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Abstract 

 

This paper examines the accuracy of design equations specified in the North 

American and European codes for cold-formed steel structures in determining 

the ultimate tilt bearing capacity of single-shear single-row bolted connections 

without washers in flat steel sheets. It points out that the code equations do not 

properly distinguish the tilt bearing failure mode from the conventional bearing 

failure mode, which is typical of double-shear connections and single-shear 

connections with washers. The tilt bearing capacity is affected by the width of 

the connected sheet, and its capacity does not vary linearly with either the sheet 

thickness or the bolt diameter. Based on the test results of 150 specimens 

composed of G2 and G450 sheet steels having various dimensional 

configurations, this paper proposes a design equation that is dimensionally 

consistent and that is considerably more accurate than all the code equations. 

The proposed equation was also verified against single-shear single-row bolted 

connections tested by independent researchers which failed in the tilt bearing 

mode. A resistance factor of 0.75 is recommended for use with the proposed 

equation for determining the ultimate tilt bearing capacity of single shear single-

row bolted connections in cold-reduced steel sheets. 

 

Introduction 

 

The ultimate bearing capacity of a bolted connection is specified in Section 

E3.3.1 of AISI S100-12 (AISI 2012) and Table 7.4 of EN-1993-1-3:2006 (ECS 
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2006). No fundamental distinction is made between double-shear and single-

shear connections, although the AISI specification employs modification factors. 

However, the bearing failure mode typical of the inside sheet of a double-shear 

connection has a distinct mechanism from the tilt bearing failure mode of a 

single-shear connection without washers, as evident in Figure 1. 

 

Figure 1 Different types of bearing failures 

 

The conventional bearing failure shown in Figure 1(a) occurred on the 

downstream side of the bolt hole, while the tilt bearing failure in Figure 1(b) was 

due to the bolt head punching through the sheet on the upstream side during 

tilting. Bolt tilting and curling of the connected sheet occur due to the 

eccentricity of loading in a single-shear connection as illustrated in Figure 2. 

 

Figure 2. Single-shear connection subject to curling and bolt tilting 

 

For a single-shear bolted connection with or without washers, there is another 

failure mode that was associated by some researchers with tilting and bearing. 

The failure mode is depicted in Figure 3, and was experienced by the specimens 

tested by Carril et al. (1994) and Casafont et al. (2006). Such a failure mode was 

called “localised tearing” by Rogers & Hancock (2000). Localised tearing was 

in the past mistaken to be the net section tension fracture mode (LaBoube 1988, 

Rogers & Hancock 2000), and is outside the scope of this paper. 

(a) Conventional 

bearing 

(b) Tilt bearing 
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Figure 3 Localised tearing (extracted from Casafont et al. (2006) 

 

The authors did not detect evidence of tilt bearing failures among the specimens 

tested by Wallace & Schuster (2001). Figure 6(a) of their report shows a bearing 

failure on the downstream side of the bolt hole of a specimen without washers 

despite the presence of curling. Yu & Mosby (1981), who tested single-shear 

bolted connections in thin sheets, did not discuss the tilt bearing failure mode. 

 

Rogers & Hancock (2000) did not define the failure mode that is due to the bolt 

head punching through the connected sheet on the upstream side of the bolt hole. 

The North American and the European guidelines on the testing of sheet steel 

connections (AISI 2008, ECCS 2009) describe five failure modes including the 

so-called “tilting and pull-out failure” mode, but do not mention the tilt bearing 

failure shown in Figure 1(b). 

 

This paper presents the first ever systematic study on the tilt bearing capacities, 

which are due to the bolt head punching through the connected sheet on the 

upstream side of the bolt hole. It details how a nonlinear empirical equation for 

the tilt bearing capacity can be derived methodically without losing dimensional 

consistency. The design equation will be formulated based on the results of 150 

G2 and G450 sheet steel specimens tested in the present work, and verified 

against independent test results of other researchers (Casafont et al. 2006, Yu & 

Sheerah 2008, Hoang et al. 2013) where the single-shear single-row bolted 

connection specimens are known to have failed by tilt bearing. 

 

Interested readers may consult Teh & Uz (2014) for the conventional bearing 

failure mode, Teh & Gilbert (2012) for the net section tension fracture mode, 

Teh & Clements (2012) for the block shear failure mode, and Teh & Uz (2015) 

for the shear-out failure mode.  

