm findings within the Brazilian and 

Guatemalan studies 102. Mahalanobis-Taguchi Strategy (MTS), Canonical Correlation 

Analysis (CCorA), and Latent Factor Regression (LFR) were used to analyze data 

collected by the Demographic and Health Survey program in Brazil and Guatemala.  

The secondary analysis confirmed several key relationships identified in the 

SEMs, but also identified several other variables, not included in the SEM that should be 

considered in future work to better explain the variance in diarrheal occurrences. For 

Quiche, Guatemala, factors identified as significant included education level of parents 

(MTS, CCorA, LFR), ethnicity (CCorA, LFR), sex of household head (CCorA, LFR), 

and water source (MTS). For Para, Brazil, factors included education level of parents 

(CCorA, LFR), sanitation (CCorA, LFR), socio-economic status (MTS, CCorA, LFR), 

and household social structures (MTS, CCorA, LFR).  
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These studies demonstrate the applicability of a set of tools in the assessment of 

enteric infections. The use of SEM was demonstrated in the application to assessing the 

efficacy of biosand filters in Guatemala (Divelbiss et al. 2013) along with its applicability 

in different environments (Voth-Gaeddert et al. 2015a). The team also demonstrated the 

utilization of multiple statistical techniques (MTS, CCorA, LFR) in analyzing enteric 

infections (Voth-Gaeddert et al. 2015b). In this dissertation, the aim is to investigate an 

enteric infection (EED) SEM, along with two AFB SEMs. Finally, a child height-for-age 

(stunting) SEM will be tested to investigate the hypothesized effects of EED, aflatoxins, 

and nutrition. Furthermore, this dissertation aims to expand on the use of integrating 

statistical techniques and introduce geospatial SEMs as another technique to improve the 

understanding of the complexity of child stunting in Guatemala. 
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5. OUTLINE 

The results are reported in the format required by the specific journal in which 

each manuscript was originally submitted. This means that each Paper includes an 

introduction, methods, results, and discussion section at a minimum specifically written 

for that journal. In this dissertation, Papers I – V are five manuscripts while the second 

section is a brief discussion and conclusion of the full dissertation. To provide guidance 

for the reader the rest of the dissertation is outlined below. As the introduction to the 

dissertation topic has been provided above, a cohesive methods and expected results 

section is provided below.  

As briefly highlighted in the objectives for the dissertation a three-step 

methodology was utilized to test the hypotheses. This included 1) the application of 

network analysis algorithms to larger data sets, 2) the development and testing of SEMs 

with field data, and 3) the development and testing of SEMs from regional data.  

First, data from USAID’s Food for Peace Title II Baseline Survey was acquired, 

aggregated, and prepared for analysis. 2,103 children were included in the data set as well 

as 87 variables which had been selected based on the WHO recommendations for causal 

factors to child stunting. A weight correlation network analysis algorithm was applied to 

the data and several spanning tree diagrams were produced based on the strength of 

relationship between child height-for-age z-score and the other 86 variables. Outputs 

included a tree diagram for the child height-for-age z-score, a tree diagram for child 

diarrheal prevalence, tree diagrams for child height-for-age z-score for different age 

categories, and tree diagrams for child height-for-age z-score for different levels of 

stunting severities. Results are presented in Paper I and the first half of Paper II.  

Second, information was aggregated from the network analysis output, field 

observations, a literature review, and informal interviews with locals and experts to 

hypothesize a set of SEMs. These included 1) the three-way interaction between AFB 

exposure, EED symptoms, and child height-for-age, 2) causal factors to low child height-

for-age, 3) causal factors to increased AFB symptoms, and 4) causal factors to increased 

EED symptoms. Data was collected from the community of San Vicente, Totonicapán in 

two field campaigns, October 2016 and February 2017. This data was then applied to the 

SEMs in a confirmatory approach to test the hypothesized correlations. Outputs included 
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model fit indices, parameter estimates, and p-values for the four SEMs listed above. 

Paper II presents the approach to hypothesizing, testing, and results of the child height-

for-age and the EED SEMs. Paper III presents the results of the three-way interaction 

SEM and Paper IV presents the results from the causal factors to increased AFB 

symptoms SEMs. 

Third, in order to test the scalability of the SEM approach, regional data was 

utilized to develop and test five department (or state) specific EED SEMs. Additionally, 

three different health outcomes (diarrhea, EED, and height-for-age) were incorporated for 

a total of 15 SEMs (three per department). The USAID Food for Peace Title II Baseline 

Survey 2012 was utilized to develop the regional SEMs (exploratory approach) and the 

USAID Western Highlands Integrative Program Baseline Survey 2013 was used to test 

the SEMs (confirmatory approach). Finally, as all input variables in the models were 

WaSH infrastructure related, the identified set of transmission pathways related to the 

individual WaSH infrastructure variables (as identified by a literature review) were used 

to provide suggestions on specific transmission pathways of importance for that 

department and health outcome. Outputs included statistically significant WaSH variables 

for each department and health outcome as well as potentially important transmission 

pathways for each department and health outcome. These results are presented in Paper 

V.   
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ABSTRACT 

Guatemala has the fifth worst child stunting prevalence – low-height-for-age – in 

the world, at 49%. Child stunting is associated with negative short and long-term health 

effects and the contributing factors are complex, interrelated, and potentially non-linear. 

Current health information systems (HIS) in Guatemala are disaggregated, overly 

complex, and have limited scalability. This paper demonstrates the use of weighted 

correlation network analysis to visualize and explore data in a way that provides useful 

information for future HIS. The methods generate a holistic causal factor model for 

stunting that explores how cofactors relate to stunting and each other. The demonstration 

here is based on a Guatemala regional data set obtained from the USAID Open Data 

Website. First, the overall correlation network structure is observed and compared to 

generalized structural models proposed by the WHO and USAID. Next, quantile 

comparisons are performed using the outcome variable z-score height-for-age, and 

distinct child age groups. The comparisons demonstrate how these networks can be used 

as an extension of widely used methods while also providing advantages that are 

important for exploratory analysis. This work is an important first step in evaluation of a 

novel analysis method for health information systems currently being developed in 

Guatemala. 
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1. INTRODUCTION  

In 2015, the United Nations members ratified 17 Sustainable Development Goals 

(SDGs) set to be achieved by the year 2030. SDG 2.2 states that, “by 2030, end all forms 

of malnutrition, including achieving, by 2025, the internationally agreed targets on 

stunting and wasting in children under 5 years of age. [1]” Stunting is defined by the 

World Health Organization (WHO) to be a characteristic of a child that is two standard 

deviations (SD) below the mean height for his or her age [2]. Guatemala currently is fifth 

worst in the world in terms of stunting of children under the age of five at 49% [3]. Many 

short and long-term consequences have been identified and include increased 

susceptibility to diseases, stagnant cognitive development, reduced physical stature, 

increased risk of obesity, and premature mortality [4], [5]. 

The causal factors that have been identified for stunting are broad, interrelated, 

dynamic and potentially non-linear [6]. The WHO has provided guidance towards 

graphically describing the multi-layered system in their publication, “Childhood Stunting: 

Context, Causes and Consequences” [7]. Guatemala hosts a diverse environment, 

geographically, ethnically, politically, and climatically which creates challenges to 

provide health services to all citizens. General access to resources for the population is 

low and includes limited medical personnel and equipment for health centers [8], [9]. 

With so few resources available, the importance of useful health information for targeting 

resources at a community level is critical [10]. 

Health information systems (HIS) are a key element in providing complete health 

systems to overcome the complicated challenges developing countries face. The four 

elements of a HIS are defined by the WHO to be data generation, compilation, analysis 

and synthesis, and communication and use [11]. This study will focus on the 

improvement of ’analysis and syntheses’ as well as ’communication and use’. These 

systems are used to collect and analyze data to support decision-making on health 

interventions. The analysis methods currently used in the field often reflect the questions 

that decision-makers had prior to the data being collected [11]. Furthermore, it has been 

reported that HIS in Guatemala are often fragmented across organizations in both 

analysis and synthesis and the method of communicating and utilizing results. This 

sometimes leads to the loss of a holistic picture of the problem [8]. A common interface 
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with more exploratory capabilities is needed to standardize communication while 

retaining all information that may be useful for the problem.  

This work attempts to meet the analysis and communication needs of the 

Guatemala HIS by presenting novel network based methods that also use tools for 

visualization and exploration that current systems lack. Although these methods are novel 

for HIS, they take inspiration from increasingly popular methods in gene cofactor 

expression as well as new tools for visualization and exploration of networks [12], [13]. 

The methodology used involves several steps: 1) creation of a correlation network where 

nodes are measured indicators from the survey and edges are correlations between them, 

2) transformation of those edge weights for desired analysis, and 3) creation of a shortest-

path spanning tree centered on the outcome indicator ‘z-score height-for-age’ 

(abbreviated zhaz). The resulting spanning tree can be output as a “.gexf” file which can 

be opened in a graph visualization program such as Gephi. Then, comparisons can be 

made across quantiles of the outcome variable or cofactors by examining structures of the 

resulting trees. 

The tools presented here allow the user to look at how all cofactors are related to 

outcome variables in a holistic way. The raw correlation network by itself is too much 

information for a person to consume without significant effort, but the outcome-centered 

spanning tree allows for easy observation of strong causal pathways through all possible 

cofactors. In addition, the ability to visualize these pathways and interpret structural 

differences could change the way we think about causal analysis. The tool and methods 

here are still in early stages of development but they appear to address both the analysis 

and communication problems currently faced by the HIS in Guatemala. 

2. METHODS 

Surveyed households were primarily agrarian farms selected for the “Baseline 

Study of the Title II Development Food Assistance Programs in Guatemala” [14]. 

Multiple tables of the dataset were combined to make single a table where each row was 

a child and each column was one of 87 indicators relating to Child Health, Household 

Description, Maternal Health, Sanitation, Breastfeeding Information, and Agricultural 

Practices [14]. [see supplementary material for variable descriptions]. As the height-to-
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age measure was the outcome variable and breastfeeding has been identified as a critical 

factor to height-to-age [4], children with missing data in either of these two variables 

were eliminated for this analysis (n=2103 remaining). The goal of these methods is to 

take the table representing encoded survey data and convert it to an interactive 

visualization that can help aid workers understand relationships between cofactors and z-

score height-for-age. 

Data analysis algorithms were built using the Python programming language with 

the Numpy, Pandas, and NetworkX libraries [15]–[18]. This choice of programming 

language and tools was made so that a future web application could be built without a 

large change in the code. The python algorithms take the survey data table and output a 

“.gexf” graph file which can be opened in Gephi [12]. Gephi is used as a graph 

visualization program taking raw graph data (with node and edge attributes), and using it 

to color and position nodes and edges in a 2D space. 

First, the encoded survey data file (in “.xlsx” format) is read in and converted to 

the Pandas DataFrame format for manipulation. Next, a complete undirected graph is 

constructed where each node corresponds to a specific question in the survey, which we 

will assume is a random variable. Several types of variables were not added as graph 

nodes: nominal variables (sex, location, survey date, etc.), derived indicators (household 

diversity score, total consumption, poverty score), and outcome variables (body mass 

index, weight-for-age, and weight-for-height, and weight-for-age). Although these were 

not used as nodes in the graph, they will be used later for comparison. In this case, the 

outcome variable will be considered to be z-score height-for-age, the primary indicator 

used to measure stunting. 

The conversion of encoded survey responses into a correlation network allows 

only correlation information between each response to be retained. Edge weights wc were 

added to each undirected edge to represent the correlation coefficient between the 

connecting variables. This correlation weight between arbitrary variables i, j for j ≠ i is 

given as wc
i,j in Equation 1. 

wc
i,j = ρi,j = corr(vi, vj)    (1) 

Pearson’s correlation coefficient was used between scalar variables and 

Spearman’s rank correlation coefficient was used between pairs with ordinal variables. 
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Data that was missing from the survey was simply omitted from the correlation 

calculation. Missing data was in all cases below 15% of total entries, and the most 

affected topics were those relating to farming. This could cause a slight bias in the 

correlations towards other variables which correlate with the missing data entries, but 

given the small number of missing values this was deemed insignificant. 

The use of a correlation graph stems from the need to understand relationships 

between all observed variables instead of only the direct relationships between cofactors 

and outcomes. As stunting has been shown to be a very multifaceted problem [19], [20], 

it is important to consider multiple causal pathways that could be contributing to this 

issue. 

Although the raw correlation graph contains the most obviously useful 

information about the inter-related variables, further transformation is needed to 

understand how covariates affect the outcome variable z-score height-for-age while 

considering the complexity of the situation. An approach is taken to orient the graph into 

a tree where ’zhaz’ is the root node and all other variables are descendants of that root. 

To organize the nodes into the tree structure, a transformation of the correlation edges is 

needed. Let wp be new weight values for the transformed graph shown below. 

wp
i,j = |wc

i,j|
−β = |corr(vi, vj)|

−β    (2) 

The graph with edge weights wp is one where smaller edge weights correspond to 

larger correlations and the parameter β will accentuate differences between correlations 

(more on that later). In network literature, this is often referred to as a ’soft thresholding’ 

[13]. These weights can be considered as the relative ’closeness’ of two variables based 

on their correlation. A graph with these properties is convenient for observing shortest 

path and centrality measurements. In this case, the shortest path algorithm will be used to 

create a spanning tree using only edges that lie on a shortest path between ’zhaz’ and 

every other variable. The result is a tree topology that describes the relationship of each 

variable with ’zhaz’ while taking into account other correlated variables. 

The motivation for using the shortest path can be observed by analyzing a simple 

connected undirected graph with four nodes v1, v2, v3, v4 (as shown in Figure 1) 

representing four correlated random variables. Assume that although the graph is 

connected, the correlation ρ3,4 = 0 and so corresponding weight w3,4 = inf and thus it was 
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not drawn in Figure 1. If we designate v4 to be the node associated with the outcome 

variable, then we are trying to best understand how variables associated with nodes v1,v2 

and v3 ’affect’ that outcome. We can use the same weight expression wp given above, and 

use ρ(i, j) = corr(vi, vj) to represent the correlation coefficient between variables 

associated with vi and vj . 

 

Figure 1. Simple undirected four-node graph. 

 

Weights in this transformed graph are given by wi,j = |ρi,j |
−β, and so the three 

possible path distances for variable v1 are given in Equations 3, 4, and 5. Notation for 

paths and associated distances will be given through use of p and d with subscripts 

respectively. A path connecting nodes v1 and v3 through v2 will be given as p1,2,3 and the 

associated distance will be d1,2,3. The notation for the shortest path between arbitrary 

nodes i and j will be psp
i,j and its distance dsp

i,j. All possible paths connecting v1 and v4 can 

be enumerated for the graph in Figure 1 as {p1,4, p1,2,4, p1,3,2,4} and thus psp
1,4 must come 

from this set. The shortest path algorithm is reduced to a selection from one of the 

alternatives presented in equations 3, 4, and 5. 

For p1,4 : d1,4 = |ρ1,4|
−β = wp

1,4    (3) 

For p1,2,4 : d1,2,4 = |ρ1,2|
−β+|ρ2,4|

−β = wp
1,2+wp

2,4    (4) 

For p1,3,2,4 : d1,3,2,4 = |ρ1,3|
−β + |ρ3,2|

−β + |ρ2,4|
−β = wp

1,3 + wp
3,2 + wp

2,4   (5) 

The shortest path algorithm will calculate the shortest path distance dsp
1,4 from v1 

to outcome variable v4, which is shown by Equation 6. 

dsp
1,4 = min{d1,4, d1,2,4, d1,3,2,4}    (6) 

The algorithm produces path psp
1,4 that connects v1 and v4 using the smallest 

possible distance. The distance calculation is obviously a function of all paths in the 

graph, but is also a function of the soft threshold parameter β [13]. Ignoring β for a 

moment, observe that our shortest path selection should allow us to understand which 
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possible causal pathway is most significant by removing edges not included in the 

shortest path. If this is performed between v4 and each other variable in the original graph 

with weights wp, we can leave a spanning tree that includes only edges that appear on one 

of the shortest paths. The spanning tree represents the smallest possible distance between 

every node and the outcome variable on the transformed graph. 

The effect of parameter β can be examined by looking at the shortest path 

selection. As a hypothetical assume that weight w1,4 is very small compared to the other 

weights in the graph. If w1,4 is the smallest weight and thus ρ1,4 is the largest correlation 

in the graph, then the selection is easy: d1,4 will be the shortest path regardless to the other 

weights and regardless of the parameter β. Now assume an alternative: that ρ1,4 is larger 

than all of the other correlations except for ρ1,2 and ρ2,4 (discount v3 for simplicity). The 

selection of either p1,4 or p1,2,4 as the shortest path depends on the inequality w1,4 < w1,2 + 

w2,4 or equivalently |ρ1, 4|
−β < |ρ1, 2|

−β + |ρ2,4|
−β (truth implies psp

1,4 = p1,4). The assumption 

ρ2,4 ≤ ρ1,2 < ρ1,4 implies that for any arbitrary β, |ρ1,4|
−β < |ρ1,2|

−β and |ρ1,4|
−β < |ρ2,4|

−β. 

It is obvious from Equation 2 that a larger β implies a smaller wp (because ρ < 1), 

but it is also true that a smaller ρ will cause the corresponding wp to be affected by β 

more significantly. By decreasing β, eventually the sum w1,2+w2,4 would exceed the value 

of w1,4 and thus p1,2,4 will become the new shortest path. This result means that in order 

for a given path between vi and vj to be the shortest path, all of the associated correlations 

must be shorter than the direct path pi,j. As β increases towards infinity, the causal 

pathway spanning tree actually approaches the minimum spanning tree of the 

transformed graph. As β decreases towards zero, the causal pathway spanning tree 

reduces towards a tree of depth 1 where every cofactor is a leaf node whose parent is the 

outcome variable. 

Although these statements require further proof, the proofs are not necessarily 

needed for the analysis to be useful. In this case, β can simply be thought of as a 

parameter that determines the degree to which the variables are structured around zhaz. It 

was experimentally demonstrated in this work that a decrease in some arbitrary β will 

result in a ’less’ structured tree with more leaf nodes and more centrality given to the 

outcome variable, and an increase in an arbitrary β will result in a ’more’ structured tree 

with fewer leaf nodes and less centrality given to the outcome variable. An arbitrary β 
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may be more or less useful depending on the type of causal understanding and assumed 

interconnectedness desired. All results shown in this work were computed with β = 2, and 

it appeared to show a reasonable balance between structure and centrality of outcome 

variables that was appropriate for the analysis. 

Initially a single stunting-centered spanning tree was created using all of the data, 

but then analysis was performed using only divided quantiles of specific variables. 

Quantile separation was performed on three categories of the stunting outcome variable 

’zhaz’ and four categories of child age. The data was also split into separate trees for the 

male female differential and the time of interview [19], [21]. Generating separate trees 

for different quantiles of these variables will reveal structural differences in the causal 

factors for stunting as these factors are varied. 

In order to compare trees from separate quantiles, the shortest path distance dsp
i,j 

across quantiles was used. A table was generated for each variable on which quantile 

analysis was performed. This table consists of any variables which were the top 10 most 

correlated with stunting in any of the quantiles. The variables were then sorted according 

to the variance of dsp
i,j across the quantiles. The end result is a table that prioritizes 

variables that have a strong connection to stunting but which also vary significantly 

across quantiles. 

The software created and demonstrated in this work is designed to provide novel 

analysis important for the creation of a country-wide health information system. Future 

work is needed to implement this system on a live connected system, but the usefulness 

of this analysis on a real dataset has been demonstrated. 

3. RESULTS 

The sample population included a total of 2,103 children, of which 1,103 were 

males and 1,000 were females. 80.5% of them were considered stunted by WHO 

standards. 60.2% of the mothers of the children reported their child having diarrhea in the 

past two weeks. Finally, 16.9% of households reported having gone without food for a 

day within the past month. 
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3.1. ZHAZ Spanning Tree 

The initial zhaz spanning tree output graphically displays the structure of the data 

utilizing the algorithms discussed above. Figure 2 displays the example generated from 

USAID’s data. As there are 79 potential causal factors modeled, variables identified as 

less than two nodes (distance from zhaz < 3) from the zhaz score are specifically labeled. 

Additionally, the location of specific groupings of variables are identified and 

subsequently discussed. This provides the user with an understanding of how certain 

sections (sustainable agricultural practices, family demographics, ORTs and Diarrhea, 

food consumption, etc.) interact in specific situations. Appendix 1 provides a fuller 

description of the common variables. 

 

Figure 2. The full spanning tree generated by the shortest path algorithm displays 

the overall structure of the data acquired from USAIDs online data repository. Nodes 

closer to the ZHAZ node are considered to have a bigger effect. Variables farther from 

the ZHAZ variable (less direct impact) are identified under a theme (e.g. sustainable 

agricultural practices, family demographics, etc.). 

 

For the zhaz spanning tree, variables with a distance of two (i.e. nodes directly 

connected) from zhaz included mother’s height, soap present at hand washing stations, 

and age of child in months. The variables with a distance of three (i.e. nodes mediated by 

a second node) included the mother’s weight, presence of water at hand washing station, 
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practice(d) exclusive breastfeeding, current breastfeeding status, and diet diversity (DD) 

score. 

The food grouping (i.e. aggregated under diet diversity in this model), including a 

range of reportedly consumed foods, was closely related to zhaz (consistently two to 

three nodes away). The food grouping, besides specific foods, also included the use of 

oral rehydration therapy and reported bouts of diarrhea. Sustainable agricultural practices 

(SAP) grouping was directly linked to diet diversity. Lastly, the family grouping was the 

farthest from the zhaz score and connected through the SAP group. 

 

3.2. Quantile Analysis of Stunting 

The quantile analysis provides a perspective of the data that utilizes the levels of 

stunting to generate the model (not stunted: -2 SD+, stunted: -2 to -3 SD, extremely 

stunted: - 3 SD-). Figures 3, 4, and 5 display all three spanning trees for the different 

quantiles truncated after the second node for simplicity. The first quantile included 

children with a zhaz score greater than -2 SD or those children classified as not stunted 

(see Figure 3). The first level of nodes for this quantile included soil conservation used, 

the mother’s height, issues with maize harvest, potatoes consumed, and age of child. The 

second level nodes include sustainable agriculture practices, mother understands warning 

signs of a sick child, the mothers weight, availability of water at nearest source, 

household language, issues with disease or pest in maize, food deprived in past month, 

other fruits consumed, meats consumed, vegetables consumed, ORTs, currently 

breastfeeding, usage of exclusive breastfeeding, diarrhea present in past two weeks, diet 

diversity score, and water available at hand washing station. The food grouping was split 

into two groups but was related to the zhaz score (diet diversity). The SAP group was at 

the second level, while the family group was the farthest from zhaz.  

 

Figure 3. Causal zhaz-centered tree not stunted model which identifies variables 

most important to child growth rates for children that were not stunted (above -2 SD). 
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The second quantile of children were those between -2 and -3 SD (see Figure 4). 

The first level of nodes included the mother’s height and age of the child. The second 

level of nodes include the mothers weight, usage of exclusive breastfeeding, currently 

breastfeeding, currently pregnant, ORTs, and DD. The food grouping had a large number 

of nodes and was in the second set of nodes, while the family group was in the third and 

the SAP group was the farthest removed.  

 

Figure 4. Causal zhaz-centered tree model from children that a were classified as 

stunted (-2SD to -3SD ZHAZ). 

 

Finally, the worst quantile of child stunting captured any child less than -3 SD 

(see Figure 5). First level nodes included the mother’s height, currently breastfeeding, 

and age of the child. The second level nodes included the mothers weight, household 

language, currently pregnant, diet diversity, usage of exclusive breastfeeding, and total 

number of children in the household. Again, the food grouping played a significant role 

in the model at the second level, followed by the SAP grouping at the third, and the 

family grouping at the fifth. 

 

Figure 5. Causal zhaz-centered tree model from children who were classified as 

extremely stunted (-3SD and below). 

 

3.3. Age-Specific Stunting Factors 

Next, the tool separated children based on age to investigate key contributing 

factors to child stunting within specific age ranges. Figures 6, 7, and 8 display the 

truncated spanning trees for the three age categories in months; 0-6, 7-12, and 13-17. 
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The age group 0-6 months had nine first level nodes and fifteen second level 

nodes (see Figure 6). From the full model the food grouping was divided but was both at 

the first and second level to zhaz, while sustainable livestock was at the first level. 

Family and SAP groupings were three and four nodes away, respectively. 

 

Figure 6. Causal zhaz-centered tree model showing the first two levels (for 

simplicity) of causal variables for children 0-6 months of age. 

 

The age group 7-12 months had six first level nodes including age of the child, 

improved maize storage, improved animal pens, consumed cheese products, food 

deprived in past month, and the mother’s height (see Figure 7). The second level of nodes 

had ten variables. 

 

Figure 7. Causal zhaz-centered tree model from children 7-12 months of age. 

 

The age group 13-18 months had seven first level nodes including presence of 

water at hand washing station, mother’s height, spent money on home repairs, total 

children in household, language, foods made from beans, nuts, lentils, etc., and age of 
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child (see Figure 8). The only grouping that naturally grouped together was the food 

group, all others were disaggregated and far removed. 

 

Figure 8. Causal zhaz-centered tree model from children 13-18 months of age. 

 

Finally, an analysis was conducted to identify the top five variables that 

significantly changed over the four quantiles. Table 1 displays these variables along with 

scores for each quantile. The value represents the importance of the variable to zhaz in a 

particular quantile (the lower the value the more important the variable). These variables 

included water for hand washing, soap for hand washing, exclusive breastfeeding, the 

mothers age, and language, in order of variability (as measured by the standard deviation 

of the scores across quantiles). For example, as the quantile increases in age, soap for 

handwashing suddenly becomes very important, specifically in the 13-18 month’s age 

category. 

 

Table 1. Differences in causal structure across ages (in months). The lower the value the 

more important that variable at the given time. Ranked based on standard deviations. 

 

 

 



33 

   

3.4. Child Gender and Seasonal Variations 

To investigate potential gender differences, graphs for male and female were 

generated. Both graphs resembled the structure of the primary zhaz spanning tree graph. 

There were no changes to the top ten significant variables when gender models were 

compared. Similar results were obtained when investigating potential differences in data 

collection times (during the rainy season and during the dry season). Only the mothers 

age dropped out of the top ten significant variables during the dry season and was 

replaced by consumption of beans. 

4. DISCUSSION  

Analyzing large amounts of data creates challenges in reporting and interpreting 

results. This tool offers a platform in which to begin a more multidisciplinary approach to 

child stunting, both as a health practitioner and as a researcher. It will only be through an 

iterative process of model development that will provide the needed set of tools for 

effective change. 

