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NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

TECHNICAL NOTE NO. 784

STRESS DISTRIBUTION IN AND EQUIVALENT WIDTH OF FLANGES
OF WIDE, THIN-Y/ALL STEEL BEAMS*

By George Winter

SUMMARY

The use of different forms of wide-flangb, thin-wall steel
beams is becoming increasingly widespread. Part of the inform-
ation necessary for a rational design of such members is the
knowledge of the stress distribution in and the equivalent width
of the flanges of such beams. This problem is analyzed in this
paper on the basis of the theory of plane stress. As a result,
tables and curves are given from which the equivalent width of
any given beam can be read directly for use in practical design.
An investigation is given of the limitations of this analysis
due to the fact that extremely wide and thin flanges tend to
curve out of their plane toward the neutral axis. A summary of
test data confirms very satisfactorily the analytical results.

INTRODUCTION

This paper deals with the distribution of longitudinal
stresses in the flanges of thin-wall beams of |-, T-, or box
shape, or of similar shape*

Beams such as |- and other rolled sections and composites
thereof have long been in use in structural engineering, and it
is generally assumed that the magnitude of the longitudinal
stresses does not vary over the width of the flange at a given
cross section. With the development of light-weight construe-

*Condensed from a thesis accepted by the Graduate School
of Cornell University in partial fulfillment for the degree of
Doctor of Philosophy, June 1940.

This analysis was undertaken in parallel with an
experimental investigation into this subject sponsored by the
American Iron and Steel Institute at Cornell University.
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with the web. It is then possible to investigate the resulting
stress distribution by means of the theory of plane stress.
The distribution of the shear stresses along the joint of web
and flange evidently follows the distribution of the external
shearing force in the beam as a whole. This assumption holds
exactly only for beams loaded by continuously distributed
loads. Concentrated loads result in local irregularities of
the shear distribution because of the distributing action of
the web and because of the actual area of application of such
so-called concentrated loads* The influence of these factors
will be investigated later in this paper. Thus the total
shear T transmitted from the web to the flange at any particu-

lar cross section is proportional to the external shearing
force V, namely,

T=Yv=kK/ (3)

where mis moment of area of flange about neutral axis and I
is moment of inertia of the beam. The stress distribution
of a plane plate loaded in that manner will now be analyzed.

Throughout this investigation the span of the beam is
taken as 21 and the width of the flange as 2b; the thick-
ness of the flange is taken as unity. Thus figure 2(a)
represents the flange of an I-beam loaded by a single con-
centrated force in the center; figure 2(b) shows the flange
of a box beam under uniform load. Because the problem is one
in plane stress, the solution reduces to the integration of
the differential aquation. (See reference 4.)

+2—2it- +A =0 (4)
dx* 3y4

where $is the Airy stress function. Then the stresses are

(5a)

(5b)

r =
~ gxdy (5¢)

"4
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where cr™ is the longitudinal stress; o~y, the transverse
stress; rxy> the horizontal shear stress. Equation (4)
is satisfied by any function of the form
n
® = 2 (Ancosh + Bnsinh a”y + C2y cosh
+ Drf sinh al?y)cos anx ®)
where

The constants An, Bn, Cn, Dn follow 'from the boundary
conditions. By substitution of @ (equation (6)) in equation
(5c) it is possible to represent the distribution of rxy
along the loaded edge of the plate as a Fourier series.

The boundary conditions common to both types of beams (see
figs. 2(a) and 2(b)) are:

cry

0 at y + b

and <rx

0 at x + 1

The second of these conditions is satisfied by making n odd.
Two constants are required to satisfy the first condition.
In addition, there are two more conditions in along

the longitudinal edges that vary according to the particular
case. Thus, two more constants are required to satisfy
these conditions, and hence all four constants are determined.
It may be noted that this solution results in a set of
horizontal shearing stresses along the short edges x = + £9
which may or may not coincide with the actual distribution
In any given beam, depending on the type of practical end
support. However, because of equilibrium and symmetry, the
resultant of these stresses is zero along either edge.
Therefore, these stresses, according to Saint-Venant*s
principle, have only local effects, which disappear at a
short distance from the edge. But from the designerls point
of view only the stress distribution at and near the cross
section of ma-Hwpgm moment, that is, near the center portion
of the beam, is of interest. These stresses will not be
affected by the shearing stresses along x = + 1 e
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Having thus determined, all four constants, one is able to
compute the stresses at any point of the flange by means of
equation (5) and the equivalent width from equation (2).

Stress Distribution in I- and T-Beams

The general solution just outlined applies only to plates
loaded along their edges. Since, for |- and T- beams, the
shear from the web acts along the center line of the flange,
let the flange be cut in half along the x-axis. The distribu-
tion of these applied shear stresses at y = 0 is expanded in a
Fourier series in sine only and with n odd. Let Kn be the
coefficients of this series. Then the boundary conditions are;

n
I Knsin anx

(1) Aty =0, rxy

(2) Aty = b, Cry =10

(3) Aty =b, Ty =0

(4) Since the plate is cut in half along the x-axis,
there is the further condition that the two
halves are prevented from separating along the
cut. Since bodily translation or rotation of
either half is prevented by equilibrium and
symmetry, this condition results aty =0 in

Conditions (1), (2), and (3) are evaluated by using for
crx equation (5a), for -ry equation (5c), and for @ equation
(6). In order to evaluate condition (4), let u be the dis-
placement in the x-direction and v in the y-direction. Then
the longitudinal strain

eX = ax (7a)
and the shear strain

/ = 1 r = - A 9
Xy ayax XN G (7b)
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where E is Young*s modulus, ”~ is Poisson*s ratio, and

G = is the modulus of elasticity in shear. |If equation
2(1+>»

(7a) is differentiated with respect to y

3gu 1 _j 35¥

- 8a
dxdy% 3dx/~dy' (82)

And if equation (7b) is differentiated with respect to with
N > y =0 = 0
_I,-£ (8b)

If the right sides of equations (8a) and (8b) are equated, it
is seen that aty =0

if 3zZf ) AV A (8¢c)
NdyzZzzy? =0 EK3y3 d& y'vn

Equation (8c) and conditions (I), (2), (5), result in four
simultaneous equations in An, Bn, Cn, Dn. Solving these, the
four constants are

(1 - W sinh2anb + (I +7)(anb)2

An = - (9a)
n an(sinh 2anb + 2anb)
Bn = Kn ! 0 (9b)
2an
Gn =Kn 12;],\ (9¢)
(1 + ~)cosh2anb + (I- »)
(9d)

an(sinh 2anb + 2aQ)
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All these constants are expressed, in Kn, that is, in terms of
the Fourier coefficients of the shear distribution series
along the loaded edges. It is therefore possible to adapt the
solution to any given type of loading.

Stress Distribution in Box and U-Beams

The flanges of such beams are loaded by shearing stresses
along both longitudinal edges. (See fig. 2(b)). The distribu-
tion of these stresses again is expanded in a Fourier series in
sine only and with n odd, the coefficients of which are £n.
Then the boundary conditions are:

(1) Aty =z b, "Tyry = + Z Ensin aX

(2) Aty =+b, o~y =0
(3) And by symmetry, at'y =0, =0

I f equations (5a)f (5c¢). and (6) are used, four simultaneous
equations are again arrived at from which

2b sinh anb

An = - KG ?a__ﬁ(tsinh 2anb2+ Zanb)7 (102)

B ™o (10b)

ch=0 (10¢c)
2 cosh a”b

Bn 5 KA —Tv (1od)

an(sinh zanb * Zang)

Equivalent Width for Different Loading Conditions

In order to derive data for use in practical design,
three kinds of loading are investigated for both types of
beams and for different ratios of width to span, b/3 . The
types of loading and the corresponding shear distributions
are shown in figure 3. These shear distributions are
expanded in Fourier series in sine only and with n odd. The
respective Fourier coefficients are:

For loading (a)

Kn =+~ (Ha)
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For loading (b),

1
Ky - & (nb)
For loading (c),
Kn=2*27% sin’}1r (lie)

If these coefficients are introduced into equations (9) and
~0), the stress function 9 is then determined from equation

In order to compute the equivalent width 2bl. use is
made of equation (2). Introducing into this equation
from equation (5a)

(12>

The maximum stress <max (see fig* 1) occurs at the web,

that is, at y =0 in I-beams and at y = + b in box beams.
Thus,

-12
= _}3 for | beams, and
y=0

o max 72

or for box beams
max dy% y=b

For design purpose it is the ratio of the equivalent
to the actual width 2bf/2b that is important. If ~ax
is substituted into equation (12), one obtains for
I-beams -

£2 ly=b

2b1 - 1 zyl =

b y (13a)
<&ro

and for box beams
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11 /97P

glt))« _ i ayl/- (13b)
(ifi>
3/2 y=b

Having obtained the reduction factor 2b*/2b, it is then possible
to determine the equivalent width of any given beam, multiplying
the actual width by the appropriate reduction factor. The

maximum stress is then obtained from the ordinary flexure
formula

1 =JL
Sf

where Mis the bending moment and S1 is the reduced section
modulus determined by using the equivalent width 2bl instead of
the actual width 2b.

The stress concentration and hence the equivalent width
vary along the beam. For concentrated loads the concentration
is largest, that is, the equivalent width is the smallest, at
the point where load is applied, which usually is also the
section of maximum moment. For beams with uniformly dis-
tributed load, the maximum moment acts at the center of the
span, and hence it is this place for which the reduction
factor is to be determined. For use in design, reduction
factors pertaining to the sections just mentioned have been
computed for a wide range of span: width. It is easily seen
that the reduction factors for loading (b) and (c) of figure
3 are identical. A comparison of equations (lib) and (lie)
reveals that Kn for loading (c) is obtained from Kn for

loading (b) through multiplication by — . For loading
-+ N2

(b) , however, the critical cross section is the center of
the span where cos ajpc = cos 0 = 1; whereas for loading

(c) it is the quarter points where cos anx = cos

Hence, the stresses at that point are obtained from those
at the center for loading (b; by multiplying the series for

jc, term by term, by 1/2. Since this factor appears both
in the numerator and in the denominator of the reduction
factor 2b’'/2b (see equation (12)), the equivalent widths
for both types of concentrated loads are identical.
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It is therefore safe to apply this reduction factor to any type
of concentrated loading.

In table I numerical data are given for the reductionfactors of
both types of beams investigated and for distributed and con-
centrated loading.

TABLE |

Ratios of Equivalent to Actual Width, 2b!/2b

Beams - and T- Box and U-
i/b p(a) P(b) p(@) p(b)

T 0.857 0.575 0.880 0.557
2 958 791 957 778
3t 981 881 .983 681
4 1990 927 .989 926
5w .993 949 .994 .950

(a”p is uniformly distributed load

(b)P s concentrated load at center of span or
two equal concentrated loads at quarter
points.

The only numerical results given in Schnadells paper on
box beams (reference 2) pertain to a beam of ratio span:
width = *¥e For this beam Schnadel found for 2bl/2b the
following values: 0.553 for center load, 0.882 for uniformly
distributed load, and 0.547 for quarter-point loads. It is
seen that the differences between the results obtained by
Schnadells cumbersome method and those obtained by present
simple approach are negligible for all practical purposes.

