
Missouri University of Science and Technology Missouri University of Science and Technology 

Scholars' Mine Scholars' Mine 

International Specialty Conference on Cold-
Formed Steel Structures 

Wei-Wen Yu International Specialty Conference 
on Cold-Formed Steel Structures 2016 

Nov 9th, 12:00 AM - Nov 10th, 12:00 AM 

Wei-Wen Yu International Specialty Conference on Cold-Formed Wei-Wen Yu International Specialty Conference on Cold-Formed 

Steel Structures 2016: Recent Research and Developments in Steel Structures 2016: Recent Research and Developments in 

Cold-Formed Steel Structures Cold-Formed Steel Structures 

Wei-Wen Yu Center for Cold-Formed Steel Structures 

Follow this and additional works at: https://scholarsmine.mst.edu/isccss 

 Part of the Structural Engineering Commons 

Recommended Citation Recommended Citation 
Wei-Wen Yu Center for Cold-Formed Steel Structures, "Wei-Wen Yu International Specialty Conference on 
Cold-Formed Steel Structures 2016: Recent Research and Developments in Cold-Formed Steel Structures" 
(2016). International Specialty Conference on Cold-Formed Steel Structures. 1. 
https://scholarsmine.mst.edu/isccss/23iccfss/info/1 

This Conference proceedings is brought to you for free and open access by Scholars' Mine. It has been accepted 
for inclusion in International Specialty Conference on Cold-Formed Steel Structures by an authorized administrator 
of Scholars' Mine. This work is protected by U. S. Copyright Law. Unauthorized use including reproduction for 
redistribution requires the permission of the copyright holder. For more information, please contact 
scholarsmine@mst.edu. 

http://www.mst.edu/
http://www.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/isccss
https://scholarsmine.mst.edu/isccss
https://scholarsmine.mst.edu/isccss/23iccfss
https://scholarsmine.mst.edu/isccss/23iccfss
https://scholarsmine.mst.edu/isccss?utm_source=scholarsmine.mst.edu%2Fisccss%2F23iccfss%2Finfo%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/256?utm_source=scholarsmine.mst.edu%2Fisccss%2F23iccfss%2Finfo%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsmine.mst.edu/isccss/23iccfss/info/1?utm_source=scholarsmine.mst.edu%2Fisccss%2F23iccfss%2Finfo%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsmine@mst.edu


Wei-Wen Yu International Specialty Conference 

on Cold-Formed Steel Structures 2016 2
0
1
6



Recent Research 
and Developments in

Cold-Formed Steel 
Design and Construction

November 9 & 10, 2016
Baltimore, Maryland, USA

Wei-Wen Yu International Specialty Conference 2016



 



i 
 

 
 
 
 
 

Continuing Education 
 

Wei-Wen Yu International Specialty Conference on 
Cold-Formed Steel Structures 2016 

 
 
 
 
 

RECENT RESEARCH AND DEVELOPMENTS IN 
COLD-FORMED STEEL 

DESIGN AND CONSTRUCTION 
 
 
 
 

Held in Baltimore, Maryland 
November 9 & 10, 2016 

 
 
 
 

Edited by  
Roger A. LaBoube and Wei-Wen Yu  

 
 
 
 

Department of Civil, Architectural & Environmental Engineering 
Missouri University of Science and Technology 

Rolla, Missouri 

 
 



 



ii 
 

Presented by 
 

Department of Civil, Architectural & Environmental Engineering 
Wei-Wen Yu Center for Cold-Formed Steel Structures 

Missouri University of Science and Technology 
 

Sponsored by 
 

American Iron and Steel Institute 
Cold-Formed Steel Engineers Institute 

Metal Building Manufacturers Association 
Rack Manufacturers Institute 

Steel Deck Institute 
Steel Framing Industry Association 

Missouri University of Science and Technology 
 

In Cooperation with 
 

ASCE Committee on Cold-Formed Members 
Canadian Sheet Steel Building Institute, Canada 

SSRC Task Group on Thin-Walled Metal Construction 
Centre for Advanced Structural Engineering 

of the University of Sydney, Australia 
 

Conference Directors 
 

Roger A. LaBoube, Director 
Wei-Wen Yu, Founding Director 

 Wei-Wen Yu Center for Cold-Formed Steel Structures,  
Missouri University of Science and Technology 

 
Planning Committee 

 
D. Allen – Super Stud Building Products, Inc. 

R.L. Brockenbrough - R.L. Brockenbrough & Associates, Inc. 
H.H. Chen - Representative of AISI 

J. Crews – Unarco Material Handling Inc.; Representative of RMI 
W.S. Easterling – Virginia Tech 

P. Ford – Matsen Ford Design Associates; Representative of SFIA 
S.R. Fox- CSSBI, Canada 

G.J. Hancock - Representative of the University of Sydney, Australia 
R.B. Haws - Nucor 

R.A. LaBoube –Missouri S&T; Conference Director 
J.W. Larson – Representative of AISI 

J. A. Mattingly – Consultant 
C.D. Moen, NBM Technologies: Representative, CFSEI 

T.B. Pekoz - Cornell University 
N. Rahman – The Steel Network, Representative, ASCE 

B.W. Schafer – Johns Hopkins University; Representative of  
SSRC Task Group on Thin-Walled Metal Construction  

W.E. Schultz – Nucor Research and Development  
W.L. Shoemaker - Representative of MBMA 

T. Sputo – Representative of SDI 
R. Warr, Frameworks Engineering; Representative, CFSEI 

W.W. Yu – Missouri S&T; Conference Co-Director 

 



 



i 

 

CONTENTS 
Preface ........................................................................................................ viii 
Program ......................................................................................................... ix 
 
TECHNICAL SESSION No. 1 

Member Design 
First-Order Generalized Beam Theory for Curved 
Members with Circular Axis 
         N. Peres, R. Goncalves and D. Camotim ...................................1    
A Finite Element Method for Distortional Buckling 
Analysis of Thin-Walled Members 

                     S. Jin, X. Jian, R. Cheng, S. Nie and M. Cheng .......................17 
The Design and Development of New Cold Roll Formed 
Products by Finite Element Modeling and Optimisation 

                     V.B. Nguyen, P.K.C. Wood, 
                     M.A. English and M.A. Castellucci  ........................................29 
            Analyses of Thin-Walled Sections under Localised Loading 
            for General End Boundary Conditions – Part I: Pre-Buckling 
                     V.V. Nguyen, G.J Hancock and C.H. Pham  ............................41 
             Analyses of Thin-Walled Sections under Localised Loading 
            for General End Boundary Conditions – Part II: Buckling 
                     V.V. Nguyen, G.J Hancock and C.H. Pham  ............................57 
             Measured Geometric Imperfections for Cee, Zee, and 
             Built-Up Cold-Formed Steel Members 
                     X. Zhao and B.W. Schafer  ......................................................73 
              Stability Analysis of Thin-Walled Members with 
              Curved Cross-Section Parts: Inelastic Behavior 
                     D. Jobbagy and S. Adany .........................................................89 
 
TECHNICAL SESSION NO. 2 

Compression Members 
Material Properties of Cold-Rolled Thin-Walled 
Steel Plates at Elevated Temperatures 