 

4.1. ZHAZ Spanning Tree 

The zhaz spanning tree provided information based on all information across the 

region for all ages of children. The emergent structure of the data generally follows 

hypothesized relationships from the literature. The different levels of nodes in the zhaz 

spanning tree were similarly grouped compared to the major categories of the WHO 

graphical models. These categories include breastfeeding practices (exclusive 

breastfeeding and breastfeeding), WaSH practices (soap and water present at hand 

washing stations and water availability), micronutrient and protein consumption (DD and 

subsequent variables), caloric intake (DD), and prenatal health (mother’s height and 

weight). While a systems level validation of the hypothesized relationships identified by 

the WHO is useful, the aim of this tool is to provide a platform for hypothesis 

development of potential critical relationships and, most importantly, the testing of these 

hypotheses. This will become the validating step to the systems level analysis. The paper 

demonstrated this through the quantile stunting analysis and the age specific analysis. 
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4.2. Quantile Analysis of Stunting 

By using a quantile analysis, different data structures were created by the tool for 

each category of child (not stunted, stunted, and extremely stunted). The data and 

subsequent graphs showed number of interesting characteristics. First, children who were 

not stunted had a large diverse group of variables closely associated with their physical 

development. 

There is a broad range of general hypotheses on factors for reducing child 

stunting including farming practices, maize quality, micronutrient consumption, diarrheal 

occurrences, ORT usage, water access, breastfeeding, and prenatal health. 

However, as the category of child stunting level dropped below the WHO defined 

stunting threshold (-2), the number of nodes in the first and second level dropped (23 to 

9). The variables identified in the models for the stunted and extremely stunted children 

were very similar with only a slightly different structure. The similarity in model 

structure potentially suggests these variables are consistent in their effect on child 

growth. Interestingly, all of these variables are also present in the non-stunted child’s 

model. This could suggest that not only are the identified variables in Figure 4 and 5 

important, but to achieve improvements in child stunting the missing variables from 

Figure 3 should be considered. 

 

4.3. Age-Specific Stunting Factors 

In the age specific stunting models, several interesting trends were identified by 

the tool that warrant further investigation. First, animal pens were identified as strongly 

associated with the zhaz in the first two quantiles. Recent work has found links between 

farm animals fecal matter and the transmission of diseases [22]. Common in Guatemala, 

chickens and other farm animals are allowed to roam freely both near and inside the 

household. As children are yet to be walking between 0 and 12 months of age, this 

potential transmission route could play a significant role in a child’s physical 

development. 

Another emerging concern among health practitioners within Guatemala is the 

presence of mycotoxins in the maize supply and its effects on child growth [23]. Several 

organizations and academic institutions are investing resources to conduct research on 
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improved storage techniques to reduce mycotoxin exposure. The models in this paper 

showed ‘improved maize storage’ as a first level factor for children under one year of age 

(0-6 and 6-12). This variable then drops to a fifth level factor for children between one 

and two. While the literature is sparse in linking mycotoxin exposure to child stunting 

this finding supports the continued efforts in identifying potential mechanistic links for 

younger children. 

The role of nutrition can also be seen in the data. Models for children 0-6 and 7-

12, identified only meat and cheese, respectively as being associated with zhaz. However, 

the children who were 13-18 or 19-24 months had general diet diversity as an important 

node in both models. Hygiene (soap and water available at the hand washing station) 

became a significant topic as the quantile shifted to children older than 12 months. This 

was similar for the language variable as well, which became a first level node for children 

12 months or older. Nutrition, hygiene, and language have all been reported as significant 

factors in the health of children in Guatemala [24]. These findings support the literature 

and provide a base for multiple hypothesis testing of key relationships within these 

topics. 

 

4.4. The Path Forward 

As presented in this paper, weighted correlation network analysis could be a 

powerful asset to health information systems in Guatemala for understanding complex 

problems such as child stunting. These problems have major negative outcomes that 

affect many lives and have so far been resistant to effective intervention. 

Next steps for the tool include expanding the analysis dataset and moving the 

software to a web interface. Aggregating both national and regional data sets would 

improve the accuracy of the models and help shed light on how they change over time 

with interventions. The outcomes and cofactors will be selectable so the user has 

’switches’ they can use to manipulate models to look at different causal pathways. These 

switches may include municipality, language, gender, age, year, body mass index, 

wasting, and underweight. The introduction of other outcome variables could also be 

used in place of the zhaz score to explore contributing factors to other related health 

issues. 
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Further work also needs to be done for mathematical analysis of the transformed 

correlation network. A mathematical model should be created with parametric 

assumptions of the data to help choose the parameter β. Additional indices can be created 

to indicate how well each variable fits within its placement in the spanning tree this will 

ensure that users keep an open mind to other causal paths when looking at the trees, 

which present only the most significant. This tool could also provide academic 

researchers with a platform to use more advanced machine learning algorithms or 

regression tools to test hypotheses (as opposed to search for them). 

The holistic analysis method and visual interface demonstrated here show 

viability for a powerful new health information system in Guatemala. Consistency with 

literature and ability to use many features of popular methods also ground this approach 

in traditional academic methods typically out of reach for end-users. The combination of 

novel methods with modern tools make this a good fit for solving major issues in analysis 

and communication that Guatemala health information systems currently face. 
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ABSTRACT 

Background: Within the western hemisphere, Guatemala has the worst stunting 

rate with 49% of children under five years of age classified as stunted according to World 

Health Organization standards.  The causes of this condition are not well known; 

therefore, it is unclear which interventions are the most cost effective to eliminate 

stunting. To begin to identify root causes, in this study, two different yet complimentary 

system-analysis approaches are used to analyze correlations among environmental and 

demographic variables, environmental enteric dysfunction (EED), and child height-for-

age (stunting metric) in the community of San Vincente, Guatemala.   

Methods: Based upon the literature and first-hand observations in the field, two 

descriptive models were constructed.  The first model hypothesized relationships among 

EED and environmental and demographic variables, including: the presence of 

infrastructure to promote access to water, sanitation, and hygiene (WaSH).  The second 

model hypothesized relationships among height-for-age and environmental and 

demographic variables, including: breastfeeding practices, the diversity of diet, prenatal 

health, aflatoxin burden, and child-mother interactions.  The height-for-age model was 

also used to explore the confounding impact of EED on stunting. The descriptive models 

were analyzed using Network Analysis (NA) and Structural Equation Modeling (SEM) 

with data from two populations of children between the age of three months and five 
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years.  The first population (n=2,103) was drawn from the Food for Peace Baseline 

Survey conducted by the United States Agency for International Development (USAID) 

in 2012, and the second population (n=371) was drawn from an independent survey 

conducted by the San Vicente Health Center in 2016. 

Findings: The results from the NA of the EED model confirmed water source, 

water treatment, and type of sanitation as important, and the results from the NA of the 

height-for-age model confirmed pathogen exposure, nutrition, and prenatal health as 

important. The results from the SEM of the EED model identified statistically significant 

correlations among EED with water source (-0.101, p=0.070) and type of water treatment 

(0.099, p=0.026). The results from the SEM of the height-for-age model identified 

statistically significant correlations among child height-for-age with prenatal health 

(0.121, p=0.074) and child-mother interaction (-0.091, p=0.079).  Also, the SEM 

identified that aflatoxin burden (0.899, p=0.063) and child diet diversity (-0.136, 

p=0.092) were mediated by EED. 

Interpretation: This is the first study to demonstrate complimentary system-

analysis approaches to identify correlations among environmental and demographic 

variables, EED, and child height-for-age.  Our approach supports the decision to use a 

multi-faceted intervention strategy to eliminate child stunting around San Vicente, and 

our results demonstrate an important tool that may be expanded to evaluate return on 

investment for strategies to eliminate child stunting throughout the western highlands of 

Guatemala.    

Funding: Financial support was provided by the United States Peace Corps, the 

Conflict and Development Foundation of Texas A&M, and the Showalter Foundation 

1. INTRODUCTION 

Child stunting is defined as two standard deviations below the mean height-for-

age as compared to the World Health Organization (WHO) growth chart (World Health 

Organization, 2010). Child stunting has been correlated with both acute and chronic 

health complications including increased morbidity as a child, increased risk of non-

communicable diseases and obesity as an adult, and premature mortality (Alderman, 

Hodditnott, & Kinsey, 2006; Dewey & Begum, 2011).  Children in Guatemala are among 
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the most stunted in the western hemisphere and sixth worst in the world with rates of 

stunting at 49% (United Nations Children’s Emergency Fund, 2013). Among rural 

Mayan communities in the western highlands of Guatemala, the rates of stunting are 

nearly 77% (United States Agency International Development, 2014). Child stunting is a 

difficult problem to address due to the high number of potentially associated causal 

variables. Hypothesized causal variables include micronutrient intake, caloric intake, 

breastfeeding practices, adequate water sources and treatment, proper sanitation, proper 

hygiene practices, and, recently proposed, exposure to fungal toxins (Black et al., 2013; 

Esrey, 1996; Solomons et al., 2014; Wild, Miller, & Groopman, 2016). In the current 

study, the confounding relationship among water, sanitation, and hygiene (WaSH) and 

fungal toxins are explored in relation to the putative role of environmental enteric 

dysfunction (EED) on stunting.   

EED is an intestinal dysfunction identified by inflammation, villi blunting, and 

increased crypt depth (Ahmed et al., 2014). Chronic exposure to pathogens is 

hypothesized to be a causative factor for EED, and EED is believed to be more likely to 

occur among children living in environments lacking infrastructure to promote WaSH 

(Keusch et al., 2013). Members of the fungal genus, Aspergillus spp., biochemically 

produce aflatoxin B that has been identified as a group 1 carcinogen by the WHO due to 

negative effects on the liver (International Agency for Research on Cancer, 2006). 

Additionally, a recent review article published by the WHO hypothesized that exposure 

to high levels of aflatoxin B is a contributing factor to child stunting (Wild et al., 2016). 

However, due to the complex nature of the relationships among the variables potentially 

contributing to stunting, it is difficult to perform a holistic assessment to determine the 

most cost-effective intervention to prevent future stunting. Network analysis (NA) and 

structural equation modeling (SEM) provide two complimentary, system-analysis 

approaches for analyzing complex relationships. NA applies predetermined rules, in the 

form of algorithms, to describe the relationships among variables. NA often is applied to 

large data sets to identify putative correlations among input variables and specific 

outcomes (for example, child stunting) (Zhang & Horvath, 2005). SEM uses path 

analysis and factor analysis to test hypotheses about the relationships among directly 

observed and latent variables (Grace, 2006). Previously, we reported on the use of a two-
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step process combining an initial evaluation of large data sets with basic statistical 

techniques (Canonical Correlation Analysis, Latent Factor Regression, Malanobis 

Teguchi Strategy) followed by hypothesis testing with SEM and small data sets to 

evaluate the relationship among environmental variables and the occurrence of diarrhea 

in Brazil (L. E. Voth-Gaeddert, Divelbiss, & Oerther, 2015a; Voth-Gaeddert, Divelbiss, 

& Oerther, 2015b). In the current study, we expand our prior result using NA on a large 

data set and SEM with a small data set to analyze correlations among environmental and 

demographic variables, EED, and child height-for-age in the community of San Vincente, 

Guatemala. The combination of these methods demonstrates an important tool that may 

be expanded to evaluate return on investment for strategies to eliminate child stunting 

throughout the western highlands of Guatemala. 

This study uses NA to mine a USAID dataset to identify environmental variables 

potentially correlated to child height-for-age, and then uses SEM to test factors impacting 

child height-for-age among children in the town of San Vicente, Guatemala. The SEMs 

specifically examine the questions: 1) does EED cause a reduction in child height-for-

age?, 2) does aflatoxin exposure cause a reduction in child height-for-age?, and 3) does 

aflatoxin exposure cause a reduction in child height-for-age mediated by EED.  

2. METHODS 

2.1. Location and Data Collection  

In this study, two datasets were analyzed; the first was the 2012 US Agency for 

International Development (USAID) Food for Peace Baseline Survey (United States 

Agency International Development, 2014) (n=2,103). The survey was administered orally 

to households in the local dialect in five departments (states) in 30 municipalities 

(counties) throughout Guatemala. The second data set was collected by the San Vicente 

Health Clinic located in San Vicente Buenabaj, Totonicapán, Guatemala (15 1’33.20N, 

91 35’1.99W). Among both populations, the farming of maize was the primary source of 

income with only one harvest per year. The primary language varied among the USAID 

data set but included Quiché, Ixil, Mam, and Popti while the primary language in San 

Vicente was Quiché. The secondary language for the majority of participants in both data 

sets was Spanish. The elevation for San Vicente is 2,780 meters, with an average range of 
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temperatures of 5.1C to 17C, and an annual rainfall of 1,310 mm. Among the locations 

covered by the USAID survey, elevations varied between 1,600 and 3,100 meters, 

temperatures varied between 9.5C and 20.9C, and annual rainfall varied between 800 and 

2,700 mm.  

The methodology for data collection of the two data sets were similar but had two 

primary differences. First, for the USAID survey, all data was collected within the 

household through the use of a questionnaire (administered orally by a translator in the 

local dialect to the mother) and with direct collection of child anthropometric 

measurements (height, weight, and age following WHO guidelines; (World Health 

Organization, 2008)). For the San Vicente survey, a questionnaire was administered 

orally in the mother’s local dialect in a semi-private facility on the side-line of a health 

assembly hosted by the local health center for mothers of children below five years of 

age. Direct collection of child anthropometric measurements were performed by 

healthcare providers (height, weight, and age following WHO guidelines; (World Health 

Organization, 2008)). Second, for the San Vicente survey, household observations were 

collected during a subsequent house visit which followed the health assembly.  

The USAID data were obtained from the USAID Data Repository (United States 

Agency International Development, 2012) and children below five years of age with no 

missing data for the variables of height-for-age z-score, diarrheal occurrences, and 

breastfeeding practices were selected for analysis. The San Vicente data were obtained in 

de-identified format from the San Vicente Health Center and children below five years of 

age with no missing data for the variables of height-for-age z-scores and diarrheal 

occurrences were selected for analysis. Definitions of the variables utilized in NA are 

given in the supplementary material, and the definitions of the variables used in the SEM 

are shown in Table 1. Further information for the data collection methodology for the 

USAID survey are discussed in the baseline report (United States Agency International 

Development, 2014). Institutional Review Board exemption for the use of de-identified 

data was attained from Missouri University of Science and Technology. 
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Table 1. Variables and descriptions included in the structural equation models for 

height-for-age and EED. 

 

 

2.2. Statistical Analysis 

A weighted correlation NA was applied to the USAID data. A shortest-path 

algorithm was used in the analysis which utilizes the correlations between all variables, 

but focused on minimizing the distance between all variables and the child height-for-age 

variable. All variables may only be connected to child height-for-age through a single 

path which can be a direct relationship or through several other variables. The algorithm 

decides how a variable will be connected to the child height-for-age variable by 

calculating several weighted summations of correlations (i.e. single paths) for each 

variable simultaneously. The combination of paths with the lowest combined value is 

then selected. Variables closest to center variable (directly connected) have the strongest 

direct correlation with child height-for-age. The result is a hierarchical tree, or spanning-
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tree, stemming from the child height-for-age variable. Python was used to apply this 

algorithm to the USAID data that, after sub-setting, contained 88 variables and n = 2,103 

children. Two spanning-tree graphics were generated using Cytoscape; 1) centering on 

child height-for-age (ZHAZ) and 2) centering on EED (Diarrhea was used as this was the 

best metric available to represent EED). From the output graphics, the structure of the 

data could then be assessed to identify variables relevant to the hypothesized SEMs. 

Further detail on the algorithm can be found in Voth-Gaeddert et al. 2016 (Lee E Voth-

Gaeddert & Cornell, 2016) and the Python code can be found on Github (Cornell & 

Voth-Gaeddert, 2016).  

The relationships identified in the spanning-tree graphics from the network 

analysis were incorporated into the set of hypotheses in each SEM. Field observations 

and a literature review provided additional information to improve the hypothesized 

models. Furthermore, several experts, both nationally and locally, were consulted about 

the structure of the set of hypotheses in the SEMs (Dary, 2016, personal communication; 

Baudilio, 2016, personal communication).   

SEM is a statistical technique that utilizes path analysis and factor analysis to 

assess multiple hypotheses simultaneously. Factor analysis statistically determines the 

value of a hypothesized latent variable from a set of ‘manifested’ observable indicator 

variables (analogous to symptoms a doctor would look for to identify an underlying 

disease). Path analysis then utilizes the data driven covariance matrix of the latent and 

observable variables to assess their fit to the hypothesized covariance matrix generated 

from the hypothesized SEM (does the data match the model?). Path analysis is then able 

to account for mediating variables (an independent variable affecting a dependent 

variable through a mediating variable). Once specified, a SEM can be analyzed in two 

steps; first the data are compared to the hypothesized measurement model which includes 

only the latent variables and their indicator variables. Second, if the data fit the 

measurement model, assessed via four model fit metrics, the data is then compared to all 

hypotheses in the SEM. If the data also show good fit to the full SEM, the within-model 

parameter estimates are then assessed. Parameter estimates are given in both standardized 

and unstandardized format and are interpreted in the same way as a regression analysis. 

Model fit metrics include Chi-Square (RMSEA; p>0.05), Root Mean Square Error of 
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Approximation (RMSEA; <0.08), Confirmatory Fit Index (CFI; >0.90), and Tucker-

Lewis Index (TLI; >0.90). This study utilized this methodology for both a child height-

for-age model and an EED model. The Lavaan package in R 3.3.2 was utilized for the 

SEM analysis and further reading on SEM can be found in Grace 2006 (Grace, 2006).  

3. RESULTS 

3.1. Descriptive Statistics 

Table 2 displays descriptive statistics for both the USAID and San Vicente 

datasets. The USAID data had 2,103 children, of which 48% were male and 52% were 

female. The mean age of all children was 29.0 months. The mean height-for-age level 

was -2.47 standard deviations, and 30% of mothers reported their child having had 

diarrhea in the past two weeks. 

The San Vicente data had 372 children, 48% males and 52% females with the 

mean age of all children at 29.4 months. The mean height-for-age level was -2.56 

standard deviations and 20% of mothers reported their child having had diarrhea in the 

past two weeks.  

 

 Table 2. Descriptive statistics for the USAID and San Vicente datasets.  

 

 

3.2. Stunting Network Analysis 

The output for the network analysis of the height-for-age model (labeled ‘Child 

height-for-age’) was a spanning tree. Figure 1 depicts the variables correlated with Child 

height-for-age up to the third variable for simplicity. The results included three primary 

branches from Child height-for-age with three primary topical categories. The first 

category was pathogen exposure; soap was present at the hand washing station (Soap at 



47 

   

Washing Station), water was present at the hand washing station (Water at Washing 

Station), water was available at the water source (Water Available), child had diarrhea 

within the past two weeks (Child Had Diarrhea), and the mother had used oral 

rehydration therapy (ORT) on the child (ORT Used by Mother). The second category was 

micronutrient and caloric intake; the child is/was exclusively breastfed for the first six 

months of life (Child Exclusively Breastfed), child was breastfed up to second birthday 

(Child Breastfed), and the diet diversity of the child (Child Diet Diversity Score). The 

final category was prenatal health; the height of the mother (Mother’s Height), the weight 

of the mother (Mother’s Weight), and if the mother was currently pregnant (Mother 

Currently Pregnant). The final remaining variable was the age of the child (Age of Child).  

  

 

Figure 1. Spanning tree of height-for-age model modified from Voth-Gaeddert et 

al 2016 (Voth-Gaeddert & Cornell, 2016). Nodes are variables centered around ‘Child 

height-for-age’. Lines are correlations selected by the algorithm as part of the shortest 

path of correlations to the child height-for-age variable for a given variable. 

 

3.3. Diarrhea Network Analysis 

The network analysis for the EED model centered the spanning tree around the 

variable Diarrhea. Figure 2 depicts the correlated variables with Diarrhea up to the third 

variable for simplicity. The results included three primary branches from Diarrhea and 

three primary topical categories. The first category included variables related to water 

availability; water not available at source in past month (No Water Available), water 
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available at the handwashing station (Water at Washing Station), and water is currently 

available at water source (Water Available). The second category was Sanitation and 

included households sharing the sanitation facility (House Shared Sanitation). The final 

category included variables associated with removal of pathogens; soap present at the 

hand washing station (Soap at Washing Station) and the type of water treatment used in 

the household (Type of Water Treatment). The remaining variable was the age of the 

child (Age of Child).  

  

 

Figure 2. Spanning tree of EED model using child diarrhea modified from Voth-

Gaeddert et al 2016 (Voth-Gaeddert & Cornell, 2016). Nodes are variables centered 

around ‘Child Had Diarrhea’. Lines are correlations selected by the algorithm as part of 

the shortest path of correlations to the child had diarrhea variable for a given variable. 

  

3.4. SEM of Child Height-for-Age Model 

Combining the results from the network analysis, the literature review, and field 

observations, two SEMs were constructed for height-for-age and for EED. For the SEM 

of the height-for-age model there were three hypothesized latent variables - prenatal 

health, child aflatoxin burden, and EED – that made up the measurement model. The data 

showed good fit to the measurement model in all four measures of model fit providing 

justification for analyzing the full model. Subsequently, the data showed good fit to the 

full hypothesized SEM and yielded all four model fit tests successful (Chi-square: 

81.086, p=0.100; RMSEA: 0.025 (CI: 0.000 – 0.043); Robust CFI: 0.968; Robust TLI: 

0.956). The parameter estimates within the model could then be analyzed.  



49 

   

Figure 3 displays the results of the final SEM of the height-for-age model. Child 

height-for-age was regressed on by five variables; three had correlations below a 50% 

significance level and one had a statistically significant correlation below the 10% level. 

The observable variable, number of times child played yesterday (Child Played), was 

significant at a 10% level with a standardized parameter estimate of -0.092 (p=0.076). 

Additionally, the latent variable Prenatal Health was significant at a 15% level with a 

standardized parameter estimate of 0.151 (p=0.102). When the Prenatal Health variable 

was computed as a composite variable (as opposed to a latent variable) the correlation 

with EED became significant at a 5% level with a standardized parameter estimate of 

0.121 (p=0.028). Neither EED nor Child Diet Diversity Score had statistically significant 

correlations with child height-for-age. Furthermore, three variables were regressed on by 

the mediating variable EED, none of which were statistically significant at a 10% level.  

 

 

Figure 3. Final structural equation model of height-for-age model. DWLS robust 

estimator used; Chi-square: 81.086, p=0.100; RMSEA: 0.025 (CI: 0.000 – 0.043); Robust 

CFI: 0.968; Robust TLI: 0.956. Arrows are hypothesized direction, rectangles are 

observed variables, ovals are latent variables, ‘e’ are error. S = standardized parameter 

estimate, U = unstandardized parameter estimate, p = statistically significant level. 
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3.5. SEM of EED Model 

The SEM for the EED model had two hypothesized latent variables – Food 

Preparation Habits and EED – which were first tested separately in a measurement 

model. Poor initial fit of the data to the model prompted the review of the model output 

statistics (the residual covariance matrix and modification indices). From this review, the 

‘Kitchen in a separate room’ indicator variable of the Food Preparation latent variable 

was identified as the cause of the misfit. Further field observations and informal 

interviews were conducted with local mothers which identified that because the kitchen 

often was the primary family gathering place, food preparation was not correlated with 

structural investments in kitchens. Based on the confirmed discrepancy between the 

hypothesized model and the realities on the ground, this indicator variable was removed 

and the measurement model retested. Showing adequate fit in the measurement model 

(Chi-square: 8.677, p=0.370; Robust RMSEA: 0.013 (CI: 0.000 – 0.055); Robust CFI: 

0.998; Robust TLI: 0.997), the full model could then be analyzed. Again, the initial fit of 

the data to the full model was poor; however, the model output statistics suggested a 

problem in the hygiene variable. Comparing raw data sets from this study and those of 

previous data collection campaigns conducted by the San Vicente Health Center, the 

presence of soap (the indicator used for Hygiene) was found to be above 95% among 

local households. With such high coverage, the variance within this variable was minimal 

and reduced the probability of identifying a correlation between other variables. With the 

removal of the hypothesized correlations with the Hygiene variable in the SEM, the full 

model showed good fit (Chi-square: 37.173, p=0.056; Robust RMSEA: 0.030 (CI: 0.000 

– 0.049); Robust CFI: 0.981; Robust TLI: 0.967) and prompted the analysis of the 

standardized parameter estimates.  

Figure 4 depicts the final result, including unstandardized and standardized 

parameter estimates, for the SEM of the EED model. Five variables were regressed 

directly on EED; three had significance levels below 50% and one had a significance 

level below 5%. Water Treatment had a parameter estimate of -0.115 (p=0.013) and was 

statistically significant at the 5% level. Water Source was statistically significant at the 

15% level with a parameter estimate of 0.098 (p=0.127). Food Preparation Habits had a 

parameter estimate of -0.088 but was not statistically significant (not shown).  
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Figure 4. Final structural equation model of EED model. DWLS robust estimator 

used; Chi-square: 37.173, p=0.056; Robust RMSEA: 0.030 (CI: 0.000 – 0.049); Robust 

CFI: 0.981; Robust TLI: 0.967. Arrows are hypothesized direction, rectangles are 

observed variables, ovals are latent variables, ‘e’ are error. Solid arrows are confirmed 

statistically significant correlations at a 10%, dashed arrows are correlations important to 

the overall SEM but not significant at a 10% level. Size added for emphasis. S = 

standardized parameter estimate, U = unstandardized parameter estimate, p = statistically 

significant level. 

 

Correlations with mediating variables included Water Treatment, regressed on 

Water Source; Water Storage regressed on Water Source and Sanitation Facility; and 

Food Preparation Habits, regressed on Water Source, Water Storage, and Sanitation 

Facility. Water Treatment had a statistically significant correlation at the 5% level with 

Water Source with a parameter estimate of 0.066 (p=0.019). Water Storage had a 

statistically significant correlation at the 0.1% level with Water Source with a parameter 

estimate of -0.243 (p=0.000). Water Storage also had a statistically significant 

relationship at the 10% level with Sanitation Facility with a parameter estimate of -0.073 

(p=0.091). Finally, Food Preparation Habits had a statistically significant relationship at 

the 1% level with Water Source and Water Storage with parameter estimates of 0.421 

(p=0.000) and 0.541 (p=0.000), respectively. Food Preparation Habits also had a 

statistically significant correlation with Sanitation Facility at the 10% level with a 

parameter estimate of -0.097 (p=0.086). 
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4. DISCUSSION 

4.1. Network Analysis 

The network analysis of the height-for-age model identified three categories; 

pathogen exposure, nutrition, and prenatal health. The pathogen exposure category 

consisted of three variables associated with pathogen transmission (HygSoap, HygWater, 

WaterAvai.) and two variables associated with potential pathogen exposure outcomes 

(Diarrhea and ORTuse). The United Nations Children’s Fund (UNICEF), the WHO, and 

scholarly literature have identified pathogen exposure as a critical part of the general 

stunting model (Stewart, Iannotti, Dewey, Michaelsen, & Onyango, 2013; United Nations 

Children’s Emergency Fund, 2013). The findings support the incorporation of WaSH or 

EED models in child stunting analyses. The presence of nutrition variables in the network 

analysis confirmed previous work on nutrition and stunting, specifically identifying diet 

diversity and breastfeeding practices as important (Georgieff, 2007; Rivera, Hotz, 

Gonzalez-Cossio, Neufeld, & Garcia-Guerra, 2003; Shugart, 2016). Finally, several 

prenatal health variables were identified and included potential multigenerational effects 

(mother’s height and weight) and pregnancy status (mother is currently pregnant). Both 

factors have previously been shown to correlate with child stunting (Abuya, Ciera, & 

Kimani-Murage, 2012; Addo et al., 2013; Dewey & Cohen, 2007; Gipson, Koenig, & 

Hindin, 2012; Özaltin, Hill, & Subramanian, 2010). The data set did have limitations due 

to the types of questions in the areas of education, pregnancy health, and aflatoxin 

exposure.  