It follows from table | that the reduction factors for
I- and T- beams are practically identical with those for box
and U-beams except for extremely wide beams. For design
work the values for |- and T-beams may therefore be used also
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for box and U-beams. For more convenient use these factors are
presented in figure 4 in the form of two curves from which for
any particular beam and loading the reduction factor can be
read immediately.
EXPERIMENTAL VERIFICATION
In order to facilitate an experimental test of these
analytical results, it seems desirable to develop data that

can be directly measured on test specimens. For this reason
the ratios “max/ ~*min kave been computed for I-beams, where

a- = (O ﬁnd w =
max 2ynry=0 mx dy”N'y”b

The results are given in table I1.

TABLE 11
Ratios of Maximum Stress at Web to Minimum Stress at

Edge of Flange for I-beams, cmi_n

i/b - B P
* 1.30 2.50
2t 1.07 1.46
37T 1.03 1.23
At 1.015 1.14
5@ 1.005 1.09
Extensive experimental work has been carried out to
check the analytical results. It included wide-flange rolled
sections (d = 0.£7 inch) and cold-formed beams made of thin

sheets (d = 0.077 inch and d = 0.049 inch). A range of JL/b
from 4 to 18 has been covered and center loading as well as
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quarter-point loading has been investigated. Strains were
measured by means of Huggenberger strain gages and stresses
were computed from the strains. Because this test work is
part of an extensive research program, sponsored by the

American Iron and Steel Institute, the experimental details

will be reported elsewhere. The results are summarized in
figure 5, which gives the theoretical curves and the
experimental results for the eleven beams tested. It is seen

that the coincidence of empirical and analytical results is
very close throughout the entire range. For this reason it
is believed that the equivalent widths computed analytically
may safely be recommended for use in design.

EFFECT OF DISTORTION OF CROSS SECTION

The foregoing analysis is based on the assumption that
the flange may be regarded as a plane plate, thus allowing
the application of the theory of plane stress. All other
authors dealing with this problem have made the same
assumption without investigating its validitylfor wide
beams of thin sheet material. Actually, however, the flange
is not only curved longitudinally in the loaded beam, but,
under the action of the longitudinal bending stresses, also
tends to curve in the direction perpendicular to the axis
of the beam. For this reason it is necessary to investigate
whether or not this double curvature materially affects the
stress distribution.

An exact solution of this question would require a
mathematical apparatus inappropriately involved for the
given purpose. For this reason an approximate method will
be used sufficiently exact for the present purpose*

Figure 6(a) represents a part of an I-beam In pure
bending; figure 6(b) gives a short element ab of the bottom
flange. It is seen that, because of the curvature of the
loaded beam, the tensile forces H per unit width of the
flange act at an angle dtp and hence have a resultant R
bisecting this angle, that is, acting in a radial direction.
Because His distributed over the entire width of the
flange, R is similarly distributed. Therefore this
resultant R acts as a force perpendicular to the surface of
the flange tending to bend the flange inward toward the
neutral axis. For this reason the distance from the flange
surface to the neutral axis becomes smaller at the outer
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than at the inner portions of the flange. Because the bending
stresses are proportional to this distance to a degree of
accuracy sufficient for the present purpose, they decrease from
the web toward the edges.

From figure 6(b) it is seen that, per unit length of
flange,

(14)

R = a =a =
ds r

r

where r is the radius of curvature of the bent beam. As shown
in figure 6(c), this R represents a transverse load tending

to bend the flange. The differential equation for the bending
of a long rectangular plate (from reference 5, equation (67)) is

dgw_ _ 1  _ M (15)
dy£ r D
where w is the deflection of flange
D the flexural rigidity of plate (.12(1Ed" 57) and. d the

thickness of plate

It is seen that equation (15) is of the same type as the
differential equation for the bending of beams

dew _ _ J,

dy?2 El

except that the beam rigidity EIl is replaced by the plate
rigidity D. For an exact solution the differential equation

d~w/dy4 = p/D

for cylindrical shells should be used, where p is the total
transverse force and consists of R and of the elastic
reaction. It can be shown that for the present purpose the
numerical difference between the results based upon this
exact approach and those obtained by using equation (15)

14
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are negligible. Hence the familiar formulas for the deflec-
tions of beams can be applied to those of the flange if El is
replaced by D. On this basis the maximum deflection w*ax

(see fig, 6(c)) of the flange out of its plane will now be
determined*

It is assumed that cr and thereby R can be taken as
constant throughout the width of the flange which is suf-
ficiently exact for small values of w. Then for I-beams
from the ordinary cantilever formula (see reference 6, p*
356)

wmax 8 D (16)

For an investigation of the stress distribution under actual
working conditions, let ~ be the working stress. Then the
radius of curvature r of the beam is determined from

_ p g°wl
" h
to r « sf- (17)
w
where | is the moment of inertia of the beam. |If equation

(17) is substituted in equation (14)

And from equation (16)

2 . . .
maxzzchSDEh =3(n)2 EJF] (i - ~2) (is)

The value of wffiax having been determined, it follows from
the linear variation of ax over the depth of the cross

section that the ratio of the maximum stress at y = 0 to
the minimum stress at y =+ b is

Suax —--------- h------- (19)
min h - 2wmax
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If the same considerations are applied to box and U-beams and
if the generally weak restraint of the flange at the web is
neglected, the flange may be regarded in this case as a
simple plate freely supported at the webs. From reference 6,
p. 250,

wmnax " (20a)

or, since here the span L = 2b,

" = £ fife! (20b)
max 24 D

and using again equations (15), (16), (17)

'max = (1 - (£1)

If this wmax is introduced in equation (19), the stress
decrease due to the distortion of the cross section can again
be determined.

It is thus seen that the curvature of the beam results
in itself in a nonuniform stress distribution in the flanges,
which is an effect entirely different from that investigated
before on the basis of the distribution of the shearing
forces. An exact investigation should therefore consider the
joint action of both those effects. It can be shown, however,
that in beams of practically possible dimensions the effect
of the curvature of the beam is exceedingly small and may
therefore be neglected in practical applications.

In order to establish a criterion indicating in which
case the effect of the curvature of the beam may be neglected,
it will be assumed that a stress decrease of 4 percent is
negligible for all practical purposes. Such a stress
decrease results in a reduction of the equivalent width of
less than 2 percent, which is less than any attainable
design accuracy. It is therefore necessary to establish a
criterion such that

“hax ©  Amin = 0%04 <—max G2)

16
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Because the stresses are proportional to the distances from
the neutral axis, if equation (18) is used for I-beams

Wa* = 6(3S)2(~)2(1 ~2) =0.04
hig (35)2(7)2{ )

or

bE < 0.0817 B

dh * Vi _ 2 (23a)

and, in particular, for steel beams with E = 3 x 10"~ pounds
per square inch

bf < g.57 X IQ6

dh aw (23b)

where b, h, d are, respectively, half the flange width, the
depth, and the flange thickness of the beam; crw# the
working stress; and ~, Poisson*s ratio.

Similarly for box beams, if equation (21) is used

= io(M)2(M)2@ - Vv2) < 0.04

or
bf < 0.0633 E (24a)
n [l -

and particularly for steel beams
bf < 1.98 X iq6 (£4b)

dh " %

employing the same symbols as above.
Hence, the data for the equivalent width given in table

I and figure 4 may be applied to any beam satisfying the
conditions expressed in equations (23) and (24). It may

17
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easily be verified numerically that practically all beams with
structurally possible dimensions will satisfy these conditions.

CONVERGENCE OF THE SERIES INVOLVED

In the foregoing analysis, the reduction factor 2bf/2b
as well as the stress concentration ~ax/ n are obtained
as quotients, the numerator and the denominator of which are
in the form of a Fourier series. The numerical values given
in tables | and Il have been obtained by taking nine terms of
each of the series involved. In order to obtain an estimate
of the accuracy thus obtained, it seems advisable to analyze
the question of the convergence of these series. This
analysis will be made here for I-beams only because the
method is essentially the same for box beams*

In order to investigate the numerator of equation (13a),
the coefficients An, Bn, Cn, Dn from equations (9) are
substituted in equation (6), which results in

y=b

dy
y=0

Substitution of the appropriate Kn from equations (Il) gives
for uniformly distributed load

COfl|t
"1 1n2 ~i— ny
and for concentrated load
?£s - 2- — =2 congt
i °n 1 » in 2

It is seen that each of these expressions is an absolutely
convergent series, the first few terms of which decrease
rather rapidly.

Making the same substitutions in the denominator of
equation (13a), one arrives at

18
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(f~}y=0 =1 (V n + 2Dnan>

2nK (3 +V)cosh2anb + (I - *>) + (I + %)Canbn)2
1 9 £ sinh anb cosh anb + 2 anb

Because the hyperbolic functions involved increase exponent-
ially with an, it is seen that for higher terms (an large)
the individual terms of this series approach the correspond-
ing terms of

| Kn coth anbs”~ | K n

because for large an coth anb = 1. [If for uniformly dis-
tributed load Kn is substituted from equation (lla), it is
seen that the higher terms of this series are of the type

n .
Z + ¢cQy3” which again is absolutely convergent. For con-

centrated load, however, substitution of from equation
(lib) gives a series the higher terms of which are seen to
approach those of the series v QSggt while the first few

terms of the former series decrease more rapidly than

those of the latter. Hence, the series for the denominator
of equation (13a) for concentrated load is divergent,
although the individual terms approach zero with increasing
n and the first few terms decrease rather rapidly.

In a purely mathematical sense this divergence does
not threaten the validity of the solution. |Indeed, @
(equation (6)) satisfies the original differential equa-
tion (4) not only as a series but term by term. Hence,
the series may be broken off at anv arbitrary term and the
sum will still satisfy equation (4) and all other equations
derived from it. Therefore, the problem consists in the
physical rather than in the mathematical legitimacy of
taking a small number of terms of a divergent series.

It will be remembered that by means of the first of
the four boundary conditions the given shear distribution
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at y =0 is expressed in a Fourier series, the coefficients
of which are Kn. In order to obtain full coincidence of
this series with the shear diagram of figure 3(b), one would
have to take an infinite number of terms. Breaking the
series off after nine terms means that the discontinuous
curve of figure 3(b) is replaced by a continuous, though
sharply changing. curve. As an example such a curve, but
for four terms, is given in figure 77a) (reference 7, p. 63).
For nine terms, part a of this curve will be correspondingly
shorter. 1f one now regards the closely corresponding

curve of figure 7(b) as the diagram of shear distribution it
is seen that it corresponds to a loading of the kind of
figure 7(c) rather than to an ideally concentrated load.

The length a is equal to one-half the wave length of the
last sine wave added, i.e., to span/n or in our case to
span/17. However, the actual shear distribution will just be
of this same kind for the following two reasons: All con-
centrated loads actually are distributed over a small length
c (fig. 7(c)) of the span and, before reaching the flange,
the resulting shear will be further distributed in the web.
Therefore, by taking a definite number of terms, the analysis
is based on a shear distribution which, In essence, is
exactly of the kind actually occurring under concentrated
loads.