Z. Nie and Y. Li  ....................................................................105 
Buckling Strength of Cold-Formed Circular Steel 
Column Subjected to Axial Load 

                     A. Ito, N. Shimizu, K. Sato and Y. Kawai ............................. 121 
On the Direct Strength Design of Cold-Formed Steel 
Columns Falling in Local-Distortional Interactive Modes 

A.D. Martins, D. Camotim and P. B. Dinis  .......................... 135 
 
 

 



ii 
 

Proposal for Codification of a DSM Design Approach for  
Cold-Formed Steel Short-to Intermediate Angle Columns 

P.B. Dinis and D. Camotim  ..................................................155 
Effect of Web Perforation on the Behaviour of Cold-Formed 
Steel C-Shape Slender Column Subjected to Non-Uniform 
Cross-Sectional Distribution of Elevated Temperatures 

                     S. Yang and L. Xu  ................................................................. 173 
Distortional Buckling Experiment on Cold-Formed  
Steel Lipped Channel Columns with Circle Holes 
under Axial Compression 
        Y. Yao, Y. Guo and Z. Nie  ....................................................187 

 
TECHNICAL SESSION NO. 3 

Flexural Members 
Numerical Simulations of Solid and Slotted  
Cold-Formed Steel Channels with Different  
Boundary Conditions in Shear 

V.V. Degtyarev and N.V. Degtyareva  ..................................203 
Buckling Behaviour of Cold-Formed Steel Beams 
under Bending and Loading 

H. Wan and M. Mahendran  ..................................................219 
Finite Element Investigations of the Effect of Residual  
Stress in Cold-Formed Sigma Beans 

F. Wang and J. Yang .............................................................235 
             Incorporation of Elastic Local Buckling in a Plain Channel 
             Section Beam Subjected to Double-Curvature Bending: 
             An Effective-Width Approach 

E. Lim, B.J. Goodno and J.I. Craig  .......................................251 
Test of Cold-Formed Ferritic Stainless Steel Beams 

L. Li and B. Young ................................................................267 
Lateral-Torsional Buckling of General  
Cold-Formed Steel Beams 

R.S. Glauz  .............................................................................281 
Unconstrained Cross-Sectional Shape Optimisation 
of Cold-Formed Steel Beams and Beam-Columns 

B. Wang, B. Gilbert, G.L. Bosco, 
H. Guan and L. Teh  ..............................................................297 

 
 
 
 
 



iii 
 

TECHNICAL SESSION NO. 4 
Beam-Column Members 

Web Crippling Strength of Cold-Formed Duplex Stainless  
Steel Lipped-Channel Sections with Web Openings  
Subjected to Interior-One-Flange Loading  

A.M. Yousefi, J.B.P. Lim, A. Uzzaman, 
Y. Lian, G.C. Clifton and B. Young  .....................................313 

DSM for Web Crippling under Two-Flange Conditions 
P. Natario, N. Silvestre and D. Camotim  ..............................325 

Identifying Shear Buckling Coefficients for  
Channels with Rectangular Web Stiffeners  
using the Generalised cFSM 

M.A. Rendall, G.J. Hancock and K.J.R. Rasmussen  ............339 
Experimental Investigation of Cold-Formed C-Sections 
with Central Square Holes in Shear 

C.H. Pham, A. Pelosi, 
T. Earls and G.J. Hancock .....................................................355 

A Direct Strength Method (DSM) of Design 
for Channel Sections in Shear with Square 
and Circular Web Holes 

S.H. Pham, C.H. Pham and G.J. Hancock  ............................373 
 

TECHNICAL SESSION NO. 5 
Technology Transfer 

New SDI Diaphragm Design Manual 
L. Luttrell, J. Mattingly,  
W. Schultz and T. Sputo ........................................................389 

Recent Developments in the Australian/New Zealand 
Standard AS/NZS 4600 for Cold-Formed  
Steel Structures 

G.J. Hancock  ........................................................................401 
Progress in the Development of ASCE 41 
for Cold-Formed Steel 

D. Ayhan, R.L. Madsen and B.W. Schafer ............................417 
AISI Standards Developed and Updated 
in 2015 and 2016 

H. Chen, R. Brockenbrough and R. Haws  ............................433 
Advancing BIM for Cold-Formed Steel Structures 

A. Johnson, R. Ramirez, C. Yu  .............................................447 
 

 
 



iv 
 

TECHNICAL SESSION NO. 6 
Rack Structures 

Experimental Investigation into Steel Storage 
Rack Beam-to-Upright Bolted Connections 

L. Dai, X. Zhao and C. Ren  ..................................................461 
Industrial Cold-Formed Steel Rack Column 
Base Fixity and Strength 

F. Roure, T. Pekoz, M.R. Somalo, J. Bonada,  
M.M. Pastor, M. Casafont and J. Crews ................................477 

Design of Industrial Cold-Formed Steel Rack Upright 
Frames for Loads in Cross-Aisle Direction 

F. Roure, T. Pekoz, M.R. Somalo, 
J. Bonada, M.M. Pastor, M. Casafont  ...................................493 

 
TECHNICAL SESSION NO. 7 

Behavior of Systems and Frames 
Experiments on Column Base Stiffness of 
Long-Span Cold-Formed Steel Portal Frames 
Composed of Double Channels 

H.B. Blum and K.J.R. Rasmussen  ........................................509 
Characterizing the Load Deformation  
Behaviour of Steel Deck Diaphragms 

P. O’Brien, S. Florig, 
C.D. Moen, and M.R. Eatherton ............................................525 

Reduced Order Models for Profiled 
Steel Diaphragm Panels 

G. Bian, S. Torabian and B.W. Schafer .................................541 
 

       TECHNICAL SESSION NO. 8 
Connections 

Experimental Investigation of the Effect of Screw Fastener 
Spacing on the Local and Distortional Buckling Behavior 
of Built-Up Cold-Formed Steel Columns 
       D.C. Fratamico, S. Torabian, 
       K.J.R. Rasmussen and B.W. Schafer  ....................................555 
Resistance of Arc Spot Welds –  
Update to Provisions 

B.P. Blackburn and T. Sputo  ................................................571 
Tilt Bearing Capacity of Single-Shear Bolted 
Connections without Washers 

M.E. Uz and L.H. Teh  ..........................................................587 
 



v 
 

Behaviour of Cold-Formed Steel Semi Rigid Connections 
R. Freya, R. Senthil, W.J. Merin, 
R. Saravanakumar, Kuber, M. Gowthan ................................603 

Shear Behavior of Screw Connection between 
Cold-Formed Steel and Gypsum Sheathing  
at Elevated Temperatures  

W. Chen and J. Ye .................................................................617 
Monotonic and Cyclic Backbone Response of  
Single Shear Sheathing-to-Cold-Formed Steel  
Screw-Fastened Connections 

F. Tao, R. Cole and C.D. Moen .............................................629 
Behaviour of Cold-Formed Steel Trusses with  
Concentric and Eccentric Joint Arrangements 
using the Howick River Connector 

A. Ahmadi, C.K.L. Yee, H.J.S. Shepherd, 
G.C. Clifton, R. Das and J.B.P. Lim ......................................647 
 

         TECHNICAL SESSION NO. 9 
         Roof and Wall Systems 

Application of the Direct Strength Method to Steel Deck 
R.K. Dudenbostel and T. Sputo  ............................................665 