 

Equations for bearing capacity of single-shear bolted connection 

 

Section E3.3.1 of AISI S100-12 (AISI 2012) specifies the bearing capacity per 

bolt of a single-shear bolted connection without washers to be 

 

ub FtdCP 75.0
 

 (1) 

 

      P 
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in which d is the bolt diameter, t is the sheet thickness and Fu is the material 

tensile strength. The bearing factor C depends on the ratio of the bolt diameter d 

to the sheet thickness t, as given in Table E3.3.1-1 of the specification. 

 

The “modification factor” of 0.75 in Equation (1) is supposed to differentiate a 

single-shear connection from a double-shear one (1.33), and accounts for the 

absence of washers (1.00).  

 

The Australasian standard (SA/SNZ 2005) adopts Equation (1). On the other 

hand, the European code (ECS 2006) does not even make a distinction between 

single-shear and double-shear connections, and does not consider the benefit of 

washers. For the specimens tested in the present work, in which the end distance 

was invariably more than 3 times the bolt diameter, the European code specifies 

the bearing strength per bolt to be 

 

utb FtdkP 5.2
 

 (2) 

 

in which the variable kt is equal to unity for sheet thicknesses greater than 1.25 

mm, otherwise it is 

 

mm25.1mm75.0;
5.2

5.18.0



 t

t
kt

 
 (3) 

 

For Equation (3) to be valid (not necessarily accurate), the sheet thickness t must 

be measured in millimetres since the two constants are dimensionless. 

 

The width of the connected sheet is likely to affect the tilt bearing capacity as 

the resistance to curling increases with increasing sheet width, yet this parameter 

is absent in both code equations. In the present work, the tilt bearing capacity 

per bolt of a single-shear single-row bolted connection is expressed as 

 

u
c

n
ab

b FWtdCP tb
 

 (4) 

  

in which Wn is the sheet width that is net of the bolt hole diameter. For single-

row bolted connections having more than one bolt, the net sheet width Wn is 

equal to the total net sheet width divided by the number of bolts. 

 

The ultimate tilt bearing coefficient Ctb and the exponential terms a through c 

would be determined through analyses of the present test results, and verified 

against independent test results of other researchers (Casafont et al. 2006, Yu & 

Sheerah 2008, Hoang et al. 2013). 
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In order to ensure dimensional consistency, the sum of the exponential terms a, 

b and c must be equal to 2. Since the least dominant geometric variable on the 

tilt bearing capacity is the net sheet width Wn, which is absent in the code 

equations, the exponential term c is determined solely as a function of a and b 

 

 bac  2
 

 (5) 

 

Test materials 

 

The G450 and G2 sheet steel materials used in the present laboratory tests, 

which have trade names GALVASPAN
®
 and GALVABOND

®
, respectively, 

were manufactured by Bluescope Steel Australia. G450 sheet steel is a structural 

grade covered by the Australasian standard (SA/SNZ 2005) for which the 

nominal yield stress and tensile strength may be fully utilised in structural 

design calculations. The average yield stresses Fy, tensile strengths Fu and 

elongations at fracture over 15 mm, 25 mm and 50 mm gauge lengths 15, 25 

and 50, and uniform elongation outside the fracture uo of the steel materials as 

obtained from 12.5 mm wide tension coupons are shown in Tables 1 and 2 for 

the G450 and G2 sheet steels, respectively.  

 

Table 1 Average properties for G450 sheet steels 

 
tbase 

(mm) 

Fy 

(MPa) 

Fu 

(MPa) 

Fu / 

Fy 

15 

(%) 

25 

(%) 

50 

(%) 

uo 

(%) 

1.5 mm 1.48 555 590 1.06 21.5 16.3 12.0 6.9 

1.9 mm 1.82 540 585 1.08 26.3 22.3 12.1 8.4 

2.4 mm 2.36 535 580 1.08 31.0 23.8 16.3 8.9 

3.0 mm 2.95 520 555 1.07 30.5 21.4 14.8 8.2 

 

Table 2 Average properties for G2 sheet steels 

 
tbase 

(mm) 

Fy 

(MPa) 

Fu 

(MPa) 

Fu / 

Fy 

15 

(%) 