It remains to verify whether taking nine terms of the
corresponding series Is sufficiently accurate for the
given purpose. This question may be answered in the affirma-
tive for the following three reasons:

1) In actual structures concentrated loads usually
are distributed over a length along the span
of not less than span/50. Without detailed
investigation of this question, it may safely
be assumed that the further distribution in
the web doubles or even triples this length.2

2) The reduction factor 2bf/2b changes very little
with decreasing values of a. For instance,
for a beam of i/b = 2ir, 2bf/JEb = 0.828 for
six terms and 2b*/2b = 0.791 for nine terms.
Thus an increase in the length a of about 55
percent (span/ll instead of span/17) results
in an increase of less than 5 percent in the
equivalent width. For higher terms this dif-
ference becomes still smaller.
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3) The experimental results summarized in figure
5 have been obtained by applying loads in
some cases directly through rollers and, in
other cases, through distributing plates of
width = spau/24 to span/48* The good coin-
cidence of analytical and empirical results
is sufficient proof for the adequacy of the
chosen number of terms*

GENERAL CONCLUSION

The primary purpose of the investigation was to analyze
the stress distribution in the flanges of wide, thin-wall
beams of I, T-, U-, and box shape and to obtain results
suitable for direct application in design. *It is shown that
the magnitude of the bending stresses in the flanges of such
beams varies across the width of the section and that the
amount of this variation depends upon the dimensions of the
beam and upon the type of loading*

Therefore, in the determination of the magnitude of
the maximum bending stress in design work, the equivalent
width of such flanges should be used instead of the actual
width. In figure 4 curves are given from which this equiv-
alent width can be read directly for any particular type of
beam and loading.

For the purpose of facilitating the experimental
verification of the analytical results, further curves have
been computed that give the ratios of the maximum to the
minimum bending stress in the flanges. These ratios have
been checked experimentally by means of strain measurements
on 11 I-beams. The experimental data confirm very
satisfactorily the analytical results.

It is further shown that the cross sections of wide
beams made of extremely thin sheets are subject to dis-
tortion that gives rise to additional stress concentration.
Equations (23 and (24) furnish simple conditions for
determining the limiting dimensions of beams for which the
effect of this distortion may be neglected in practical

applications. It may easily be verified numerically that
practically all beams of structurally possible dimensions
will satisfy these conditions.

College of Engineering, School of Civil Engineering,
Cornell University, Ithaca, N. Y., June 1940.
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Figure 3.- Shear distribution for the three
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(c) Two concentrated loads of equal magni-

tude applied at quarter points.
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by concentrated force in center;
representation of the actual shear distribu-
tion by four terms of a Fourier series.

Figure 6.- Actual stress distribution over

width of flange due to distortion =
of cross section of I-beam, (&) Side-view of %
section of l-beam, (b) Element, ab, of bottom
flange, (c) Distorted cross section and
stress distribution.



Performance of thin steel compression flanges

Dr GEORGE WINTER
Professor of Structural Engineering, Cornell University, Ithaca, N. Y, U. S A

The economic use of standard, hot-rolled steel shapes is limited to
relatively substantial structures. The need for lighter steel members for
small scale industrial, commercial and residence building initiated the use
of structural members made from sheet steels by cold forming (cold rolling
or pressing). Roof decks of a considerable variety of sizes and shapes,
formed in this manner, as well as structural shapes of I-, channel, and
similar sections’ have been in use in the U. S. A for many years. The
development of automatic spot welding on the one hand, and the wartime
demand for light, pre-fabricated buildings on the other, have stimulated
this development.

It was soon realized, however, that accepted design procedures had to
be modified to suit the special requirements of such thin-walled structures.
The American Iron and Steel Institute, in 1939, inaugurated a research
program under the writer's direction at Cornell University, which has
resulted in the « Specifications for the Design of Light Gage Steel Structural
Members » issued by the Institute in 1946.

One of the main problems in this connection is that of the performance
of thin compression plates, both at -loads causing failure and at the lower
design loads. Th this connection two types of such plates must be distin-
guished :

a) Long plates that are stiffened along both longitudinal edges, such
as webs of channels and I-beams;

b) Long plates that are stiffened only along one longitudinal edge, such
as the flanges of channels, I-sections, and angles.

The present paper is concerned only with the first of these two types.

The classical theory of elasticity allows the calculation of critical
buckling loads of such plates by the so-called small deflection theory, that
is bv the solution of the differential equation

ddw . 0 ddw . ddw __ st Ww
+ dx‘cy' + ~dyd~~ ~ l)~dxr m ()
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In contrast to the phenomenon of column buckling, the critical stresses
calculated from eq. 1 do not represent the limit of carrying capacity of
edge supported plates. Indeed, in such plates, deflections can not increase
indefinitely, as they do in columns at the Euler load. Consequently, once
the critical stress is passed, the hitherto plane plate merely deforms into a
non-developable, wavy surface, but continues to resist increasing stress.
The deformations just described result in additional, particularly transverse
stresses which act jointly with the imposed, primary longitudinal com-
pression stress. In analyzing this state one can no longer neglect the
influence of the deflections on the distribution of stress, which had been
the basis for the development of eq. 1.

The differential equation for this large deflection buckling of plates
was developed by Th. v. Karman in 1910, and reads as follows

ddw . d4w d4w

dx4 1 dx2dy2 1 dy4
Li( @*F d2w I au> 5*F d2w \
"Dj.gyz dx2 Oxdy dxdy 1 dy2 )

where F is a stress function. The complexity of this equation has so far
prevented its explicit solution for rectangular plates. It is for this reason
that this problem had to be investigated primarily by experimental methods.

In this connection the concept of the equivalent width, initiated by
Th. v. Karman, proved most helpful. This concept is best visualized by
means of a model. Imagine a square compressed plate replaced by a lattice
of bars. Beyond the buckling load of the compressed rods the lattice will
obviously distort in the manner shown in fig. 1. Two circumstances are

clear from this picture :

a) The compression bars cannot
fail as simple columns by continued
deflection because they are restrained
from doing so by the cross-bars.

b) In the stage shown in the figure
the total load is obviously not equally
distributed among the compression
bars; in view of the variations of the
deflections the. bars near or at the
edges carrv more load than'those near
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the center, and failure will occur when the more heavily loaded bars
will reach their yield strength.

It can be seen, therefore, that after first buckling has occurred, the
stress in a compressed plate must show a distribution as given in fig. 2.
The effective width be is that width which will make the area under the
dotted lines equal to the area under the actual solid stress curve. Once this
effective width is determined, design can proceed in the usual manner,
merely by replacing the actual plate area 6 X ~ by the equivalent area

be X T. v. Karman gave the following tentative expression for this effec-
tive width at the failure load :
be i-9 (3)

for Poisson's ratio v= 0.3 (X.

Subsequent tests by £. E. Sechler showed that this expression was
reasonably correct for very wide and thin plates, but that a smaller value
of be results for plates of smaller b/t-\alues (2.

All these investigations were concerned only with the determination
of the ultimate or yield strength of such plates. In addition, the amount
of test evidence even in this respect was limited.

For practical design, however, it is necessary to determine equivalent
widths not only at failure, but also at smaller loads, iri particular at service
loads. Indeed, since slight buckling occurs for large bjt at loads far below
the ultimate, the stress distribution of the type of fig. 2 takes place not
only at failure but frequently at design loads. Hence, in a flexual member
of the type of fig. 3, stresses and corresponding deformations are distributed
at design loads in the manner shown. The neutral axis of such a member
is then located below the centroid of the area, and its location as well as
the moment of inertia, section modulus, etc. must be computed by using
the equivalent instead of the real width of the compression flange. That is,
in order to compute stresses, deflections, and other design information for
any load up to failure, the actual section, fig. 3a, with its non-uniform
stress distribution can be replaced by the equivalent section, fig. 3b. Since
the maximum stresses, and corresponding strains, at the edges of the webs
are equal for these two sections, all required information can be gained
from this equivalent section.

It was therefore necessary for practical design to determine the effec-
tive width not only at failure, bnt also at lower loads.

For this purpose more than 100 tests were carried out on members of
the type of fig. 3, and other shapes, with bjt-ratios from 14 to 429 and
with steel yield points from 20 100 to 57 800 psi. Deformations were mea-
sured in these flexural tests and it was found, as anticipated, that the
neutral axis was located below the centroid, and was shifting downward
under increasing load, i.e. with decreasing effective width.

Only the most recent of these tests are reported here (3.

Specimens of these tests were of the type of fig. 3a, 3 in deep, 5 to 10
in wide, with thicknesses from 0.0288 tot 0.0615 in. Corresponding width/

0) Th. v. Karman, E. E. Sechiter, L. H. Donnell, The Strength of Thin Plates in Compression
(Trans. Am. Soc. Mech. Eng.. Vol. 54, 1932, p.

(8 E. E. Sechler, The Ultimate Strength of Thin Flat Sheet in Compression, Publication
No. 27, Guggenheim Aeronautics Labor, Pasadena, Cal., 1933.

(3) Geo. Winter, The Strength of Thin Steel Compression Flanges (Proc. Am. Soc. Civ. Eng.
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Fig. 3a

thickness ratios b/t ranged from 86 to 344, yield points of steels, from
tension tests, were found to range from 24 400 to 56 850 psi. Specimens
were tested as beams, with two equal loads at the quarter points of the
span. In addition to deflections, strains were measured at the top and
bottom of the flanges, allowing an experimental determination of the posi-
tion of the neutral axis. Finally, displacements of the top flange out of its
original plane were measured at six points along the center line, in the
portions of the beams between loads.

Information on the magnitude of the equivalent width was gained
from these tests in the following manner : The position of the neutral axis,
at various loads, was established from strain gage readings. Knowing this
position, in a section like fig. 3b, it is simple to compute the corresponding
value of bc. With the equivalent section determined in this manner, the
maximum compression stress sna corresponding to the particular load is
computed by customary methods. The tests, therefore, give information
on the relation of bcto b/t and sna

To evaluate this relation, eq. 3 is rewritten as

where C is a coefficient to be determined from test. Previous investigations
by Sechler and the writer (2 (s) established that C depends primarily on

the non-dimensional parameter It is for this reason that,

in fig. 4, the experimentally determined coefficients G are plotted against
this parameter. Determinations were made, for each test specimen, at the
yield load and at 1/3 and 2/3 of that load.

Although the scattering of test results, as depicted in fig. 4, is quite
considerable it is clearly seen that the coefficient C decreases with increasing

E t\

------ -r-J The scattering is apparently due to the extreme sensitivity
ax \b/

of this method to very minor experimental deviations. Indeed, a variation
of 1 % in the experimentally determined location of the neutral axis will
cause, in many cases, a variation of 10 % and more of the value of C. For

Vol. 72 p. 199, 1946 and Trans. Am. Soc. Civ. Eng., Vol. 112, p. 1, 1947). See also Bull. No. 35,
Part 3- Cornell University Engg. Experiment Station, Ithaca, N. Y., 1947.
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this reason, in interpreting fig. 4, the data should be regarded as stalis
tically distributed, rather than as strictly accurate.