Finite Element Modeling of Concrete Shrinkage 
in Composite Deck Slabs 

V.V. Degtyarev ......................................................................681 
Design of New Cold Rolled Purlins by Experimental 
Testing and Direct Strength Method 

V.B. Nguyen, B. Cartwright and M.A. English .....................697 
Advanced Modeling of Cold-Formed Steel 
Walls under Fire 

J.C. Batista Abreu, N. Punati, 
K.R. Prasad and B.W. Schafer ...............................................713 

A Combined Direct Analysis and Direct Strength 
Approach to Predict the Flexural Strength of 
Z-Purlins with Paired Torsion Braces 

M.W. Seek, C. Ramseyer and I. Kaplan  ...............................729 
 
 
 
 
 
 
 
 



vi 
 

TECHNICAL SESSION NO. 10 
Shear Walls 

Characterization of Cold-Formed Steel Framed 
Diaphragm Response under In-Plane Loading  
and Influence of Non-Structural Gypsum Panels 

P. Latreille, V. Nikolaidou,  
C.A. Rogers and D.G. Lignos  ...............................................745 

Seismic Performance Investigation of Cold-Formed 
Steel Framed Shear Walls with Steel Sheathing 

R. Feng and P. Xu  .................................................................761 
 
Sheathing Overlapping and Attachment Methods 
for Cold-Formed Steel Shear Walls with  
Corrugated Steel Sheathing 

M. Mahdavian, W. Zhang and C. Yu  ....................................771 
Simulating the Seismic Performance of Cold-Formed 
Steel Framed Buildings using Corrugated 
 Sheet Shear Walls 

W. Zhang, M. Mahdavian 
Y. Li and C. Yu  ....................................................................785 

Behavior of Steel Sheet Sheathed Cold-Formed 
Steel Walls Subjected to Combined Lateral  
and Vertical Loads 

P. Jia, W. Zhang M. Mahdavian, 
N. Derrick and C. Yu  ............................................................795 

Experimental Tests for the Seismic Response 
Evaluation of Cold-Formed Steel Shear Walls  
Sheathed with Nailed Gypsum Boards 

L. Fiorino, V. Macillo, M.T. Terracciano, 
T. Pali, B. Bucciero and R. Landolfo  ...................................807 

 
TECHNICAL SESSION NO. 11 

Light-Steel Framing 
Shear Resistance of Cold-Formed Steel Framing 
Wall with X-Strap Bracing 

C.L. Pan, C.C. Huang and M.H. Tsao  ..................................823 
Development of a Method to Generate a  
Simplified Finite Element Model for an  
Electrical Switchboard Cabinet 

E. Lim, B.J. Goodno and J.I. Craig ........................................837 
An Improved Two-Stage Seismic Analysis Procedure 
for Mid-Rise Buildings with Vertical Combination  
of Cold-Formed Steel and Concrete Framing 

X. Yuan and L. Xu  ................................................................853 



vii 
 

Seismic Modeling and Incremental Dynamic Analysis of  
the Cold-Formed Steel Framed CFS-NEES Building 

J. Leng, S.G. Buonopane and B.W. Schafer ..........................869 
Full-Scale Experimental and Numerical Study  
about Structural Behavior of Thin-Walled Cold-Formed 
Steel Building Affected by Ground Settlements  
due to Land Subsidence  

J.A. Ortiz-Lozano, L.A. Hernandez-Castillo, 
M. Hernandez-Marin, J. Pacheco-Martinez, 
M.E. Zermeno-deLeon and R. Salinas-Salinas ......................885 

Design Method for Cold-Formed Thin-Walled 
Steel Beams with Built-up Box Section 

Y.L. Li and Y.Q. Li  ..............................................................895 
An Archetype Mid-Rise Building for Novel 
Complete Cold-Formed Buildings 

S. Torabian, Z.S. Nia and B.W. Schafer ................................909 



viii 
 

                            PREFACE 
 

Cold-formed steel members are used in virtually every area of construction.  In order to 
review the research findings and the design methods developed in this field, 23 International 
Specialty Conferences on Cold-Formed Steel Structures have been held since 1971.  In 
2014, in recognition of his vision and many contributions to the field of cold-formed steel 
structures, the conference was named the Wei-Wen Yu International Specialty Conference 
on Cold-Formed Steel Structures. 
 

In recent years, significant progress has been made in the development of design standards 
and in research studies of cold-formed steel members and structural systems throughout the 
world. The Wei-Wen Yu International Specialty Conference on Cold-Formed Steel 
Structures 2016 was held in Baltimore, Maryland on November 9th and 10th, 2016.  It was 
sponsored by the American Iron and Steel Institute (AISI), Cold-Formed Steel Engineers 
Institute  (CFSEI), Metal Building Manufacturers Association (MBMA), Rack 
Manufacturers Institute (RMI), Steel Deck Institute (SDI), Steel Framing Industry 
Association (SFIA), and the Missouri University of Science and Technology (formerly 
University of Missouri-Rolla) in cooperation with the American Society of Civil Engineers 
Committee on Cold-Formed Members, Canadian Sheet Steel Building Institute, Structural 
Stability Research Council Task Group on Thin-Walled Metal Construction, and the Centre 
for Advanced Structural Engineering of the University of Sydney in Australia. 
 

This publication contains the 61 conference papers.  These papers not only report the results 
of recent research but also discuss many the technical developments in cold-formed steel 
design and construction.  
 

This conference also saw the continuation of the Wei-Wen Yu Student Scholars Program, 
the purpose  of which is to provide travel reimbursement support for university students to 
attend and present a paper at the conference, and the Wei-Wen Yu Outstanding Paper 
Award, which is given for the best student authored or co-authored paper presented at the 
conference.    
 

As Directors of the Conference, we are very grateful to all the sponsors and supporting 
organizations for their financial and technical support and to all authors for their 
contributions in the field of cold-formed steel structures.  Appreciation is also due to 
members of the Planning Committee (D. Allen, R.L. Brockenbrough, H.H. Chen, J. Crews, 
W.S. Easterling, P. Ford, S.R. Fox, G.J. Hancock, R.B. Haws, D.L. Johnson, W.E. Kile, 
R.A. LaBoube, J.W. Larson, J.A. Mattingly, T.B. Pekoz, N. Rahman, B.W. Schafer, W.E. 
Schultz, W.L. Shoemaker, T. Sputo, Robert Warr and W.W. Yu) for review and selection of 
papers and their advice in preparation of the conference. We also thank all of the session 
chairpersons listed in the program for their time and effort.  We also acknowledge the in 
valuable assistance of S.F. Stephens and A. Gheni during the conference. 
 

Special thanks are extended to Mrs. Christina Stratman for her assistance with the 
conference planning and organization as well as preparing this publication. 
 

Roger A. LaBoube 
Wei-Wen Yu 
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Abstract 

 

This paper presents a first-order Generalized Beam Theory (GBT) formulation for thin-

walled members with circular axis and undergoing complex global-distortional-local 

deformation. The fundamental equations are derived on the basis of the usual GBT 

kinematic assumptions (Kirchhoff, Vlasov and wall in-plane inextensibility), leading to a 

formulation able to retrieve accurate solutions with only a few cross-section deformation 

modes (cross-section DOFs). It is shown that the classic Winkler and Vlasov theories can 

be recovered from the derived formulation. A GBT-based finite element is use to analyze 

numerical examples illustrating the application and potential of the proposed formulation. 