25 

(%) 

50 

(%) 

uo 

(%) 

1.5 mm 1.45 320 400 1.25 55.2 45.9 37.7 24.5 

2.4 mm 2.35 310 390 1.26 62.4 51.5 40.1 26.8 

 

Specimen configurations and test arrangements 

 

All specimens tested in the present work were single-shear single bolted 

connections, as illustrated in Figure 2. The distance between each bolt and the 

downstream end was at least 50 mm to prevent the shear-out failure mode.  
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For the purpose of determining the relationship between the sheet thickness and 

the tilt bearing capacity, the present work tested fifty seven G450 sheet steel 

specimens having nominal thicknesses of 1.5, 1.9, 2.4 and 3.0 mm. The resulting 

equation would be verified against the test results of Yu & Sheerah (2008) 

involving 0.92 mm Grade 33 and 1.12 mm Grade 50 sheet steels.  

 

In order to ascertain the effect of sheet width, for each thickness of the G450 

sheet steels, the widths were 50, 60, 70, 75, 100 and 120 mm. These values 

represent the range that may be covered by one bolt in cold-formed steel 

constructions. The derived equation would be verified against the test results of 

Yu & Sheerah (2008) involving a ratio W/d close to 16. 

 

Two bolt sizes commonly used for structural connections in G450 sheet steels, 

12 and 16 mm, were used. The proposed equation would be verified against the 

test results of Yu & Sheerah (2008) involving 6.4 mm bolts, and those of 

Casafont et al. (2006) and Hoang et al. (2013) involving 8 mm bolts. 

 

The fifty seven specimens whose results would be used to determine the 

relationships between the tilt bearing capacity and each of the three geometric 

variables had a nominal bolt hole clearance of 2 mm, the absolute maximum 

allowed by the codes (AISI 2012, SA/SNZ 2005). The effect of smaller bolt hole 

clearance would be investigated by testing twenty nine G450 and thirty two G2 

specimens having 1 mm clearance only. 

 

A total of sixty four specimens composed of G2 sheet steel would be tested in 

light of the finding of Teh & Uz (2014) regarding the effect of material ductility 

on the bearing capacity of double-shear connections. The G2 specimens also 

provided an opportunity to investigate the effect of the orientation of bolt head 

and nut on the tilt bearing capacity. The two orientations are shown in Figure 4. 

Figure 4 Two orientations of bolt head and nut:  

(a) Orientation I;  (b) Orientation II  

 

(a) (b) 
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Exponential terms a, b and c 

 

Tables 3 and 4 lists the geometric dimensions and ultimate test loads of G450 

specimens that had a nominal bolt hole clearance of 2 mm, for 12-mm and 16-

mm bolts, respectively. The variable Pt in the tables denotes the ultimate test 

load, while Pp is the tilt bearing capacity predicted by the equations. 

 

Table 3 Test results of G450 specimens having 12-mm bolt with 2-mm hole 

clearance 

Spec 
W 

(mm) 

t 

(mm) 

rth 

 

Pt 

(kN) 

Pt/Pp 

(1) (2) (9) 

ES31 50 1.5 Ref 14.9 0.63 0.57 0.90 

ES51  1.9 1.16 21.0 0.73 0.66 0.97 

ES53a  2.4 1.23 29.5 0.80 0.72 0.98 

ES53b    28.0 0.76 0.68 0.92 

ES33  3.0 1.31 36.6 0.83 0.75 0.93 

ES35 60 1.5 Ref 15.3 0.65 0.58 0.88 

ES55a  1.9 1.18 22.6 0.79 0.71 1.00 

ES55b    21.5 0.75 0.67 0.95 

ES57a  2.4 1.19 31.6 0.86 0.77 1.00 

ES57b    31.3 0.85 0.76 0.99 

ES37a  3.0 1.39 39.3 0.89 0.80 0.96 

ES37b    40.4 0.91 0.82 0.99 

ES39 70 1.5 Ref 17.1 0.73 0.65 0.96 

ES41  3.0 1.38 44.3 1.00 0.90 1.05 

ES47 75 1.5 Ref 17.5 0.74 0.67 0.97 

ES59  1.9 1.16 24.8 0.86 0.78 1.05 

ES61a  2.4 1.22 33.7 0.91 0.82 1.02 

ES61b    33.0 0.89 0.80 0.99 

ES49a  3.0 1.40 47.3 1.07 0.96 1.10 

ES49b    44.3 1.00 0.90 1.03 

ES44 100 1.5 Ref 19.0 0.81 0.73 0.99 

ES63a  1.9 1.08 24.8 0.86 0.78 0.99 

ES63b    25.1 0.87 0.79 1.00 

ES71  2.4 1.13 33.8 0.91 0.82 0.96 

ES70 120 1.9 Ref 24.9 0.87 0.78 0.96 

ES69  2.4 1.10 35.4 0.96 0.86 0.97 

 