With this in mind, the straight line drawn on that figure was thought
to represent a reasonable, and somewhat conservative means of developing
a simple formula for the equivalent width bc. The line is seen to start at
a value of 1.9 for extremely large 6/f-values and relatively high stresses,
for which case, therefore, the experimental determinations are in substan-
tial agreement with v. karman’soriginal eq. 3. The formula for b, obtained
from this straight line can be written as

6,= 19 N— (I — 04
r ex \
which is seen to be identical with eq. 3, except for the modifying term in

parenthesis, which, as pointed out, approaches 1 closely for large b/t and
e

< max-

cW
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Fig. 5. Effec-
tive width of
compression
elerents saf-
fened along
both edges.

Eqg. 5 indicates that a compression plate is fully effective (uniform
stress distribution, be= b) for values of 6/7 smaller than

(A)1= 0.85 (/£ - 16)

and that, for values above (6/7)1 deformations, deflections, and yield loads
can be calculated with good accuracy by using the effective instead of the
real width.

By solving eq. 6, for smax it can easily be calculated that the first redis-
tribution of stress, that is the first gradual formation of buckling waves
occurs at stresses equal to sct/4, where s is the critical buckling stress
obtained from the small deflection theory, i.e. from eq. 1. this result is
not amazing. Theoretically, an ideally plane plate should not buckle at
stresses below scr. Actual sheet steel members, however, are not perfect
but possess initial distortions of shape, which result in small deflections at
stresses below scr. The situation is comparable to that of initially bent or
eccentric columns, which also deflect below the Euler load.

The fact that the initial shape has a definite influence on the per-
formance of such plates, causes considerable scattering of test results. These
are also influenced by the amount of restraint provided by adjoining mem-
bers, such as the webs in fig. 3. For this reason eq. 5 represents merely a
conservative statistical expression of test results.

Fig. 5 shows a graphical representation of eq. 5 from which the
téffeptive width can be read directly for any given b/t and E/sna for use in

esign.

The findings of this primarily experimental investigation merely repre-
sent an elaboration of v. Karman’'s concept. They improve the accuracy
of his original expression, particularly for plates with moderate b/t. In
addition, they prove the important additional finding that the same
expression, eq. 5, can be applied with good accuracy to stresses occurring
at design loads, as well as to failure stresses.

The real whorth of an equation of the type of eq. 5 depends, of course,
on the degree of accuracy with which it predicts the actual carrying
capacities and deflections of test beams. The following table contains, for
the 15 beams whose results are plotted on fig. 4, the yield loads as deter-
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mined from test, and those computed by means of the equivalent section,
fig. 35, using eq. 5 for determining the equivalent width.

ie oin ie oad, Yield L. P
NF b/t vield P t YCoIrr(:pLIJ_tedd erestoad Deviation

psi Ib 1) do
1 95 27 500 2 660 2 300 — 135
2 80 36 000 3 640 3 600 — 11
3 109 37 400 2 730 2 500 — 84
4 140 30 150 1 480 1 550 + 47
5 175 25 750 964 1 100 -f 141
6 172 24 700 945 1 025 + 85
7 155 25 850 1 160 1 200 -f 34
8 175 47 200 4 520 4 500 — 04
9 163 56 850 5 570 5 500 — 13
10 222 24 400 1 845 1 760 — 4.6
n 216 36 050 2 550 2 250 — 118
12 284 30 650 | 523 1 480 — 2.8
13 303 25 100 1 165 1 280 + 9.9
14 339 28 000 1 052 940 — 10.7
ld 344 27 650 1028 1 060 + 3.0

average deviation
— 0.7 o0

It is seen that, for a very wide range of 5/t and yield point stress, eq. 5
allows the prediction of the actual carrying capacity with very satisfactory
accuracy. The same was found to be true for the numerous earlier tests (3).

It is interesting to note that despite the rather bad scattering of some
points on fig. 4, such as points 4, 8, 11 and 15, the predicted and actual
carrying capacities of these four beams, as given in the table, are in very
satisfactory agreement. This supports the opinion advanced before that the
scattering in fig. 4 is due mainly to inevitable inaccuracies in the empirical
determination of the neutral axes.

For practical design, deflections are of interest at design loads rather
than at yield loads. Since be depends on the value of snmax the effective
moment of inertia is variable and must be determined for any given load.
The « Design Specifications » mentioned in the introductory paragraphs
stipulate a factor of safety of 1.85. For this reason, a comparison of mea-
sured and computed deflections is given in the table below for loads
approximately equal to the computed yield loads divided by 1.85. Further
computations, the results of which are omitted here, show that the same
general picture as given in this table obtains for other values of loads, up
to the yield load. The table gives the deflections d measured in tests at the
load P, and the deflections computed for that load (a) by using the equi-
valent width 6Cand (b) by using the full unreduced width 5.
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p d,fromtest d, computed d, computed
N* . using be, % using b do
Ib in in [
1 1 165 0.090 0.091 11 0.085 4 56
2 2000 0.120 0.118 4 17 0.111 4 81
3 1 495 0.128 0.131 2.3 0.108 4 185
4 811 0.108 0.097 4 10.2 0.076 4 421
5 526 0.076 0.072 4 56 0.055 4 38.2
6 514 0.068 0.068 0.0 0.054 4 25.9
7 635 0.078 0.075 4 4.0 0;060 + 30.0
8 2 500 0.128 0.161 20.5 0.122 4 49
9 3 080 0.170 0.195 — 128 0.148 14.9
10 1010 0.072 0.083 - 133 0.064 -1- 125
1 1 395 0.102 0.119 - 142 0.089 4 146
12 833 0.083 0.100 - 170 0.066 4 258
13 635 0.061 0.074 17.6 0 055 4 109
14 574 0.075 0.078 - 3.9 0.052 q 44.2
15 559 0.077 0.075 + 2.7 0.050 A4 54.0
Average Average
deviation deviation
— 52 % 4 23.3 do

The table shows that by using lhe effective width be deflections are
computed with an average accuracy of about 5%, whereas the use of the
full, unreduced section for this purpose leads to an average error of about
23 %. Though scattering is again considerable, all significant discrepancies
in the first case are on the safe side (computed deflections larger than
measured values). On the other hand, by using the full, unreduced sec-
tional area, errors on the unsafe side in several cases reach magnitudes of
40-50 %; by this method, for all beams, actual deflections were found to be
larger than computed.

It should be said that an accurate computation of deflections by the
equivalent width method would involve the use of a moment of inertia,
variable along the beam. Indeed, since bc depends on smai, the effective
moment of inertia increases from a minimum value at the point of maxi-
mum moment to a maximum value near the supports. In the table above,
however, only the minimum moment of inertia was used. For the present
tests this does not lead to too large an error, since Mna& is constant over
lhe center half of the span, for quarter point loading. Had a variable
moment of inertia been used, all deflections computed by using be would
have been obtained slightly smaller, to various relative degrees, resulting
in a still belter average agreement with test results. This method of cal-
culation was not used because, in routine design procedures, engineers
can hardly be expected to spend the very considerable amount of time
necessary for such detailed calculations with variable moment of inertia.

The evidence presented above, which is additionally supported by a
great number of other tests previously published elsewhere (3) indicates
that the proposed method allows, with reasonable accuracy, the deter-
mination of carrying capacities as well as deflections of members con-
taining thin compression flanges. The measure of agreement with test
results is not as close as would be obtained on customary, heavy steel struc-
tures. This, however, is predicated on the inherent character of thin sheet
material with its inevitably larger imperfections as to accuracy of sheet
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thickness, of geometrical shape, etc. The discrepancies obtained in these
tests are believed to be tolerable practically; they are certainly not larger
than these observed in tesls of reinforced concrete or timber structural
members.

The use of eq. 5 is somewhat cumbersome for routine design compu-
tations. The graph of fig. 5 allows the direct determination of be for any
given stress and b/t-ratio. The initial straight line to which all curves are
tangent indicates the range over which the full width b is effective. It is
seen that the larger the maximum stress, lhe smaller is that limiting b/t
beyond which the effectiveness of the flange begins to decrease (see eg. 6).

In contrast to conventional, thick-walled steel structures, the cross-
sections of thin-walled elements distort at loads far below the ullimate,
and in most cases at values even below the design loads. The type and
magnitude of these deformations is therefore of interest, since an excessive
amount of flange distortion would obviously make such members prac-
tically objectionable even if their strengths and over-all deflections were
adequate for the purpose.

These distortions of shape, for members of the type of fig. 3, consist
of two separate kinds of deformation which superpose to result in the final
shape under load. The first, and more obvious, is the simple buckling
deformation. Indeed, ultimate stresses and frequently working stresses are
considerably above the critical buckling stress as determined from eq. 1.
Moreover, it was mentioned in connection with eq. 6 that on the basis
of this equation incipient, extremely slight flange distortions apparently
occur at stresses of the order of s:rf4. Consequently, at stresses of about
that magnitude, the compression flange begins to buckle into a series of
approximately quadratice buckling waves. That is, the half-wave length
is about equal to the flange width b, and the general shape of each of these
half-waves is that schematically indicated on fig. 1. This type of defor-
mation, which was observed in all tests of this kind, is of course exactly
the one predicted by the mathematical theory of buckling of plates.

In beam specimens of the type discussed herein, however, a funda-
mentally different type of deformation is superposed on the one just dis-
cussed. This type, which was likewise observed in all tests, is not limited
to compression flanges; it occurs likewise if the beams of fig. 3 are turned
by 180° so that the wide flange is in tension. The following brief and
intentionally approximate analysis illustrates the nature of these defor-
mations and allows a reasonably accurate determination of their magnitude.

Consider an element of the flange, of unit width in the transverse
direction, and length dl longitudinally, as shown on fig. 6. Under load,
this element is curved, its radius, r,, being equal to that of the beam at that
cross-section. The total compression forces a both ends of the element
consequently subtend an angle dz and, therefore have a resultant

If the stress s is uniform over the width of the cross-section, R acts in
the same manner as an external, transverse load, as shown in fig. 6a,
tending to bend the flange toward the neutral axis. This bending is
governed by the simple equation for flexure of a long, narrow rectangular
plate under transverse load, i.e.
d2y I Mf
IT - <
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The maximum deflection is then found from the usual formula

5 st b4

38T771)~ * ©)
The use of this formula neglects the influence of restraint provided to the
flange by the webs. However, this restraint is of rather undetermined
magnitude. The webs of isolated beams deform as shown on fig. 6a, and
therefore afford little restraint. The restraint would be larger if such beams
were laid side by side, with webs in contact, as in a floor. In view of this
indeterminacy it seems best to neglect the unreliable effect of possible
restraint.