 

1. Introduction 

Generalized Beam Theory (GBT) is a thin-walled prismatic bar theory that incorporates 

cross-section in-plane and out-of-plane (warping) deformation, through the consideration 

of “cross-section deformation modes” (cross-section DOFs), whose amplitudes 

along the member axis constitute the problem unknowns. GBT was introduced by 

Richard Schardt (1966, 1989) and has been continuously developed since then 

(Camotim et al. 2010, Basaglia & Camotim 2013)  it is presently widely recognized 

as a very efficient tool to solve prismatic thin-walled member problems, due to its 

ability to (i) obtain accurate and structurally enlightening solutions with just a few 

deformation modes and (ii) include or exclude specific behavioral features in a 

straightforward manner. In fact, GBT often leads to analytical or semi-analytical 

solutions, which make it possible to draw meaningful conclusions concerning the 

structural behavior of prismatic thin-walled members. 
 
This paper presents a first-order GBT formulation for naturally curved thin-walled 

members with circular axis (without pre-twist) and undergoing global-distortional-local 

deformation. Although the analysis of curved members is significantly more complex 
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than that of straight bars, it is shown that the most remarkable features of the classic 

GBT are retained, namely that (i) accurate solutions are obtained with only a few 

deformation modes and finite elements, and (ii) the unique GBT modal decomposition 

can be employed to investigate the complex structural behavior of curved thin-walled 

members, as illustrated by the numerical examples presented in the paper. 

 

2. First-Order GBT for Members with Circular Axis 

Due to space limitations, only an overview of the derivation of the fundamental relations 

and equations is provided  a detailed account can be found in Peres et al. (2016). Fig. 1 

shows the global cylindrical (, Z, R) and local wall (x, y, z) coordinate systems for an 

arbitrary curved thin-walled member. The member axis arc-length X defines the arbitrary 

cross-section “center” C, lies on the Z = ZC horizontal plane and has curvature equal to 

1/RC. Concerning the wall local axes, y and z define the mid-line and through-thickness 

directions, respectively, and x is concentric to X. The small-strain-displacement relations 

are first obtained in the global cylindrical axes (e.g., Reddy 2013) and then transformed to 

the local axes using the angle . Then, using R = r + z cos , where r is the mid-line radius 

(Fig. 1 shows R and r for an arbitrary point P), Kirchhoff’s thin-plate assumption 

(z z =  z = y z = 0) is enforced, which eliminates plate-like shear locking and allows writing 

the local displacements (u,v,w) in terms of the mid-line (or membrane “
M

”) ones, 
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where the commas indicate derivatives (e.g., f,x = f/x), although the derivative with 

respect to the arc-length is indicated by a prime, i.e., ()' = ()/X. Next,  = X/RC is 

employed and the usual GBT variable separation is used, 
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where wvu ,,  are column vectors containing the mid-line displacement components 

pertaining to each deformation mode k and the column vector  collects their 

amplitude functions (the unknowns). The derivative ' appearing in u
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Fig. 1. Global and local (wall) axes for a naturally curved thin-walled beam 
 
where ()

M
, ()

B
 are membrane/bending terms, Ky = cos/RC, Kz = sin/RC are the 

curvatures along the local axes and  = RC/r. Comparing Eqs. (3) with those obtained 

for straight bars (Gonçalves & Camotim 2011, 2012) shows that the latter have much 

less terms and 11 = 0, since the v, w displacements cause no longitudinal strains. 

The equilibrium equations may then be cast as 
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where Xij are generalized stresses, B-G are GBT modal matrices and Qi are generalized 

external loads, given by 
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In these expressions, A is the cross-section area, L is the beam axis length, E is Young’s 

modulus,  is Poisson’s ratio, G is the shear modulus and qi are body forces. The Xxx 

resultants are associated with longitudinal normal stresses, whereas Xxy are shear 

stress resultants and Xyy reflect transverse normal stresses.  
 
As in the classic GBT, besides Kirchhoff’s assumption, two additional strain constraints 

are enforced: (i) null wall transverse membrane extensions ( 0M

yy ) and (ii) Vlasov’s 

assumption ( 0M

xy ), generally acceptable for open sections. Both these constraints 

reduce the number of admissible deformation modes with no significant accuracy loss 

and, in particular, Vlasov’s assumption eliminates shear locking effects. Concerning the 

first constraint, it is concluded that the kv  functions must be constant in each wall, as in 

the classic GBT. To avoid over-stiffness, the membrane and bending terms must be 

uncoupled, by taking R/RC  r/RC = 1/ and replacing E/(12
) by E in the membrane 

terms. Vlasov’s assumption leads to 

 ./, kzykk uKuv    (9) 

Although this constraint is more complex than that for straight members, together with 

the 0M

yy  assumption it turns out that the ku  functions must be at the most linear in y, 

as in the classic GBT. 
 

3. Rigid-Body Modes for Open Sections 

The particular case of the so-called “rigid-body” (RB) modes (axial extension, 

bending and torsion) for open sections is now addressed. It is assumed that C coincides 

with the centroid/shear centre and that the cross-section principal axes are parallel to 

the global Z, R axes. For the in-plane case (coupled axial force and bending), 

consider external loads applied along the beam axis, namely distributed axial forces n, 

transverse forces pR and moments mZ, deemed positive according to the global axes. 
 
For the axial extension and bending modes (k = 1, 2, respectively), one obtains the 

classic relations, with the shear force eliminated from the equilibrium equations 

(e.g., Winkler 1868, Armero & Valverde 2012), 
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where UC is the C displacement of C along the -axis and ,  stand for the axis 

extension and curvature. 
 
For the out-of-plane case (torsion-bending coupling), vertical forces pZ and torsional 

moments mX distributed along the axis, one obtains the Vlasov (1958) equations for 

bending (k = 3) and torsion (k = 4), 
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where B is the bi-moment, TSV is the St. Venant torsion moment, T = B' + TSV is 

the total torsion,  is the twist rotation, IW is the warping constant, J is the St. 

Venant torsion constant and  is the torsion curvature. 

 

4. Deformation Modes 

The present formulation can handle deformation modes involving any combination 

of the strain components in Eqs. (3). In particular, all the modes for straight members, as 

defined in Gonçalves et al. (2010, 2014), can be employed  they can be calculated using 

the GBTUL software (Bebiano et al., 2015), freely available at www.civil.ist.utl.pt/gbt. 