The variations of the tilt bearing capacity with the sheet thickness were checked 

against 12 groups of specimens shown in Tables 3 and 4. The normalised 

capacity ratio rth shown in the tables were calculated from  
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tFP

tFP
r

ut

ut

ref

refref
th 

 
 (6) 

 

Table 4 Test results of G450 specimens having 16-mm bolt with 2-mm hole 

clearance 

Spec 
W 

(mm) 

t 

(mm) 

rth 

 

rd 

 

Pt 

(kN) 

Pt/Pp 

(1) (2) (9) 

ES32 50 1.5 Ref 1.17 17.4 0.57 0.50 0.92 

ES52  1.9 1.02 1.03 21.7 0.57 0.51 0.89 

ES54a  2.4 1.16 1.10 32.3 0.66 0.59 0.94 

ES54b     30.9 0.63 0.56 0.90 

ES34  3.0 1.31 1.17 42.9 0.73 0.66 0.96 

ES36 60 1.5 Ref 1.23 18.8 0.61 0.54 0.95 

ES56  1.9 1.03 1.07 23.5 0.61 0.55 0.91 

ES58a  2.4 1.15 1.08 34.8 0.71 0.64 0.96 

ES58b     33.2 0.67 0.61 0.93 

ES38  3.0 1.28 1.13 45.1 0.77 0.69 0.97 

ES40 70 1.5 Ref 1.18 20.2 0.66 0.58 0.99 

ES42  3.0 1.30 1.12 49.4 0.84 0.75 1.03 

ES48a 75 1.5 Ref 1.32 22.9 0.75 0.66 1.11 

ES48b     23.4 0.77 0.67 1.13 

ES60  1.9 0.99 1.13 28.0 0.73 0.66 1.04 

ES62a  2.4 1.07 1.15 38.3 0.78 0.70 1.01 

ES62b     38.2 0.78 0.70 1.00 

ES43  3.0 1.21  48.2 0.82 0.74 0.99 

ES50    1.17 51.9 0.88 0.79 1.06 

ES45 100 1.5 Ref 1.33 25.2 0.82 0.72 1.14 

ES64a  1.9 0.99 1.14 26.9 0.70 0.63 0.94 

ES64b     30.2 0.79 0.71 1.05 

ES65a  2.4 1.08 1.18 40.2 0.82 0.73 1.00 

ES65b     39.4 0.80 0.72 0.98 

ES46a  3.0 1.22 N/A 54.2 0.92 0.83 1.04 

ES46b     53.7 0.91 0.82 1.04 

ES66a 120 1.9 Ref 1.17 28.6 0.75 0.67 0.96 

ES66b     29.6 0.77 0.70 0.99 

ES67a  2.4 1.13 1.21 43.1 0.87 0.79 1.03 

ES67b     42.7 0.87 0.78 1.02 

ES68  3.0 1.19 N/A 54.2 0.92 0.83 0.96 

 

The exponential term a in Equation (4) should satisfy 
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  1
th /  a

refttr
 

 (7) 

 

In order to avoid a decimal exponential term in Equation (4) if feasible, the 

exponential term a is taken to have the following form 

 

j
ia 1

 
 (8) 

 

in which i and j are positive integers.  

 

It was found that using a = 
4
/3 simulated the relationship between the tilt bearing 

capacity and the sheet thickness quite well. 

 

The variable rd in Table 4 denotes the ratio between the ultimate test load of a 

16-mm bolt specimen and that of the corresponding 12-mm bolt specimen. The 

average value of rd is 1.16. Using b = ½ in Equation (4) would give a ratio of 

1.15. The exponential term b is therefore taken to be ½, meaning that the tilt 

bearing capacity varies with the square root of the bolt diameter. 