The network analysis of the EED model (using diarrhea as a proxy) included three 

categories; water availability, sanitation, and pathogen removal. The variables in the 

category of water availability included water at the handwashing station, water at the 

house, and no water available from the most common water source for the household. 

Hunter et al 2010 review the implications of increased water stress on households, noting 

its direct and indirect relationship with pathogen exposure and diarrheal occurrences 

(Hunter, MacDonald, & Carter, 2010). Sanitation, specifically, households who shared a 

sanitation facility with another household, was identified as a separate branch correlated 

to diarrheal occurrences. Extensive previous research has reported sanitation-related 

factors as key potential barriers for the transmission of diarrheal diseases (Baker et al., 
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2016). Finally, several variables related to blocking or removing pathogens were 

identified and included having soap at the handwashing station, the type of water 

treatment device owned, and if the family utilized the water treatment device. Soap and 

improved water treatment devices have been reported as effective ways to reduce 

potential exposure to diarrheal diseases (Goldman, Pebley, & Beckett, 2001; Moll, 

McElroy, Sabogal, Corrales, & Gelting, 2007; Reller et al., 2003; Rosa, Miller, & Clasen, 

2010; Stauber, Ortiz, Loomis, & Sobsey, 2009).  

These results were augmented with a literature review and field observations to 

hypothesize two SEMs. The USAID data analyzed in the NA was collected from a 

geographically wider population as compared to the San Vicente data. However, many of 

the environmental challenges faced by residences across the western highlands of 

Guatemala are comparable (United States Agency International Development, 2014), 

thereby supporting the applicability of the NA results to the SEM hypotheses.  

 

4.2. SEM for the Height-for-Age Model  

The results of the SEM for the height-for-age model showed that two variables 

had statistically significant correlations with child height-for-age among children in San 

Vicente; Child Play and Prenatal Health. The variable Child Play was an observable 

variable that was negatively associated with child height-for-age. This meant that an 

increase in the number of times the child played, as reported by the mother, was 

associated with a decrease in child height-for-age. This finding was counter to the 

original hypothesis; however, during subsequent field observations mothers were 

observed permitting their children to play in potentially unsanitary conditions. The 

original intent of this variable was to capture potential hormone stimulation from the 

child-mother interaction and immobility of the child, but the data suggest it may have 

captured an additional pathogen transmission route instead. Ngure et al (2013) and 

Kolahi et al (2008) found that the cleanliness of a child’s play area was correlated with 

diarrheal occurrences (Kolahi, Nabavi, & Sohrabi, 2008; Ngure et al., 2013). 

Additionally, Voth-Gaeddert et al. (2016) found that in the western highlands of 

Guatemala having a fenced-in area for animals was correlated with the growth of the 
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child within the first year of life, potentially due to the decreased probability of pathogen 

transmission via animal fecal matter (Voth-Gaeddert & Cornell, 2016).  

While the prenatal health latent variable was close to being significant at a 10% 

level (p=0.102), the prenatal health composite variable was significant at a 5% (p=0.028) 

with child height-for-age. The prenatal health variable included three indicator variables; 

two questions based on vitamin supplement consumption during pregnancy (prenatal and 

folic acid) and one question on the number of visits to the health center during pregnancy. 

The data suggest that this factor was positively associated with the height-for-age z-score 

of a child. This finding was supported by informal interviews with local health facility 

staff. Additionally, the height-for-age z-score for children in the western highlands of 

Guatemala at birth has been reported at less than -1.00 (Solomons et al., 2014), 

suggesting that the prenatal period is critical for child growth. Finally, both EED and 

child diet diversity had statistically insignificant parameter estimates with child height-

for-age, however, both contributed to the adequate fit of the data to the model and have 

been statistically significant with child stunting in previous research (Checkley et al., 

2008; Georgieff, 2007), prompting further investigation.  

The hypothesized mediating variable within the SEM for the height-for-age model 

was the EED latent variable. The EED latent variable was represented/manifested by 

three indicator variables; child had diarrhea in past two days, child had stomach pain in 

past two weeks, and number of diarrheal occurrences in the past two weeks. Previous 

studies have reported correlations between EED and diarrheal occurrences, chronic 

diarrhea, and intestinal sensitivity supporting the use of each (Korpe & Petri, 2012; 

Viswanathan, Hodges, & Hecht, 2009). However, the data did not show significant 

correlations between EED and either Child Aflatoxin Burden or Prenatal Health. Mapesa 

et al (2016) and Smith et al (2012) have proposed hypotheses for the mechanistic 

pathways in the association of aflatoxin and EED. Voth-Gaeddert et al (2017) recently 

reported a correlation between putative aflatoxin exposure of children in Guatemala and 

the four symptom-based indicator variables used in the Child Aflatoxin Burden latent 

variable in this study. However, they found a negative relationship between putative 

aflatoxin exposure and EED. Finally, the Prenatal Health latent variable was not 

significantly correlated with EED but was important to the overall fit of the model. 
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Matamoros et al 2013 discuss how intestinal health can be potentially affected by factors 

associated with healthy prenatal practices. 

The boundaries set between the two SEMs were established based on the type of 

mechanistic pathway in which each variable impacted EED. Variables included in the 

SEM for the EED model were hypothesized to effect EED via an increased exposure to 

pathogens. Variables acting on EED in the SEM for the height-for-age model were 

hypothesized to effect EED through non-pathogenic mechanistic exposure pathways. 

Aflatoxin exposure has been hypothesized to affect the immune system by 

overstimulating cytokines and potentially causing inflammation and reduced absorptive 

capacity (Wild et al., 2016). Prenatal health has been hypothesized to affect the 

development of the intestinal microbiome and functionality later in life (Matamoros et al., 

2013).  

 

4.3. SEM for the EED Model  

In the SEM for the EED model, two variables had statistically significant 

correlations at a 15% level with the EED latent variable. The EED latent variable in the 

SEM for the EED model included the three indicator variables previously used in the 

EED latent variable in the SEM for the height-for-age model. The two variables 

statistically correlated with EED were Water Source and Water Treatment. Water 

Treatment was negatively correlated at a 5% level with EED meaning that as the method 

of water treatment improved the level of EED decreased. This finding supported the 

original hypothesis and confirmed previous research on this relationship. Zwane et al 

conducted a review of the literature and found hygiene and point-of-use water treatment 

devices were effective in reducing intestinal disease exposure (Zwane & Kremer, 2007). 

Water Source had a positive correlation with EED meaning that as the quality of the 

water source decreased the level of EED decreased. This was contrary to the original 

hypothesis and previous research. Further investigation of the raw data revealed 81.3% of 

participants reported utilizing the community water distribution system, while 14.0% 

reported utilizing a faucet inside their house. This suggested that households who 

reported utilizing a faucet in the house, as opposed to the option of answering the 

community water distribution system, had children with less intestinal dysfunction 
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(diarrhea/discomfort). The latent variable Food Preparation Habits had statistically 

insignificant correlation with EED, but contributed to the overall fit of the model and has 

been shown to be important in previous research (Agustina et al., 2013), prompting 

further study.  

Three mediating variables in the SEM for the EED model included Water 

Treatment, Water Storage, and Food Preparation Habits. Water Source, while having a 

‘direct’ correlation with EED also had an ‘indirect’ correlation via the mediation of 

Water Treatment. Water Source had a positive correlation with Water Treatment meaning 

that as the water source improved the water treatment technique also improved. This 

supported the original hypothesis and suggests that possible secondary benefits may 

accrue if the household’s water source is improved. Water Source and Sanitation Facility 

had negative correlations with Water Storage suggesting that as either the water source or 

sanitation facility improved, water storage was worse. These findings were counter to the 

original hypotheses. Households could have possibly felt the protection provided by an 

improved water source or sanitation facility would be sufficient. Finally, Water Source 

and Water Storage had a positive correlation with Food Preparation Habits while 

Sanitation Facility had a negative correlation. Therefore, as the water source or water 

storage improved, food preparation habits improved as well; however, when sanitation 

facilities improved food preparation habits worsened. Zwane et al (2007) discuss the 

potential complexities of WaSH infrastructure and diarrheal occurrences in developing 

countries (Zwane & Kremer, 2007).  

This study analyzed the factors hypothesized to be correlated with child height-

for-age and EED in the town of San Vicente, Guatemala. Two models were developed 

and tested utilizing two system-analysis approaches; NA and SEM. Results confirmed the 

hypothesis that for children in San Vicente Child Play and Prenatal Health were 

correlated with child height-for-age. Additionally, the type of water treatment and type of 

water source were identified as significant for EED. The sum of these results suggests a 

complex reality within the environmental and demographic based factors hypothesized to 

affect child stunting. Practitioners must understand these complex realities on the ground 

and utilize the appropriate tools for identifying effective interventions. 
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ABSTRACT 

Background: Recent research has reported a correlation between environmental 

enteric dysfunction (EED) and child height-for-age. Many factors may contribute to EED 

including the fungal toxin, aflatoxin B (AFB). This study reports correlations of 1) AFB 

exposure and potential symptoms of AFB and 2) AFB exposure and EED and height-for-

age among children from San Vincente, Guatemala.   

Methods: In October 2016 and February 2017, mothers with children ages four 

months to five years participated in health assemblies hosted by local health practitioners 

in San Vicente. A survey was orally administered in the local language to mothers and 

included a food recall, AFB related symptom questions, EED related symptom questions, 

and anthropometric measurements of the children. Subsequently after each assembly, 

house visits were conducted with the households of the mothers who attended the health 

assemblies. Samples of maize-to-be-consumed were collected from the households and a 

putative AFB consumption level was calculated for each child based on the level of AFB 

identified via the enzyme-linked immunosorbent assay test and the amount of consumed 

maize reported in the food recall. Two datasets were created, 1) data from all participants 

in the October 2016 health assemblies (n=320) and 2) data from participants who had 

attended both assemblies; October 2016 and February 2017 (n=120). The hypothesized 

correlations were tested with these datasets using the Kruskal-Wallis test, ordinal 

regression, factor analysis, and structural equation modeling (SEM).   
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Results: The mean putative AFB consumption level among children in October 

2016 was 48.0 ng/kg of body weight. The putative AFB consumption level was 

significantly correlated with the October 2016 AFB symptoms variable (0.092, p=0.068). 

Furthermore, among participants who attended both health assemblies, the putative AFB 

consumption level in October 2016 was correlated at 1% level with AFB symptoms in 

October 2016 (0.123, p=0.026), at a 10% level with the change in AFB symptoms 

between 2016 and 2017 (0.107, n=0.099), and was not correlated with AFB symptoms in 

2017. The putative AFB consumption level and AFB symptoms variable had a significant 

negative correlation with the EED symptoms variable (-0.093, p=0.036 and -0.133, 

p=0.006, respectively). The SEM analysis showed that there was a significant negative 

correlation between the putative AFB consumption level and EED symptoms variable (-

0.080, p=0.030) and a significant negative correlation between the putative AFB 

consumption level and child height-for-age (-0.073, p=0.030).  However, there was not a 

statistically significant relationship between EED and child height-for-age.  

Conclusion: This is the first study to investigate the correlations between AFB 

exposure, EED symptoms, and child height-for-age in Guatemala. Based on the high 

exposure rates of AFB in Guatemala, further consideration should be given to the role of 

AFB exposure on child health.  

Keywords: Aflatoxin B, Environmental Enteric Dysfunction, Height-for-Age, 

Factor Analysis, Structural Equation Modeling 

KEY MESSAGES 

• Putative AFB consumption levels among young children were statistically 

associated with four symptom questions of aflatoxin exposure 

• Putative AFB consumption levels among young children were statistically 

associated with three symptom questions for environmental enteric dysfunction  

• The relationship between putative AFB consumption levels and child height-for-

age was mediated by environmental enteric dysfunction 
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1. INTRODUCTION 

Malnutrition has been hypothesized to be an underlying contributing factor to 

45% of all child deaths globally and is associated with both acute and chronic health 

problems.1 Child height-for-age was selected as a global health indicator for child 

malnutrition by the United Nations General Assembly with the ratification of the 

Sustainable Development Goals.2 Intestinal dysfunction has been reported to be 

negatively correlated with child height-for-age.3 For children living in environments 

lacking WaSH infrastructure, chronic exposure to enteric pathogens can lead to a type of 

intestinal dysfunction named environmental enteric dysfunction (EED).4 Conditions of 

EED include intestinal disturbances such as the blunting of villi, inflammation, and 

increased crypt depth which can lead to reduced absorptive capacity of the intestines. The 

majority of scholarly literature on EED investigates the effect of bacterial exposures; 

however, several recent review articles have reemphasized the negative effects due to 

toxic chemicals.5 Specifically, Mapesa et al and Smith et al, have proposed that fungal 

toxins may be a contributor to EED and a set of mechanistic pathways have been 

hypothesized for mycotoxins on EED and child height-for-age.5,6    

Aflatoxin B (AFB) is a carcinogenic type of mycotoxin and is produced by the 

fungi Aspregillus spp.7 It is classified as a Group I carcinogen according to the 

International Agency for Research on Cancer (IARC).8 The AFB strain is the most 

carcinogenic and is prevalent in a variety of crops including maize, sorghum, and 

groundnuts.9 In 2016 the World Health Organization (WHO) published a review article 

citing evidence from six human studies from Africa and numerous animal studies on the 

potential links between aflatoxin exposure and reduced child height-for-age.10 However, 

the current price of AFB biomarkers limit engagement from the research community 

resulting in unclear mechanistic pathways of AFB on EED and child height-for-age. 

Proposed effects of AFB on child health that are in common with EED include reduced 

zinc bioavailability, nutrient metabolism, protein synthesis, and damaged enterocytes.10 

Lizárraga-Paulín et al suggest that for children AFB exposure should be under 1 part per 

billion (ppb) in food.11 Wild et al report on the disparities in the levels of AFB 

consumption between populations living in developed versus developing regions 

highlighting North America at 0-1 ng/kg of body weight and The Gambia at 4-113 ng/kg 
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of body weight which is representative of many developing countries.10 Additionally, the 

United States and European Union have set toxicity levels for imported maize at 20 ppb12 

and 5 ppb13, respectively. In Guatemala, mean AFB levels in maize samples from local 

markets were found to be above US import limits in 11 of 24 departments and EU limits 

in 19 of 24 departments.14 With high reported AFB levels and potentially negative health 

effects on children, AFB must be a priority in Guatemala.    

As maize is a staple food among the people of Guatemala, AFB exposure to 

children is hypothesized to be high. In this study, data collected in October 2016 and 

February 2017 on children in San Vicente, Guatemala was used to test the hypothesized 

relationships between 1) putative AFB consumption levels from maize and AFB 

symptoms and 2) putative AFB consumption levels from maize, EED symptoms, and 

children’s height-for-age. 

2. METHODS 

2.1. Location and Data Collection   

The study site selected was a set of Mayan communities near the town of San 

Vicente Buenabaj, in the western highlands of Guatemala (15 1’33.20N, 91 35’1.99W). 

Communities lived among a mountain range with an average elevation of 2,780 meters 

and average range of temperatures of 5.1C to 17.0C. Farming of maize was the primary 

source of income while the primary language was Quiché and the secondary language 

was Spanish. The site had only one harvest season with the majority of households 

storing and consuming their own maize over the course of the year.  

In October 2016, one month before harvest, and February 2017, two months 

following harvest, health assemblies were held by the local health center staff for mothers 

of children between three months and five years of age. Surveys were administered orally 

in the local dialect by local translators while anthropometric measurements were taken of 

the children by trained health professionals. The survey combined questions from the 

Demographic and Health Survey program15, local health surveys, and AFB and EED 

symptom questions. Direct collection of anthropometric measurements and computations 

were conducted by trained nurses from the local health center following the WHO 

guidelines. House visits of the attending families were conducted one week after the 
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health assemblies to collect household observational data and maize samples. The maize 

samples were collected from the stored maize allocated for consumption, immediately 

deposited into a paper bag, and sent to Guatemala City for analysis.  

Two datasets were created from children with complete collected information. 

The first dataset included children who attended the October 2016 health assembly 

(n=320) while the second dataset was two time-points and included those children who 

attended both the October 2016 and February 2017 health assemblies (n=120). 

Institutional Review Board exemption for a chart review of information collected by the 

Health Center was attained from the Missouri University of Science and Technology 

(Missouri S&T) and the local San Vicente Health Center. All information was attained by 

the local Health Center under a licensed professional, de-identified, and subsequently 

analyzed by a team of researchers at Missouri S&T. 

 

2.2. Aflatoxin Exposure Assessment 

To assess putative aflatoxin exposure among children two types of measurements 

were used. First, maize samples, collected in accordance with Torres et al16, were 

analyzed using the enzyme-linked immunosorbent assay (ELISA) test to obtain the 

amount of Aflatoxin B in a household’s maize supply that was designated for 

consumption. Utilizing the 24-hour food recall portion of the survey (following US 

Agency for International Development guidelines17) a total amount of maize consumed in 

one day by the child was calculated. Multiplying the amount of AFB per gram of maize 

by the grams of maize consumed by the child in one day, an estimate of the average 

amount of AFB consumed in a single day by the child was computed. Finally, the AFB 

value was divided by the weight of the child to produce a comparable value across 

sampling ages. The name ‘putative AFB consumption level’ is used to identify this 

variable.     

The second measurement was created from a set of questions on the survey 

administered to the mother and were based on potential symptoms related to aflatoxin 

exposure. These symptoms included yellow eyes, unexplained appetite or weight loss, 

body swelling, issues with urination, and chronic headaches.18,19 These questions were 

asked of the child as well as any additional household members. As these symptoms were 
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related to liver problems, one assumption made in the study was that if the liver was 

exposed to AFB the intestines were also exposed to similar levels of AFB. The name 

‘AFB symptom latent’ is used to identify the combination of symptom-based questions 

when factor analysis is applied (see below) and ‘AFB symptom composite’ is used to 

identify these set of questions when the responses are summed. 

 

2.3. Environmental Enteric Dysfunction Assessment 

As EED is a broadly defined term associated with intestinal health, a set of 

symptom questions were given on the survey related to gastrointestinal problems of the 

child. These symptoms included; occurrence of diarrhea, rate of occurrence of diarrhea, 

rate of occurrence of dysentery, intestinal discomfort, and the most common illnesses 

within the household.20 The name ‘EED symptom latent’ is used to identify the 

combination of questions when factor analysis is applied (see below) and ‘EED symptom 

composite’ is used to identify these set of questions when the responses are summed.  

 

2.4. Statistical Analysis 

Four statistical techniques were applied to the data to assess the significance 

between 1) the AFB consumption level and the AFB symptoms (latent and composite), 2) 

the AFB consumption level and the EED symptoms (latent and composite), and 3) the 

AFB consumption level, the EED symptom latent, and the child’s height-for-age. A cross 

sectional design was utilized for data from October 2016 and, where appropriate, a two 

time-point regression analysis was utilized for the two time-point dataset. The four 

techniques included Kruskal-Wallis rank sum test, ordinal regression, factor analysis, and 

structural equation modeling (SEM). Based on previous studies child food consumption 

and socio-economic status were controlled for in each model.21 The statistical package R 

3.3.2 was used for all analyses.  

The Kruskal-Wallis rank sum test is used to assess the statistical significance 

between two variables with non-normal distributions in their data. The test was utilized to 

assess relationships between AFB consumption levels and the AFB symptoms composite, 

AFB consumption levels and the EED symptom composite, AFB consumption levels and 
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child height-for-age, and the AFB symptoms composite and the EED symptom 

composite. McKnight et al provides an overview of the Kruskal-Wallis test.22   

Ordinal regression is used to assess statistical correlations between an ordinal 

endogenous variable and its regressors. The test was utilized to assess the correlation 

between the EED composite and the AFB consumption level. Further information on 

ordinal regression can be found with Armstrong et al.23 

Factor analysis is used to assess the latent structure of a set of variables 

hypothesized to manifest from the same source. As dichotomous, ordinal, and continuous 

variables were among the manifest variables in the analysis a robust diagonally-weighted 

least squares estimator was utilized to assess the latent factors.24 Relationships analyzed 

included AFB consumption levels and the AFB symptom latent variable, AFB 

consumption levels and the EED symptom latent variable, and the AFB symptom latent 

variable and the EED symptom composite score.  Graphically, for both factor analysis 

and SEM, the arrows depict the hypothesized directionality of effect, boxes are 

observable variables, and the ovals are the latent variable. Further reading on factor 

analysis can be found with Grace 2006.25 

Finally, SEM is a technique that analyzes multiple hypotheses simultaneously, 

including potential mediating variables in a model. SEM combines factor analysis with 

path analysis to assess the relationship between three or more variables including 

observed, latent or composite. As with factor analysis, due to the presence of 

dichotomous and ordinal manifest variables in the SEM a robust diagonally-weighted 

least squares estimator was utilized. SEM was used to analyze the potential mediating 

effect of EED between AFB exposure and child height-for-age. Again, Grace 2006 

provides further detail on the SEM methodology.25 

3. RESULTS 

3.1. Basic Statistics 

There were 320 children between the ages of six months and five years in the 

October 2016 dataset and 120 children in the two time-point dataset. Table 1 displays 

descriptive statistics for both datasets. In the October 2016 dataset 49% were males and 

51% were females with a mean age of 30.2 months. The mean height-for-age was -2.54 
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SD, the mean AFB consumption level was 48.0 ng/kg of body weight, and the mean 

prevalence of diarrhea for children within the previous two weeks reported by the 

mothers was 20.1%. For the two time-point dataset at time-point one (October 2016) 49% 

were males and 51% were females with a mean age of 30.7 months. The mean height-for-

age was -2.66 SD, the mean AFB consumption level was 50.0 ng/kg of body weight and 

the mean prevalence of diarrhea for children within the previous two weeks reported by 

the mothers was 18%.  

 

Table 1. Descriptive statistics for both the October 2016 and two time-point 

datasets. 

 

 

3.2. AFB Consumption Level vs AFB Symptoms  

The first set of analyses assessed the hypothesized correlation between AFB 

consumption level and the AFB symptom-based questions, with both latent and 

composite variables. For the October 2016 dataset, the Kruskal-Wallis test did not 

confirm a significant correlation between the AFB consumption level and the AFB 

symptom composite (p=0.313). Figure 1 depicts the factor analysis (AFB symptom 

latent) results for October 2016. The factor analysis confirmed a statistically significant 

correlation at a 10% level between the AFB consumption level and the AFB symptom 

latent variable (0.092, p=0.068; X2 p=0.686, Robust RMSEA=0.000 (CI:0.000-0.039), 

Robust CFA=1.000, Robust TLI=1.154). 

Additionally, the two time-point dataset was analyzed to assess the hypothesized 

correlation between the AFB consumption level and the AFB symptom latent as 

symptoms continued further into the future (see Figure 2). The Kruskal-Wallis test did 

not confirm a significant correlation between AFB consumption level and AFB symptom 
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composite for any of the three measures. However, the factor analysis, see Figure 2, 

confirmed a correlation at the 5% level for symptoms in October 2016 (0.123, p=0.026), 

10% for the change in symptoms between October 2016 and February 2017 (0.107, 

p=0.099), but no correlation with the symptoms in February 2017 (0.073, p=0.289).  

 

 

 

 

Figure 1. Final basic factor analysis of AFB consumption level on AFB symptom 

Latent. Arrows are hypothesized causality, rectangles are observed variables, ovals are 

latent variables, and ‘e’ are errors. Used DWLS robust estimator; n = 320; Model fit 

(Chi-square: 8.297, p=0.686; Robust RMSEA: 0.000 (CI: 0.000 – 0.039); Robust CFI: 

1.000; Robust TLI: 1.154. Controlled for Child Food Consumption and Socio-economic 

Status. Additionally, using the ‘Composite’ of Child AFB symptom and regressing AFB 

consumption level on it was not statistically significant (Est: 0.142, p=0.364). 

 

 

3.3. AFB vs EED  

The second set of analyses assessed the hypothesized correlation between the 

AFB consumption level and EED symptoms (composite and latent). For the October 

2016 dataset, ordinal regression confirmed a significant correlation between AFB 

consumption levels and the EED symptom composite at a 5% level (-0.564, p=0.032). 

Additionally, Figure 3 depicts the factor analysis of the EED symptom latent regressed on 

by the AFB consumption level. A statistically significant correlation was confirmed 

between the two factors at the 5% level (-0.093, p=0.036; X2 p=0.122, Robust RMSEA = 

0.033 (CI: 0.000 – 0.067); Robust CFI=0.980; Robust TLI=0.960).  
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Figure 2. Final factor analysis of AFB consumption level in 2016 on AFB 

symptom latent for three time points (2016, the difference between 2016 and 2017, and 

2017). Displays the change of the correlation between the putative AFB exposure and 

AFB symptoms change as time between AFB exposure and symptoms increases. 

 

 

Figure 3. Final factor analysis of AFB consumption level on Environmental 

Enteric Dysfunction (EED). Used DWLS robust estimator; n = 320; Model fit (Chi-

square: 10.067, p=0.122; Robust RMSEA: 0.033 (CI: 0.000 – 0.067); Robust CFI: 0.980; 

Robust TLI: 0.960. Controlled for Child Food Consumption and Socio-economic Status. 

Additionally, the ‘Composite’ EED was regressed on by AFB consumption level and was 

not significant (Est: 0.113, p=0.324). 
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3.4. AFB Consumption vs EED Symptom Latent vs Height-for-Age 

Finally, the hypothesized correlations between the AFB consumption level, the 

EED symptom latent variable, and the child’s height-for-age was analyzed with SEM. 

Figure 4 depicts the SEM result of the October 2016 dataset with both unstandardized 

and standardized parameter estimates. First, model fit tests were computed to test the fit 

of the data to the hypothesized model structure. Tests showed adequate fit (Chi-square: 

15.920, p=0.069; Robust RMSEA: 0.049 (CI: 0.000 – 0.092; Robust CFI: 0.945; Robust 

TLI: 0.889) therefore warranting an analysis of the parameter estimates. The analysis 

confirmed that the AFB consumption level had a significant correlation with child height-

for-age (U: -0.758, S: -0.073, p=0.031) and a significant correlation with the EED 

symptom latent variable (U: -0.101, S: -0.080, p=0.030). However, the data did not 

confirm a significant relationship between the EED symptom latent and child height-for-

age (U: 0.435, S: 0.053, p=0.429).  

 

 

Figure 4. Final structural equation model of AFB consumption level, 

Environmental Enteric Dysfunction (EED), and child height-for-age. Arrows are 

hypothesized causality, rectangles are observed variables, ovals are latent variables, and 

‘e’ are errors. Used DWLS robust estimator; n = 320; Model fit (Chi-square: 15.920, 

p=0.069; Robust RMSEA: 0.049 (CI: 0.000 – 0.092); Robust CFI: 0.945; Robust TLI: 

0.889); Controlled for Child Food Consumption and Socio-economic Status. 