However, note that the determination of the so-called “natural Vlasov modes” (warping 

modes complying with Vlasov’s assumption) requires special attention, as Eq. (9) 

differs from its straight bar counterpart. A two-step procedure is proposed, where 

(i) the warping functions are first calculated, using GBTUL, and (ii) the corresponding 

in-plane shapes are retrieved from Eq. (9), as in the classic GBT. Fig. 2 shows the 

deformation modes for a straight I-section member, based on the discretization indicated 

(6 natural nodes and a single intermediate node). For curved members, modes 5-21 are 

retained, together with the warping functions of the Vlasov modes 1-4, which, in this 

case, correspond to the rigid-body modes. As shown in Fig. 3, in curved members the 

in-plane shapes of the Vlasov modes depend on the cross-section orientation. In 

particular, (i) axial extension may involve a radial displacement, (ii) the bending modes 

may involve twists and (iii) the torsional mode may involve a shift of the conventional 

shear centre (with respect to the straight member location). 
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Fig. 2. Cross-section deformation modes for a striaght I-section member 

 

 

Fig. 3. In-plane shapes of the rigid-body (Vlasov) modes for curved members 

 

5. A GBT-Based Finite Element 

The examples presented next are solved using a standard GBT-based finite element 

which approximates the deformation mode amplitude functions using Hermite cubic 

6



and Lagrange quadratic functions, the latter for the deformation modes involving only 

warping displacements  for further details, see, e.g., Gonçalves & Camotim (2012). 

Locking is mitigated by using reduced integration along X, with 3 Gauss points. In the 

mid-line direction y, the number of Gauss points between cross-section nodes generally 

depends on the mode types included in the analysis  however, it was concluded that two 

points suffice in all the examples presented in the paper. It is assumed that R/RC  1/, 

which uncouples the membrane/bending terms and makes it possible to perform 

analytical integration along z. Finally, it is worth noting that the finite element procedure 

was implemented in MATLAB (The MathWorks Inc. 2010). 

 

6. Numerical Examples 

All examples concern 90º cantilever beams under free end section forces. For comparison 

purposes, classic Winkler and Vlasov theory solutions are provided, together with 

results obtained with refined shell finite element models, using ANSYS (ANSYS Inc. 

2016). The displacement values reported are work-conjugate to each applied force. 

6.1 In-Plane Bending of an I-Section Arch Beam 

Consider the I-section beam displayed in Fig. 4. The graph plots the GBT-based 

displacement, obtained with the extension/bending modes and normalized with respect 

to the classic Winkler solution, as a function of the number of equal-length finite 

elements. As expected, the GBT results tend to the Winkler solution as more elements 

are used (<1% for >4 elements). The table compares the displacements obtained 

with a shell model with the Winkler solution and GBT results determined with 10 

finite elements and several deformation mode sets: (i) RB modes 1-2, (ii) web-symmetric 

shear modes 10 and 13-15 and (iii) the web-symmetric local-plate (LP) modes 8-9. 

The Winkler and GBT-RB solutions fall almost 3% below the shell model value, 

due to cross-section deformation. This discrepancy is easily deal with in the GBT 

approach by including the shear (S) and LP modes, leading to a 0.8% difference. 
 
In order to examine further the effect of cross-section deformation, RC is decreased 

to 2.5 m and the results are shown in Fig. 5. The GBT analyses involved a cross- section 
 

 

Fig. 4. In-plane bending of an I-section arch beam with RC = 5 m 

7



 

Fig. 5. In-plane bending of an I-section arch beam with RC = 2.5 m 
 
discretization with three web intermediate nodes and were carried out with 10/20 

elements, as indicated in the table. The Winkler and GBT-RB solutions now fall 

almost 10% below the shell model value, which means that the extension/bending 

modes alone do not provide accurate results. The GBT results improve as more modes 

are included in the analysis  the best ones are obtained with all web symmetric 

modes (including the transverse extension ones) and 20 elements. The deformed 

configurations depicted in Fig. 5 show an excellent agreement between the shell 

and GBT solutions. The r.h.s. configurations detail the tip zone, showing that the top 

(bottom) flange curls downwards (upwards). The bottom graph plots the mode amplitude 

functions along X/L. It is observed that the most relevant modes are E (extension) and B 
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(bending), although there are visible participations of the LP modes 8 and 9 (the curve 

corresponds to the sum of the two participations), evidencing the observed curling 

phenomenon. It is also noted that the shear mode 10 has a relevant participation near 

the tip, due to the present of the concentrated force, and that the transverse extension 

modes play a minute role. 

6.2 Out-of-Plane Bending of an I-Section Arch Beam 

In this example, the force is applied, along Z, at the end section centroid (see Fig. 6). 

The GBT cross-section discretization involves a single intermediate node in the web, 

leading to the deformation modes 5-21 depicted in Fig. 2 and to the RB modes shown 

in Fig. 3 (case b). The graph below the table in Fig. 6 plots the tip displacement, 

obtained with all deformation modes, against the number of finite elements considered. 

It is concluded that 10-20 elements lead to satisfactory results. 
 
The deformed configurations displayed in Fig. 6 provide further evidence of the excellent 

agreement between the GBT and shell model solutions. However, it is noted that, 

in spite of the influence of the LP and S modes on the tip displacement value, their 

presence is, at best, barely visible. Further insight can only be provided by the mode 

amplitude graphs depicted at the bottom of the figure. The left graph makes it possible 
 

 

Fig. 6. Out-of-plane bending of an I-section arch beam with RC = 5 m 
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to conclude that the bending and torsion modes are dominant  their amplitudes 

are two orders of magnitude above those of the LP and S modes. The right graph shows a 

detailed view of the most relevant LP and S modes. It is observed that their amplitudes 

are mostly relevant near the support and that the LP modes 5 and 6 (flange rotation and 

web transverse bending) are the most significant, even if the LP mode 7 (symmetric 

transverse bending) and the bi-shear mode S12 also play non-negligible roles. 

6.3 Arch Beam with a 45º Rotated I-Section 

In this example, the beam cross-section is rotated by 45º and the load is applied, 

along the radial direction, at the lower flange-web junction  see Fig. 7. The RB modes 

are shown in Fig. 3 (case c). The table in this figure makes it possible to compare the 

radial displacements of the point of load application obtained by means of a refined 

shell model and GBT with 20 finite elements and including various deformation mode 

sets. It is concluded that the GBT shear modes do not play a significant role also in this 

example (moreover, the transverse extension modes do not participate in the solution 

 this is not shown) and that very accurate results are obtained if the LP modes are 

included in the analysis. The deformed configurations displayed in Fig. 7 provide further 
 

 

Fig. 7. Arch beam with a 45º rotated I-section. 
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evidence of the good agreement between the shell finite element and GBT solutions. 

The two modal amplitude graphs depicted in the bottom of the figure provide additional 

relevant information. The four RB modes are predominant, with amplitudes several 

orders of magnitude above those of the LP modes  nevertheless, as already shown, 

the LP modes are essential to obtain accurate tip displacement values. Finally, the r.h.s. 

graph shows that only the LP modes 5-7 have visible participations. 

5.3 Local-Plate Bending of an I-Section Arch 

Consider now that the arch acted by two self-equilibrated concentrated forces, as 

shown in Fig. 8. The GBT analyses are based on a cross-section discretization with no 

intermediate nodes, leading to 18 deformation modes  they consist of the set shown in 

Fig. 2, excluding modes 7, 15 and 21 (for simplicity, the mode numbers in Fig. 2 are 

kept), and the RB modes depicted in Fig. 3 (case b). The table in Fig. 8 displays the 

radial displacement of the points of load application, obtained with a refined shell 

model and GBT analyses including all 18 modes and various numbers of equal-length 

finite elements. The GBT solution with 20 elements is already quite close to the shell 

model one, but increasing the number to 50 brings the difference to a remarkable 

1.4%. The deformed configurations depicted in the figure show, once more, the excellent 
 

 

Fig. 8. Local-plate bending of an I-section arch beam 
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agreement between the two models, namely in the close vicinity of the beam free end  

the GBT deformed configuration was obtained with 30 elements. 
 