 

Having determined the exponential terms a and b to be 
4
/3 and ½, respectively, 

the exponential term c was computed from Equation (5) to be 
1
/6. 

 

Ultimate tilt bearing coefficient and verification  

 

Table 5 lists the geometric dimensions and ultimate test loads of the G450 

specimens which had a nominal bolt hole clearance of 1 mm. It was found that 

the tighter hole clearance increased the ultimate tilt bearing capacity by about 

5% only on average, justifying the use of one tilt bearing coefficient Ctb 

common to all bolt holes having clearances up to the maximum of 2 mm 

allowed by the codes (AISI 2012, SA/SNZ 2005). 

 

Tables 6 and 7 list the geometric dimensions and ultimate test loads of G2 

specimens that had nominal bolt hole clearances of 2 mm and 1 mm, 

respectively. By comparing the professional factors in these tables against those 

in Tables 3 through 5 for comparable specimens, it can be concluded that the 

significantly different levels of material ductility between G2 and G450 sheet 

steels, as evident from Tables 1 and 2, did not affect the tilt bearing capacities.  

 

The results shown in Tables 6 and 7 also indicate that the orientations of the bolt 

head and nut did not have significant effect on the tilt bearing capacity, although 

there was some 5% difference on average for the specimens in Table 6.  
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Table 5 Test results of G450 specimens with 1-mm hole clearance 

Spec 
W 

(mm) 

t 

(mm) 

d 

(mm) 

Pt 

(kN) 

Pt/Pp 

(1) (2) (9) 

ES1a 50 1.5 12 16.8 0.71 0.64 1.01 

ES1b    17.0 0.72 0.65 1.01 

ES2a   16 19.1 0.62 0.55 1.01 

ES2b    18.5 0.60 0.53 0.98 

ES3a  3.0 12 39.8 0.90 0.81 1.01 

ES3b    41.5 0.94 0.84 1.05 

ES4a   16 44.3 0.75 0.68 0.99 

ES4b    42.5 0.72 0.65 0.95 

ES5a 60 1.5 12 17.2 0.73 0.66 0.99 

ES5b    19.9 0.84 0.76 1.15 

ES6a   16 21.3 0.70 0.61 1.08 

ES7a  3.0 12 39.8 0.90 0.81 0.97 

ES7b    43.6 0.99 0.89 1.06 

ES8a   16 47.2 0.80 0.72 1.01 

ES8b    47.1 0.80 0.72 1.01 

ES9 70 1.5 12 18.2 0.77 0.69 1.01 

ES10   16 23.5 0.77 0.67 1.15 

ES11  3.0 12 45.2 1.02 0.92 1.07 

ES12   16 51.0 0.87 0.78 1.06 

ES13 75 1.5 12 18.5 0.78 0.71 1.02 

ES14   16 23.8 0.78 0.68 1.14 

ES15  3.0 12 44.8 1.01 0.91 1.04 

ES16   16 54.6 0.93 0.83 1.12 

ES17 100 1.5 12 19.2 0.81 0.73 1.00 

ES18   16 24.6 0.80 0.70 1.12 

ES19  3.0 12 46.1 1.04 0.94 1.02 

ES20   16 57.2 0.97 0.87 1.10 

ES21 120 1.5  24.3 0.79 0.70 1.06 

ES22  3.0  57.4 0.97 0.88 1.06 

 

Having established that variations in bolt hole clearances, material ductility, and 

bolt head/nut orientation do not have meaningful effects on the tilt bearing 

capacity of single-shear single-row bolted connections, the ultimate tilt bearing 

coefficient Ctb in Equation (4) was determined to be 2.65 based on the ultimate 

test loads of 150 specimens listed in Tables 3 through 7 and the exponential 

terms a, b and c computed in the preceding section. Equation (4) becomes 
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unb FWtdP 6
1

3
4

2
1

65.2
 

 (9) 

 

The professional factors of Equation (9) are given in Tables 3 through 8, along 

with those of Equations (1) and (2). 