 

Utilizing the two time-point data set, the Kruskal-Wallis tests confirmed that the 

dichotomous response of the child putatively consuming over 10 ng/kg body weight of 

AFB in October 2016 had a significant correlation with child height-for-age in October 
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2016 (p=0.080) and the change between the child height-for-age in October 2016 and 

February 2017 (p=0.074), but not in February 2017 (p=0.763). 

Finally, Figure 5 depicts the final SEM of the hypothesized correlations between 

AFB consumption levels, EED in October 2016, EED in February 2017, and the change 

in child height-for-age between October 2016 and February 2017 (catch-up growth). 

Tests of model fit showed adequate fit permitting the assessment of the parameter 

estimates (Chi-square: 22.666, p=0.750; Robust RMSEA: 0.000 (CI: 0.000 – 0.046); 

Robust CFI: 1.000; Robust TLI: 1.160). The AFB consumption level had two confirmed 

significant correlations; first with catch-up growth (S: -2.359, U: -0.161, p=0.009) and 

second with EED in February 2017 (S: -0.216, U: -0.129, p=0.084). There was no 

confirmed significant correlation between the EED symptoms nor between either EED 

symptoms and child height-for-age. 

 

 

 

Figure 5. Final two time point structural equation model of AFB consumption 

level, Environmental Enteric Dysfunction (EED) in 2016 and 2017, and the change in 

child height-for-age between 2016 and 2017. Arrows are hypothesized causality, 

rectangles are observed variables, ovals are latent variables, and ‘e’ are errors. Used 

DWLS robust estimator; n = 120; Chi-square: 22.666, p=0.750; Robust RMSEA: 0.000 

(CI: 0.000 – 0.046); Robust CFI: 1.000; Robust TLI: 1.160. Controlled for Child Food 

Consumption and Socio-economic Status. 
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4. DISCUSSION 

4.1. AFB and Symptoms 

This study explored alternative methods for imputing exposure levels of AFB on 

children in Guatemala. The AFB consumption level value attempted to capture exposure 

through a computed consumption level. This method is used in diet diversity and 

micronutrient studies in that one assumes the reported single-day level of consumption of 

the subject represents the mean level of consumption when analyzed among a 

population.17 Doak et al utilized a similar method when analyzing calorie and nutrient 

intake among children in Guatemala.26 The final AFB symptom variable value was based 

on the most frequent symptoms previously associated with chronic levels and high levels 

of AFB exposure.19 Bosa et al discuss the potential symptoms of AFB including jaundice 

and appetite loss.18  

To validate an AFB symptom approach in assessing AFB exposure levels, this 

study analyzed the correlation between the AFB consumption level (input) and the AFB 

symptom variable (output). The data showed a significant correlation between exposure 

(a continuous variable) and symptoms (yes-no responses) for the October 2016 dataset. 

Several animal studies have demonstrated similar correlations between exposure levels 

and symptoms, Williams et al review studies that demonstrated correlations between 

increased AFB exposure among mice and chickens and liver-based dysfunctions.7 Within 

the human population Jolly et al found a correlation between AFB exposure and vomiting 

and abdominal swelling.19 Mapesa et al reviews results from a variety of studies on AFB 

to build a hypothetical causal diagram of mechanistic pathways leading to symptoms.5 

Additionally, the study analyzed this correlation as the period between putative AFB 

consumption and AFB symptoms increased (change between 2016/2017 and symptoms 

in 2017). The data suggest the validity of the correlation becomes weaker as time 

increases. Hinton et al reported that in rats dosing of AFB was correlated with a closely 

followed peak of immune stimulation suggesting short periods of separated exposure and 

effect.27 

The limitations with these two indicators include, as mentioned, numerous 

mechanistic intestinal changes along the causal pathway that need further investigation. 

Additionally, symptoms used for AFB exposure were associated with liver dysfunction 
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and not intestinal exposure. Potential confounding factors include birth related jaundice, 

limited understanding among mothers of AFB symptom diagnosis, and other related 

factors to appetite or weight loss. Finally, while this supports recent findings, spurious 

correlations are possible among the data and therefore this correlation needs further 

validation for significance.  

 

4.2. AFB and Health 

The analysis confirmed significant correlations between AFB consumption levels 

and EED symptoms and was tested using multiple statistical techniques. However, the 

results demonstrated a consistent negative correlation meaning as AFB consumption 

levels increased EED problems decreased. This was counter to the original hypothesis. 

Both the AFB consumption level and the AFB symptoms (latent and composite) were 

negatively correlated with the EED symptoms. Previous findings utilizing animal models 

had reported alterations in intestinal functionality similar to EED.10 Applegate et al and 

Yunus et al found evidence of reduced intestinal absorptive capacity in chickens when 

exposed to high levels of AFB.28,29 However, limited human models have been tested to 

date. Smith et al has published a conceptual framework for the effect of AFB on child 

height-for-age including intestinal disruption.30 The primary results from the AFB animal 

exposure studies reported an increase in immune response activity (overstimulation of 

cytokines).10 Furthermore, the EED symptoms potentially captured more severe cases of 

EED, as the occurrence of diarrhea and multiple bouts of diarrhea may be associated with 

more severe cases of poor intestinal integrity as compared to symptoms such as stomach 

pain.  

The hypothesized correlations between AFB, EED, and child height-for-age were 

assessed using SEM for both datasets. The analysis of the October 2016 dataset 

confirmed a significant correlation between AFB and child height-for-age; however, no 

significant correlation was confirmed between EED and child height-for-age. Again, 

there was a confirmed negative correlation between AFB and EED. Similar results were 

identified when the two time-point dataset was analyzed. AFB, again, was correlated 

negatively to both child height-for-age (confirming hypothesis) and EED in February 

2017 (counter to hypothesis). Previous research suggests a relationship between EED and 
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child height-for-age.3 However, the interaction between AFB, EED, and child height-for-

age is less clear. This study supports the hypothesis that AFB is correlated with child 

height-for-age; however, the specific mechanistic pathways of this relationship and the 

functionality of the intestinal tract of children is less well known. Further research should 

be undertaken attempting to validate the AFB-child height-for-age mechanistic pathway 

and elucidate the AFB-EED pathway. Limitations for this portion of the study included 

accurate reporting of occurrences of diarrhea, dysentery, stomach pain, and other EED 

related symptoms.  

Finally, the results from the analyses of the hypothesized correlations that 

included either the AFB or EED symptoms supported the use of the latent variable 

mathematical theory used in factor analyses and SEM. A composite score assumes 1) the 

‘indicator’ variables used to create the composite (e.g. for AFB; yellow eyes, loss of 

appetite, etc.) explain all of the composite factor in its entirety and 2) causality runs from 

the indicator variables to the composite score. In latent variable theory 1) it is possible to 

switch out indicator variables and maintain the integrity of the latent variable and 2) 

causality runs from the latent variable to the indicator variables.31 Symptoms, whether 

from AFB or EED, are caused by an underlying dysfunction or problem, which is 

supported by the latent variable theory of causality and was supported in this study based 

on the consistent improvements in identifying potential correlations among variables.     

This study supports the hypothesis of correlations between 1) AFB consumption 

levels among children and the potential AFB related symptoms and 2) AFB consumption 

levels among children and the child height-for-age. With emerging concerns around both 

EED’s and AFB’s role in child development, it is critical to understand how each one 

affects child growth. While further research will be needed to investigate specific 

mechanistic pathways between EED and AFB, practitioners in AFB prone countries must 

be aware of the potential harmful effects on child health. 
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ABSTRACT 

Background: The fungus Aspergillus produces aflatoxins that are classified as a 

group 1 carcinogen by the World Health Organization (WHO).  Prior research 

documented elevated levels of aflatoxins in maize samples from markets within 12 of 24 

departments throughout Guatemala. In the current study, cross-sectional data collected in 

October 2016 and February 2017 were used to test hypothesized correlations within two 

models that incorporated variables hypothesized to contribute to increased exposure to 

aflatoxins from maize purchased from local markets or from subsistence maize 

production.  

Methods: Health assemblies were held by local health practitioners for mothers 

with children between one month and five years of age in October 2016, one month 

before harvest, and February 2017, two months after harvest. At the assemblies, surveys 

were administered orally to mothers in the local dialect by translators. Immediately 

following, house visits were conducted with mothers who attended the health assemblies 

to collect samples of maize allocated for consumption. The level of aflatoxin in the maize 

sample was determined using an enzyme-linked immunosorbent assay (ELISA) method. 

For October 2016, an odds ratio and relative risk value of having maize with aflatoxin 

levels greater than 15 parts per billion were determined for households who purchased 

maize from local markets as opposed to households with subsistence maize production. 

Structural equation modeling (SEM) was then used to analyze two hypothesized models 

for October 2016 and two for February 2017 exploring the putative routes of exposure 

from either maize purchased from local markets or from subsistence maize production.  
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Findings: The results confirmed the hypothesis that households that purchased 

maize from the market had 3.31 higher odds (95% CI: 1.35-8.11) and 2.16 times the 

likelihood (95% CI: 0.98-4.71) of having maize with levels of aflatoxin above 15 ppb in 

their house compared to subsistence households. The October 2016 SEM for market-

purchased maize confirmed that purchase habits had a negative significant effect size on 

the child aflatoxin burden (-0.220, p=0.037). The October 2016 SEM for subsistence 

maize confirmed that post-harvest practices, observing fungus, and the type of maize 

storage had significant negative effect sizes on child aflatoxin burden (-0.158, p=0.048; -

0.111, p=0.004; and -0.082, p=0.024 respectively). The February 2017 SEMs for market-

purchased maize and subsistence maize confirmed observing fungus (-0.391, p=0.000) 

and higher maize price for longer storage (0.079, p=0.089) were significant, respectively. 

Additionally, at both time points households who reported receiving a higher maize price 

for longer storage also reported having improved storage facilities (2016: 0.063, p=0.001 

and 2017: 0.230, p=0.017).  

Interpretation: This is the first study to report on correlations between a set of 

variables associated with the potential transmission of maize-born aflatoxins specific to 

Guatemala. Based on the results multiple interventions may be effective, but varying in 

effectiveness depending on the time of year and sources of maize for individual 

households. To reduce aflatoxin exposure to children, practitioners and policy makers 

should consider all options including market-based and educational interventions.  

 

Keywords: Aflatoxins, Purchase Habits, Maize Storage, Guatemala, Child 

Health, Structural Equation Modeling 

1. INTRODUCTION 

Members of the fungal genus, Aspergillus spp., biochemically produce aflatoxins 

that are classified as a group 1 carcinogen by the World Health Organization (WHO) 

(International Agency for Research on Cancer, 2006). Aflatoxins are the most prevalent 

and the most toxic type of mycotoxin and are found to grow on crops including maize, 

sorghum, cassava, and ground nuts (LIzarraga-Paulin, Moreno-Martinez, & Miranda-

Castro, 2010). Among the peoples of Guatemala, maize, in the form of tortillas, tamales, 
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and soup, is a staple of the diet (United States Agency International Development, 2014). 

Recent estimates suggest that 72% of the daily energy intake from food among the people 

of Guatemala come from Maize (Agriculture and Consumer Protection, n.d.). 

Additionally, prior studies have documented the wide spread occurrence of elevated 

levels of aflatoxins in the maize supplies in both public markets as well as private 

households throughout Guatemala (Torres et al., 2015). This combination of factors, 

namely, the widespread consumption of maize and the widespread contamination of 

maize with aflatoxin, may create a significant public health threat to the people of 

Guatemala.  

The International Agency for Research on Cancer (IARC) recently released a 

meta study documenting the results of research describing the effects of aflatoxins on 

child linear growth arguing for an increase in research to determine the potential routes of 

environmental exposure (Wild, Miller, & Groopman, 2016). Guatemala has the sixth 

highest child stunting rate in the world and the worst rate of child stunting in the western 

hemisphere at 49% of all children under five years of age stunted (United Nations 

Children’s Emergency Fund, 2013). Stunting is defined as a height-for-age score of at 

least two standard deviations below the WHO growth mean (United Nations General 

Assembly, 2015). Despite significant efforts to address the issue of child stunting in 

Guatemala, the condition persists.  

To reduce the potential for aflatoxin exposure to children, identifying the key 

mechanisms by which the fungus Aspergillus becomes prevalent in maize is important. 

Fungal growth may occur in the field, during harvest, during post-harvest practices, in 

storage, and in transport (Wild et al., 2016). The majority of households in the western 

highlands of Guatemala rely on subsistence maize but may supplement their stocks with 

purchases from local markets during the lean season (United States Agency International 

Development, 2012). The two primary options households have for obtaining maize 

include subsistence farming or purchasing maize from the market. Each scenario has 

unique potential fungal toxin growth and transmission pathways. To identify potential 

intervention points for the reduction of aflatoxin exposure, modeling the systems at a 

household level can provide useful insight.    
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In this study, an analysis was conducted on data collected from San Vicente, 

Guatemala in October 2016 and February 2017 to assess hypothesized correlations of 

influences in the transmission of aflatoxins using two structural equation models at each 

time point. The two hypothesized models included; 1) factors related with the local 

market that may influence children to display aflatoxin exposure symptoms and 2) factors 

related with household maize production that may influence children to display aflatoxin 

exposure symptoms. Results confirmed that reported aflatoxin exposure symptoms were 

correlated with the type of maize storage and post-harvest practices for subsistence 

households while improved market purchase habits were significant for households 

acquiring maize from the market. 

2. METHODOLOGY 

2.1. Location 

San Vicente, Guatemala (15 1’33.20N, 91 35’1.99W) is located in the western 

highlands at an elevation of 2,780 meters, with an average range of temperatures of 5.1C 

to 17.0F, and an annual rainfall of 1,310 mm. The farming of maize is the primary source 

of income for the majority of households and includes only one harvest season which 

occurs in November. The dominate cultural identity within the region is Mayan with the 

primary language being Quiché and the secondary language being Spanish.   

 

2.2. Data Collection and Preparation  

In October of 2016 and February of 2017, health professionals from the Health 

Center of San Vicente conducted health assemblies for mothers with children under five 

years of age. Households were informed of the health assemblies via community wide 

public announcements and flyers. During each assembly, surveys were administered 

orally to the mothers in their local dialect via a translator. Subsequently, after each health 

assembly, house visits were conducted with participants of the assemblies to collect 

household observations and samples of maize from the household’s storage allocated for 

consumption. Institutional Review Board approval was attained from Missouri University 

of Science and Technology to analyze the de-identified data collected by the local health 
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center. The names and descriptions of the variables that were included in the survey are 

shown in Table 1. 

 

Table 1. Variables and descriptions used in the structural equation models for the 

market and subsistence models. 

 

 

Samples of maize collected from households were sealed in paper bags and 

immediately sent to Guatemala City to determine alfatoxic levels using a commercially 

available enzyme-linked immunosorbent assay (ELISA) according to the manufacturer’s 

instructions. The test identified the parts per billion of aflatoxin present in the sample. 

The protocol reported by the Neogen Corporation was utilized (Neogen Corporation, 

2012). Additionally, during maize sampling the household was asked specifically about 

the origin of the maize sampled, which was recorded and utilized for computing a relative 

risk and odds ratio.  

From the two data collection campaigns (October 2016 and February 2017) four 

datasets were created to be analyzed by the four SEMs. For each time point, two 
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subsamples were drawn from all represented households at the health assemblies based 

on responses to subsistence and market attendance questions in the survey. The 

subsistence subsample was selected based on if the majority of maize consumed in the 

past month was obtained from subsistence farming. The market attendance subsample 

was selected based on if the household had acquired maize at any point in the previous 

month from a market. This meant that the same household could be included in both 

datasets; however, if both maize sources were utilized, both sources may have 

contributed to child aflatoxin exposure therefore warranting this method of data 

subsampling.  

 

2.3. Statistical Approaches  

The levels of aflatoxin measured in the samples of maize collected from the 

households were used to calculate the relative risk and odds of a household having a high 

level of aflatoxin in their maize storage based on the specific source of acquisition 

(market versus subsistence). The aflatoxin limit denoted as ‘high level’, was set at 15 ppb 

based on the United States and European Union import regulation levels of 20 parts per 

billion and 5 parts per billion (European Commission, 2006; U.S. Food and Drug 

Administration, 2016). From the measured aflatoxin level of the sample and the recorded 

responses of the specific origin of the maize sampled, a relative risk and odds could be 

computed. Specific discussion on the methodology for calculating relative risk and the 

odds ratio can be found in Daniel 1995 (Daniel, 1995).  

The second statistical approach used in this study was structural equation 

modeling (SEM). SEM is a statistical technique that combines path analysis and factor 

analysis to analyze multiple interacting hypotheses, simultaneously. Factor analysis is 

used to compute latent variables from a set of hypothesized indicator (manifest) 

variables. Figure 1 depicts the two hypothesized SEMs for this study. In the subsistence 

SEM two latent variables, denoted as ovals labeled Child Aflatoxin Burden and Post-

Harvest Practices, are included (just Child Aflatoxin Burden in market SEM). The single 

headed arrows reflect hypothesized causality and the rectangles denote directly 

observable variables. Path analysis utilizes a covariance matrix approach to compare the 

fit of the data (all observable and latent variables) to the fit of the hypothesized model. 
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Four model fit statistics are used to measure adequate fit. These include Chi-Square (X2, 

p>0.05), Root Mean Square Error of Approximation (RMSEA<0.08) Confirmatory Fit 

Index (CFI>0.90), and the Tucker-Lewis Fit Index (TLI>0.90). Due to the ordinal and 

dichotomous nature of the variables the estimator diagonally weighted least squares was 

utilized (Mîndrilã, 2010). If adequate fit is attained, parameter estimates are then 

analyzed and are given in standardized (S) and unstandardized (U) regression formats. 

Figure 1 displays the two models reflecting putative child aflatoxin exposure from maize 

purchased from local markets and from subsistence maize production. Further reading for 

SEM can be found in Grace 2006 (Grace, 2006).  

 

 

Figure 1. Hypothesized structural equation models for AFB exposure routes from 

the Market Model (on the left) and Subsistence Model (on the right). Arrows are 

hypothesized causalities, rectangles are observable variables, ovals are latent variables, 

and ‘e’ are errors. 

3. RESULTS 

3.1. Descriptive Statistics 

Table 2 displays the descriptive statistics for the data collected in San Vicente in 

October 2016 and February 2017, divided into subsistence households and market 

households for each time point. First, the average level of tested aflatoxin in the maize 

samples from October 2016 was 7.74 ppb (range: 0-96ppb, n=229) with 9.6% of 

households having 15 ppb or greater levels of aflatoxin. Of these high-level households 

(9.6%) only 9.1% (n=2) had observed fungus in their maize storage. For the SEM 
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datasets 50% of households surveyed in February 2017 had not attended the health 

assemblies in October 2016. Overall, in October 2016, 45% of households reported 

acquiring some maize from the market within the past year while 55% of households 

reported this in February 2017. Datasets included subsistence (n=281) and market 

attending (n=174) households in October 2016 and subsistence (n=160) and market 

attending (n=168) households in February 2017. In October 2016, 13.5% of households 

were included in both datasets, while 8.5% of households were included in both datasets 

for February 2017. Lastly, fungus was observed in the maize of 8.3% of households in 

October 2016 and 13.7% in February 2017.  

 

 

Table 2. Descriptive statistics for the October 2016 and February 2017 datasets. 

 

 

 

3.2. Odds Ratio and Relative Risk 

The results of the odds ratio and relative risk of having 15 ppb of aflatoxin or 

greater in the sample of household maize is shown in Table 3. For October 2016 (n=229), 

households that reported acquiring the maize sample from the market had 3.31 (95% CI: 

1.35-8.11) higher odds or were 2.16 (95% CI: 0.98-4.71) times more likely to have 15 

ppb or great aflatoxin levels in their maize sample then subsistence households.  
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Table 3. The odds ratio and relative risk ratio of a household who attended the 

market having a maize sample with 15 ppb of aflatoxin or higher as identified by an 

ELISA test; n=229. 

 

 

3.3. Market Maize 

The final SEM associated with putative child aflatoxin exposure from the market 

maize in October 2016 is depicted in Figure 2. The data confirmed adequate fit to the 

hypothesized model based on the model fit statistics (Chi-square: 13.439, p=0.266; 

RMSEA: 0.036 (CI: 0.000 – 0.100); Robust CFI: 0.944; Robust TLI: 0.898) warranting 

the investigation of the parameter estimates.  

 

  

Figure 2. Final structural equation model of October 2016 market model. DWLS 

robust estimator used; n = 174, Chi-square: 13.439, p=0.266; RMSEA: 0.036 (CI: 0.000 – 

0.100); Robust CFI: 0.944; Robust TLI: 0.898. Arrows are hypothesized direction, 

rectangles are observed variables, ovals are latent variables, ‘e’ are error. Solid arrows are 

confirmed statistically significant correlations at a 10%, dashed arrows are correlations 

important to the overall SEM but not significant at a 10% level. Size added for emphasis. 

S = standardized parameter estimate, U = unstandardized parameter estimate, p = 

statistically significant level. 
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The latent variable, Child Aflatoxin Burden, was regressed on three indicator 

variables that were hypothesized to be outcomes (i.e. symptoms) of the underlying 

problem (i.e. high aflatoxin exposure). Indicators included the ‘yes/no’ responses of four 

symptom-based questions related to aflatoxin exposure including, has the child had 

yellow eyes, has the child had unexplained appetite or weight loss, has the child had 

problems with headaches, and has the child experienced unexplained swelling (Bbosa et 

al., 2013; Voth-Gaeddert, Stoker, Torres, & Oerther, n.d.; Wild et al., 2016). Two 

variables were correlated with the Child Aflatoxin Burden latent variable including the 

purchase habits of the mother for maize at the market (Purchase Habits) and the observed 

presence of fungus in the household maize sample (Observed Fungus). Purchase Habits 

was significant at a 1% level with a standardized effect size of -0.220 (p=0.037) while 

Observed Fungus was also significant at a 1% level with a standardized effect size of -

0.125 (p=0.013). Additionally, remoteness of the market (Market Remoteness) was not 

statistically significant with either Child Aflatoxin Burden or Observed Fungus, but 

contributed to the overall fit of the model to the data.  

 

 

Figure 3. Final structural equation model of February 2017 market model. DWLS 

robust estimator used; n=168; Chi-square: 0.182, p=0.670; RMSEA: 0.000 (CI: 0.000 – 

0.000); Robust CFI: 1.000; Robust TLI: 1.218.  

 

The final SEM associated with putative child aflatoxin exposure from the market 

in February 2017 is depicted in Figure 3. The structure of the Child Aflatoxin Burden 

latent variable was unstable among the specific population the data was drawn from and 
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therefore warranted the use of the composite form of the variable so the model could be 

estimated. For comparison, the Child Aflatoxin Burden variable from the October 2016 

model was changed to a composite variable and the model reassessed. Results showed 

this change did not affect the order of effect sizes among variables and the specific effect 

sizes did not vary significantly (-∆ 0.094, -∆ p=0.009). For the final market SEM of 

February 2017, utilizing the composite variable (Figure 4), the model fit statistics were 

adequate (Chi-square: 0.182, p=0.670; RMSEA: 0.000 (CI: 0.000 – 0.000); Robust CFI: 

1.000; Robust TLI: 1.218) warranting the assessment of the parameter estimates. Only 

one correlation was confirmed as significant within the model, Observed Fungus, which 

was significant at a <0.01% level and had a negative standardized parameter estimate of -

0.174 (p=0.000).  

 

3.4. Subsistence Maize 

Figure 4 depicts the final SEM associated with putative child aflatoxin exposure 

from a household’s subsistence maize in October 2016. In addition to the Child Aflatoxin 

Burden latent variable, a Post-Harvest Practices latent variable was hypothesized. The 

indicator variables for this latent included the amount of time the maize was dried (often 

in the sun), the type of surface used for drying, and the practice used for removing the 

maize kernels from the cob. The model fit statistics confirmed good fit of the data to the 

model (chi square: 34.786, p=0.144; Robust RMSEA: 0.028 (CI: 0.000 – 0.053); Robust 

CFI: 0.919; Robust TLI: 0.869) permitting the analysis of the parameter estimates.   

Variables confirmed as significantly correlated with the Child Aflatoxin Burden 

latent variable included Post Harvest Practices, Observed Fungus, the type of household 

maize storage (Maize Storage) and higher maize price for longer storage (Storage Profit). 

Post-Harvest Practices was significant at a 5% level with a standardized effect size of -

0.158 (p=0.048). Observed Fungus was significant at a 0.5% level with a standardized 

effect size of -0.111 (p=0.004) while Maize Storage was significant at a 5% level with an 

effect size of -0.082 (p=0.024). Finally, Storage Profit was significant at a 5% level with 

a standardized effect size of 0.068 (p=0.040).  
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Figure 4. Final structural equation model of October 2016 subsistence model. 

DWLS robust estimator used; n=281; Chi-square: 34.786, p=0.144; Robust RMSEA: 

0.028 (CI: 0.000 – 0.053); Robust CFI: 0.919; Robust TLI: 0.869.  

 

Additionally, Maize Storage and Post-Harvest Practices had indirect effects on 

Child Aflatoxin Burden through the mediation of Observed Fungus. Maize Storage had a 

significant correlation with Observed Fungus at a 0.1% level with a standardized effect 

size of 0.415 (p=0.000). Post-Harvest Practices had a significant correlation with 

Observed Fungus at a 10% level with a standardized effect size of -0.147 (p=0.078). 

Finally, two hypothesized correlations that included two market variables were identified 

as significant. Storage Profit was correlated with Maize Storage at a 0.01% level with a 

standardized effect size of 0.063 (p=0.001). Receiving a higher value for maize based on 

the quality (Quality Profit) was correlated with Post-Harvest Practices at a <0.01% level 

with a standardized effect size of 0.465 (p=0.000). 

The final SEM associated with putative child aflatoxin exposure from a 

household’s subsistence maize from February 2017 is depicted in Figure 5. The results 

from the model fit statistics confirmed good fit between the hypothesized model and the 

data (Chi-square: 51.497, p=0.057; Robust RMSEA: 0.039 (CI: 0.000 – 0.063); Robust 
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CFI: 0.773; Robust TLI: 0.668) permitting the analysis of the parameter estimates. The 

only variable correlated with Child Aflatoxin Burden was Storage Profit at a 10% level 

with a standardized parameter estimate of 0.079 (p=0.089). Storage Profit also had a 

significant relationship with Maize Storage at a 5% level with a standardized parameter 

estimate of 0.230 (p=0.017). 

 

 

 

Figure 5. Final structural equation model of February 2017 subsistence model. 

DWLS robust estimator used; n = 160; Chi-square: 51.497, p=0.057; Robust RMSEA: 

0.039 (CI: 0.000 – 0.063); Robust CFI: 0.773; Robust TLI: 0.668.  

 

4. DISCUSSION  

Table 4 summarizes the effect sizes of variables on Child Aflatoxin Burden for all 

models. Additionally, the total effect sizes that account for indirect effects created by 

mediating variables are reported.  
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Table 4. The direct effects are summarized from the depicted SEMs and the total 

effect sizes presented for both models, subsistence and maker, for both October 2016 and 

February 2017. 