The mode amplitude graphs provided in the bottom of Fig. 8 (at the r.h.s. one details 

the [ 0.0001, 0.0001] range) enable a clear visualization of the participation of all LP 

modes. Throughout the beam, the most significant participations are from the minor-

axis bending (B3) and torsion (T) modes. Near the free end, the LP modes 5, 8 and 9 

are also relevant, due to the concentrated force effects. The r.h.s. graph shows that the 

end section deformed configuration is rather complex  contributions from many 

deformation modes (the unnumbered curves correspond to transverse extension modes). 

6.4 Square Hollow Section Arch 

The last example concerns the thin-walled square hollow section shown in Fig. 9. 

The GBT analyses are based on a cross-section discretization with no intermediate 

nodes (this particular example does not require such nodes), leading to 12 modes, 

whose in-plane shapes and warping functions are also displayed in Fig. 9. The first 3 RB 

modes comply with Vlasov’s assumption (for curved members). Since the cross-section 

is closed, the torsional mode (4) causes membrane shear deformation and does not 

comply with Vlasov’s assumption  for this reason, the mode shape for straight beams 

is considered. The shear modes comprise one in-plane distortional-type mode (5) and 

three warping functions  the first two (modes 6-7) correspond to those of modes 2-3. 

Finally, 4 transverse extension modes are also obtained. 
 
A cantilever arch beam is analyzed, loaded as shown in Fig. 10. The table in this 

figure provides the displacement values obtained with a refined shell model and 

GBT analyses with 20 equal-length finite elements and considering different 

deformation mode sets. These results show that the inclusion of the shear mode 5 is 

absolutely essential to obtain the correct displacement value  the difference with 
 

 
Fig. 9. Deformation modes for a square hollow section 
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Fig. 10. Square hollow section arch beam 
 
respect to the shell model value drops from about 70% to less than 1%! The 

graph below the table plots the variation of GBT-based displacement, calculated 

with all deformation modes, with the number of finite elements. It is noted that 4 

elements already lead to satisfactory results (difference with respect to the shell 

model below 2%), a feature that can be attributed to the fact that the cross-section 

deformation is not severely localized, as discussed below. 
 
Fig. 10 also displays the deformed configurations obtained from both analyses 

and an excellent agreement is again observed. These configurations clearly show 

cross-section flattening occurring along the member. Finally, the deformation 

mode amplitudes are plotted in the bottom of Fig. 10. Clearly, modes 2 (bending), 

4 (torsion) and 5 (shear) are the most relevant. In particular, and even though a 

concentrated force is applied, it is observed that the amplitudes of modes 4 and 5 

are not markedly localized, but rather smoothly varying along the member length. In 

fact, note that the maximum distortion occurs near X/L = 0.5. 
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7. Concluding Remarks 

This paper presented the development and validation of a first-order GBT formulation 

for naturally curved thin-walled members with circular axis (constant bending 

curvature). Attention is called to the following aspects of the proposed formulation: 

(i) It accommodates the standard GBT kinematic assumptions (Kirchhoff's, Vlasov’s 

and null transverse membrane extensions), thus retaining the efficiency of the 

classic GBT. Moreover, shear and transverse extension modes can be also handled. 

(ii) The equilibrium equations may be written in terms of GBT modal matrices (the 

standard approach) or stress resultants.  

(iii)When particularized, the proposed formulation recovers the classic Winkler and 

Vlasov equations and fundamental relations.  

(iv) A GBT-based finite element was implemented and employed to solve a set of 

representative numerical examples involving complex local-global deformation. In 

all cases it was concluded that accurate results are obtained with only a few 

deformation modes and finite elements. The GBT modal decomposition features 

were shown to provide in-depth insight on the structural behavior of curved members. 
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Abstract 

This paper presents a method for distortional buckling analysis of 
thin-walled members without assuming longitudinal shape of buckling modes. 
In this method, the pure distortional elastic buckling loads and deformation 
modes are achieved by performing a linear buckling analysis of a specially 
constrained finite element model of the thin-walled member in ANSYS. The 
constraints on each cross-section are applied independently and can be divided 
into two parts. The first part, by which distortional buckling can be distinguished 
from local buckling, depicts the transvers deformation of a cross-section, while 
the second part originated from longitudinal displacement patterns of 
distortional modes is used to distinguish this type of buckling from global 
buckling. Transverse membrane extensions are permitted in the proposed 
distortional buckling mode. A numerical example is given to demonstrate the 
method. 

1. Introduction  

Global or local buckled thin-walled members deform in flexural-torsional 
or local deformation modes respectively. These deformation modes are both 
familiar to us: flexural-torsional deformation is a mode where the member 
deforms without any distortion of the cross-section, while local deformation is 
characterized by the deformation of individual plate elements and no relative 
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translation of the fold-lines. 

With the developments in cold-formed section technology, such as the 
reduction in thickness inspired by higher strength steels and the more complex 
sections with more folds and rolls in stiffeners, distortional buckling plays a 
more important role in failure of thin-walled members. This buckling mode 
takes place as a consequence of distortion of the cross-section. In cold-formed 
sections, it is characterized by relative translations of the fold-lines. 

Distortional buckling mode used to be considered as coupled mode of 
global and local buckling modes, whereas its particularity is demonstrated by 
Generalized Beam Theory[14]: distortional deformation mode is proved to be 
orthogonal to flexural-torsional and local deformations. The typical mechanical 
properties of distortional deformation which are different from the other modes 
make distortional buckling individual. 

The approach of modern design specifications to calculate the design 
stability capacity associated with distortional buckling, such as NAS 2007[1] and 
AS/NZS 2005[2], is to calculate the corresponding linear critical force first, then 
to consider the modification about post-buckling reserves, various kinds of 
imperfections and coupling with other buckling modes. 

It is common to use GBT and FSM[6] to analyze linear distortional buckling 
of thin-walled members. The normal approach is to examine the minimum 
points of buckling curves, and the critical force of distortional buckling is 
determined by the minimum point at particular half-wave-length. However, that 
kind of point does not always exist[3], and even if it does exist, the buckling 
mode of that point contains not only distortional but also local/global 
deformation. Actually, the linear buckling totally in accordance with distortional 
deformation mode deduced by Generalized Beam Theory does not exist in 
common load conditions, and distortional deformation mode is usually coupled 
with global and especially local deformation modes. 

Some researchers hold the point that the critical forces of pure deformation 
modes by artificial constraints in linear buckling analysis have more advantages 
to be used in stability capacity calculation. 