 

Table 6 Test results of G2 specimens with 2-mm hole clearance 

Spec 
W 

(mm) 

t 

(mm) 

d 

(mm) 
Orientation 

Pt 

(kN) 

Pt/Pp 

(1) (2) (9) 

YK 35 50 1.5 12 I 10.8 0.69 0.62 0.98 

YK 36    II 10.0 0.64 0.57 0.91 

YK 39   16 I 11.2 0.56 0.48 0.90 

YK 40    II 11.2 0.55 0.48 0.90 

YK 43 75  12 I 10.8 0.69 0.62 0.91 

YK 44    II 10.8 0.69 0.62 0.90 

YK 47   16 I 13.2 0.66 0.57 0.97 

YK 48    II 12.7 0.63 0.55 0.93 

YK 51 100  12 I 12.9 0.83 0.74 1.02 

YK 52    II 12.1 0.78 0.70 0.96 

YK 55   16 I 15.8 0.78 0.68 1.09 

YK 56    II 14.9 0.74 0.64 1.02 

YK 59 120  12 I 12.4 0.79 0.71 0.94 

YK 60    II 10.4 0.66 0.60 0.79 

YK 63   16 I 15.0 0.75 0.65 1.00 

YK 64    II 14.0 0.69 0.60 0.93 

YK 3 50 2.4 12 I 18.8 0.76 0.68 0.93 

YK 4    II 18.2 0.73 0.66 0.90 

YK 7   16 I 19.9 0.60 0.54 0.87 

YK 8    II 20.4 0.62 0.56 0.89 

YK 11 75  12 I 22.2 0.90 0.81 1.00 

YK 12    II 22.8 0.92 0.83 1.03 

YK 15   16 I 28.4 0.86 0.78 1.12 

YK 16    II 26.3 0.80 0.72 1.04 

YK 19 100  12 I 23.0 0.93 0.84 0.98 

YK 20    II 23.2 0.94 0.84 0.99 

YK 23   16 I 29.9 0.91 0.82 1.11 

YK 24    II 28.0 0.85 0.76 1.04 

YK 27 120  12 I 23.2 0.94 0.84 0.95 

YK 28    II 23.6 0.95 0.86 0.97 

YK 31   16 I 29.3 0.89 0.80 1.05 

YK 32    II 24.7 0.75 0.67 0.88 
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Table 7 Test results of G2 specimens with 1-mm hole clearance 

Spec 
W 

(mm) 

t 

(mm) 

d 

(mm) 
Orientation 

Pt 

(kN) 

Pt/Pp 

(1) (2) (9) 

YK 33 50 1.5 12 I 10.4 0.66 0.60 0.94 

YK 34    II 10.7 0.69 0.62 0.98 

YK 37   16 I 10.5 0.52 0.45 0.84 

YK 38    II 13.3 0.66 0.57 1.07 

YK 41 75  12 I 13.9 0.89 0.80 1.16 

YK 42    II 12.0 0.77 0.69 1.00 

YK 45   16 I 15.3 0.76 0.66 1.11 

YK 46    II 15.7 0.78 0.68 1.15 

YK 49 100  12 I 14.2 0.91 0.82 1.12 

YK 50    II 14.5 0.93 0.84 1.15 

YK 53   16 I 13.5 0.67 0.58 0.93 

YK 54    II 16.8 0.83 0.72 1.15 

YK 57 120  12 I 13.9 0.89 0.80 1.06 

YK 58    II 13.9 0.89 0.80 1.06 

YK 61   16 I 16.5 0.82 0.71 1.10 

YK 62    II 15.0 0.75 0.65 1.00 

YK 1 50 2.4 12 I 20.3 0.82 0.74 0.99 

YK 2    II 19.9 0.80 0.72 0.97 

YK 5   16 I 20.4 0.62 0.56 0.88 

YK 6    II 19.7 0.60 0.54 0.85 

YK 9 75  12 I 24.9 1.02 0.92 1.13 

YK 10    II 23.7 0.96 0.86 1.07 

YK 13   16 I 27.1 0.82 0.74 1.06 

YK 14    II 28.1 0.85 0.77 1.11 

YK 17 100  12 I 25.1 1.02 0.91 1.07 

YK 18    II 24.5 0.99 0.89 1.04 

YK 21   16 I 30.6 0.93 0.83 1.13 

YK 22    II 29.3 0.89 0.80 1.09 

YK 25 120  12 I 25.3 1.02 0.92 1.04 

YK 26    II 25.4 1.02 0.92 1.04 

YK 29   16 I 30.6 0.93 0.84 1.10 

YK 30    II 30.6 0.93 0.83 1.09 

Equation (9) was checked against the test results of independent researchers 

where the specimens failed by tilt bearing due to the bolt head punching through 

the connected sheet on the upstream side of the bolt hole, and where the nominal 

hole diameter clearance did not exceed 2 mm. Yu & Sheerah (2008) tested 12 

such specimens with a diameter clearance of 1.5 mm. Casafont et al. (2006) 