To find rbfor substitution in eq. (9) one has from standard, elementary

beam theory

El AT Ec
_ - 10
mb6 ; c 8 (10)
With this value of rb, the maximum flange distortion becomes
5
Ymax ~32 on

For tension flanges with their generally rather uniform stress distri
bution, this type of distortion is the only one that occurs and its magni-
tude can be determined with satisfactory accuracy from eq. 11. In com
pression flanges the longitudinal stresses vary over the width of the flange
as shown on fig. 2. Consequently, R is likewise distributed in this manner,
instead of the uniform distribution shown on fig. 6a. In view of the appro-
ximate character of this calculation, and of the uncertainty as to the
amount of edge restraint, the details of the actual distribution of s, and
other factors, an elaborate modification of rg. 11 to account for the stress
distribution of fig. 2 would represent a rather fictitious improvement. For
this reason it is believed that a sufficiently close approximation is obtained,
if, in eq. 11, the average stress of fig. 2 is substituted for 8 From the defi-
nition of the equivalent width, this average stress Is easily obtained from

\% ~ smav {‘b/\e J * (12)

For more information on this type of deformation, particularly for tension
flanges, see the writer’s earlier paper (4).

(4) Geo. W intfr, Stress-Distribution in, and Equivalent Width of Wide, Thin-Wall Steel
Beams, Techn. Note No. 784. Advisory Comm, for Aeronautics. 1940. Washington. D. C.
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In the tests reported herein, both types of deformation were clearly
observed. That is, the flanges showed a general « dishing » (smooth down-
ward deflection of the center line) on which was superposed the square-
wave pattern of the buckling deformations. By means of special apparatus,
the magnitude of these distortions of the flanges perpendicular to their
original planes were measured at six points along the center line of each
beam. It was found that at design loads (i.e. about Pyidd1.85) these defor-
mations reached a maximum of 1 % of the flange width for two of the
beams; and in most other cases they were closer to 1/2 %. Although these
distortions are clearly visible, it can be said that their magnitude at design
loads is sufficiently small so as not to interfere with the practical use of
such light gage steel members.

In conclusion it should be said that the information given in this
paper suffers from the evident disadvantage of being primarily empirical
and approximate. The theoretical complexity of plate buckling at stresses
larger than scr, as well as the large amount of possible variations of shape
resulting in a wide range of conditions of edge restraint, precluded an
analytical treatment of practical value. It is hoped that future investigations
in this field, both mathematical and experimental, will elucidate some of
the more detailed aspects of this problem.

coordinates,
Poisson's ratio.

My= bending moment in flange.
rb = radius of curvature of beam.
rf = radius of curvature of flange.

<

NOTATION
b = flat width of flange. s = stress in flange.
be = equivalent flange width, ser = critical buckling stress of
¢ = distance from neutral axis to flange by small deflection
extreme fiber. theory.

D = flexural plate rigidity. sy .= yield stress of material.

= E ?112 (1—\2. t = flange thickness.
Mb==bending moment in beam. w = buckling deflection of flange.

< X
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Performance of Laterally Loaded
Channel Beams

G. WINTER, W. LANSING and R. B. McCALLEY

Channel shapes are rarely used as beams loaded in the plane of the web in view of
their tendency to twist. In steel construction of the usual type shapes which do not
possess this tendency are manufactured at no extra cost. In light gauge steel
construction members are produced by coldforming of sheet steel ,and the channel is
the most economically manufactured two flange shape. This paper, on the basis of
theoretical and experimental evidence, presents methods of determining the spacing
and strength of bracing required to counteract the twisting tendency of such members .
A general theory o f elastic behaviour of such members is briefly indicated; it allows
determination of stresses and rotations of channels loaded by forces in the plane of
the web. Experimental evidence on these latter quantities is presented together with
test information on the ultimate carrying capacity as it is affected by location of
braces. From the latter data it is concluded that localized maximum stress does not
govern the strength of such members since plastic stress redistribution allows the
initially understressed portions of the section to carry additional load. | f this action
is taken into account it is shown that maximum efficiency can be obtained with a
reasonably small number of braces in the span.

T he use ofdarels as traversly loaded beams B 2erely restrided by the fact thet
treir shear catre Brot coincident with the cantroid, which reslts in twist of the member
wless it B loadd in a plare through the shear cantre and parallel (@ parperdiaular)
theweb. For this reason chamel ssctias ardirarilly are not used in this manner sine
doubly symetrical I-sectias, which do not menifest this dissdvaritage, are just as essily
manufactured by tre hot rollirg process as are chael dges.

The sittetin EBdiffaat, hovever, in te repidly expanding field of ligit gauge sl
arstrnction, far which structural shepes are manufactured from shest steel by cold
forming, eitter by means of press-brakes or by cold rollirg.  Channel sectias are esily
faricated in thisway from a sirgle strip, but 1-shaped sectias can be produced anly by
got welding two such damels back to badk, Involving aosiderable additioal ast

{Figure i). For thistype ofconstruction itwas inportant, therefore,

i 1 inestigate whether damels ocould be used efficietly as beans

ad, ifo, what type of goecial bracing had o be used O ensure

favourable performance with the lesst anount of such bracing.

This problemwas approached both analytically and exerimentally

J & one phase of an extarsive ressarch project on light gauge stedl

a structures sposored at Comell Uninersity by the Arerican Iron

Figure i and Steel Institute.

The performance d®a chanrel loaded in the plare of tre web can be vistallized most
sinply by thirking ofa sirgle load p at midspan and cosidering the displacement of tre
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midspan section as proceeding in the suooessive stages depicted inFigure 2. The sectian,
then, B thought of as being first displaced downward in sinple traslation. The stresss
induced would be
those of the ordinary
beam theory and are
indicated in character
by the appropriate
sigs at the comers

of the section.
Next, the chanrel
B oosidered a8 aut
. _ . and the two halves
e is':co)r(npzrei_!ion2 '\g'is_tenps{ign+ }Sh) displaoed much like
’ two individual beams,
resulting in the appropriate indicated comer sresses. To  fit the two halves together
they are next rotated about thelr individual shear cantres, giving rise only 10 shear stressess
of the ordinary St Venant daracter. In this inclined position, firelly, the component
of the vartical load parallel © the major axis causes additiomral bending about the
minor ads, with s corresponding normal streses.  This picture s not an exact one
but ik disassd only 1o indicate the gereral type of the resulting stress distribution ; it
will be found later that this sinplified conoept, somewhat modified, leads directly © an
antirely satisfectory approximate aslysis for design purposes. It B evident that under
such a stress distribution aoss sectias distort out of treir original plane ; for this reason
the stresses associiated, inparticular, wirth the displacement stage b of Figure 2 are gererally

known aswarping streses.

This sinplified manner of visalizing the process cannot sene as a besis for a precise
theory. In particular, the stressss arisirg” from the various types of displacement cannot
be computed rigorously by means of elementary theory from the various displacements
of rigure 2. For this reason an accurate theory of the behaviour of tramsversely loaded
chanrels nust start from the besic equations of equilibriun of the problem.

e+/3h

theory

The gereral theory of torsiaal-fleural behaviour of thin walled members of open atss
section hes been disoussed most recently by Timoshenkol and Goodier2 ; most
of their work, however, was oriented on the determination of attial buckling loeds,
whereas the present problem is one of stiess determination under steble coditions. The
gereral equations of equillibriun, adapted from the above sources to the particular
problem ofa channel under essmtially vertical trasverse lced may be written as :

MES— Elxwv" = Mx FBMv— uMz
Mn— Elw" = —BMx—fMy—v'Mz —(1)
dM~dz = GCP" — Erp“" —u'Mx—j—v"My—f‘mz

The location of the fixed coordinate systemx,y ,z with the shear centre at the origin, B
shown on rigure 3 ; £, 77, £ are the corresponding displaced atss ssctical aes. The
resultant of the foree system acting on the portion of the member to the right of any
ssction may be represented by a force vector gpplied at the shear centre of the section,
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plus a resultantmoment. Then m X,myi and m z are the components oftre lattar parallel
o tteyy, - aes and mr Bte intasity of the moment about the shear cantre axis of a
distributad Iced, ifsuch Bpresait. 1x and 1y are the principal moments of inrtia of tre
atss s, ¢ Bte torsiaal aostant (ery clesely stzywhere s Bte developed legth
of the canre lire of the secticn and « s thideess) and T s another geonetrical aostant
refaring o tre warping stresss, o, v and

are tte displacarents of the section  indicated

on Figure 3 ; ae, o or more primes (, ' etc)

refar 1o the farst, second ete derivatives wirth repect

to;- £ and ¢ ae, regectively, Young Smodullus

and tte shear modulus.  IFtte loeding plare B

parallel to one of tre prircipal plaes, such as far

an unbraced chamrel loaded in the plare of is

web, mx — m and my = 0. Neglecting certain

terms which can be _ShO\NI"I © be of hlg"El" axes are a distance *e ~behind
ater, the three equatios 1 reduce the back of the channel

M 28
Err' - Ely cefs"P= -m!

This Bthe gereral equation far the probllem cosidered in this peper.

For the goecific case of the siinplly supported chanrel of legth 2, and depth 2, which
B Sbject 0 a sirgle concenrated loed 2> goplied at midspan at the top of the web,
M —P{l— fymz = 0. An approximate soluticnmay be dotained satasfyirg the follovirng
ayditias : Ple r wm

A0)= 3= APD=10; £70)- Er

The origin of coordinates s located atmidspan.  The irdicated value of '™ () isdotained
by integrating the Kftand middle eqoression of the third of equatios 1 and noting tret,
atmidspan, A= oandm £= — p[e  hj3Q))] a5 can be seen from Figure 2.

The cetails of the derivation of equations 1 and the resultaing solutian are develloped
in a doctoral dissertatia™ by one of the co-authors and will be amitted here.

STRESSES IN UNBRACED CHANNELS

The practical reaults of this aslysis, far one partiaular darel, are shown on Figure 4
in a manner which flitaes evaluating treir sighificae far design e, The Al
aiterian far design purposes (With respect to which resenatias willl be made later in
this peper) would stipulate thet the canrying cgpecity of the member s reached when
yieldig starts in the most highly stressd filre.  For a beam wirth no tendency to tst
(Figure /D) thismeans, as waAl, that the maximum fldestress a — mh/1 becames equal
o teyield point.  In a darel, honever, this filre sress corresponds only o the fast
of the four displacenerits @ of Figure 2) and B augmented at the most highly stressd
point (upper Hit comer) by the additicel stressss from displacemeits b and d of et
figye. To as=ss the reduced efficiay of a chamnel sectian (rigure /) as compared
a similar ssction prevertted from twisting (rigure 1) it Bsinplest to plot against the span
legth that sinplle bending stiess = wm nj1 which will result in yield stress at the most
ufaureble filde.  For a ssction &s Figure 1h, discounting the possibility of lateral

« Lansing, W. Stresses in Thin Walled Open Section Beams due to Combined Torsion and Flexure Ph.D. Thesis Cornell, 1949,
of this dissertation is deposited with Professor Pugsley and available for reference.)
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buckling, a and the yield stress are equal.  For the damel, rFigure /8, a Bamaller than

the yield stiess by the amount of the additional stressss induced by the asymmetry of the

sctin. It B this information which has been plotted on rigure 4, Tor a yield point of

33,000 Iv/in2 (2,320 kg/cm2) for mild structural steel. On the same figure are shown the

agles of rotation at midspan 8 @)which

o o rert benah teme ootain when yielding begins in tre Et
upper cormer-.