 

 

The results from the relative risk and odds ratio showed that a household who 

acquires their maize from the market has three times the odds (or is more than twice as 

likely) to have high levels of aflatoxins in their household maize as compared to 

subsistence households. This supports the hypothesis that the climatic environment is 

important for fungal growth as the ideal temperature for growth of Aspergillus is 23.0C 

to 26.0C (LIzarraga-Paulin et al., 2010), while reported temperatures in San Vicente are 

near 5.1C to 17.0C. Additionally, during informal interviews with local leaders it was 

reported that the two primary origins of the market maize were the southwest coast of 

Guatemala and Southern Mexico. Previous studies have reported high levels of aflatoxins 

in maize grown in these two regions where high temperatures and high humidity promote 

the growth of Aspergillus (Torres et al., 2015).  

 

4.1. Market Maize 

The final SEM for households who reported attending the market in October 2016 

showed that purchase habits reported by the mother were significantly correlated with the 

Child Aflatoxin Burden latent variable. The habits were ranked based on the 

hypothesized decrease in probability of aspergillus growth and aflatoxin exposure; for 

example, the best answer possible was looking for fungus in the maize. Observed Fungus 

was negatively correlated with Child Aflatoxin Burden which was counter to the original 
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hypothesis. During the collection of the maize samples, trained field workers looked for 

fungus within the maize storage area. This meant that the households where fungus was 

observed in the storage had fewer reported symptoms related to aflatoxin exposure 

among children. The counter result may have been due to the ability of the household to 

avoid maize when fungus was observed, therefore reducing putative aflatoxin exposure to 

their children.  

Neither Purchase Habits nor Remoteness of Market were correlated with 

Observed Fungus. This meant that the association between Purchase Habits and Child 

Aflatoxin Burden was not mediated by trained staff observing fungus in the household 

maize. Furthermore, Remoteness of Market did not have a significant correlation with 

either Child Aflatoxin Burden nor Purchase Habits. ‘Remoteness’ was assessed by the 

time it took to drive from the primary regional distribution hub for maize 

(Quetzaltenango, Guatemala) to each market. The hypothesis was that the more ‘remote’ 

the market the higher the chance of aflatoxin presence. Bruns 2003 showed that the 

longer the transport time the higher the level of aflatoxin in the maize (Bruns, 2003). 

However, the correlations among the data suggested that this was insignificant in this 

location or at this time of year.  

The final SEM for households who reported attending the market in February 

2017 showed that only Observed Fungus had a significant correlation with Child 

Aflatoxin Burden. The month of February is two months after the harvest season in both 

the highlands and lowlands. In comparison, October is eleven months after the harvest 

season in the highlands and two months after the harvest season in the lowlands. This 

may have influenced the importance of purchase habits at the market. Therefore, if there 

are elevated levels of aflatoxins at the market, Purchase Habits may become more 

significant.   

 

4.2. Subsistence Maize 

Although the climate within San Vicente was not ideal for Aspergillus growth, 

both informal reports of problems with fungus in local maize crops and tested aflatoxic 

levels of 0-96 ppb suggested aflatoxins could be a potential issue within the region.  
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Post-Harvest Practices, Observed Fungus, Maize Storage, and Storage Profit were 

all confirmed as statistically correlated with Child Aflatoxin Burden in October 2016. As 

Post-Harvest Practices, Maize Storage, and Storage Profit increased or improved the 

Child Aflatoxin Burden reported by the mother decreased, supporting these original 

hypotheses. Post-harvest practice methods have attracted significant research as well as 

financial investments for interventions and farmer trainings (Wu & Khlangwiset, 2011). 

This study’s findings further support these research aims and practitioner investments. 

Similarly, recent studies report correlations between improved storage of maize and the 

reduced level of aflatoxin within the maize (Chulze, 2010; Hell et al., 2008). Finally, 

Storage Profit was also correlated with Child Aflatoxin Burden. This correlation has had 

less focus among researchers interested in aflatoxin interventions, but may warrant 

further research if market-based interventions are of interest to implementing agencies. 

Additionally, a cost-benefit analysis would help identify the monetary return on 

investment and the population coverage per dollar spent for all potential interventions.  

Observed Fungus had a negative correlation with Child Aflatoxin Burden which 

was counter to the original hypothesis, but supported the finding from the market maize 

SEM. Potentially, if the fungus was visible, it was possible to avoid consumption. 

Aflatoxin in maize can be difficult to detect as it can grow inside damaged kernels and 

therefore go undetected unless specific equipment is utilized.    

Maize Storage and Post-Harvest Practices had statistically significant correlations 

with Observed Fungus. Maize Storage was negatively correlated with Observed Fungus 

suggesting that among households with improved storage practices, fungus was observed 

more often in the maize. This was counter to the original hypothesis. Potential 

explanations include; 1) an intricate relationship between the material used for maize 

storage and different types of species of fungal growth or 2) spurious correlation. 

Improved post-harvest practices for maize was correlated with a lower prevalence in 

observations of fungus among households, supporting the original hypothesis. Hell et al 

have reported correlations between several types of improved post-harvest practices and a 

reduction in aflatoxin presence (Hell et al., 2008). The three post-harvest practices used 

as indicators for this latent variable included the drying time of maize, the drying surface 
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used, and the mechanisms used to remove maize kernels from the cob. These have been a 

focus for USAID in Central America and Sub-Saharan Africa.  

Lastly, two questions were asked which were related to the relationship between 

physical barriers to fungal growth and economic incentives for farmers. Results 

suggested that if the household perceived receiving more money from buyers at the 

market as they increased the time they waited to sell their maize after harvest (higher 

maize price for longer storage) they would also have improved maize storage facilities. 

This supported the original hypothesis. The second question inquired if the household 

received more money for maize if it was of higher quality (Quality Profit) which was 

hypothesized to affect the type of post-harvest practices. A significant positive correlation 

was found meaning that those households who received more money for better quality 

maize utilized better post-harvest practices (specifically, drying time, drying surface, or 

shucking). Table 5 shows the total effect of both of these variables on Child Aflatoxin 

Burden and that Storage Profit had the largest total effect size. Interventions aimed both 

at distributing market price information as well as improving buyer recognition in fungal 

devaluation may provide options for reducing aflatoxin exposure to children.    

For the subsistence SEM from February 2017, two months after harvest, only two 

correlations were significant; Storage Profit with Child Aflatoxin Burden and Storage 

Profit with Maize Storage. Similar to the market-based SEMs, the data suggest a large 

decrease in significant relationships between October 2016 and February 2017. However, 

significant correlations which remained over seasonal changes include Storage Profit on 

Child Aflatoxin Burden and Storage Profit on Maize Storage. This suggests that further 

research on potential effectiveness among interventions associated with maize storage or 

market price information may have value in reducing putative child aflatoxin exposure.  

In this study data from the town of San Vicente was analyzed to assess 

hypothesized correlations between aflatoxin transmission and exposure from maize from 

local markets and subsistence farming. An odds ratio and relative risk ratio confirmed the 

hypothesis of a higher risk of putative AFB exposure among households attending local 

markets for maize acquisition. The SEM for market purchased maize in October 2016 

confirmed that the purchase habits related to fungus awareness in maize was significant. 

The SEM for subsistence maize from October 2016 confirmed that the post-harvest 
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practices, type of maize storage, and profit for storage were significant. Additionally, in 

both October 2016 and February 2017 counter to the original hypothesis, observed 

fungus in the maize storage was correlated with a decrease in reported child aflatoxin 

exposure symptoms. Finally, a higher number of significant variables correlated with 

Child Aflatoxin Burden were found one month before harvest as compared to two months 

after harvest. Because of the wide spread problem that aflatoxin presents it is critical for 

practitioners and policy makers to understand the complex relationships and potential 

intervention points. 
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ABSTRACT 

Adequate and appropriate water, sanitation, and hygiene (WaSH) infrastructure is 

important for reducing pathogen exposures in developing communities. To improve the 

ability of field practitioners to optimize WaSH infrastructure systems within 

communities, developing models can provide insight to the complex interactions among 

WaSH infrastructure, health outcomes, and geographies. This study investigates the 

significant correlations among WaSH infrastructure variables and three different health 

outcomes (diarrhea, environmental enteric dysfunction, and stunting) over five 

geographic regions within Guatemala. Exploratory structural equation modeling was used 

to build WaSH models from US Agency for International Development (USAID) 2012 

Food for Peace Survey data (n=2,103). Validity of the models was then tested utilizing 

the USAID 2013 Western Highlands Integrated Program survey data collected from the 

same regions (n=4,633). Results confirmed the original hypothesis that significant WaSH 

infrastructure variables widely vary over health outcome and geographic region. A nested 

relationship was found between the 2012 models and 2013 models partially supporting 

the validity of the models. The ‘floor’ pathogen transmission pathway was identified as 

significant across all geographies for child stunting. Additionally, commonalities in 

potential pathogen transmission pathways were identified among environmentally similar 

geographies. Practitioners and policy makers must account for specific health outcomes 

and understand which WaSH infrastructure intervention is most appropriate at the correct 

scale.  
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1. INTRODUCTION 

Adequate coverage of water, sanitation, and hygiene (WaSH) infrastructure in 

Central America has been reported to be low as compared to overall Latin American 

averages (Uytewaal 2016). However, previous research has reported on the positive 

significance of WaSH interventions for the health of communities in these regions 

(Fewtrell et al. 2005; Moll et al. 2007). A primary objective for WaSH infrastructure in 

developing countries is to create barriers to transmission of bacterial contaminants from 

one person or animal to another person. These transmission pathways have previously 

been summarized as the ‘five Fs’; fingers, fluids, floors, foods, and flies (Center for 

Disease Control and Prevention 2013; The World Bank 2014). Due to the variety of 

pathogen species, the differing severities of exposure, repeated exposures, and the impact 

on intestinal integrity of children; the understanding of the relationships between WaSH 

infrastructure barriers and health outcomes is limited (Waddington et al. 2009). 

Additionally, effectiveness of WaSH infrastructure on improving health outcomes has 

been shown to be geographically dependent, as moving from one community or region to 

another may alter coverage rates, environmental realities, or cultural interactions (Botting 

et al. 2010).  

The US Agency for International Development (USAID) consistently collects 

household WaSH infrastructure data which includes water sources, water treatment 

techniques, types of sanitation facilities, presence of soap at hand washing stations, and 

floor type or animal pen infrastructure. Furthermore, USAID collects specific child health 

data including child stunting, child wasting, child body-mass-index, and diarrheal 

occurrences (United States Agency International Development n.d.). Child stunting (or 

wasting) is defined as a child with a height-for-age (or weight-for-height) ratio two 

standard deviations below the World Health Organization growth mean and is often used 

as a chronic (or acute) health indicator (World Health Organization 2010). Presence of 

diarrhea is often used as an acute measure of health and is defined by the WHO as three 

or more loose stools in 24 hours (World Health Organization 2017). With regional WaSH 
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infrastructure data coupled with health data, it is possible to assess trends over 

geographies and health outcomes to help identify significant infrastructure-based 

interventions that may have the best return on investment for improving child health. 

To study the geographic and health latency based correlations of various WaSH 

infrastructure and health outcomes in the western highlands of Guatemala, two datasets 

from USAID Guatemala were assessed. Structural equation models were built and tested 

over five geographic regions and three latencies of health. Results supported the original 

hypothesis in that the types of WaSH infrastructure that correlated with specific health 

outcomes were dependent on both the geographic location and health outcome latency 

(acute to chronic). 

2. METHODS 

2.1. Location 

Data from both the USAID 2012 Food for Peace Baseline Survey (United States 

Agency International Development 2014) and USAID 2013 Western Highlands 

Integrative Program Baseline Survey (United States Agency International Development 

& Measure Evaluation 2014) were collected via household visits within 30 municipalities 

(counties) in five departments (states) of Guatemala. Household visits included an orally 

administered survey given to the mother in the local dialect and anthropometric 

measurements of the child (following WHO protocol). Both surveys were randomized 

cluster samples with the 2013 survey sampling population being expanded to include 

more children within the same municipalities (United States Agency International 

Development 2014; United States Agency International Development & Measure 

Evaluation 2014). Data was collected with the approval of the Ministry of Health and 

consent for analysis of the deidentified data was attained from USAID.  

The departments of Guatemala included Huehuetenango, San Marcos, Quiche, 

Totonicapán, and Quetzaltenango. Table 1 reports environmental statistics on each 

department including mean elevation, mean temperatures, and mean rainfall. All five 

departments are in a set of mountain ranges collectively known as the western highlands. 

Commonalities among the population included 1) farming as the primary livelihood and 

2) the level of socio-economic status with over 51% of the population lives below the 
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poverty line (United States Agency International Development 2012; Prado Córdova et 

al. 2013). A majority of the population self-identified as a specific Mayan ethnicity 

including Ixil, Quiché, Mam, and Popti each utilizing their own distinct language (United 

States Agency International Development 2014).  

 

Table 1. Environmental statistics for each department; elevation in meters, mean 

temperature span over the year in celsius, and annual rainfall in millimeters. 

 

 

2.2. Data Preparation 

Table 2 shows the variables selected to be analyzed in the models along with the 

associated questions and scales used. Diarrhea and ZHAZ (height-for-age z-score; child 

stunting metric) were selected as acute and chronic measures of health, respectively, 

while the latent variable EED was created to represent medium-term measures of health. 

Latent variables are discussed below, but indicator variables used for EED included 

ZHAZ, ZBMI (body-mass index z-score), ZWHZ (weight-for-height z-score), and 

Diarrhea. All WaSH scales are perceived to get worse as they increase, while all health 

outcomes are perceived to get better as they increase. Additionally, based on prior 

research findings each WaSH infrastructure variable was associated with the five-f 

transmission pathway(s) in which it provided a barrier for (Julian 2016; Prüss et al. 2002; 

Center for Disease Control and Prevention 2013; The World Bank 2014). WaterSource 

and WaterTreat infrastructure were associated with barriers of transmission via the fluids 

and foods pathways. HygSoap was associated with barriers for the fingers and foods 

transmission pathway. SanitType was associated with barriers for transmission for floors 

and flies’ pathways. Finally, AnimalPen/FloorType were associated with barriers for the 

floor transmission pathway. 
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Table 2. Variables, explanations, and scales used in the structural equation models 

 

 

The only discrepancy among variables used in the models was the variable 

selected to represent the ‘floor/field’ enteric disease transmission pathway. The 2012 

dataset included the question associated with ‘AnimalPen’ which was selected to 

represent the floor/field transmission pathway in the model based on previous evidence 

which suggested an increase in free roaming animals near the house increased the 

probability of enteric disease exposure via the floor/field for children (Zambrano et al. 

2014). The 2013 dataset included the question associated with ‘FloorType’ which was 

selected as the substitute for AnimalPen (not collected in 2013) based on the hypothesis 

that the quality of floor was associated with the probability of exposure to the child via 

the floor transmission pathway (Douglas S et al. 2002). 

2.3. Statistical Techniques 

Three structural equation models (SEM) were built and tested for five geographic 

regions and each model included five WaSH infrastructure variables (WaterSource, 
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WaterTreat, SanitType, HygSoap, and AnimalPen or FloorType) regressed on by a health 

variable (Diarrhea, EED, or HAZ). SEM is a statistical modeling technique which 

combines path analysis and factor analysis to analyze multiple hypotheses 

simultaneously. Figure 1 depicts the basic graphical representation of an SEM where 

arrows are hypotheses, rectangles are observable variables, and ovals are latent variables. 

A latent variable (shown here as ‘EED’) is hypothesized to be an underlying factor which 

influences a set of indicator variables (shown here as ‘ZHAZ’, ‘ZBMI’, ‘ZWHZ’, and 

‘Diarrhea’). As this factor is estimated, path analysis is used to compute and analyze the 

difference in the data driven and hypothesized covariance matrices. These covariance 

matrices include all observable and latent variables. If the data show good fit to the model 

based on four fit statistics (Chi-square p>0.05, Root Mean Square Error of 

Approximation<0.08, Confirmatory Factor Index>0.90, Tucker Lewis Index>0.90) the 

individual parameter estimates can be analyzed (read like regression parameter 

estimates). An exploratory SEM approach was used to build the models from the 2012 

data while a confirmatory approach was utilized to test the validity of each model using 

the 2013 data. The Lavaan package in R 3.3.2 was used for the analysis. Further reading 

on SEM is encouraged and can be found in Grace 2006. (Grace 2006). 

 

  

Figure 1. A hypothesized WaSH infrastructure structural equation model with the 

EED outcome variable. Arrows are hypothesized causality, rectangles are observable 

variables, and ovals are latent variables. 

 

Finally, utilizing previously reported transmission pathways associated with 

individual WaSH infrastructure barriers (discussed above; 5Fs), potential transmission 

pathways were identified for each geography and health outcome based on the set of 
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2012 SEMs. Additionally, both changes in diarrheal occurrences and stunting levels 

between the 2012 and 2013 datasets are reported alongside the changes in WaSH 

infrastructure based transmission pathways. 

3. RESULTS  

3.1. Descriptive Results of Data 

Table 3 presents descriptive statistics for each dataset. The 2012 data included 

n=2,103 children included in the analysis, 52% males and 48% females. Diarrheal 

prevalence within the past two weeks was 39% and the child stunting level was -2.47 

SDs. The 2013 data included n=4,633 children included in the analysis, 51% males and 

49% females. Diarrheal prevalence within the past two weeks was 33% and the child 

stunting level was -2.44 SDs. Data was grouped according to geographic proximity of 

each municipality which resulted in three separate departments, Huehuetenango, San 

Marcos, and Quiche, and two sub-divided departments, Northern Totonicapán and 

Quetzaltenango-Southern Totonicapán. According to the data, the diarrheal prevalence 

improved in every group from 2012 to 2013, while child stunting became worse in every 

group except San Marcos over the same time period. The 2013 sample size for 

Huehuetenango, San Marcos, and Quiche was over double the 2012 dataset, while 

Northern Totonicapán and Quetzaltenango-Southern Totonicapán retained similar sample 

sizes.  

Table 3. Descriptive statistics for both USAID 2012 and USAID 2013 datasets 

 

 

3.2. 2012 Model Results 

Figure 2 displays the graphical results of the set of SEMs built by the 2012 data 

and tested using the 2013 data for San Marcos. Table 4 presents results for all groups on 
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the significant WaSH infrastructure variables (at a 10% level) identified by the 2012 

models for acute (diarrhea), medium (EED), and chronic (ZHAZ) health outcomes. 

Standardized parameter estimates are also reported to provide a rank order for variables.  

  

 

Figure 2. The set of five structural equation models for the department of San 

Marcos. Outcome variables include Acute (Diarrhea), Medium (EED latent variable), and 

Chronic (child height-for-age). 2012 denotes models built from the USAID 2012 dataset 

and 2013 are the results of the test of the 2012 models with the USAID 2013 dataset. 

 

From Table 4 the Huehuetenango models had no significant WaSH infrastructure 

variables correlated with Diarrhea (acute), however, in both EED (medium) and ZHAZ 

(chronic) models SanitType was negatively correlated to the health outcome. 

Furthermore, for the ZHAZ model, WaterSource and HygSoap were also negatively 

correlated with the health outcome. For the San Marcos models, WaterTreat was 

negatively correlated to the health outcome in all models, SanitType was negatively 

correlated with Diarrhea and EED, and AnimalPen was positively correlated with 

Diarrhea and negatively correlated with ZHAZ. Additionally, HygSoap was negatively 

correlate with EED and ZHAZ. The Quiche models only had WaterSource (positively 

correlated) and WaterTreat negatively correlated with Diarrhea. For the Northern 

Totonicapán models, SanitType was negatively correlated to the health outcome in all 

models and AnimalPen was negatively correlated with ZHAZ. Finally, the 

Quetzaltenango-Southern Totonicapán models had WaterSource negatively correlated 

with Diarrhea, AnimalPen positively correlated with EED, and SanitType negatively 

correlated with ZHAZ.  
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Table 4. Summarized results of the 2012 Models for all health outcomes and all 

geographic groups. The proxy for the acute outcome was diarrhea, medium was EED, 

and chronic was child height-for-age. 

  

 

3.3. 2013 Model Results 

In Figure 2, the 2013 row displays the SEMs graphically for San Marcos. Data 

was not available for computing the EED models. Furthermore, AnimalPen was not 

available in the 2013 dataset and was therefore replaced with FloorType. The results of 

the confirmation analysis failed to show exact fit of the 2013 data to the 2012 models. 

Table 5 reports the changes (additions and subtractions) to each model to attain adequate 

fit of the model to the data. For each model, minimal adjustments were made to attain fit 

of the 2013 data to the 2012 model according to the tests of model fit as discussed above. 

While full validation via model fit statistics was not attained, the adjusted 2013 models 

(see Figure 2 for San Marcos example) demonstrated a parenting effect, with the 2012 

models being nested (a sub-model) within the 2013 models.  

Over the 2012-2013 period the diarrheal prevalence among the population of 

children surveyed in Huehuetenango dropped 8.1%, while child stunting became worse 

by 0.01 SD. From Table 5 in Huehuetenango WaterSource became negatively correlated 

with Diarrhea while FloorType (replacement for AnimalPen) became negatively 

correlated with ZHAZ. The diarrheal prevalence for the study population in San Marcos 

dropped 12.6% and child stunting improved 0.22 SD. FloorType and WaterTreat became 

insignificant with Diarrhea while WaterTreat became insignificance with ZHAZ. The 

diarrheal prevalence for the study population in Quiche dropped 1.8% and child stunting 
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worsened by 0.1 SD. WaterTreat became negatively correlated with Diarrhea while 

WaterSource became positively correlated and FloorType became negatively correlated 

with ZHAZ. The diarrheal prevalence for the study population in Northern Totonicapán 

dropped 14.5% while child stunting became worse by 0.18 SD. Within Northern 

Totonicapan several variables became important to model fit, but only HygSoap became 

negatively correlated with ZHAZ. Finally, the diarrheal prevalence for the study 

population in Quetzaltenango-Southern Totonicapán dropped 5.8% while child stunting 

became worse by 0.06 SD. FloorType and HygSoap also became negatively correlated 

with ZHAZ.  

Table 5. Summarized results of the adjustments necessary for fit of the USAID 

2013 dataset to the 2012 Models. Italicized names are variables that became insignificant 

in 2013. *Asterisked* names are variables that became important to the model but were 

not individually significant. 

 

 

3.4. Transmission Pathways 

Finally, Figure 3 displays which potential pathogen transmission pathways were 

important for each geographical region and health outcome based on the significant 

WaSH infrastructure variables identified in the 2012 SEMs. In Huehuetenango no 

variables had a significant correlation for the diarrhea health model. However, type of 

sanitation facility was correlated with both EED and ZHAZ suggesting a barrier for the 

transmission pathway of floors and/or flies was important for both the medium and 

chronic health of the child. Furthermore, the type of water source and soap present at the 

hand washing station were significant for ZHAZ suggesting the transmission pathway of 

foods, fluids and/or fingers were additionally important to the chronic health of the child. 
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In San Marcos, significant correlations between the WaSH infrastructure variables and 

health outcomes suggested the following transmission pathways may have been 

important. For the acute health issue; fluids, foods, floors, and flies; for medium health 

issues; all pathways may have been important; and for the chronic health issue; fluids, 

fingers, foods, and floors. In Quiche, only the diarrhea health model had significant  

 

 

Figure 3. A summary of the potential transmission pathways (the 5Fs) that are 

causing problems based on the regional SEMs from 2012. The hand is fingers, water 

faucet is fluids, the ground is the floor, the fly is flies, and the apple is foods. 

 

correlations with WaSH infrastructure variables which included the type of water source 

and type of water treatment technique suggesting the fluids and/or foods transmission 

pathway may have contributed to acute health problems. In Northern Totonicapán, type 

of sanitation facility was significant for all health outcomes which has been shown to be 

associated with the floor and/or fly transmission pathway. Additionally, owning an 

animal pen was significant for the ZHAZ health outcome suggesting the floor 

transmission pathway was important to chronic health. Finally, in Quetzaltenango-
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Southern Totonicapán a different WaSH infrastructure variable was significant for each 

health outcome. For diarrhea, the type of water source suggested fluids and/or foods were 

important to acute health; for EED, animal pens suggested floors were important for 

medium health; and for ZHAZ, type of sanitation suggested floors and/or flies were 

important for chronic health. 

Figure 4 depicts the changes within each geography and health outcome in the 

2013 dataset (orange; became insignificant, light green; became significant). 

Furthermore, it gives the direction and magnitude of change in the specific health 

indicator (diarrhea, DIA; height-for-age, HAZ). In Huehuetenango, the type of water 

source and type of floor became correlated with the diarrhea and ZHAZ health outcomes 

of the child, respectively. This meant that for the transmission pathways that affected 

acute health, fluids and foods were potentially significant while floors were already 

important in the chronic transmission pathways. In San Marcos, several variables became 

insignificant in regards to the parameter estimates but remained important to the overall 

models. Type of floor and type of water treatment technique, associated with floors, 

fluids, and foods, were not correlated with diarrhea in the 2013 model. Type of water 

treatment technique also became insignificant with ZHAZ in the chronic health model. In 

Quiche, again, type of water treatment technique became insignificant in the diarrhea 

health model, but all significant transmission pathways from 2012 remained important 

due to other significant WaSH variables. In the ZHAZ model the type of water source 

and type of floor became significant suggesting the fluids, foods, and floors transmission 

pathways became important. In Northern Totonicapán, only the presence of soap at the 

handwashing station became correlated in the ZHAZ model which suggested that the 

fingers and foods transmission pathways were important for chronic health. Finally, in 

Quetzaltenango-Southern Totonicapán type of floor and presence of soap became 

correlated in the ZHAZ model. Accounting for previous correlations of other WaSH 

infrastructure variables, only fingers and foods appear to have become significant for 

chronic health. 
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Figure 4. A summary of the potential transmission pathways (the 5Fs) that are 

causing problems based on the regional SEMs from 2013. Green pathways are confirmed 

pathways from 2012, light green pathways are new potential pathways, and orange 

pathways are green pathways from 2012 which became insignificant. The hand is fingers, 

water faucet is fluids, the ground is the floor, the fly is flies, and the apple is foods. 

4. DISCUSSION 

4.1. 2012 Models 

For the 2012 SEMs, each geographical group displayed a unique set of significant 

WaSH infrastructure variables which also changed for each health outcome. Overall, 

SanitType was the most common significant WaSH variable among the 15 models being 

significant in 8. Having soap at the handwashing station was correlated with medium 

and/or chronic health outcomes in Huehuetenango and San Marcos (3 of 4 models), while 

improved water sources were important for acute outcomes in Totonicapán and 

Quetzaltenango. A common variable across all health outcomes for San Marcos was the 
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type of water treatment and in Northern Totonicapán type of sanitation was common 

across all health outcomes.  