tested single-shear single-row bolted connections having two bolts each. From 
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the photographs provided in their paper, most of the specimens appear to have 

failed in the localised tearing mode depicted in Figure 3. However, one 

specimen having a clearance of 1 mm, shown in Figs. 31 and 32 of their paper, 

failed in tilt bearing due to the bolt head punching through the connected sheet 

on the upstream side of the bolt hole. Hoang et al. (2013) tested one specimen 

only, with a clearance of 0.5 mm. All these test results are included in Table 8. 

 

Table 8 Results of independent researchers 

Researchers 
W 

(mm) 

t 

(mm) 

d 

(mm) 

Fu 

(MPa) 

Pt 

(kN) 

Pt/Pp 

(1) (2) (9) 

Yu & Sheerah 

(2008) 

101.6 0.92 6.4 375 5.18 1.06 0.96 1.09 

    5.40 1.11 1.00 1.14 

    5.09 1.04 0.94 1.07 

    5.48 1.12 1.01 1.15 

    5.02 1.03 0.93 1.06 

    5.05 1.04 0.93 1.06 

 1.12  485 8.16 1.06 0.95 1.02 

    8.42 1.09 0.98 1.05 

    8.12 1.05 0.95 1.02 

    7.67 0.99 0.89 0.96 

    7.96 1.03 0.93 1.00 

    8.11 1.05 0.94 1.01 

Casafont et al. 

(2006) 
100 1.58 8 390 21.9 0.98 0.88 1.11 

Hoang et al. 

(2013) 
42.5 2.00  365 12.3 0.93 0.84 0.99 

 

It transpired that, for the specimens listed in Table 8, Equations (1) and (9) give 

professional factors that are relatively close to each other.  

 

Resistance factor 

 

The overall professional factor Pt/Pp given by Equation (9) for the 164 

specimens listed in Tables 3 through 8 is 1.01, with a coefficient of variation 

equal to 0.074. In order to achieve the target reliability index 0 of 3.5 in the 

LRFD approach, a resistance factor of 0.73 was computed according to Section 

F1.1 of the North American specification (AISI 2012). It is recommended that a 

resistance factor  equal to 0.75 (rounded to the nearest 0.05) be used in 

conjunction with Equation (9) for determining the ultimate tilt bearing capacity 

of a single-shear single-row bolted connection in flat steel sheets. 
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Concluding remarks 

 

This paper has presented the first ever systematic study on the tilt bearing 

capacities of single-shear single-row bolted connections in flat sheets. The tilt 

bearing failure is due to the bolt head punching through the connected sheet on 

the upstream side of the bolt hole during tilting, while the conventional bearing 

failure takes place on the downstream side. It has been found that the tilt bearing 

capacity is not affected by the variation in material ductility. 

 

The tilt bearing capacity varies nonlinearly with the sheet thickness with an 

exponent equal to 
4
/3, and is proportional to the square root of the bolt diameter.  

 

The proposed design equation for the ultimate tilt bearing capacity of a single-

shear single-row bolted connection in flat steel sheet, which includes the sheet 

width as a parameter, is dimensionally consistent. It is reasonably accurate for 

164 specimens tested by the authors and other researchers, comprising 

specimens having sheet thicknesses ranging from 0.92 mm to 3.0 mm and bolt 

diameters ranging from 6.4 mm to 16 mm with hole clearances ranging from 0.5 

mm to 2.0 mm. The tested ratios of sheet width to bolt diameter ranged from 3 

to 16. The accuracy of the proposed design equation has not been found to be 

significantly affected by the orientations of the bolt head and nut. 

 

It is recommended that a resistance factor of 0.75 be used in conjunction with 

the proposed design equation in the LRFD approach of the North American 

specification for the design of cold-formed steel structures. 