Several ooclusionss can be drawn

from this diagram. It B seen that even

for impracticably small sas, say up o

20 in G08 an), tre chanrel can carry

only lkes than half the load which each

channel of tre symmetrical section of

Figure /b could carry before yielding B

infdated. This B in sharp aonrast o the

performance of unbraced I-and Z-sectios

which, for very sort soas, can be

sbjected t© a moment such that a=

m hji = yield point and in which a must

be reduced only for larger spans because

of buckling far 1-beams and of twisting

for Zsctios. (An aslysis of the beha-

viour of Z-sectios B also given in the

previasly quoted disssrtation.)  This

difference caused by the off-aatre location

of the shear centre reaults in a primary

twisting moment in chamels : in I- and

Figure 4. Analysis results for channel Zsctias, on te Ol']_"Er hand’. tre shear

beam indicated centre and the cerroid are coincidant, o

that torsiaal moments are merely caused

by the rotation of aoss sectians and the deflection of the axis of shear cantres aut of a plane

parallel o the loading plare. It i further seen that a decreases relatiely slovly with

incressing goen, indicating that no significant improvement of efficiency.can be

obtained by span reduction. Firally, for spans of reasonable magnitudes the central
rotations are seen t© become quite significat, prectcally.

ANALYSIS OF BRACED CHANNELS

IFthis aalysis B 10 be extended 1o channels with intermediate braces itwilll be recognized
that™the resulting equations are likely t© become too involved for practical design work.
It B interestiry, therefore, to study the influence of certain sinplificatios that can be
made in the aalysis for determining To begin with, the relatively small magnitude
of the agles sugests that the influence of bending about the minor axis (Figure 2d) B
likely to be smll. Onmission of the affected terms In the complete solutian, yields an
eqressionwhich plotsascunve | inrigure 4. * heshows, indeed, that such an approximation
can be made safely. Next, in thin walled ssctias, the torsiaal constant C, being
proportional to 13, Balways srall as compared with other dimensionally identical atss
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stiasl prgeerties which are proportiacal o+, such asi1x and AL This sugests et the
resistane 1o tvist caused by the shearing stiessess, being prgporticnal o ¢ (Figure 2¢),
oould possibly be nglected as compared with the resistae caused by the type of
deformation indicated inrigure 2b.  Hthis additiaral approximation Bmade, the aune i

iNFigure 4 reaulits, which Bseen 1 be In enor with resect o a ot exceeding about
7 per centon tre sffesice.  The enror caused inmagnirtude of the rotation £ Bseen o be
regligible.

This indicates trat the tarsiaal moment pie — AQ A, Figure 2y Besstaally resisted
by the ection depicted inrigure 2b.  That i each halfof the section perfoms &s ifitwere
a sinple beam, acted upon by the faraes

F ) = P+
Since the locatiaon of lceds F on this fictitias horizotall beam, and issen, are idatcal
with those of the chamrel as a whole (for vartical beding), the resulaing horizotal
bending moments and the corresponding stresses shown N rigure 2b are directly
proportical o thoe caused by vertical bending (rigure ), exogpt far the minor
inflience of RO).

The action of inteymediate bracing B now essily visaliad. It prevats horizotal

displacamant of the fictitias half-bears at the points of bracing ; cossquantly, thee
halfbears are converted fram sinple beams of span length equal o that of the entare
damel 1o aontinuous beams with individial spans egual o tre distances between braces.
If, Tarexaple, the braces were gplied at the thirdHoints
of tte gen, the “half-beam > would perform as the
continuous beam shown in rigure 5 loaded by the foce
F asgivenby equation3.  The resultirgmax imum horizon-
Al bendingmoment on the “half-beam 5and the correspond-
ing streses of rigure 2b are ks then one quarter of those
dotained without bracing, as can be \erified essily by. con-
tinuos beam aelysis.

This reesning Besily restated inamore gereral way.  The indicated approximations
are idntical 1 eguating tp zero the second and third terms on the it of equation 2
The resultirg equation

Erp""=-m z ....(4)
BN to be idatical inform o thet ofa beam of rigidityr 1 sLbject to loeds of intarsity m:
inwhich the deflection of the beam correspods o 0 of e darel . Intermediate braoes
will trerefore affect p and the correspondiing striessss in the same manner as the ceflectias
and stresssswould be affected by intemediate sugports in the corresponding contiinuous
beam.

TESTS

To dotain eqeerimettal information on the behaviour ofdamels under varios aoditias
ofbracing, saven differat types of thinwalled damrels were testad.  Their depths ranged
fron4 t© 8 n (101-6 © 282 mm) , the widths from 25t 4 in (635 o o6 mm), and
the thid«esses from 0060 to %151 in (I*32 to 3*84mm) while the Ixswere about J in
(QOmm) fordl sctios. These were tested under the folloving codiias - / ot
welded back to back Eigure /) which i equivalent 1o continuous bracing, 2 braced as
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inFigure 6 wWith half-distance of bracing 2= 33 in ((*838 m), 3 braced as inFigure 6 but
with 12 = 45 in (I*143m) and 4 unbraced. Length of vertical span and location of
loeds was always as shown inrigure 6. Loads were gpplied through nultiple kall bearings
and knife edges to allow lateral and rotational motion as free from frictioal restraint es
was possible 1o achieve in a hydraulic testirg machine.
For the second
condition theoretical
Brive Stiess determinations
were carried out on

aroze

the besisof the theory

developed previasly.

H (Vari(aob;:)am) (Oiazjm()v.ariable) The boundary and

. ' i continuity condirtions
/j« 69m (1-73m) 13~69in(/-75m)

for equation 2 were
adjusted t© represant
the sittation of the testbeams ie. = 0 at both ends and at tre braces.  In order to
sinplify calaulations,advantage was taken of one of the sinplifications disoussed i connect-
ionwith rFigure 4 ,namely, the approximation of anitting the influence on Aof bending
about the minor axis (curve 1 on rigure 4) Which was found to be nggligible.  (This
amounts t neglecting e term in the second of equations 1. Remembering that
In these equations m v = 0, this makes the third term on the Eft of equation 2 venish.)

On rigure 7 are shown the measured and computed stresses in that channel for which
the agreement between experimental and theoretical values was lesst satisfectory. It B
Seen that the points
of highest stress are 0 L°as P ° m
the junctures ofweb
and flae, with the
stress being slightdy
larger at the upper
one of these two
points. These maxi-
mum stess will
govemn practical de-
sign ; the theoretical
values are seen
agreewith those from
tests within about 11
per ant. In te
other chamrels ths
evaluated the dis-

Figure 6. Experimental arrangementfor testing beams

crepancy atstatias /
and 3 ranged from 2 Figure /- Measured and computed stresses in least satisfactory
to 11 per cent test channel

Agreement s seen o be quite satisfectory also for station 4 in Figure 7, but i definitely
unsatisfactory for statian 2
Measured midspan rotations considerably exceeded those dotained from the amalysis.
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This led © the suspicion that the bracing frames had not been rigid enough to preverit
rotation at these points, as assumed in the theory.  Subsequent tests showed this to be 0.
Indeed, rotatias at the braces were found to amount t© from 0.25 1 i° for the dhosen
lcecs, whiich represanted about 10 to 30 per cant of those at midspan at the same laecs.
103 Since thee tests were

; R & ety il ok,
there B NO assurance

that in the previos

main tests, in

which strairs were

measured, ecctly the

same brace rotatias

had taken place. It

B possible o conrect

the treoretically com-

puted siressssfortrese

additioal rolEtas,

with reasoneble accu-

ry. Figure 8 allons

a comparison of te

measured stresssswith

Figure 8. Comparison of measured stresses with corrected the theoretdical aes
theoretical values

corrected, farthesame

beam as inrigure 7. It B seen that the discrepancy between theory and test is reduced
t© ks than half the previos valle by this corection, and that theoretical and
eperimental maximum stressss now agree within about 5 0 6 per et Thils agreement
B even better far the other t&ts in which the discrepancy between testand uncorrected
theory was smaller than that shown on rigure 7. Ht should be noted that in fleural
thin walled members the atss sectias distort out of trelr origirel shape to a degree
which depends on the width and thideess of the flagss and the depth of te
member3*4. This distortin, though small in practical terms, E likely to affect tre
distribution of the logitudinal stressss over the sectian, a factor whiich B not acoounted
for in the aalysis.

33.300 1260 / 7.700 9,300 42,260
(2.341) 1?(’12333%; (8437)~m 5&-&) (54k 4) (653-8) (2,971
T b = T— 1 ) (VR
27,050 10 fl 12,400
0,902) (87/8) X
. - X
Y i) Gy
£ X uc~r=\ ia ﬁ
3,300 33300 260, 3P/ 7,700 [T 9,300
(2.341) (2.341)  (8437)" Qﬂ& (541 4) (653-8)

Figure 9. Stress distribution Iblin2 over cross section. Figures in parentheses
denote corresponding values in kg/cm2

Although the maximum stress isusally supposed o govern the stragth of a member,
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this B quite doubtful here.  The stress distribution over the atss sction, as B evidat
from Figures 2 and 7, Bas shown in Figure g (fcrihesame chanrel ason Figures 1 and 8).
The high comer stressss are seen 1 be quite loalizd.  In a detile material lie mild
e, ifthe locallized stresses reach the vield point, one would merelly expect a redistribution
o take place o that the hitherto uderstressed portions of the flages provide the additional
resistance iflceds are increased furtter.  One must then assume that the carry ing capecity
of a chanrel Baffected to a much smller degree by s tendency to twist than s the
localizd maximum sress. It B tharefore recessary” o inestigate the effect of brecing,
not only on maximum stress but also on ultimate loed.

Figure 10 gi\B the ratics of ultimate &t
loas for varios bracing coditios ©
ultimate loads of the continuously braced
member Eigure 10). Only the four bracing
coditios / to 4 as described eardier were
aailable for this purpose, for which,
regectively, the ratioa r was o, 0478, 0-682,
and 1-a. Therefore, foreach type of ,damrel
only four points on iisaune were aailable.
It B &t tat this smll number of points
does not warrant interpolating a smooth
aine ; hence tte regective points are
merely connected by straigt lires.

It B seen tret for tre smaller of te
two specings of braces (a1 — 0-478) ultinate
lcecs for all practical purposes are the
same as for continuous brecing.  Ultimate
=t loads are here defined as those atwhich
the beam contiinues to deflect under costant

Figure 10. Effect ofuseofbracing. Curves los0. ThiSFDiI’Tt Bsomewhat inefinite and

have been correctedforyield points o f steels depends on speed of Ioedirg and alo on
the details of the stress/Atrain cunve even for stecks of idatical yield point.  These &ts
were carried aut by saveral different inestigators, which introduces a personal equation
ino such determinatios. Some differences were found also in the stress/Strain cunves
oftre steels ofwhiich dimensional ly identical chamrels were formed.  For these reesons the
Katteringof+ 7 per cent seems tobe due toexperimental inaccuracy and sentirely normal .