Figure 3 displays the results of the 5F transmission pathways associated with the 

identified WaSH variables from the 2012 SEMs. If a pathway was important (green in 

Figure 3) this could potentially mean that 1) there was a high number or a longer 

sustained level of pathogens transmitted via this particular pathway which made the 

associated WaSH barrier significant, 2) there was a wide enough distribution of exposure 

levels for a given pathway and barrier effectiveness to be correlated with a health 

outcome, or 3) there was a spurious correlation. In Figure 3, an analysis of individual 

columns provides a comparison across geographic regions. Models for Huehuetenango 

and San Marcos displayed similarities among potentially associated transmission 

pathways, while models for Northern Totonicapán and Quetzaltenango-Southern 

Totonicapán displayed similar characteristics. The similarities in transmission pathways 

regionally appeared to be more pronounced in the medium and chronic health indictors 

(EED and HAZ) as flies and floors were important for the Totonicapán-Quetzaltenango 

region while fingers, fluids, floors, and foods were all significant for the Huehuetenango-

San Marcos region. In the acute health indicator column (diarrhea) the data suggested two 

potential geographic regions held similar transmission pathway characteristics. Models 

for San Marcos and Northern Totonicapán displayed a trend in flies and floors while 

models for San Marcos, Quiche, and Quetzaltenango-Southern Totonicapán had 

similarities in fluids and foods potentially contributing to diarrheal issues. The most 

common transmission pathway across all geographic groups and health outcomes was 

floors in the chronic health model column. This finding supports previous research on 

both increased levels of pathogens in this pathway as well as the quality of barriers for 

preventing transmission via the floor pathway (Zambrano et al. 2014; Douglas S et al. 

2002; Al-Mazrou et al. 1995; Exum et al. 2016).  

 

4.2. 2013 Models 

The SEMs from 2013 demonstrated a nesting effect to the 2012 SEMs. An 

example of a nesting effect would be, Model A is said to be nested in Model B if Model 

A is a submodel of Model B, where Model B contains all significant correlations of 
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Model A, but Model A does not contain all significant correlations of Model B (Kline 

2011). The testing of the 2012 models with the 2013 data did not provide exact model 

confirmation, but offered partial model validation due to the nested relationship the 2012 

models shared with the 2013 models. This nesting effect may have been due to one of 

several factors. First, changes in the use of WaSH infrastructure within households over 

one year may change the dynamics of the relationship between WaSH and health. 

Second, the overall dataset doubled in sample size and for the regional groups of 

Huehuetenango, San Marcos, and Quiche, their 2013 sample sizes included two to four 

times the number of children. This inclusion of a broader set of children introduces the 

possibility of additional correlations being significant, while potentially retaining the 

original correlations, creating a nested effect. Finally, the substitution of FloorType for 

AnimalPen may have caused slight discrepancies between the models.  

Comparing geographic groups, descriptive statistics show San Marcos had two 

differentiating features. First, both diarrheal prevalence and the mean child height-for-age 

score improved and, second, three total WaSH infrastructure variables become 

insignificant; two for diarrhea (FloorType and WaterTreat) and one for ZHAZ 

(WaterTreat). For the remainder of the geographic groups several trends were identified 

and can be seen in Table 5. First, the type of floor became significant for three of the five 

child stunting models, although this variable was a replacement for the presence of an 

animal pen variable. Additionally, in Totonicapán and Quetzaltenango having soap at the 

handwashing station became significant for child stunting. This could either mean that an 

increase in the presence of soap was correlated with a decrease in child stunting or that 

households improved the actual usage of the soap at the handwashing station.  

An addition (or subtraction) of a significantly correlated WaSH variable in a 

given model could suggest 1) a change in the number of pathogens being transmitted via 

that pathway and therefore making that barrier more (or less) important, 2) the 

distribution of use in the types of barriers for one variable increased (or decreased) and 

therefore became more (or less) detectable for significance, or 3) a spurious correlation. 

The diarrheal prevalence in Quiche, Totonicapán, and Quetzaltenango improved while 

the potential transmission pathways remained the same. However, child stunting became 

slightly worse for the same groups while, according to the ZHAZ models, multiple 
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transmission pathways may have become significant; most commonly fingers and foods. 

In Huehuetenango, the opposite trend was present, as the diarrheal prevalence dropped, 

the type of water source became significant and therefore fluids and foods were 

potentially contributing transmission pathways. Furthermore, ZHAZ stayed constant and 

the potential transmission pathways also remained the same, even though the WaSH 

variable, FloorType, became significant. Finally, within the ZHAZ models, all 

geographic groups showed either SanitType or FloorType as significant suggesting the 

floor pathway was common among all groups. Previous work in Totonicapán identified a 

negative correlation between the height-for-age of the child and number of times the 

child played, supporting the hypothesis that an important pathogen transmission pathway 

is the floor (Voth-Gaeddert et al. n.d.).  

This study assessed two datasets covering five departments of the western 

highlands of Guatemala by building and testing descriptive models of WaSH 

infrastructure variables and different health outcomes. Results showed a nested 

relationship between 2012 models and 2013 models partially supporting the validity of 

the models. Furthermore, the floor pathogen transmission pathway was identified as 

potentially common across all geographic regions for child stunting and was supported by 

previous work in the western highlands. For policy makers and practitioners at the 

municipality or department level, attention should be given to the correlations between 

WaSH variables and varying health outcomes within specific geographic groups while 

policy makers and practitioners at the regional or national level should be concerned with 

similarities across geographies in the same health outcome. It is only by understanding 

trends across geographies and health outcomes of interest that change will be possible on 

a national scale within Guatemala.   
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SECTION 

 

6. CONCLUSION 

6.1. DOCTORAL SUMMARY 

The two goals of this dissertation were to 1) test the three primary hypotheses 

proposed below and 2) rank order the causal factors to child stunting. The three primary 

hypotheses tested in this dissertation included that among children in the western 

highlands of Guatemala between 0 and 5 years of age; 

Hypothesis #1: there is a statistically significant association between the 

severity of the children’s environmental enteric dysfunction (EED) and the ratio 

of the children’s height-for-age. 

Hypothesis #2: there is a statistically significant association between the 

children’s aflatoxin B (AFB) exposure level and the ratio of the children’s height-

for-age. 

Hypothesis #3: there is a statistically significant association between the 

children’s AFB exposure level and the severity of the children’s EED. 

 

6.1.1 Goal One: The Primary Hypotheses.  

Hypothesis #1 

Based on the results of this study, the data partially confirmed Hypothesis #1, but 

further research is needed. Results reported in Paper I and part of Paper II were from an 

analysis in which a weighted correlation network algorithm was applied to data from a 

representative sample of five departments in the western highlands of Guatemala 

(Huehuetenango, San Marcos, Quiche, Totonicapán, and Quetzaltenango). Diarrheal 

occurrences and usage of oral rehydration therapy (ORT) were second level nodes to 

child height-for-age, suggesting they were important (no EED variable was available). 

When children were divided into levels of severity of stunting (not stunted = >-2 SD, 

stunted = -2 to -3 SD, severely stunted = <-3 SD), diarrheal occurrences and ORT use 

were second level nodes to the height-for-age of children that were not stunted. However, 

for stunted children only ORT use was important, while for severely stunted children, 
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neither diarrheal occurrences nor ORT use was important. This suggests that the 

correlation between diarrheal occurrences and child height-for-age becomes less 

statistically detectable among a population of children who are all stunted or severely 

stunted. Finally, when children were divided by age in months (0-6, 7-12, 13-18, 19-24), 

the only age group with diarrheal occurrences within two levels of nodes of child height-

for-age was children 0-6 months of age.  

Results reported in Paper II and Paper III were from an analysis of a community 

called San Vicente in the western highlands of Guatemala. Reported results showed no 

statistically significant correlation between EED and child height-for-age. In Paper II a 

hypothesized SEM was tested to assess a cross-sectional model which included 

regressing child height-for-age on EED, AFB exposure, child diet diversity, prenatal 

health, and child play time. The model was tested with data collected in October 2016; 

EED was not statistically significant with child height-for-age. Additionally, in Paper III, 

a smaller SEM was tested which analyzed the hypothesized correlations between EED, 

AFB exposure, and child height-for-age both in a cross-sectional and two time-point 

methodology. Again, no relationship was found between EED and child height-for-age.  

Finally, results reported in Paper V were from an analysis in which geospatially 

based water, sanitation, and hygiene (WaSH) infrastructure SEMs were built and tested 

with two datasets from a representative sample of five departments in the western 

highlands of Guatemala (as listed above). WaSH infrastructure variables significantly 

correlated with child height-for-age were hypothesized to affect the child by blocking 

enteric pathogens from reaching the child’s intestines. When the five geographically 

based WaSH models focused on child height-for-age were built and tested with the two 

datasets, nine of the ten models showed at least one significant WaSH infrastructure 

variable as significant. This supports the hypothesis that EED may contribute to child 

stunting in some way; however, the magnitude and origin are still unknown.   

Hypothesis #2 

Based on the results from this study, the data confirmed Hypothesis #2. Results 

reported in Paper I that utilized the weighted correlation network algorithm on regional 

data showed that among groups of children 0-6 and 7-12 months of age, maize storage 
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was a first level node to child height-for-age. However, in groups above 12 months of 

age, maize storage was not closely related.  

Results reported in Paper III were from bivariate Kruskal-Wallis significance 

tests, a cross-sectional SEM, and a two time-point SEM. The Kruskal-Wallis tests 

identified a significant correlation between the child height-for-age variable and a 

dichotomous variable created based on a set level for putative AFB consumption for the 

child (10 ng/kg of body weight). This correlation was significant for the child height-for-

age in October 2016 and the set level for putative AFB consumption in October 2016, as 

well as the change in child height-for-age between October 2016 and February 2017 and 

the October 2016 set level for putative AFB consumption. Next, the hypothesized cross-

sectional SEM was tested with data from October 2016 and identified that the computed 

continuous value of putative AFB consumption per weight of the child was negatively 

correlated with the child height-for-age (controlling for food consumption and socio-

economic status). Furthermore, the two time-point SEM demonstrated similar results by 

identifying a significant negative correlation between the continuous value of putative 

AFB consumed per weight of child and the change in child height-for-age between 

October 2016 and February 2017. The results support a growing body of literature linking 

AFB exposure and child stunting.    

Hypothesis #3 

Based on the results from this study the data did not confirm Hypothesis #3. 

Results reported in Paper III from both the cross-sectional SEM and two time-point SEM 

demonstrated a negative correlation between the putative AFB consumption per weight 

of child and EED. Not only does this result not confirm Hypothesis #3, but is counter to 

it. The data suggest that for children who consume higher levels of AFB, the severity of 

their EED is lower. Results from Paper I and Paper II did not confirm Hypothesis #3 as 

well.  

6.1.2 Goal Two: Rank Order of Causal Factors.  

Child Stunting 

Results from three different papers provide insight to prioritizing correlated 

variables hypothesized to affect a child’s height-for-age. First, for the region of the 

western highlands of Guatemala (five departments) results from Paper I provide insight 
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among stunting severity levels and child age ranges. First, the three primary categories of 

variables that are different between stunted and non-stunted children are 1) food type and 

diversity, 2) farming practices and maize quality, and 3) intestinal health. Second, in 

addition to the categories above, when children are divided into age ranges (0-6 months, 

7-12 months, etc.) the most consistent variables among all age ranges was the mother’s 

height and weight.  

Results reported in Paper II were from the analysis of a single community 

utilizing a hypothesized SEM for the child height-for-age model. The two variables most 

important to child height-for-age in San Vicente were the number of times the child 

played the day before (negative) and the prenatal health practices of the mother during 

pregnancy (positive). Specifically, these results suggest that 1) the sanitary conditions in 

which children play may be important to their long term physical development and 2) 

maintaining good prenatal health practices in that vitamins are taken and health checkups 

are attended may positively impact long term child physical development.   

Finally, results reported in Paper V from the geographically based WaSH 

infrastructure models on child height-for-age provides insight to the infectious disease 

transmission pathways potentially significant to long term child physical development. 

From the final 2013 SEMs for the height-for-age models the data suggest floors and 

foods may be common transmission pathways across all geographies that affect the 

child’s physical development.  

Aflatoxin B Exposure  

Results reported in Paper IV were from an analysis of San Vicente testing two 

hypothesized SEMs on the exposure pathways of AFB in maize to the child from 1) the 

local markets or 2) subsistence farming. The outcome variable used was a set of 

symptoms in common with high exposure to AFB. This variable was built and tested in 

Paper III by comparing putative AFB consumption levels among children to reported 

AFB symptoms. To test both the market and subsistence SEMs, two datasets for each 

time-point (October 2016 and February 2017) were created. In three of the four models 

(subsistence 2016, market 2016, and market 2017), the occurrence of the observing 

fungus by the field team in the household’s maize storage was found to have a negative 
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correlation with AFB symptoms among children. This may have been due to the fact that 

if households were also able to observe the fungus, they could avoid consuming it.  

Results from the market SEM identified purchase habits of the mother at the 

market had the largest negative correlation with an increase in AFB symptoms among 

children. Furthermore, this was more important a month before harvest as compared to 

two months after harvest.  

Finally, results from the subsistence SEMs identified several potentially 

contributing factors to AFB exposure. Post-harvest practices, including ideal maize 

drying time, improved maize drying surface, and maize shearing practices, had the largest 

negative effect size on increased AFB symptoms among children, while improve maize 

storage also contributed to a reduction in AFB symptoms. This suggested that in the 

region of San Vicente, both post-harvest practices and maize storage were important but 

that post-harvest practices may have had a more significant impact. Additionally, both 

storing maize to receive a higher price later and improving maize quality to receive a 

higher price at market had overall (total) negative effects on the AFB symptom variable. 

This supports the notion that if buyers at the market recognize the negative value of 

fungus in maize, the households who practice subsistence farming may have improved 

post-harvest practices or improved types of maize storage. Finally, these correlations 

were much stronger one month before harvest as compared to two months after harvest.   

Increased EED Severity 

Lastly, results from Paper II and Paper V support several areas within WaSH in 

which may contribute to EED in the western highlands of Guatemala. From Paper II, 

three primary categories were identified to be significant to a child in the western 

highlands of Guatemala having diarrhea. These categories include water availability, 

sanitation facilities, and pathogen transmission barriers. Furthermore, from Paper II the 

data from San Vicente confirmed the finding from the network analysis that the category 

of pathogen transmission barriers was important. This was confirmed by the 

identification in the cross-sectional analysis from October 2016, that utilizing improved 

types of water treatment had the largest statistically significant effect on reducing EED. 

Results from Paper V supported the findings reported in Paper II in several areas. 

First, in 2012 over all regions the WaSH infrastructure variable, type of sanitation, was 
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most commonly negatively correlated (five of ten models) to diarrhea (acute model) or 

EED (medium model). Similarly, the putative transmission pathway, floors, was most 

commonly important (six of ten scenarios) to diarrhea or EED. Additionally, San Vicente 

is located in a geographically similar region as San Marcos. For both the diarrhea and 

EED models for San Marcos in 2012, type of water treatment was negatively correlated 

with an increase in the harmful outcome variable (diarrhea or EED). These results 

suggest that a focus on water treatment among communities near San Vicente may be 

important for the intestinal health of local children while a focus on sanitation and floors 

may be important for both acute and chronic health in the larger region. Finally, these 

models offer a base platform in which to continue to improve a geographically unique 

understanding of potential causal factors to child health problems.  

6.2. KEY TAKEAWAYS 

The key takeaways from this dissertation include; 

 

• The network analysis identified nutrition, maize farming practices, and diarrhea as 

trends related to growth 

• Higher putative AFB exposure and AFB symptoms were negatively correlated 

with child height-for-age, no relationship was found between EED and child 

height-for-age 

• The child height-for-age model identified prenatal health as beneficial and more 

child play times as negative for child height-for-age 

• AFB models identified maize storage, post-harvest practices, and maize purchase 

habits as negatively correlated with increased AFB symptoms 

• AFB transmission variables significant in ‘lean’ season, but not immediately 

following harvest; additionally, if fungus had a more recognized negative 

monetary value, household was less exposed 

• EED models identified improved water treatment as negatively correlated with 

EED for the community of San Vicente 

• Geospatial EED models identified clean floors and sanitation as most commonly 

negatively correlated with EED for the region of the western highlands   
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Practitioner Recommendations: 

• Focus on prenatal health and healthy child play time trainings/programs for 

mothers  

• Focus on economic growth among households as it can positively impact child 

health (captured as ‘maize farming practices’ in this study) 

• Focus on ‘floor’ based infectious disease transmission pathways for western 

highlands (sanitation, animal pens, improved flooring, etc.) and water treatment 

for the San Vicente region 

• Focus on public health advocacy for fungal toxins to help customers and farmers 

recognize a greater negative value in fungus (market based approach/intervention)  

6.3. PROPOSED FUTURE WORK 

Mycotoxins transmission/biomarker development in Guatemala – Beginning with 

a group of researchers including people from Duke University and Universidad de Rafael 

Landivar, the alignment of a AFB research agenda supported by NIH funding, USAID, 

and USDA will provide a unified research front on this emerging problem. Goal: set 

urinary AFB biomarker, conduct studies in three different research sites to demonstrate 

public health danger and the need for culturally sensitive public health action in 

Guatemala. 

Environmental enteric dysfunction/intestinal health research in Guatemala – The 

health office at USAID Guatemala is interested in the continued support of research on 

this topic and coordinating several ongoing and upcoming projects throughout the 

western highlands. Goal: apply new research methods (including sensor combinations 

and modeling techniques) to elucidate the mechanistic pathways of cause and effect for 

EED in Guatemala.  

EED/intestinal health and food security research in Southern Africa – University 

of Missouri, University of Western Cape, University of the Witwatersrand, and North-

West University are developing a collaborative research agenda on the EED-nutrition 

interaction. The UN Scaling Up Nutrition Movement has interest and authorization to 

work in Southern Africa and has partnered with NWU in the past making them an 

excellent partner. The group of researchers from the above institutions will apply to the 
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African Union/European Union Research Grant to seek funding for this project. Goal: 

duplicate Guatemala EED/intestinal health research in Southern Africa sites, incorporate 

more holistic nutrition analysis, and help coordinate regional partners (academic, NGO, 

and UN). 

Microbiome/Fecal DNA sequencing research for Guatemala and Southern Africa 

– Arizona State University and the University of Missouri will begin collaborating on 

utilizing deep sequencing of DNA extract from fecal samples to analyze intestinal health 

of children in Guatemala. Goal: build out bioinformatics work for metagenomics, apply 

SEM approach to complex sequence data, and open new research sites to tackle potential 

biomarker development and mechanistic pathway investigations in Central America and 

Southern Africa. 
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APPENDICES 

APPENDIX A. MAP OF GUATEMALA 
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X indicates where San Vicente research site is located. 

 

 

 

X’s indicate municipalities in which the surveys were conducted for USAID in 

2012 and 2013. 
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APPENDIX B. SURVEY INSTRUMENTS FROM SAN VICENTE HEALTH 

CENTER  
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Nombre de Madre: _________________________________________ 

 

Firma: ______________________     o     Huella Dactilar: __________ 

 

Años de Madre: ______       

 

Nombre del niño #1: ____________________________________   Meses: 

________   Sexo:  M    F 

 

Nombre del niño #2: ____________________________________ (NA)  Meses: 

________   Sexo:  M    F 

 

Nombre del niño #3: ____________________________________ (NA)  Meses: 

________    Sexo:  M    F 

 

Otras personas que viven en su casa: 

Abuela              Si/No                  Años:_____ 

Abuelo              Si/No                  Años:_____ 

Padre                Si/No                  Años:_____ 

Cuantos otros personas  _____ (niños>5  +  adultos) 

 

Tratamiento del Agua 

¿Usted trata el agua de alguna manera para hacerla más segura para beber? Y SI 

ES ASÍ, CÓMO? (Marca con “X”) 

   ___ cloro 

   ___ hervirla 

   ___ ponerla en el sol 

   ___ filtro 

   ___ reposarla en un recipiente 

   ___ otro 
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¿Cuál es su fuente primaria de agua para tomar o beber (marca uno con “X”)? 

   ___ Pozo abierto 

   ___ Pozo cerrado 

   ___ Río 

   ___ Botella/Jarrafon de agua 

   ___ Sistema de distribución con chorro en la casa 

   ___ Sistema de distribución con chorro afuera la casa 

   ___ Otro 

 

Vestimenta del bebé  

¿Ayer, cuantas veces juega (sin distracciones; viajando, compras) con 

(NOMBRE)?     

Niño #1:  0      1      2      3      4      5+      Niño #2: 0      1      2      3      4      5+    

NA     Niño #3: 0      1      2      3      4      5+    NA 

 

¿Cuál es la forma correcta que usa para “cargar” a un niño menor de un año(a)? 

(Marca uno con “X”) 

   ___ Solo con el cargador 

   ___ Con el cargador envuelto en una frazada floja – algo de movimiento  

   ___ Con el cargador envuelto en una frazada un poco apretada – movimiento 

limitado 

   ___ Con el cargador envuelto en una frazada apretado – sin movimiento 

 

 

Amamantamiento/ Alimentación complementaria  

¿A que edad alimenta a su niño con leche de formula u otro tipo de líquido? 

Niño #1: ________________            Niño #2: ________________ (NA)          

Niño #3: ________________ (NA) 

 

¿A los cuantos meses de edad, su niño dejo de tomar leche materna? 
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Niño #1: ________________            Niño #2: ________________ (NA)          

Niño #3: ________________ (NA) 

 

Salud durante el embarazo 

¿Cuántas visitas de control prenatal tuvo usted durante el embarazo de 

(NOMBRE)? 

Niño #1: ________________            Niño #2: ________________ (NA)          

Niño #3: ________________ (NA) 

¿Cuándo estaba embarazada de (NOMBRE), tomó usted (marca con “X”): 

   ___ sulfato ferroso/hierro? 

   ___ ácido fólico? 

   ___ pastillas prenatales? 

   ___ otro medicinas? 

   ___ Nada 

¿En Dónde tuvo lugar fue el parto de (NOMBRE) (marca una con “X”): 

   ___ Casa 

   ___ Hospital/Centro de Salud  

   ___ ¿Otro 

¿Cuánto tiempo después de nacido (NOMBRE) empezó a darle el pecho?     

_______________ 

            

Toma calórica, micronutriente, proteínica  

¿Fue ayer un día común, normal?  Si   o   No 

Ayer durante el día y la noche, consumió (NOMBRE) algún…    Si = 1; No = 0 

         

                  

N#1     N#2    N#3   

¿Alimentos hechos de granos tales como tortillas, tamalitos pan, arroz, fideos, 

cereales?                              ___    ___     ___                                                                                                                                                                                                                                                                                                                          

¿Papa, yuca, ichintal, camote blanco, otras raíces/tubérculos o alimentos hechos 

de raíces o tubérculos? ___    ___     ___ 
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¿Vegetables?                        

               ___    ___     ___ 

¿Frutas?          

               ___    ___     ___ 

¿Carne, tal como aves, res, chivo, cerdo, conejo?     

               ___    ___     ___ 

¿Huevos?          

               ___    ___     ___ 

¿Pescado fresco o seco, mariscos o comida de mar?     

               ___    ___     ___ 

¿Alimentos hechos de frijoles, manías, lentejas, habas, arvejas, nueces o semillas? 

               ___    ___     ___ 

¿Queso, crema, leche de vaca (liquida o en polvo), leche de cabra, yogurt u otros 

productos lácteos?        ___    ___     ___ 

¿Aceite, mantequilla, margarina, manteca o alimentos hechos con cualquiera de 

estos productos?            ___    ___     ___ 

¿Alimentos azucarados tales como chocolates, dulces, caramelos, pasteles, tortas 

o bizcochos?               ___    ___     ___ 

¿Condimentos para sabor tales como chile, condimentos, hierbas aromáticas, 

polvo de pescado?               ___    ___     ___ 

 

¿Cuántas tortillas consumió NINO ayer?                                                 

                ___    ___     ___ 

¿Cuántos tamalitos consumió NINO ayer?                 

                ___    ___     ___ 

  

En los últimos 30 días, ¿en algún momento no hubo comida de ningún tipo en su 

casa debido a la falta de recursos para conseguirla?         

       Sí        No 

 

Salud infantil 
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¿Ha tenido (NOMBRE) asientos o diarrea en los últimos dos días?  

Niño #1: Si  o  No              Niño #2: Si  o  No   (NA)               Niño #3: Si  o  No   

(NA) 

¿Cuántos veces (NOMBRE) asientos o diarrea en las últimas dos semanas? 

N#1:________  N#2:_______  N#3:_______ 

¿(NOMBRE) tuvo doler inexplicable en su estómago o intestinos en las últimas 

dos semanas?    

Niño #1: Si  o  No              Niño #2: Si  o  No   (NA)               Niño #3: Si  o  No   

(NA) 

¿Cuántos veces (NOMBRE) asientos o diarrea con sangre en el ultima mes?  

N#1:________  N#2:_______  N#3:_______ 

¿De qué se enferman más seguido los miembros de la familia?   gripe,    tos,    

diarrea,    neumonía,    otras __________ 

¿Ha estado (NOMBRE) enfermo con fiebre en la última semana?   

Niño #1: Si  o  No              Niño #2: Si  o  No   (NA)               Niño #3: Si  o  No   

(NA) 

¿Ha estado (NOMBRE) enfermo con tos en la última semana?   

Niño #1: Si  o  No              Niño #2: Si  o  No   (NA)               Niño #3: Si  o  No   

(NA) 

 

Exposición a Hongos 

¿Alguien en la casa menor de cincuenta años ha tenido problemas con (marca con 

“X”): 

 Niño #1: Niño #2:  

(NA) 

Niño #3:  

(NA) 

Otros 

Adultos: 

Orinar? ____ ____ ____ ____ 

Dolores de cabeza 

crónicos? 

____ ____ ____ ____ 

Perdida de peso o 

apetito no intencional? 

____ ____ ____ ____ 



134 

   

Los ojos o la piel se ha 

puesto amarilla?  

____ ____ ____ ____ 

Inexplicable picazón 

excesiva? 

____ ____ ____ ____ 

 

Nivel educativo de la madre 

¿Cuál es el último año de estudios que usted ganó? (Marca con un círculo) 

   Nunca escuela        Primario - 1     2     3     4     5     6          Básico - 1     2     3        

Diversificado - 4     5     6    o completo         

 

Maíz 

¿De las dos semanas anteriores, el maíz que consumió es;     propio       

comprado 

¿Durante secando, por cuanto tiempo ustedes secan la mayoría del maíz?  

_______________ 

¿Durante secando, que tipo de superficie ustedes usan?   Tierra     Techo      

Tablas       Piso de Cemento       Lona      Otra 

¿Qué forma ustedes usan para desgranar el maíz?   Aporreo       Desgranando       

Maquina      Otro 

¿Ustedes recibieron un precio mejor para del maíz cuando lo almacenado?  Si   o   

No 

¿Por cuántos meses (promedio) lo deja almacenado / guardado?   _____  meses 

¿Las tortillas que consumió ayer, fue;      comprado       maseca? 

¿Ustedes recibieron más dinero por mejorar calidad maíz?  Si   o   No 

¿Tiene problemas con hongos en su maíz?   Si   o   No 

 

¿Cuáles son las 3 cosas en las que usted piensa/busca cuando compra/usa maíz?  

Enumérelos por orden de importancia. 