2 Tools for research and developments into buckling phenomena 

2.1 Generalized Beam Theory (GBT) 

GBT[8][9][16][17][18] is important in pure distortional buckling mode research, 
for extracting distortional mode from deformations and providing with tools for 
analyzing mechanical properties of this kind of mode. Based on GBT, we can 
analyze linear buckling of any kind of deformation mode and proportions of 
pure modes in any deformation pattern. 
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2.2 Constrained Finite Strip Method (cFSM) 

S. Ádány [3][4][10] introduced GBT’s definitions of deformation modes into 
FSM and proposed cFSM. Constraints of pure modes and deformation modal 
decomposition of arbitrary buckling pattern are implemented. The ability to take 
into account transverse membrane extensions and shear deformations was 
developed, and corresponding deformation and buckling modes are proposed. A 
design approach has been proposed in which the elastic buckling results from 
pure mode cFSM are employed in the Direct Strength Method[14][19] for strength 
prediction 

2.3 Finite Element Method (FEM) 

FEM models have high adaptability of boundary conditions, and the 
stress-strain relation can be defined more precisely. Pure buckling mode analysis 
of thin-walled members cannot be performed by general-purpose FEM without 
definitions of pure deformation modes, therefore researchers have been studying 
in following fields. 

S. Ádány et al. [11] translated the deformation mode defined in cFSM into 
FEM, then analyzed buckling modes calculated by FEM and figured out the 
percentage of participation of each mode (local, distortional, global, etc.). Thus 
modal identification and decomposition were achieved. They developed modal 
analyses with the benefit of FEM and discussed[12]: i)column with semi-rigid 
ends; ii) members with holes and irregular FEM mesh, iii) members undergoing 
thermal gradients; iv) nonlinear analysis. 

Casafont M[5] derived the relation of fundamental modes, based on the 
deformation modes defined by GBT. In shell finite element analyses of 
thin-walled members, they draw the conclusion about linear buckling of pure 
deformation mode, where the deformation relation is defined by constraint 
equations. 

Nedelcu M[13] presented a method based on GBT capable to identify the 
fundamental deformation modes of global, distortional or local nature, in general 
buckling modes provided by the shell finite element analyses of isotropic 
thin-walled members. By this method the participation of each fundamental 
buckling mode can be calculated. 

2.4 The method proposed in this paper 

All the buckling mode analysis methods listed above are based on results of 
GBT cross-section analysis, and longitudinal curve shapes of deformation 
modes have to be designated in most of them.  

A new finite element procedure to carry out linear distortional buckling 
analysis of thin-walled members is developed in the next section. GBT 
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cross-section analysis and longitudinal curve shapes of deformation modes are 
not required in this procedure, which is convenient for simplifying the process 
of linear buckling analysis. 

3. Constraining a finite element mesh 

3.1 Notation for the thin-walled members 

A thin-walled open-section member is shown in Fig. 1: u, v, w are the 
displacements expressed in the local plate systems, the x–y–z coordinate 
systems; U–V–W and θ are the displacements corresponding to the global 
coordinate system, the X-Y-Z system. 

As depicted in Fig. 1, the member consists of n thin rectangular plate walls, 
the width and thickness of plate □r  among them are b□r  and t□r . Consequently, 
the mid-line of the cross-section comprises n segments, the intersection points 
and the end points of the segments are both designated as “main nodes” here. Of 
all the m main nodes, the two end points of the □r -th segment are numbered i 
and j, for example. 

 

Fig. 1  A thin-walled open-profile member 

 

3.2 Constraint equations to preclude torsional-flexural deformations 

In GBT, the individual deformation modes are determined through a 
cross-section analysis process, involving mainly the constitution and solving of 
an eigenvalue problem containing two matrices. The purpose of this paper is to 
distinguish distortional mode from other deformation modes, instead of 
separating different distortional modes. As the result, the GBT cross-section 
analysis process is not required here. Nevertheless, the identification method of 
distortional buckling from global buckling, which is the orthogonality of 
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longitudinal displacements, is adopted in this paper, with the assumption that 
longitudinal membrane displacements on a cross-section distribute lineally over 
the plate width and continuously at intersection points. 

The orthogonality between distortional and torsional-flexural deformation 
is represented as: 

 0d 0
A
V X A   (1) 

 0d 0
A
V Z A   (2) 

 0d 0
A
V A   (3) 

where V is the longitudinal displacement of a point in distortional mode; X0 and 
Z0 are the coordinates of this point in the principal centroidal coordinate system; 
ω0 is the principal sectorial coordinates of this point.  

For the member in Fig. 1, Eq. (1), (2) and (3) can be written as follows: 
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In each cross-section, Eq. (4), (5) and (6) compose an equation set about 
longitudinal displacements of main nodes: 
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According to Eq. (15), we can arbitrarily select three non-collinear main 
nodes, Node 1, 2 and 3 for example in this cross-section, and regard their 
longitudinal displacements as dependency displacements determined by 
longitudinal displacements of other main nodes, which is: 
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Constraint equations precluding global buckling can be defined according 
to Eq. (8). There are three equations for each cross-section. 

3.3 Constraint equations to preclude local deformation 

Although the plate walls bend in their out-of-plane direction in both local 
and distortional deformation modes, the two types of out-of-plane deformations 
are different and even orthogonal to each other. In order to shorten the 
calculation process correlate to such orthogonality, GBT and cFSM neglected 
the effects of longitudinal out-of-plane bending and its coupling with transverse 
bending, resulting in more simplified orthogonality of cross-sectional transverse 
deformation. 

Cross-section of the thin-walled member is depicted in Fig. 2, which can 
also be looked on as an equivalent beam system: each beam’s length and the 
depth of its cross-section are the width and thickness of corresponding plate, 
respectively, while their cross-section widths are the same, say, 1. 

             

   Fig. 2 Equivalent beam system           Fig. 3 Sub-divided beam □r  

 

The cross-sectional transverse deformations of the thin-walled member’s 
local mode can be simulated by the beam system under arbitrary loads with all 
the intersection points pined. For the beam system, other deformation patterns 
orthogonal to that should be under concentrated forces applied arbitrarily on the 
intersection points. Consequently, the latter can be looked on as the 
cross-sectional transverse deformations in distortional mode of the thin-walled 
member. 

In order to provide enough degree of freedom for the orthogonal analysis of 
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the beam system’s deformations, the beams is divided further with subordinate 
nodes. The sub-divided beam □r  is depicted in Fig. 3, where the length of its 
segment k is b□r k and the nodes at both ends are Node □r k and Node □r k+1. 

In GBT, the membrane transverse extensions of distortional mode are 
prescribed to be 0, but in shell elements, constraints on membrane transverse 
strains may result in undesired membrane longitudinal stresses. For that sake, a 
different way from cFSM is chosen in this paper, in which membrane transverse 
extensions are not constrained. In doing so, axial deformation functions of all 
elements are excluded in the analyses of the equivalent beam system. 

Bending equations of segment k in beam □r  are: 
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Synchronizing Eq. (9)s of all elements in the equivalent beam system, 
resulting in the global bending equations: 

 
   

   
   

Q w
K

M θ
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where w and θ are the deflections and rotation angles of all nodes; Q and M are 
the corresponding nodal forces. 