At the larger specing of braces a definite boss of stregth Bgooarent. Finally, in the
unbraced condition a/1 =1) the stragth of the members was onlly about 40 to 50 per cert
of that in the fully braced codition. In addition, rotatias in this condition were 0
lage (p © 150 at loacs slightdy below the ultimate) as © make the beams weeless far
prectical purposes.

Referring to Figures 7 and s, the maximum flage stress in the fully braced condition
@1 — 0) B the usial I= MA/7, whereas with braces spaced at 66 in (I-68m) the
maximum comer stressss are those shown in those figres.  The information on ultinete
loads indicates that these exoess stressss at the cormers did not affect the carryiing cpecities
to any prectically” significant degree for this location ofbraces.  For braces spaced farther
goart tre diffarae between a and the maximum comer stress inoreesss further and
resulits in a gradual lonering of the canrying Gaecity.
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ALTERNATIVE DESIGN REQUIREMENTS

For design purposes it 5 now possible 1 take one of two psitias.  Consenvatinvely, one
can stipulate that the maximum ocomer stress dall not exceed the yield point for a leed
equal t the design load times the factor of safety.  Herre the use of a siiglle chanrel with
disaete bracingwilll always be lesseconomical than one wirth continuous bracing €igure /)
since the comer stress in the former always exceeds that of the latter for the same loed.
This difference decreases with decreesing specing of braces.  Altermatively, one can take
advantage ofthe resene strengith by pllastiic stress radistribution, as illustrated by Figure o -
Then one ocwld stipllate that charels may be designed such that the uncorrected
a = mhji dall be equal 1 the yield point at the design loed times the safety factor,
provided braces are 0 spaced that the difference between the maximum comer siess
and a gall not exceed a goecified fracianofa.  Thils fraction nust be s secified that it
sl not adversely affect the carrying cgpecityie. such that itseffactwould be doliterated
by plestic rdistribibion.  On the besis of the experimental evidence the authors leen
tonard the latter more liberal gpproach.

To determine what fraction shoulld be specified for this purpose, additional infometion
Bshown on Figure io.  ON each aue, in that figae, three points are shown designated
regectively & 10, 15 and 20 per oot oastress.  They irdicate the values of an far
which the differae between the maximum comer stressand a, as determined by theory,
amounts 1o the respective percentages of w1t B seen that a 15 per cat oerstress does
not affect the carrying capecity significantly, whereas the 20 per cent points are usally
cefinitely located on or near the parts of the acunves which show a marked downward
ted. Hwould seam, tharefore, that within the limits of our &t evidence, a tteoretical
owerstress of about 15 per cant can be disregarded in practical cesign.  The problem B
then, merely, to locate braces such that no more than this oerstress will coour.

SIMPLIFIED STRESS DETERMINATION

For either of these altermative design “methods it B necessary 1o compute the oerstress
for a given arrangement of loads and braces or vice versa 10 determine required location
of braces far given loadings and a stipulated oerstiess. |t Bevidant that the detailled
theory briefly disaussad before s much 1o elaborate t© sene this purpose in routine
design practice.  However, various gpproximations can be made in the gereral theory,
as has been disossad in cetail In comnection with rFigure 4. These make it possible ©
devise a very sinple method which allons the determination ofmaximum cormer stresss
with very good accuracy .-

ltwas shown there that cosideration of displacements aand b of Figure 2, without
regard to cand d, gives reaults very clcese o the values of tte acaurate theory. e
half-beans ofrigure 2b were regarded as simple beams acting in a manner a shown on
Figure 5, the individual stress distributias from simple beam theory for displacements
aand bwould be asshown by rigure 11 aand b. This distribution sdbviously inpossible
sine, acoording rigure 11 b, a stressdisoontiruity would oocur in the web at mid-height,
0 that the superposition of the distributias of Figures 11 @ and bwould not result in thet
of Figure g. Hence, the distribution in the horizontally bending half-beams must be
approximated by one of the general nature of rigure 11c.  This can be done by wsig,
insteed of tte full halfdepth of the web, an equivalent partial depth far computing atss
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sctiaal properties of the half-beam.  This concept of effective lagth, width or area B
frequently used Inmany other instances, particularly in the field of thinval led members3?4.
Here itmerely requires the replacement of the non-uniform stress distribution in the web
by an equivalent uniform distribution such that the governing max imum Stressss remain

Bur"*

01 _1s

c d

Figure //. individual stress distributions from simple beam theory
ueaffected.  In other words, the actual triangular distribution in the web, Figure n G B
replaced by the dotted rectangular one ofequal maximum intasity and equal total area.
Then comer stresses can aoviiously be computed from the arcss sectiaral properties of the
saction shown on rigure u d where only one quarter of the web s regarded as effective
for each half-beam. For chanrels without stiffening lis it can be shown on theoretical
grounds that a somewhat closer approximation i dotained ifone sixth of the web B
regarded as effective for either halfbeam.

The manner of determining the comer stressess with very good approximation K
therefore, the following @ stressss caufpd by vertical bending Gigures S8, //8) e
determined as uisal.  For horizontal bending Eigures 2b, //d) the auss section of each
half-beam i regarded as axsisting of tre flate, lip and one quarter of the web.  This
beam i loaded horizontally at al points where vertical loeds r act on the channel by tre
corresponding horizottal loads F = P ej2n (equation 3 with s0)h neglected as small In
comparison with ¢). For distributed vertical loed p the corresponding distributed
horizontal loed, ofcourse, B = pes2n.  Each halfbeam, so loeded, represants a continuous
beam supported at the braces, as shown for one particular case on Figure j-  Stresses from
this horizotal bending are computed in the usual manner and superposed on those from
vertical bending 1o result in the maximum comer stresss.

For the four dimensional ly most extreme of the seven test darels, corparative values
have been computed from this approximate approach and from the theory proper, for two

differat load values eech. The discrepacies between the two

Table I methods of computatiion are shown inTable 1. Bseenthat the

» aitical maximum stresss in the comers (Statias / and 3) are

Station | ation per cent dotained with ample accuracy by this sinplified
" Mean Maximum / 2 approach. Discrepancies are larger for statias 2 and
.25 _ s 4. These, honvever, are gererally not aitcal sine

stresesthereare usal lysraller thanat /and 3 - Stressess
2 -2 129 atalfour points by theapproximatemethod are dotain-
3 — i — 5% ed smller than computed from the more accurate
+ -88 —161 « teory. i

Figure 12 The 10, 15 and 20 per cent points ONn Figure 10
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were computed by this approximate method, since it Bthis approach which Elielytobe
used in routire design far determining the requiired specing ofbraces.

BRACING DISTANCES, ROTATIONS, LATERAL FORCES
Iftre oarstress ariiterion Badopted far design purposss, the safe distanoes between braoes
are determined from the requirement that the comer stress in the aontiinuous halfbeam
[Figures 5 and u ©) sell not exceed a by more then the stipulated peroentege.  This
merely requires ordinary continuous beam
aelsis. Aalyses caried aut in e
aforementioned tresis ¢ p 51) farageat
\ariety of practical loading schemes show
that it Bnever necessary to provide more
than four braces between sygports inorder
1o limit the oerstress © 10 per et ofa:
IF 15 per oot oarstress B aooepted for
practical dssign, aswas previasly sues-
= on te lesis OfFigure 10, similar

w

spaced between syyports will satisfy this
requirement for most practical laedings.
A sigle concentrated loed at or near
midspan represats an unfavourable ex-
cgptian ; this Bmost essily dalt with by
locatirg a brace directly at the load point.
As a kst point, the order ofmagnitude
of rotlatias atmidspan under design lceds
may be of intarest in damels o braced.
For this purpose rigure 13 has been
prepared. It shons the rotatios &
actielly measured in s, faor a load
reaultig in antral vertical  deflectios
equal © av30. In the United States
this isoften ansiidered to be e max imum
allonsble deflectin under load in situ, Figure 13. Rotationsfor a load resulting
mrﬁcula’iy when plm ceil'rgs are in central vertical deflections equal to
suspended from the flar.  The oerstress spanl360
aiteriaocf 10, 15 and 20 per cent are shown asonrigure 10. I the 15 per cat aiterion
were adopted, rotation under loed would not exceed about 15°. These measured agles
incluke the additioal rotatias at midspan caused by rotation at the braass, the bracing
franes not being rigid enough 1o restrain the chanrel aopletely.
This sittation may well oocur in practical irstallatios.
Braces may be gplied in the manner shown on rigure 14.
If darels are placed in pairs with webs facing each otter,
attachment to rigid floor and ceiling systars without diagonals
may, under fawurdble adiios, serne & stisfactoy
brecig. The foe tat the brace hes t withstad B
esily determined by the approximate method of calaulation.

fum () >==(0 o O >==0O
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Indeed, as B evident from rigure 5, the horizontal foraess in the braces are sinply the
horizontal resctions of the half-beam.

Department of Structural Engineering
Cornell University ,Ithaca
New York, U.S.A. (Received June 1949)
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Discussion
Professor J. F. Baker in the Chair

Professor J. F. Baker was pleased to hear a sinple yet ratioel desigh method
advocated, rather than an enpirical approach 1 the design problems. Describing ex-
perimental work carried out at Glasgow, R. Kenedi said that an attempt had been made
1o find the spacing of lateral bracing equivalent t continuous support.  Lateral bracing
of channel beams was achieved by attaching tension wires 1 either sice of the beam
at a pitch of about 6 in €15am). The catral lateral deflection was taken as a con-
venient aiterion.  The required ratio of beam length 1o brace spacing was found to be
about seven o give support approximately equivalent t© continuous bracing ; the corre-
sponding ratio suggested In the present paper appeared to be two.

Professor Winter, in reply, said that the use of seven braces was quite uneconomical
in precdce. The increese in deflection arising when only two braces were used would
be of the order of 5 t© 10 per cait. This corresponded t© the usual tlerance In most
avil engineering desigs.

ltwas suggested by W. Merchant that the results of Winter and Kenedi could not
be conrelated owing to the variation in rigidity of the two types of bracing used. He
observed also that no experiments had been carried out on beams inwhich the two flages
had been connected to give some degree of bracing.

Professor N. 1. Hoff Stated that an American company had solved the problem of
awiding twisting by applying the loads at the shear catres with the aid of bradets.
He would be interested t© leam how the problem of solving the fourth order differential
equations with variable aefficients had been overcore. Professor Winter replied thet,
after assuming differat foms for B itwas found that large differences in had littleeffect
on the reulit. Assuming a corvenient form for 4, an approximate solution could be found.

H. L. Cox asked whether the first order effects of distortion of the atss section of the
beam had been casidered. The effect was dependent primarilly upon the width to thid«
ress ratics employed. Professor Winter considered that the width t© thideess ratics
were such as to eliminate the possibility of local buckling occurring in the beams. It
was pointed out by H. L. Cox thatwhen the load Bapplied to the web ofa channel beam,
distortion of the aoss section would almost certainly occur and the effedts might be
larger than the secondary effacts of the distortion considered.  Professor Winter agreed
that these effects might be important ; honever, they had received no theoretical treat-
ment in this work.
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Performance of Compression Plates as
Parts of Structural Members

G. WINTER

A number of recent investigations are reviewed on the behaviour of compression
plates as parts of structural members, in contrast to that of isolated plates. This
paper does not present any new results but, by request, was intended as a review of
this particular topic. For this reason the text thatfollows merely represents a brief

abstract o f the talk delivered at the symposium. An extensive bibliography is appended.