 

Acknowledgment 

 

The authors would like to thank the Australian Research Council for funding 

this research through the ARC Research Hub for Australian Steel Manufacturing 

under the Industrial Transformation Research Hubs scheme (Project ID: 

IH130100017). The steel materials used in the present laboratory tests were 

supplied by Messrs. Trevor Clayton and John Kralic of Bluescope. 

 

References 

 

AISI (2008) Test Methods for Mechanically Fastened Cold-Formed Steel 

Connections, ANSI/AISI S905-08, American Iron and Steel Institute, 

Washington, DC. 

AISI (2012) North American Specification for the Design of Cold-formed Steel 

Structural Members 2012 Edition, American Iron and Steel Institute, 

Washington DC. 

600



Carril, J. L., LaBoube, R. A., and Yu, W. W. (1994) Tensile and bearing 

capacities of bolted connections, First Summary Report, Civil Engineering 

Study 94-1, University of Missouri-Rolla, Rolla, MO. 

Casafont, M., Arnedo, A., Roure, F., and Rodriguez-Ferran, A. (2006) 

“Experimental testing of joints for seismic design of lightweight structures. 

Part 2: Bolted joints in straps.” Thin-Walled Struct., 44, 677-691. 

ECCS (2009) The Testing of Connections with Mechanical Fasteners in Steel 

Sheeting and Sections, ECCS TC7 TWG 7.10, European Commission for 

Constructional Steelwork, Mem Martins, Portugal. 

ECS (2006) Eurocode 3: Design of steel structures, Part 1-3: General rules – 

Supplementary rules for cold-formed members and sheeting, EN 1993-1-

3:2006, European Committee for Standardisation, Brussels, Belgium. 

Hoang, T. D., Herbelot, C., Imad, A., and Benseddiq, N. (2013) “Numerical 

modelling for prediction of ductile fracture of bolted structure under 

tension shear loading.” Finite Elements in Analysis and Design, 67, 56-65. 

LaBoube, R.A. (1988). "Strength of bolted connections: Is it bearing or net 

section?", Proc., 9
th

 Int. Specialty Conf. Cold-Formed Steel Structures, St 

Louis, MO, 589-601. 

Rogers, C. A., and Hancock, G. J. (2000) “Failure modes of bolted-sheet-steel 

connections loaded in shear.” J. Struct. Eng., 126 (3), 288-296. 

SA/SNZ (2005) Cold-Formed Steel Structures, AS/NZS 4600:2005, Standards 

Australia/Standards New Zealand, Sydney, Australia. 

Teh, L. H., and Gilbert, B. P. (2012) “Net section tension capacity of bolted 

connections in cold-reduced steel sheets.” J. Struct. Eng., 138 (3), 337-344. 

Teh, L. H., and Clements, D. D. A. (2012) “Block shear capacity of bolted 

connections in cold-reduced steel sheets,” J. Struct. Eng., 138 (4), 459-467. 

Teh, L. H., and Uz, M. E. (2014) “Effect of loading direction on the bearing 

capacity of cold-reduced sheet steels.” J. Struct. Eng., 140 (12), 06014005.  

Teh, L. H. and Uz, M. E. (2015) “Ultimate shear-out capacity of structural steel 

bolted connections.” J. Struct. Eng., 141 (6), 04014152. 

Yu, C., and Sheerah, I. (2008) Cold-formed Steel Bolted Connections Without 

Washers on Oversized and Slotted Holes, Research Report RP08-11, 

Committee on Specifications for the Design of Cold-formed Steel 

Structural Members, American Iron and Steel Institute, Washington, DC. 

Yu, W. W., and Mosby, R. L. (1981) Bolted connections in cold-formed steel 

structures, Final Report, Civil Engineering Study 81-1, University of 

Missouri-Rolla, Rolla, MO. 

Wallace, J. A., and Schuster, R. M. (2001) Testing of bolted cold formed steel 

connections in bearing (with and without washers), Research Report 

RP01-4, Committee on Specifications for the Design of Cold-formed Steel 

Structural Members, American Iron and Steel Institute, Washington, DC. 

601


	Tilt Bearing Capacity of Single-Shear Bolted Connections without Washers
	Recommended Citation

	tmp.1485531365.pdf.kja_a