1. Hongos/Podrido          Insectos/Animales          Seco          

Limpieza/Calidad           Precio          Tamaño         Otro 
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2. Hongos/Podrido          Insectos/Animales          Seco          

Limpieza/Calidad           Precio          Tamaño         Otro 

3. Hongos/Podrido          Insectos/Animales          Seco          

Limpieza/Calidad           Precio          Tamaño         Otro 

 

Maíz del Mercado 

¿De qué Mercado consigue su maíz? Paloma       Pologua        Centro       Sija          

Propio Maíz 

¿Hay hongos/moho visibles en el maíz del mercado?  Si   o   No 

 

Medidas Antropomórficas del niño(a) y la Madre 

 

Altura del: niño #1 __________ cm     niño #2 __________ cm      niño #3 

__________ cm      la Madre  _________ cm 

        Acostado  /   Derecho         Acostado  /   Derecho         Acostado  /   

Derecho 

 

Peso del: niño #1 __________ cm     niño #2 __________ cm      niño #3 

__________ cm      la Madre  _________ cm 

 

Muchas gracias por la participación del usuario.  

 

 

 

Cuestionario de Observación (Visitas de Casa)  

 

1. Aseo 

¿Qué tipo de servicio sanitario tiene en su casa? 

      Inodoro,    Letrina con Piso de Cemento,    Letrina con Piso de Madera,     

Sin Letrina    

¿A cuántos metros queda su el baño de; 
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   La casa?     Menos de 10 metros        Más de 10 metros         50 a 100 metros         

Más 100 metros 

   La fuente del agua?    Menos de 10 metros        Más de 10 metros         50 a 

100 metros         Más 100 metros 

 

2. Prácticas de higiene   

¿Hay jabón de manos en donde se lava las manos?  Si   o   No 

¿Hay agua disponible en dónde se lava las manos?  Si   o   No 

¿En el suelo de la casa se observa; 

   Excremento de Animal?  Si   o   No 

   Animales?  Si   o   No 

   Basura?  Si   o   No 

   Moscas?  Si   o   No 

¿A qué distancia está el lugar donde se lava las manos de; 

   El sanitario? Menos de 10 metros        Más de 10 metros         50 a 100 metros         

Más 100 metros 

   La cocina?   Menos de 10 metros        Más de 10 metros         50 a 100 metros         

Más 100 metros 

 

3. Fuente de Agua 

¿Tiene un tanque para agua?   Si   o    No 

¿A cuántos metros queda su fuente de agua de; 

   La casa?    Menos de 10 metros        Más de 10 metros         50 a 100 metros         

Más 100 metros 

   El corral?    Menos de 10 metros        Más de 10 metros         50 a 100 metros         

Más 100 metros 

 

4. Almacenamiento de Agua 

¿Qué clase de recipientes usa usted para almacenar el agua?    

     Plástico con tapa      Plástico sin tapa       Barro con tapa        Barro sin 

tapa       Metal con tapa       Metal sin tapa 
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¿Cómo saca el agua de los recipientes?  Grifo o chorro,    Cucharon,    Taza,    

verter el agua,    otro  

 

5. Preparación de la comida 

¿Tiene en su casa un lugar (cuarto) que usan solo para cocinar?  Si   o   No 

¿Hay alguno de los siguientes en su cocina; 

     Animales?  Si   o   No 

     Moscas?  Si   o   No 

     Basura?  Si   o   No 

     Suelo sucio?  Si   o   No 

¿Qué tipo de depósito usa para maíz?  Cajón,     sacos,     toneles,      silo,     

otros  

¿Desde la última cosecha ha visto hongos en su maíz? Si  o  No 

 

6. Estatus socio-económico 

¿Qué tipo de piso tiene la vivienda?   Tierra,    torta de cemento,    piso 

cerámico,    madera,    otro 

¿Qué tipo de paredes tiene la vivienda?  No tiene paredes,   barro,   madera,   

caña, blok/concreto,   ladrillo,   otro 

¿Qué tipo de techo tiene la vivienda?   Palma,     lamina,     teja de barro,     

concreto,     otros 

¿Cuántos cuartos (habitaciones) usan para dormir?   1      2      3      4      5      6+ 

¿Tiene la vivienda una televisión?  Si   o   No 

¿Cuántas bombillas/luces tiene la vivienda?   1      2      3      4      5      6       7       

8+ 
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APPENDIX C. SENSITIVITY ANALYSIS OF SEMS 
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A random subsample of 75% of the original data was taken for the individual 

datasets used to assess each model. For each SEM, 20 iterations were conducted and 

outputs were recorded including the model fit tests, parameter estimates, and p-values. 

For each correlation in the model a mean, minimum, maximum, standard deviation, and 

confidence interval were computed. Excel 2016 was used for the exercise. 

 

Child Height-for-Age SEM presented in Paper II 

 

 

 

 

 

 

 

 

 

Sensitivity Analysis of Stunting SEM 2016 *did not converge

^reason for nonconvergence 

Model Fit Results (Robust scores)HAZ on Child Play HAZ on Prenatal Health HAZ on AFB Burden

Chi-SquareRMSEA CFI TLI Unst. Est. Stnd. Est. P-value Unst. Est. Stnd. Est. P-value Unst. Est. Stnd. Est. P-value

Original - Full Data -0.085 -0.092 0.076 -1.629 -0.151 0.102 -0.333 -0.02 0.845

VG16STDataSUB1* - - - - -0.053 -0.058 - -3.326 -0.219 - ^ ^ ^

VG16STDataSUB2 0.297 0.017 (.000-0.039)0.971 0.961 -0.075 -0.077 0.208 -1.915 -0.178 0.055 -1.724 -0.076 0.622

VG16STDataSUB3 0.312 0.016 (.000-.038)0.975 0.967 -0.052 -0.055 0.346 -1.343 -0.102 0.33 0.176 0.013 0.899

VG16STDataSUB4 0.043 0.032 (.000-.049)0.912 0.882 -0.117 -0.123 0.041 -1.864 -0.16 0.168 -0.376 -0.025 0.847

VG16STDataSUB5* - - - - -0.087 -0.097 - -3.353 -0.262 - ^ ^ ^

VG16STDataSUB6* - - - - -0.122 -0.128 - -1.689 -0.175 - ^ ^ ^

VG16STDataSUB7 0.033 0.034 (.010-0.051)0.904 0.87 -0.097 -0.107 0.079 -2.315 -0.214 0.028 -0.516 -0.039 0.751

VG16STDataSUB8 0.046 0.032 (0.000-0.049)0.903 0.869 -0.14 -0.152 0.014 -1.459 -0.147 0.125 -1.975 -0.114 0.361

VG16STDataSUB9* - - - - -0.107 -0.121 - -1.342 -0.14 - ^ ^ ^

VG16STDataSUB10 0.005 0.041 (0.023-0.057)0.834 0.776 -0.058 -0.061 0.316 -1.818 -0.159 0.146 -2.509 -0.11 0.435

VG16STDataSUB11* - - - - -0.064 -0.068 - -2.955 -0.262 - ^ ^ ^

VG16STDataSUB12 0.077 0.029 (0.000-0.047)0.918 0.889 -0.098 -0.106 0.061 -1.273 -0.151 0.154 -2.183 -0.125 0.371

VG16STDataSUB13 0.195 0.022 (0.000-0.042)0.955 0.939 -0.121 -0.134 0.025 -1.691 -0.162 0.125 0.005 0 0.997

VG16STDataSUB14 0.525 0.000 (0.000-0.033)1 1.01 -0.077 -0.081 0.152 -2.175 -0.221 0.026 -1.887 -0.094 0.533

VG16STDataSUB15 0.209 0.021 (0.000-0.042)0.953 0.936 -0.095 -0.105 0.087 -0.704 -0.081 0.435 1.899 0.08 0.426

VG16STDataSUB16 0.027 0.034 (0.012-0.051)0.888 0.848 -0.078 -0.085 0.159 -2.384 -0.2 0.096 1.923 0.084 0.565

VG16STDataSUB17 0.197 0.022 (0.000-0.042)0.959 0.944 -0.075 -0.082 0.193 -1.277 -0.135 0.181 -0.256 -0.017 0.886

VG16STDataSUB18 0.089 0.028 (0.000-0.046)0.922 0.894 -0.081 -0.089 0.141 -1.448 -0.122 0.275 -0.106 -0.004 0.971

VG16STDataSUB19 0.52 0.000 (0.000-0.033)1 1.01 -0.089 -0.098 0.117 -2.366 -0.179 0.055 -0.186 -0.009 0.936

VG16STDataSUB20 0.009 0.039 (0.020-0.056)0.856 0.805 -0.104 -0.112 0.068 -4.244 -0.235 0.094 10.196* - 0.233

Mean 0.17227 0.93 0.907 -0.0895 -0.09695 0.1338 -2.04705 -0.1752 0.152867 -0.55107 -0.03114 0.655533

Min 0.005 0.834 0.776 -0.14 -0.152 0.014 -4.244 -0.262 0.026 -2.509 -0.125 0.233

Max 0.525 1 1.01 -0.052 -0.055 0.346 -0.704 -0.081 0.435 1.923 0.084 0.997

Standard Deviation 0.17458 0.0492 0.069 0.024278 0.026743 0.099341 0.868979 0.049614 0.115281 1.389431 0.066744 0.257022

Confid. Interval 0.07651 0.0216 0.03 0.01064 0.011721 0.043537 0.38084 0.021744 0.050523 0.608934 0.029251 0.112643

Upper CI 0.24878 0.9516 0.937 -0.07886 -0.08523 0.177337 -1.66621 -0.15346 0.20339 0.057863 -0.00189 0.768176

Lower CI 0.09575 0.9084 0.877 -0.10014 -0.10867 0.090263 -2.42789 -0.19694 0.102343 -1.16001 -0.06039 0.542891
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Child Height-for-Age SEM presented in Paper II (cont.) 

 

 

 

 

 

 

 

 

 

 

 

 

HAZ on EED HAZ on Diet Diversity EED on Prenatal Health EED on AFB Burden

Unst. Est. Stnd. Est. P-value Unst. Est. Stnd. Est. P-value Unst. Est. Stnd. Est. P-value Unst. Est. Stnd. Est. P-value

0.02 0.005 0.918 -0.059 -0.047 0.312 0.264 0.096 0.206 -0.202 -0.048 0.459

0.037 0.011 - -0.032 -0.025 - 0.231 0.05 - - - -

0.04 0.009 0.868 -0.031 -0.024 0.647 0.231 0.097 0.262 -0.537 -0.107 0.202

-0.16 -0.038 0.547 -0.048 -0.038 0.474 0.435 0.139 0.166 -0.177 -0.055 0.474

-0.109 -0.027 0.651 -0.084 -0.068 0.169 0.419 0.147 0.117 -0.302 -0.081 0.271

-0.105 -0.034 - -0.078 0.065 - 0.04 0.01 - - - -

0.084 0.023 - -0.048 -0.037 - 0.335 0.127 - - - -

-0.075 -0.017 0.753 -0.017 -0.014 0.809 0.22 0.088 0.291 -0.197 -0.064 0.338

-0.141 -0.037 0.569 -0.027 -0.022 0.663 0.521 0.201 0.046 -0.365 -0.08 0.215

0.073 0.025 - 0.028 0.022 - 0.279 0.085 - - - -

0.07 0.017 0.782 -0.04 -0.03 0.554 0.149 0.054 0.546 -0.458 -0.083 0.297

0.135 0.038 - -0.085 -0.065 - 0.184 0.058 - - - -

-0.006 -0.001 0.981 -0.066 -0.052 0.33 0.184 0.098 0.221 -0.419 -0.108 0.2

0.105 0.026 0.619 -0.044 -0.035 0.501 0.31 0.118 0.182 -0.174 -0.053 0.452

-0.047 -0.011 0.854 -0.107 -0.083 0.124 0.236 0.101 0.249 -0.572 -0.119 0.272

-0.084 -0.02 0.724 -0.093 -0.074 0.17 0.217 0.105 0.177 -0.613 -0.109 0.182

0.098 0.023 0.675 -0.073 -0.058 0.256 0.289 0.102 0.294 -0.669 -0.123 0.176

0.173 0.05 0.396 -0.09 -0.071 0.198 0.42 0.152 0.073 -0.237 -0.054 0.526

0.09 0.021 0.708 -0.123 -0.092 0.087 0.475 0.17 0.109 -0.785 -0.135 0.173

0.029 0.007 0.914 -0.049 -0.039 0.483 0.229 0.07 0.417 -0.472 -0.091 0.257

0.315 0.083 0.217 -0.058 -0.047 0.365 -0.196 -0.041 0.634 1.930* - 0.328

0.0261 0.0074 0.683867 -0.05825 -0.03935 0.388667 0.2604 0.09655 0.252267 -0.42693 -0.09014 0.290867

-0.16 -0.038 0.217 -0.123 -0.092 0.087 -0.196 -0.041 0.046 -0.785 -0.135 0.173

0.315 0.083 0.981 0.028 0.065 0.809 0.521 0.201 0.634 -0.174 -0.053 0.526

0.11852 0.031277 0.199791 0.034952 0.036329 0.221985 0.160927 0.055262 0.167973 0.194635 0.027352 0.113758

0.051943 0.013708 0.08756 0.015318 0.015922 0.097288 0.070528 0.024219 0.073616 0.085301 0.011987 0.049856

0.078043 0.021108 0.771427 -0.04293 -0.02343 0.485954 0.330928 0.120769 0.325883 -0.34163 -0.07816 0.340723

-0.02584 -0.00631 0.596306 -0.07357 -0.05527 0.291379 0.189872 0.072331 0.17865 -0.51223 -0.10213 0.241011
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EED SEM presented in Paper II 

 

 

 

 

 

 

 

 

 

 

 

 

Sensitivity Analysis of EED SEM 2016

Model Fit Results (Robust scores) EED on WaterTreat EED on WaterSource

Chi-SquareRMSEA CFI TLI Unst. Est. Stnd. Est. P-value Unst. Est. Stnd. Est. P-value

Original - Full Data 0.092 0.026 (0.000-0.045)0.986 0.975 0.09 0.113 0.01 -0.068 -0.107 0.079

VG16EEDsub1 0.211 0.023 (0.000-0047)0.99 0.982 0.084 0.106 0.038 -0.055 -0.082 0.239

VG16EEDsub2 0.252 0.020 (0.000-0.046)0.993 0.988 0.082 0.115 0.044 -0.062 -0.109 0.171

VG16EEDsub3 0.302 0.017 (0.000-0.045)0.994 0.989 0.084 0.116 0.029 -0.047 -0.071 0.338

VG16EEDsub4 0.676 0.000 (0.000-0.032) 1 1.013 0.097 0.1 0.03 -0.096 -0.142 0.043

VG16EEDsub5 0.055 0.035 (0.000-0.058)0.972 0.95 0.087 0.125 0.001 -0.026 -0.047 0.533

VG16EEDsub6 0.115 0.029 (0.000-0.053)0.981 0.966 0.079 0.097 0.079 -0.062 -0.097 0.17

VG16EEDsub7 0.051 0.035 (0.000-0.058)0.973 0.953 0.07 0.08 0.056 -0.095 -0.145 0.036

VG16EEDsub8 0.099 0.030 (0.000-0.053)0.981 0.966 0.075 0.08 0.124 -0.063 -0.096 0.211

VG16EEDsub9 0.238 0.021 (0.000-0.046)0.99 0.983 0.071 0.092 0.135 -0.032 -0.059 0.435

VG16EEDsub10 0.098 0.030 (0.000-0.053)0.98 0.966 0.097 0.127 0.025 -0.038 -0.059 0.432

VG16EEDsub11 0.386 0.012 (0.000-0.042)0.997 0.995 0.058 0.077 0.151 -0.06 -0.104 0.18

VG16EEDsub12 0.205 0.024 (0.000-0.049)0.987 0.977 0.094 0.111 0.025 -0.037 -0.055 0.441

VG16EEDsub13 0.142 0.027 (0.000-0.050)0.985 0.974 0.081 0.106 0.055 -0.038 -0.053 0.488

VG16EEDsub14 0.319 0.017 (0.000-0.045)0.993 0.988 0.128 0.154 0.001 -0.105 -0.174 0.005

VG16EEDsub15 0.162 0.026 (0.000-0.050)0.986 0.976 0.108 0.135 0.018 -0.07 -0.106 0.198

VG16EEDsub16 0.478 0.000 (0.000-0.039) 1 1.001 0.097 0.132 0.021 -0.068 -0.104 0.126

VG16EEDsub17 0.236 0.021 (0.000-0.047)0.991 0.984 0.059 0.083 0.018 -0.094 -0.141 0.025

VG16EEDsub18 0.259 0.020 (0.000-0.046)0.993 0.987 0.151 0.177 0 -0.11 0.168 0.014

VG16EEDsub19 0.509 0.000 (0.000-0.039) 1 1.003 0.079 0.114 0.032 -0.048 -0.084 0.22

VG16EEDsub20 0.107 0.030 (0.000-0.053)0.982 0.968 0.093 0.106 0.033 -0.104 -0.134 0.054

Mean 0.245 0.9884 0.98045 0.0887 0.11165 0.04575 -0.0655 -0.0847 0.21795

Min 0.051 0.972 0.95 0.058 0.077 0 -0.11 -0.174 0.005

Max 0.676 1 1.013 0.151 0.177 0.151 -0.026 0.168 0.533

Standard Deviation 0.16409 0.008369 0.016204 0.021844 0.025475 0.04384 0.026645 0.069299 0.171577

Confid. Interval 0.071914 0.003668 0.007102 0.009573 0.011165 0.019214 0.011677 0.030371 0.075195

Upper CI 0.316914 0.992068 0.987552 0.098273 0.122815 0.064964 -0.05382 -0.05433 0.293145

Lower CI 0.173086 0.984732 0.973348 0.079127 0.100485 0.026536 -0.07718 -0.11507 0.142755
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EED SEM presented in Paper II (cont.) 

 

 

 

 

 

 

 

 

 

 

 

 

EED on Food Prep FoodPrep on WaterStorage FoodPrep on WaterSource WaterTreat on WaterSource

Unst. Est. Stnd. Est. P-value Unst. Est. Stnd. Est. P-value Unst. Est. Stnd. Est. P-value Unst. Est. Stnd. Est. P-value

-0.13 -0.119 0.171 -0.103 -0.516 0 -0.235 -0.405 0 0.051 0.064 0.019

-0.195 -0.162 0.119 -0.093 -0.507 0 -0.225 -0.402 0 0.029 0.034 0.147

-0.131 -0.138 0.189 -0.109 -0.531 0 -0.291 -0.484 0 0.07 0.087 0.017

-0.079 -0.076 0.482 -0.114 -0.565 0 -0.266 -0.42 0 0.038 0.041 0.078

-0.082 -0.067 0.514 -0.099 -0.518 0 -0.227 -0.407 0 0.062 0.089 0.017

-0.071 -0.069 0.507 -0.09 -0.481 0 -0.246 -0.451 0 0.069 0.085 0.018

-0.117 -0.1 0.322 -0.102 -0.517 0 -0.234 -0.42 0 0.049 0.061 0.078

-0.113 -0.102 0.329 -0.116 -0.523 0 -0.269 -0.452 0 0.065 0.087 0.01

-0.13 -0.115 0.244 -0.091 -0.439 0 -0.246 -0.42 0 0.034 0.049 0.069

-0.107 -0.113 0.28 -0.108 -0.519 0 -0.261 -0.459 0 0.03 0.043 0.099

-0.116 -0.105 0.311 -0.106 -0.534 0 -0.24 -0.405 0 0.054 0.063 0.073

-0.124 -0.112 0.299 -0.089 -0.494 0 -0.25 -0.477 0 0.064 0.082 0.025

-0.017 -0.015 0.889 -0.103 -0.521 0 -0.237 -0.405 0 0.023 0.029 0.266

-0.131 -0.12 0.236 -0.102 -0.526 0 -0.258 -0.399 0 0.059 0.064 0.072

-0.193 -0.195 0.037 -0.094 -0.444 0 -0.207 -0.34 0 0.056 0.077 0.037

-0.098 -0.088 0.418 -0.113 -0.534 0 -0.283 -0.475 0 0.056 0.068 0.049

-0.034 -0.028 0.801 -0.095 -0.515 0 -0.2 -0.374 0 0.053 0.06 0.072

-0.132 -0.123 0.213 -0.103 -0.516 0 -0.217 -0.349 0 0.07 0.074 0.029

-0.193 -0.174 0.087 -0.116 -0.555 0 -0.24 -0.407 0 0.046 0.06 0.024

-0.158 -0.165 0.108 -0.098 -0.489 0 -0.231 -0.393 0 0.02 0.025 0.313

-0.264 -0.194 0.049 -0.093 -0.496 0 -0.217 -0.381 0 0.055 0.063 0.075

-0.12425 -0.11305 0.3217 -0.1017 -0.5112 0 -0.24225 -0.416 0 0.0501 0.06205 0.0784

-0.264 -0.195 0.037 -0.116 -0.565 0 -0.291 -0.484 0 0.02 0.025 0.01

-0.017 -0.015 0.889 -0.089 -0.439 0 -0.2 -0.34 0 0.07 0.089 0.313

0.05752 0.049268 0.229454 0.008862 0.03125 0 0.024137 0.040338 0 0.015921 0.019922 0.08022

0.025209 0.021592 0.100561 0.003884 0.013696 #NUM! 0.010579 0.017679 #NUM! 0.006977 0.008731 0.035157

-0.09904 -0.09146 0.422261 -0.09782 -0.4975 #NUM! -0.23167 -0.39832 #NUM! 0.057077 0.070781 0.113557

-0.14946 -0.13464 0.221139 -0.10558 -0.5249 #NUM! -0.25283 -0.43368 #NUM! 0.043123 0.053319 0.043243
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Three-way SEM of HAZ, EED, and AFB exposure in Paper III 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Sensitivity Analysis of HAZ-EED-AFB SEM 2016

Model Fit Results (Robust scores) HAZ on EED HAZ on AFB EED on AFB

Chi-SquareRMSEA CFI TLI Unst. Est. Stnd. Est. P-value Unst. Est. Stnd. Est. P-value Unst. Est. Stnd. Est. P-value

Original - Full Data 0.21 0.034 (0.000-0.087)0.966 0.916 0.297 0.036 0.588 -0.765 -0.076 0.032 -0.086 -0.071 0.051

VG16hypothSUB1 0.568 0.000 (0.000-0.070) 1 1.061 0.293 0.041 0.577 -0.415 -0.048 0.211 -0.114 -0.094 0.03

VG16hypothSUB2 0.336 0.021 (0.000-0.089)0.986 0.966 -0.031 -0.003 0.957 -0.78 -0.085 0.03 -0.069 -0.067 0.064

VG16hypothSUB3 0.739 0.000 (0.000-0.057) 1 1.112 0.026 0.003 0.962 -0.628 -0.07 0.089 -0.093 -0.082 0.028

VG16hypothSUB4 0.217 0.035 (0.000-0.094)0.968 0.919 0.058 0.009 0.88 -0.808 -0.089 0.018 -0.091 -0.062 0.075

VG16hypothSUB5 0.122 0.050 (0.000-0.108)0.908 0.771 0.303 0.04 0.621 -0.857 -0.097 0.024 -0.057 -0.049 0.251

VG16hypothSUB6 0.829 0.000 (0.000-0.049 1 1.317 0.977 0.094 0.297 -0.412 -0.043 0.215 -0.071 -0.077 0.114

VG16hypothSUB7 0.051 0.070 (0.000-0.129)0.863 0.659 0.128 0.019 0.79 -0.935 -0.067 0.242 -0.169 -0.08 0.097

VG16hypothSUB8 0.32 0.021 (0.000-0.083)0.988 0.969 0.869 0.095 0.208 -0.8 -0.085 0.023 -0.09 -0.087 0.047

VG16hypothSUB9 0.381 0.011 (0.000-0.081)0.996 0.991 0.267 0.031 0.674 -0.884 -0.093 0.013 -0.094 -0.084 0.03

VG16hypothSUB10 0.144 0.050 (0.000-0.112)0.938 0.845 0.206 0.025 0.723 -1.351 -0.086 0.14 -0.156 -0.081 0.084

VG16hypothSUB11 0.586 0.000 (0.000-0.070) 1 1.075 0.297 0.035 0.59 -0.639 -0.07 0.094 -0.11 -0.102 0.037

VG16hypothSUB12 0.215 0.038 (0.000-0.101)0.954 0.884 -0.277 -0.035 0.571 -0.769 -0.086 0.034 -0.094 -0.084 0.029

VG16hypothSUB13 0.659 0.000 (0.000-0.060) 1 1.076 0.964 0.096 0.198 -1.069 -0.103 0.011 -0.089 -0.086 0.071

VG16hypothSUB14 0.526 0.000 (0.000-0.070) 1 1.034 0.69 0.084 0.276 -0.946 -0.098 0.02 -0.095 -0.081 0.044

VG16hypothSUB15 0.244 0.033 (0.000-0.095)0.962 0.905 0.105 0.01 0.899 -0.65 -0.072 0.07 -0.068 -0.08 0.065

VG16hypothSUB16 0.185 0.040 (0.000-0.098)0.961 0.901 0.501 0.071 0.358 -0.631 -0.073 0.079 -0.108 -0.088 0.033

VG16hypothSUB17 0.116 0.056 (0.000-0.118)0.916 0.791 0.537 0.063 0.416 -0.869 -0.059 0.351 -0.102 -0.059 0.243

VG16hypothSUB18 0.546 0.000 (0.000-0.077) 1 1.053 0.114 0.014 0.835 -0.953 -0.068 0.269 -0.141 -0.08 0.074

VG16hypothSUB19 0.346 0.018 (0.000-0.083)0.99 0.975 0.861 0.105 0.191 -0.657 0.069 0.091 -0.063 -0.054 0.186

VG16hypothSUB20 0.324 0.022 (0.000-0.086)0.986 0.964 0.552 0.067 0.394 -0.919 -0.096 0.022 -0.089 -0.076 0.058

Mean 0.3727 0.9708 0.9634 0.372 0.0432 0.57085 -0.7986 -0.07095 0.1023 -0.09815 -0.07765 0.083

Min 0.051 0.863 0.659 -0.277 -0.035 0.191 -1.351 -0.103 0.011 -0.169 -0.102 0.028

Max 0.829 1 1.317 0.977 0.105 0.962 -0.412 0.069 0.351 -0.057 -0.049 0.251

Standard Deviation 0.224106 0.038277 0.142297 0.357957 0.03934 0.265303 0.217075 0.036845 0.101568 0.029457 0.013283 0.067349

Confid. Interval 0.098217 0.016775 0.062363 0.156879 0.017241 0.116272 0.095136 0.016148 0.044513 0.01291 0.005822 0.029516

Upper CI 0.470917 0.987575 1.025763 0.528879 0.060441 0.687122 -0.70346 -0.0548 0.146813 -0.08524 -0.07183 0.112516

Lower CI 0.274483 0.954025 0.901037 0.215121 0.025959 0.454578 -0.89374 -0.0871 0.057787 -0.11106 -0.08347 0.053484
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AFB symptoms from Subsistence Farming SEM in Paper IV 

 

 

 

 

 

 

 

 

 

 

 

 

 