T he small deflection theory of buckling of flat compression plates is governed by the
equation

b*w N 54h; axt b2iu n f X
"dil + 2 dvdy2 "d™ +"5" 1*2=0 = ... ()]

Solutions far individual pllates wirth various edge conditios (firee, sinply sypported, foed)
were first dotained by Bryan ad, for a great variety of loed and -edte aoditians, by
Timoshenko.

In actal structures such plates with ideal end conditios occur raely, ifeer. In
a box shaped colum, for exarple, the four plates forming the box support each other
mutually 0 that each of them B elastically supported along its logitudinal edges. The
problem of the performance of such interacting plates, just as Tor disjointed plates, must
be disossad In two separate pheses ©a the adtial or buckling codition, b the post-
buckling behaviour.

The fast approximate method for determining
budkling streses of plate assarblies was given by
Bleich N 1924. The problem arsists of the solu-
i of eguation 1, the boundary ocoditions of >
which nust be adjusted acocording o the physical
problem at hand. For abox shaped colum, Figure
/, the plates with the lager width/thidaess ratio
can be regarded as the “buckling plates ”, and the
otrers s the “restraining plates\  Conditions of
oontaruity require that along the common edes,
for siffjoints, Figure 1

bw bw'
by by

This codition requires thet the legth of budkling waves B the same in all
for plaes, and hence can be determined only by accounting rigorosly for the
interactin of dll individal components.  Bleichs solution i approxinate chiefly
in that itassumes the wavelength of the restraining plates to be equal 1 the width of
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tte buckling plates, and that tte Influence of logitudinal compression on the defor-
mations of the restraining plates saccountted for by a sinplle magnification factor, rather
than by rigorous theory.

Bijlaard, In 1940, developed the exact theory of such interaction by settirg up in-
dividal equations of the type of equation 1 for each of the individual plates, and solvirg
this st of simultaneous equations with due consideration for cotiruity of stress and
strain at the common edes. In 1943, Lundquist, Stowell and Schuette developed
a relaation method for determining aitical stressss of plate asserblies by a modified
moment distribution procedure in a way similar to that previassly given by Lundquist
for inestigating the stebility of rigid-joint structural franes.

Figure 2 shows the reallts
of such inestigatias as ob-
tained by the latter two exect
methods and by Bleichs ap-
proximate method for box
shgpes and for lsctas.
The sinpler Bleich method B
seen 1o be sufficiently accurate
for many engineering pur-
ps=s. This figue B repro-
duced, by permission of
Bleich, from a manuscript as
yet unpublished.

Equation 1 holds only in
the range of linsar elesticity

whereas in practical structures many ifnot most problems of this type arise In the stiess
range above the limit of proporticelity. Here the besic equation must be modified as
folloss

. gl k)
Ab? +2 Cdis o w° @

where A, 8 and ¢ are fuctias, ingeeral, of the secat modulus, the tangenit modullus
and Poissonsratio. Indeed, in the above equation the first term s associated with logi-
tuwdiral cunature in which direction the mean stress B above the proportional  limit,
the third term with tramsverse aurvature in whicch direction the mean stress is zero and
hence below the proportional limit, whereas the second term Bmixed in nature and hence
affected by both mean stresses.  The problem, tteri, becomes anisotropic and differatt
elastoplastic constants apply t© differat tems.

A rather inturtive solution of this problem was given by Bieich in 1924, resulting in
quite satisfectory accuracy.  OF the many later investigatias of plastic plate buckling
those in best agreement with test reaults were developed by Bijlaard in 1940 and by
Stowell In 1948. Both are based on theories of plasticity of the deformation type and
differ chiefly by the fact that Stonell, by way of siplification, assumes Poisson’s ratio
0 be constant and equal o 5. The enumerated methods can and have been gplied
1t the determination of aitical budkling stresses of a great variety of structural members
composed of flat compression plates.
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In cotrast t© colums which actually &l at or
slightlybelow the thearetical aitical laed, compression
plates, particularly if sypported along both logi-
tdinal edges, ocotine ©© canry incressing loads
beyond those which theoetically cause it
budkling. The mechanism ofthis post-bud<ling action
can be visalized fromrigures inwhich acompression
plate B replaced by an owersinplified bar lattice
model. It Bseen that post-buckling ceflectias, In
artrast to column deflectias, are restricted inmag-
nituce by the restraining action of tre horizontal
bars and the tasion stiessss arisirg in them which
correspord, In plates, to the membrane streses.
When buckling commences, it merely reallts in
limited deflection and  redistribution of the hitherto
uniform compression stress which conoentrates more
and more near the edes, asshown inFigure 4. This
behaviour Bsomarked, and thedsflectiassogradial,
that it & difficit © establish aitical stresss eqeri-
mentally from strain or deflection measurements.

This post-budkling behaviour i govermed by vox
KArman3 “latge dsflecion *equation, which just-
fiss iits cesigation inasmuch as it acoounts far the
membrane streses but B 4ill restrided 1o relatively
small ceflectias © the extant that higher order terms
ae, as wal, nglected In the aunature eqressian.

The equation reads

bdo> b4 54>
bd "~beh2 bjb
t /b2F $2w b2r  bow ;bFDb2A
D \b2 by2 ~bxbylbxoy by2 bx2) ¢
where r B an Alry shes fucto.

A number of solutias of this problem, with various degrees of goproximation, were
developed by Marguerre, Timoshenko, Trefftz, Cox, Levy and othexrs. Most of them
are rather involhved mathemattically and have been carried aut nurerically only for a
fav slected s, They can gererally be eqressed in tems of the parameter 7
where acr B the attical stress dotained from the srall ceflection theory, equation 1, and
c,iax Bthe edge stress as shown on rigure 4. The results are usLally given in tems ofan
“equinalent width ” of the buckled plate, a concept introduced by von Karman in 1932
and illstrated on Figure 4. That i the equinvalent width ve B the corbined width of the
two broken lire rectagles of that figare, the enclosad area of which Bequal 1o tte area
under the actual curve of non—uniform stress distribution.

The most rigoraus of these solutias B that by Levy, which ceviates but little from
that of Marguerre and Erather vell confirmed eqerimetally. Bperimental realts,
honever, depend lartely on the degree of initial flatress of the plate and of centeriing of
lced, a fact which has been confirmed thearetically by Hu, Lund”uist and Batdorf in
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their ineestigation ofthe effect
of snall deviations from fla=
ness on effective width.  For
this reason the author and
others fird itdesireble o rely
primarily on tst reailts for
the purpase of developing for-
mulae for practical design use.
His experimental reaults are
shown on rigure 5 together
with the consenative expres-
sion (loxest aune) he pro-
posed for design and which B
Figure 5 incorporated in the specifica-
tionfor the Design of Light Gage
Steel Structural Members , Amer. lron and Steel Istatute. The curve (bSig’Htﬂj by 3 gi\BS
the values dbtained by Hu, Lundquist and Batdorf when the iniial deviation from
flatress Bequal 1o one tenth of the plate thidess and, inshgpe, Bequal to the natural
buckling mode. It i indicated on the figure merely to show the order of magnitude of
the effect of such small distortion, which confims the syyposition that the scattering
wsally obtained in such tsts i caused chiefly by initial deviatios.
The performance ofa com-
pression plate in the post- 05 .
buckling range as it affats
the behaviour of a beam of
which it forms the com-

pression flange B shown on Beam B: Load In 1000Ib/in2
Figure 6. As the load inoreeses, 0z o0z 06 08 1o 1z 14
the inftally constant com- 10 controraot ams — 1 :
mim m bems more n Beaﬁwro/is. fictci)oc?ezls in —
and more non-uniformly dis- 12 Beam 8: t=00335 m
tributed, with a correspond- u

ing decrease of effective width A4

and a continuous downward 15

dift of the reutral ads. 16

the measured shiftirg of posi- 18

tim Ofﬁe mm. aXiS With Bleam AZ: Loadgin IOO40Ib/in"‘5

incressirg load are shown on
the lovner part of trat figre.
It Brecsssary, for such mem-
bers, 1 compute effective atss sctiael properties (@ea, moment of rertia, section
modullus etc) which depend on the magnitude ofomax.  In such members, formed ofmild
stedd, incipiett failue oocurs at leads equal to or slightdly higher than those at whiich
the edge stiess omax readhes the yield point.

For thinwal led campression members, such as box columns ofwhich the components are
stressed into the post-buckling range, it B necessary to modify the column cunve for

Figure 6
(i in = 2'54 cm; i Ib\in2= 0-0yO0j kg\cma
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lcally steble ssctias of the same material e ..
aine Q,= Fo on Figure 7, O account far
stress re-distributian in the component plates.
This can be achieved in a rather approximate
way by the introdlction of a form or shgpe
factor ¢ which B defired as the ratio of the »
ultdnate stragth of tte thin walled dort §
colum [Ljr = o intte limit) to the ultinate §
stragth of the same dort thin valled ssction s
if lacal buckling were prevented by auiteble
means.
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Discussion

Professor A. J. S. Pippard in the Chair

R. Kenedi pointed aut that tets at the Royal Technical Gollege, Glasgow, had shown
that plain thin walled channel sectias did not carry incressing load in the post-uckling
stae, as did the lipped channel sectias disassad by the ledturer.  He also suggested that
the owerall stahility of the column affects the degree of edge foaty of the plate.  Professor
Winter replied that there was in fact a srall increese in post-uckling stress for a plain
chamel, although itwas far sraller than with the lipped chanrel owing to the latters
greater degree of edge fodty. He poirted out thet, in design, stressss higher than the
aitial stress were not usad, for the sae of good gppearance.

J. C. Chapman drew attention to the very high extreme filre stressss whiich occurred
due 1 plate bending. The author agreed that these stresses would sometimes exceed
the yield stiess and that the procedure whiich he described must not be used for design
in fatige coditios.

Professor A. Roggeveen descriibed tests that he had made on the buckling of the webs
of late welded boxes where the aitical stress was reduced by an amount equal © the
residal stressss it by the welding. Professor Winter pointed out that his t&sts were
carried out on stall cold+olled sectias but agreed that residal stressss would affect
the aitical siess. W. S. Hemp doubted the soundness of the equinvalent width assumption
for use after buddliing, and thought that a tangent modullus method should be used.
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In a written contribution R. Kenedi drew attention to further results obtained at
Glasgowv, a number of which have already been published [Kenedi, R. M. and Moir,
C. M. structural Engineer 26 (1948) 119]. He had found that the loner scatter boundary
of the experimental reaults on their struts could be defined by a Perry-Robertson type
of formula

taking

and

» 0-9025b/:

This formula gave reaults which agreed with those dotained from Professor Winter'’s
formula for the struts concermed.
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