Sensitivity Analysis of HAZ-EED-AFB SEM 2016

Model Fit Results (Robust scores) AFB on ROI AFB on ViewFungus

Chi-SquareRMSEA CFI TLI Unst. Est. Stnd. Est. P-value Unst. Est. Stnd. Est. P-value

Original - Full Data 0.097 0.029 (0.000-0.050)0.954 0.92 0.021 0.07 0.039 -0.036 -0.11 0.004

VG16AFBfarmSUB1 0.037 0.042 (0.000-0.066)0.899 0.824 0.018 0.062 0.144 -0.032 -0.107 0.014

VG16AFBfarmSUB2 0 0.066 (0.044-0.088)0.763 0.587 0.012 0.037 0.495 -0.038 -0.107 0.015

VG16AFBfarmSUB3 0.038 0.040 (0.000-0.062)0.902 0.83 0.016 0.057 0.148 -0.037 -0.117 0.012

VG16AFBfarmSUB4 0.091 0.034 (0.000-0.057)0.937 0.891 0.02 0.06 0.091 -0.036 -0.091 0.012

VG16AFBfarmSUB5 0.017 0.044 (0.019-0.067)0.891 0.81 0.032 0.091 0.023 -0.042 -0.111 0.007

VG16AFBfarmSUB6 0.175 0.027 (0.000-0.052)0.964 0.938 0.022 0.074 0.084 -0.043 -0.132 0.005

VG16AFBfarmSUB7 0.004 0.054 (0.000-0.077)0.857 0.75 0.004 0.013 0.775 -0.049 -0.134 0.009

VG16AFBfarmSUB8 0.335 0.017 (0.000-0.046)0.984 0.971 0.016 0.044 0.129 -0.036 -0.097 0.013

VG16AFBfarmSUB9 0.195 0.026 (0.000-0.051)0.963 0.936 0.025 0.07 0.073 -0.034 -0.09 0.01

VG16AFBfarmSUB10 0.057 0.038 (0.000-0.062)0.923 0.865 0.022 - 0.061 -0.043 - 0.006

VG16AFBfarmSUB11* - - - -

VG16AFBfarmSUB12 0.181 0.027 (0.000-0.052)0.958 0.928 0.018 0.051 0.16 -0.043 -0.11 0.007

VG16AFBfarmSUB13 0.132 0.031 (0.000-0.057)0.937 0.891 0.02 - 0.131 -0.041 - 0.006

VG16AFBfarmSUB14 0.008 0.047 (0.024-0.068)0.894 0.816 0.017 - 0.144 -0.038 - 0.009

VG16AFBfarmSUB15 0.156 0.029 (0.000-0.054)0.95 0.913 0.018 0.059 0.15 -0.034 -0.107 0.017

VG16AFBfarmSUB16 0.242 0.028 (0.000-0.050)0.97 0.948 0.025 0.072 0.075 -0.044 -0.116 0.007

VG16AFBfarmSUB17 0.007 0.052 (0.027-0.075)0.849 0.737 0.014 0.036 0.3 -0.046 -0.112 0.009

VG16AFBfarmSUB18 0.004 0.054 (0.030-0.077)0.824 0.694 0.004 0.01 0.826 -0.055 -0.123 0.011

VG16AFBfarmSUB19 0.416 0.010 (0.000-0.045)0.993 0.988 0.018 0.072 0.115 -0.042 -0.15 0.013

VG16AFBfarmSUB20 0.226 0.024 (0.000-0.050)0.965 0.94 0.015 0.047 0.214 -0.038 -0.111 0.012

Mean 0.122158 0.917 0.855632 0.017684 0.053438 0.217789 -0.04058 -0.11344 0.010211

Min 0 0.763 0.587 0.004 0.01 0.023 -0.055 -0.15 0.005

Max 0.416 0.993 0.988 0.032 0.091 0.826 -0.032 -0.09 0.017

Standard Deviation 0.122325 0.060393 0.105323 0.006642 0.021894 0.229922 0.00566 0.01568 0.003392

Confid. Interval 0.05361 0.026468 0.046159 0.002911 0.009595 0.100766 0.002481 0.006872 0.001487

Upper CI 0.175768 0.943468 0.901791 0.020595 0.063033 0.318555 -0.0381 -0.10657 0.011697

Lower CI 0.068548 0.890532 0.809473 0.014773 0.043842 0.117024 -0.04306 -0.12031 0.008724
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AFB symptoms from Subsistence Farming SEM in Paper IV (cont.) 

 

 

Overall, results suggested that model fit indices, parameter estimates, and p-

values within the SEMs were stable.   

 

 

 

 

 

 

 

 

AFB on CornStorage AFB on PostHPrac CornStorage on ROI PostHPrac on Improved Qual

Unst. Est. Stnd. Est. P-value Unst. Est. Stnd. Est. P-value Unst. Est. Stnd. Est. P-value Unst. Est. Stnd. Est. P-value

-0.017 -0.082 0.023 -0.027 -0.156 0.052 0.093 0.065 0.001 -1.242 -0.464 0

-0.015 -0.075 0.125 -0.021 -0.155 0.155 0.121 0.081 0.001 -1.242 -0.358 0

-0.012 -0.055 0.024 -0.034 -0.163 0.142 0.106 0.069 0.003 -1.171 -0.483 0

-0.015 -0.068 0.067 -0.026 -0.158 0.076 0.082 0.064 0.01 -1.319 -0.441 0.001

-0.018 -0.074 0.038 -0.026 -0.141 0.084 0.081 0.057 0.012 -1.208 -0.467 0

-0.019 -0.076 0.041 -0.03 -0.163 0.139 0.078 0.058 0.006 -1.084 -0.382 0.001

-0.023 -0.101 0.025 -0.027 -0.187 0.055 0.103 0.079 0.002 -1.445 -0.422 0

-0.013 -0.05 0.169 -0.043 -0.232 0.07 0.098 0.071 0.003 -1.173 -0.406 0

-0.019 0.079 0.031 -0.031 -0.129 0.065 0.094 0.06 0.003 -1.223 -0.558 0

-0.022 -0.091 0.033 -0.025 -0.157 0.118 0.095 0.063 0.006 -1.174 -0.35 0.001

-0.012 - 0.049 -0.023 - 0.057 0.087 0.064 0.007 -1.522 -0.444 0

-0.019 -0.068 0.043 -0.033 -0.18 0.051 0.084 0.068 0.005 -1.312 -0.416 0

-0.015 - 0.034 -0.034 - 0.059 0.08 0.053 0.011 -1.146 -0.505 0

-0.015 - 0.017 -0.028 - 0.1 0.11 0.082 0.001 -1.195 -0.414 0

-0.015 -0.075 0.065 -0.03 -0.166 0.111 0.085 0.056 0.011 -1.215 -0.47 0.001

-0.017 -0.069 0.037 -0.03 -0.17 0.107 0.074 0.055 0.021 -1.225 -0.371 0.001

-0.019 -0.074 0.089 -0.048 -0.209 0.1 0.111 0.073 0.001 -0.961 -0.338 0.013

-0.016 -0.054 0.152 -0.06 -0.243 0.09 0.088 0.065 0.006 -0.923 -0.345 0.011

-0.016 -0.083 0.026 -0.03 -0.176 0.084 0.076 0.061 0.007 -1.155 -0.563 0

-0.014 -0.063 0.085 -0.032 -0.147 0.08 0.098 0.069 0.003 -1.304 -0.564 0

-0.01653 -0.06231 0.060526 -0.03216 -0.1735 0.091737 0.092158 0.065684 0.006263 -1.21037 -0.43668 0.001526

-0.023 -0.101 0.017 -0.06 -0.243 0.051 0.074 0.053 0.001 -1.522 -0.564 0

-0.012 0.079 0.169 -0.021 -0.129 0.155 0.121 0.082 0.021 -0.923 -0.338 0.013

0.00308 0.039903 0.04451 0.009281 0.031226 0.03089 0.01338 0.008686 0.005031 0.140814 0.073428 0.003732

0.00135 0.017488 0.019507 0.004068 0.013685 0.013538 0.005864 0.003807 0.002205 0.061713 0.032181 0.001636

-0.01518 -0.04482 0.080033 -0.02809 -0.15981 0.105275 0.098022 0.069491 0.008468 -1.14866 -0.4045 0.003162

-0.01788 -0.0798 0.041019 -0.03623 -0.18719 0.078199 0.086294 0.061877 0.004058 -1.27208 -0.46886 -0.00011
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APPENDIX D. CLUSTERING ANALYSIS 
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In partnership with the Computer Engineering department a clustering algorithm 

exercise was also conducted on the USAID 2012 dataset. The algorithm attempted to 

cluster groups of children using variables as dividers. A description and preliminary 

results are presented below.  

Introduction 

In this report, we discuss analysis of the “USAID Data 2012 Final 1 Transformed 

– no specific nutrition.sav” data set.  The goal of this exploratory data analysis is to 

identify distinct subgroups of individuals via cluster analysis techniques and identify 

important features to the selected clustering criteria.  The initial data set consisted of 514 

variables (features) and 5556 samples. The domain expert (Lee) assisted with reducing 

the number of features to 88 potentially important variables that were considered for the 

analysis.  In this report, we describe the steps taken for data processing, clustering criteria 

and evaluation, and provide a set of 5 different clustering options for further 

investigation. 

Data Processing 

Data pre-processing consists of the following phases: 

1. Elimination: 

To overcome the challenge of the missing values we eliminated any 

feature with more than 2% of missing values (i.e. has more than 100 missing).  As 

a result, 3 variables (F12, B17 and HDDS) were removed in this process. Samples 

that have more than 3 missing values were also removed. After this process was 

complete, the updated data set contains 85 variables and 4715 samples.  

2. Correlation Analysis: 

In this phase, we calculated the pairwise Pearson correlations between 

each of the features and filtered out features with a correlation greater than 0.75 

with other variables.  During this process, a total of 7 features were eliminated 

(Interv-date, zwaz, zwhz, sustainablelivestock, value-chain_cat, F10, 

water_treatment), leaving a total of 78 features. 

3. Missing value replacement: 

The data set has 9 numerical features and the remaining 69 are categorical. 

We replaced the missing values in the numerical features by the average value of 
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the feature before adding the missing value.  That is, the missing values were 

replaced in order.  After replacing one value, a new average was calculated which 

replaced the next missing value and so on.  Thus, multiple missing values were 

not replaced with single value. For the categorical values, the missing values were 

replaced randomly with values from the same variable. 

Clustering Criteria 

The clustering algorithm we used is the k-dimensional sub-space clustering as 

described and discussed in the attached slides (power point slides attached).   The 

algorithm consists of two phases: single-dimension and multi-dimension. In the single 

dimension clustering we classify the data samples based on each feature. In this case, we 

have 78 different clustering criteria. The features were ranked from best to worst based 

on the Silhouette index evaluation for each single dimension clustering. The top 60 

features* were ranked as follows: 

{ D54, diarrhea, ORTRecode, G16, H302_153, C16, H402_175, male_adult_max, 

G12, agemos, H501, E25, G49, G13_1CornDis, credit, F16, G14, I12Recode, 

improved_storage, E24, E20, zBMI, F08, zhaz, H302_151, H402_188, E16, 

G11_1CornFert, total_consumption, E21, I02Recode, G56, E12, E23, G18, G10, F09, 

F07, E22, poverty, H402_193, F11Sanitation, B18Educ, sex, E18, G39, H402_160, 

value_chain_any, E28, I17Recode, H402_190, production_plan, H302_142, G29, A06_1, 

E38, F04Recode, F15, E15} 

These features have been divided into 4 levels and each level contains 15 feature. 

These features were used in the multi-dimensional clustering (also referred to as k-

dimensional clustering), the algorithm groups the samples that have been assigned to the 

same clusters along each single dimension clustering to the same cluster. We obtained 

123 different clustering criteria by using a moving window.   

Cluster Evaluation 

To evaluate the 123 different clustering criteria, we utilized two different 

approaches:  

Internal Validation Indices:  

• Davis-Bouldin (DB) Index:  For each cluster 𝐶, the similarities between 𝐶 and all 

other clusters are computed, and the highest value is assigned to 𝐶 as its cluster 
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similarity. Then the 𝐷𝐵 index can be obtained by averaging all the cluster 

similarities. The smaller the index, the better the clustering result. By minimizing 

this index, clusters are the most distinct from each other, and therefore achieves 

the best partition. 

• Silhouette Index (SI): which validates the clustering performance based on the 

pairwise difference of between and within-cluster distances. The optimal cluster 

number is determined by maximizing the value of this index. 

Statistical Evaluation: 

• Nominal logistic regression was performed with the cluster number as the 

response and features as explanatory variables.  Cluster membership can be 

predicted based on the model to determine how effective the features are in 

cluster classification.  The model was built based on 2/3 of the data as a training 

set and 1/3 of the data was withheld as a test set.  The classification error rate 

(CER) and r-square value in the test data set were calculated and used as 

additional criteria for cluster evaluation.   

Clustering criteria that were in the lower quartile for Davis-Bouldin and upper 

quartile for Silhouette were chosen for further statistical evaluation with the logistic 

regression.  The remaining clustering criteria were ranked based on their DB Index value, 

Silhouette Index value, test set R-square and CER.  Values in the lower half for DB and 

CER were ranked “high” and values in the upper half for Silhouette and R-square were 

deemed “high”.  Cluster criteria with the most “high” rankings across the four different 

criteria were ranked as the best. 

Selected Clustering Criteria 

Based on the validation indices and the statistical evaluation for clustering 

criteria, 5 were chosen for further investigation: 

• Criteria 1, 2 and 3:  The subspace selection features* are  

{ D54, diarrhea, ORTRecode, G16, H302_153, C16, H402_175, 

male_adult_max, G12, agemos, H501, E25, G49,G13_1CornDis, credit, 

F16, G14, I12Recode, improved_storage, E24, E20, zBMI, F08,  zhaz, 

H302_151, H402_188, E16, G11_1CornFert, total_consumption}.  
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In criteria 1 the allowed difference is 1, which means samples will be 

classified into the same cluster if they have been assigned to the same cluster 

along all the 15 single dimensional clusters except 1. Criteria 2 and 3 the allowed 

difference was 2 and 3 respectively.  

• Criteria 4: All 78 features were involved in the subspace clustering but the 

allowed difference in 6. 

• Criteria 5: the subspace selection features* are { D54, diarrhea, ORTRecode, 

G16, H302_153, C16, H402_175, male_adult_max, G12, agemos, H501, E25, 

G49, G13_1CornDis, A06_1 F15 E15 E18 E28 E38 G29 G39

 production_plan value_chain_any H302_142 H402_160

 H402_190 F04Recode I17Recode}.  The allowed difference is 2. 

*Note that one additional variable G05 was included, but it was the same value 

across all samples (no variation) and thus did not affect the clustering criteria. 

Additional Files:   

• Clustering Algorithm.ppt 

This file contains a description of the k-dimensional sub-space clustering 

algorithm. 

• selected clustering criterias.xls 

This file contains the cluster labels for all samples for each of the selected 

clustering criteria. 
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Table 1.  P-values for testing for significant differences among clusters. 

Feature itr-31 

(Cr1) 

CL4 

rem. 

Itr-32 

(Cr2) 

CL3 

rem. 

Itr-33 

(Cr3) 

Itr115 

(Cr4) 

CL3 

rem. 

Itr18 (Cr5) 

CL3 rem. 

   

D54 0.0167 0.1006 0.0061 0.6675 0.5504 

diarrhea 0.0167 0.1006 0.0061 0.6675 0.5504 

ORTRecode 0.0064 0.0372 0.0008 0.9 0.0025 

G16 <0.0001 <0.0001 <0.0001 0.0003 <0.0001 

H302_153 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 

C16 <0.0001 <0.0001 <0.0001 0.6748 0.0003 

H402_175, <0.0001 <0.0001 <0.0001 0.0019 <0.0001 

male_adult_max 0.5931 0.2669 0.4004 0.1202 0.0012 

G12 <0.0001 <0.0001 <0.0001 0.0049 <0.0001 

agemos <0.0001 <0.0001 <0.0001 0.0006 <0.0001 

H501 <0.0001 <0.0001 <0.0001 0.2746 <0.0001 

E25 <0.0001 <0.0001 <0.0001 0.0128 <0.0001 

G49 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 

G13_1CornDis <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 

credit 0.0018 0.0024 0.0006 0.0016  

F16 <0.0001 <0.0001 <0.0001 <0.0001  

G14 0.0059 0.0016 0.2483 <0.0001  

I12Recode 0.0015 0.0011 0.0005 <0.0001  

improved_storage 0.0017 0.0487 0.0005 0.0364  

E24 <0.0001 <0.0001 <0.0001 <0.0001  

E20 <0.0001 0.0001 <0.0001 0.0310  

zBMI 0.7267 0.9279 0.7600 0.3488  

F08 0.0029 0.0759 0.0030 0.0037  

F45 0.564 0.654 0.239 0.113  
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Table 1. P-values for testing for significant differences among clusters (cont.) 

zhaz 0.7350 0.6883 0.7648 0.6979  

H302_151 0.0589 0.6097 0.4346 0.472  

H402_188 <0.0001 <0.0001 <0.0001 0.0029  

E16 0.0002 0.0031 0.0014 <0.0001  

G11_1CornFert 0.7351 0.4798 0.3990 <0.0001  

total_consumpt. <0.0001 <0.0001 <0.0001 <0.0001  

A06_1    <0.0001 <0.0001 

F15    <0.0001 0.0004 

E15    <0.0001 0.0051 

E18    0.0004 0.0221 

E28    0.4514 0.7806 

E38    0.484 0.0131 

G29    0.6641 <0.0001 

G39    0.778 <0.0001 

production_plan    0.5706 0.0005 

value_chain_any    0.2467 <0.0001 

H302_142    <0.0001 0.0877 

H402_160    0.0007 0.0255 

H402_190    0.01 <0.0001 

F04Recode    <0.0001 0.0007 

I17Recode    <0.0001 0.9802 

 

*For categorical variables, a chi-square test of association between cluster 

number and each variable is performed.  P-values <0.05 indicate there is a 

significant association between cluster number and the variable. 

  *For quantitative variables (agemos, zBMI, zhaz, total_consumption,  

E38, wom_age,  total_members, E37, Municipality), a one-way ANOVA is 

performed to test for a difference in means among clusters.  P-values <0.05 

indicate that there is a significant difference in the variable means somewhere 

amongst the clusters. 
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*The “outlier” cluster was removed for this testing since such extreme 

unbalance between sample numbers in the different clusters made it much more 

likely that the assumptions of the testing procedures would be violated.  

*P-values that are highlighted in red correspond to variables that are both 

significant and exhibited the largest differences between clusters.   For categorical 

variables, these represent a difference of at least 12% between clusters.  

Quantitative variables should be checked individually to see if the differences are 

practically meaningful.  

*A PDF file  of the JMP output is provided that provides graphs showing 

the distribution of the features among the clusters.  For categorical variables, 

mosaic plots display percentages of observations that fall into each category for 

each cluster.  For quantitative variables, plots of the variable verses cluster 

membership are given.  You can check these files for more detailed information 

and to make sure I didn’t miss highlighting any significant variables that had large 

differences. 

*Note that a multiple testing correction should be performed to reduce the 

probability of false positives among the set of tests.  I did not do this for the data 

exploration purposes, but this can be done for publication purposes. 

*Note that the women’s age variable analysis for Itr115 had some outliers 

with ages over 900.  I removed these and rechecked the test, which is why you see 

two pvalues in the table for that variable.    Pvalue with the outliers was 0.008 and 

without the outliers was <0.001.  The output without the outliers is not given in 

the PDF file, but I can send it separately if needed.   

Selected Clustering Criteria with Significant zhaz and diarrhea  

In order to further examine different clustering criteria, additional testing was 

conducted to test for significant differences between clusters on the zhaz and diarrhea 

variables.  The DB and SI validation indices were utilized to select 2 clustering criteria 

from among all of those with significant differences in zhaz and/or diarrhea between 

clusters.  (Table 3 provides further information): 

• The subspace selection features* for both of  the additional criteria are: 
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{ D54, diarrhea, ORTRecode, G16, H302_153, C16, H402_175, 

male_adult_max, G12, agemos, H501, E25, G49,G13_1CornDis, credit, F16, 

G14, I12Recode, improved_storage, E24, E20, zBMI, F08,  zhaz, H302_151, 

H402_188, E16, G11_1CornFert, total_consumption. E21, I02Recode, G56, E12, 

E23, G18, G10, F09, F07, E22, poverty, H402_193, F11Sanitation, B18Educ, sex}.  

In criteria 1 the allowed difference is 2; whereas the allowed difference is 4 in 

criteria 2. 

*Note that one additional variable G05 was included, but it was the same value 

across all samples (no variation) and thus did not affect the clustering criteria. 

 

Table 2. Selected Clustering Criteria with significant zhaz and/or diarrhea 

Criteria name itr-60 (Cr1) itr-62(Cr2) 

Davis_Bouldin 532.7135 294.9817 

Silhouette 0.053048 0.054975 

# of clusters 4 3 

# samples in cluster1 4260 4573 

# samples in cluster2 390 140 

# samples in cluster3 63 1 

# samples in cluster4 1 0 

# of features in subspace 46 46 

Allowed difference 2 4 

 

Table 3.  P-values for testing for significant differences among clusters. 

Feature itr-60 (Cr1) 

CL4 rem. 

Itr-62 (Cr2) 

CL3 rem. 

D54 0.0062 0.0071 

diarrhea 0.0062 0.0071 

ORTRecode 0.3701 0.2366 

G16 <0.0001 <0.0001 

H302_153 <0.0001 0.0001 
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Table 3.  P-values for testing for significant 

differences among clusters (cont.) 

C16 0.1605 0.3730 

H402_175 <0.0001 0.0017 

male_adult_max 0.3165 0.1522 

G12 <0.0001 <0.0001 

agemos <0.0001 <0.0001 

H501 0.0011 0.0036 

E25 <0.0001 <0.0001 

G49 <0.0001 <0.0001 

G13_1CornDis <0.0001 <0.0001 

credit 0.2386 0.8252 

F16 <0.0001 <0.0001 

G14 <0.0001 <0.0001 

I12Recode <0.0001 <0.0001 

improved_storage 0.5309 0.2517 

E24 <0.0001 0.0006 

E20 0.0537 0.0346 

zBMI <0.0001 <0.0001 

F08 <0.0001 0.0380 

zhaz 0.1377 0.0179 

H302_151 <0.0001 <0.0001 

H402_188 <0.0001 <0.0001 

E16 <0.0001 <0.0001 

G11_1CornFert <0.0001 <0.0001 

total_consumpt. <0.0001 <0.0001 

E21 <0.0001 <0.0001 

I02Recode <0.0001 <0.0001 

G56 <0.0001 <0.0001 

E12 <0.0001 0.0004 

E23 <0.0001 <0.0001 
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*The same notes from the previous analyses (Table 1) apply here as well. 

*P-values that are highlighted in red correspond to variables that are both 

significant and represent a difference of at least 12% between the main two 

clusters (for categorical variables).  Quantitative variables should be checked 

individually to see if the differences are practically meaningful.  

From Table 1 above, below is a list of the top 13 variables which were 

most commonly significant across the 5 different sets of selected variables for 

improved child grouping. No specific focus on HAZ/diarrhea was given. The 

primary theme of the variables included socio economic inputs (e.g. maize 

cultivation practices) and socio economic outputs (e.g. spent $$ on medications). 

1. Maize cultivation practices 

2. Food – sweets and chocolates 

3. Soil conservation practices 

4. Problem with diseases in the maize  

5. Spent $$ on medications in past month 

6. Household saved maize harvest 

7. Spent $$ on medical tests 

8. Age of the child 

9. Household owns the house lived in 

Table 3.  P-values for testing for significant 

differences among clusters (cont.) 

G18 <0.0001 <0.0001 

G10 <0.0001 <0.0001 

F09 <0.0001 0.0072 

F07 0.0009 0.0017 

E22 <0.0001 0.0008 

poverty <0.0001 <0.0001 

H402_193 <0.0001 <0.0001 

F11Sanitation <0.0001 <0.0001 

B18Educ <0.0001 <0.0001 

sex <0.0001 <0.0001 
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10. Food – candies  

11. Total consumption scored based on owned items 

12. Presence of soap at handwashing station 

13. Spent $$ on school enrollment  

From Table 2 above, below is a list of the top 15 variables which had the 

largest contribution to creating groups/clusters of children where HAZ and 

diarrhea were also used. Top 10 potentially related with economics, nutrition, 

education, and hygiene.  

1. Poverty index (ownership of items) 

2. Food – oil, butter, margarine  

3. Household Practices Soil Conservation  

4. Household bred animals last year  

5. Mother knows warning signs for problems in pregnancy 

6. Presence of soap at handwashing station 

7. Mother knows warning signs for problems with sick child 

8. Food – other fruits and veggies 

9. Food – sweets and chocolates 

10. Household spent money on electricity  

11. Household used potentially harmful fertilizers  

12. Household was devoted to the cultivation of beans 

13. Household has problems with disease, pests or weather in maize cultivation 

14. Did the mother attend school 

15. Household has problems with maize cultivation   

Options for next steps to have a strong enough publication for Science or 

Nature; 

1) Conduct same analysis on additional dataset, publication focused on stunting 

outcome 

2) Compare with traditional clustering algorithm, publication focused on 

methodology 

3) Conduct SEM on top 10 variables, publication focused more on methods then 

stunting 



158 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

APPENDIX E. ADDITIONAL SEMS 
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Additional SEMs were hypothesized and tested, but were not part of the main 

hypotheses or objectives of the dissertation, but do provide insight. These are presented 

below. 

Child height-for-age SEMs 

October 2016 data using a composite variable for prenatal health.  

Used DWLS robust estimator; N=372; Chi-square: 52.988, p=0.034; RMSEA: 

0.033 (CI: 0.010 – 0.051); Robust CFI: 0.904; Robust TLI: 0.861 
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February 2017 full SEM with a latent variable for prenatal health 

Used DWLS robust estimator; N=300; Chi-square: 73.848, p=0.078; RMSEA: 

0.026 (CI: 0.000 – 0.042); Robust CFI: 0.855; Robust TLI: 0.808 
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EED, AFB, and HAZ over time SEM 

Used DWLS robust estimator; N=146; Chi-square: 84.134, p=0.270; RMSEA: 

0.021 (CI: 0.000 – 0.045); Robust CFI: 0.995; Robust TLI: 0.939 
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EED SEMs 

February 2017 data applied to the SEM 

Used DWML robust estimator; N=310; Chi-square: 26.564, p=0.432; RMSEA: 

0.007 (CI: 0.000 – 0.037); Robust CFI: 0.999; Robust TLI: 0.998 
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February 2017 WASH model with HAZ as an outcome 

Used DWML robust estimator; N=310; Chi-square: 10.631, p=0.642; RMSEA: 

0.000 (CI: 0.000 – 0.036); Robust CFI: 1.000; Robust TLI: 1.008 
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Change over time among all variables 

Used DWLS robust estimator; N=153; Chi-square: 34.877, p=0.090; RMSEA: 

0.043 (CI: 0.000 – 0.074); Robust CFI: 0.953; Robust TLI: 0.917 
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