Separate deflections on intersection nodes of beams, wIN, from those of 
other nodes, wNN, Eq. (10) can be rewritten as: 
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The QNN and M are zeroes in distortional deformation mode, which lead to: 
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For any node, the deflection, w, can be determined by that node’s 
translation in X-axis and Z-axis, U and W. For example: 

 cos sin
r k r r k r r k

w U W      (13) 

where α□r  is the angle between x-axis of Plate □r  and X-axis of the global 
coordinate system, as depicted in Fig. 1. By substituting Eq. (13) into Eq. (12), 
the constraint equations precluding local deformation mode from distortional 
mode can be expressed as Eq. (14) and (15): 
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Eq. (14) is transplacement constraints of all non-intersection nodes in 
normal direction of plane, and Eq. (15) is the constraints of all nodes’ rotation 
angle about Y-axis. They are determined by transverse displacements of 
intersection nodes in their same cross-section. 

Note that shell element in FE analysis may use the method of incompatible 
modes to enhance the accuracy in bending-dominated problems. In the cases 
where the mesh is coarse, incompatible modes may perform incorrectly with the 
constraint equations of rotation angles, which leads to an inaccurate result. 
Therefore the Eq. (14) is applied as constraint equations of distortional mode to 
preclude local mode without Eq. (15). 

4. Numerical example 

A uniformly compressed channel member with the section depicted in Fig. 
4 is considered. The thickness of plates is 2mm, the Young’s modulus is 
206kN/mm2, and the Poisson’s ratio is 0.3. 

 

Fig. 4 Geometry of the cross-section (dimensions in mm) 
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A shell FE buckling analysis of the thin-walled member was performed in 
ANSYS, using SHELL181 element in a rectangular mesh. The full integration 
option of SHELL181 element is applied, for increasing the accuracy of the 
computation of in-plane bending. The cross-section discretization is made with 1, 
3 and 0 intermediate nodes between the corners in the flanges, web and flange 
lips respectively. 

During the process of linear buckling analysis in ANSYS, constraint 
equations (8) and (14) are applied to the model to force the mesh to buckle in 
distortional deformation mode.  

 

 

Fig. 5 Curves of critical stress 

 

The resulting critical stress curve (a) is depicted in Fig. 5 with results of all 
deformation modes (f) and distortional modes (g) calculated by CUFSM[7], both 
in one-half sine wave. 

Several other results are also plotted as curve (b)-(e), using the same 
method and mesh of modal as curve (a) with the differences that: extra axial 
twist constrain equations according to Eq. (15) are included in (b); extra 
constraints of transverse membrane extensions are considered in (c); uniform 
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reduced but not the full integration mode option of shell SHELL181 element is 
applied in (d); relatively well-refine discretization is made in (e), with 3, 9 and 3 
intermediate nodes between the corners in the flanges, web and flange lips, 
respectively. 

Fig. 6 demonstrates that i) result of (b) is much higher than the others, as 
mentioned in last section, and ii) result of (d) is much lower in magnitude than 
the others, due to the errors of SHELL181 element’s reduced integration option 
in coarse mesh. 

 

Fig. 6 Curves of critical stress near the minimum points 

 

Curve (a), (c) and (e) are nearly the same with distortional mode of cFSM. 
These curves near their minimum points are plotted in a larger scale in Fig. 6. It 
shows that the method in this paper can reach sufficiently accurate results even 
with the FE meshed coarsely. In addition, the effects of transverse membrane 
extension constraints on critical loads of distortional mode should not be 
neglected. 

5. Conclusion 

A new method forcing the shell finite element models to deform in 
distortional mode with constraint equations is provided here. The constraints on 
each cross-section are applied independently. They can even be separated into 
two parts, and the constraints of transverse displacements are not coupled with 
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those of longitudinal displacements. This method is not on the basis of GBT 
cross-section analysis procedure, therefore the implement of it is relatively 
convenient. 

The use of shell elements for modeling thin-walled members in FEM is 
common. While the mesh is coarse, options of shell elements should be carefully 
chosen and examined for a more accurate result. 

In order to take into account the impacts of some strains used to be 
neglected, such as transverse membrane extension and shear strain, usual 
solution is to define new deformation modes according to those strains, then to 
consider the coupling of new modes with original modes in buckling analysis. 
Another solution is discussed in this paper: adding those strain into original 
modes such as distortional mode, which is convenient for simplifying the 
process of linear buckling analysis. 
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The design and development of new cold roll formed products by finite 
element modelling and optimisation  
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Abstract 
 
The design and development of new cold roll formed products can incur 
significant cost and the product may not be optimised for either performance or 
manufacture. This paper describes a new method to develop an optimum 
structural design of profile by cold roll forming using a combined approach of 
finite element analysis and optimisation techniques. To illustrate the concept, the 
design and development of a new channel beam and a new drain grating 
subjected to bending are presented. The two case studies, demonstrate how a roll 
formed profile may be optimised to improved structural performance through 
use of stiffeners and/or dimples. Improved performance of cold roll formed 
products is achieved by increasing the strength of the product without increasing 
the amount of the material used.  The results of this paper clearly demonstrate an 
efficient and effective method and tool set to optimise design for performance 
and manufacture of cold roll formed products.   
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Introduction 
 
In the cold roll forming industry, there is a critical requirement that is to reduce 
the initial strip to a minimum while maintaining the structural performance of 
the roll formed products, thus minimizing the major financial outlay in the 
process which is the material cost. The development of various alternative cold 
rolled formed profiles which improve the structural performance of the section 
by including additional bends such as ‘intermediate stiffeners’ or ribs or dimples 
(Rhodes and Zaras 1988, Nguyen et al. 2011), as shown in Figure 1, has been a 
solution for these conflicting requirements. These stiffeners subdivide the plate 
elements into smaller sub-elements and hence can considerably increase the 
local buckling strength of cold-formed sections subjected to compressive 
stresses; it is because of smaller width-to-thickness ratio of the sub-elements. 
The zed section with longitudinal stiffeners in the web, introduced during cold 
rolled forming, was designed and developed at the University of Strathclyde by 
Rhodes and Zaras (1988) in conjunction with Hadley Industries plc, with the 
aim of improving a zed type section. The development suggested that when the 
stiffeners were placed about one fifth of the web width from each flange, the 
problem of local buckling in the web was eliminated. The channel section with 
longitudinal stiffeners in the web was developed at Hadley Industries plc later in 
an attempt to incorporate the innovative web stiffener configuration used in the 
new zed, into a channel shape (Castellucci et al. 1997).  
 

 
Figure 1 Intermediate stiffeners in (a) zed, (b) and (c) channel, and (d) grating 
 
In recent years, there has been a significant amount of studies on the strength 
and design of cold-formed sections with web stiffeners (Desmond et al. 1978, 
Papazian et al. 1994, Schafer and Pekoz 1998, Young and Chen 2008, Zhang 
and Young 2012). However, there has been limited investigation on optimum 
design of a section, considering the effects of location and shape of stiffeners on 
the section subjected to bending.  
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Owing to the complex and interrelated nonlinear changes in contact, geometry 
and material properties that occur in the process and product forming, theoretical 
and design calculations cannot be used to accurately analyse the performance of 
the products with additional bends or dimples. These, however, can be solved by 
using a finite element (FE) modelling approach which is capable of simulating 
complicated processes and products (Nguyen et al. 2013, 2014). This allows 
optimisation of the process and subsequent products in order to improve the 
product structural performance or to reduce the product material. 
 
In this paper, finite element simulations and optimisation techniques were 
presented as tools for new process and product developments and illustrated 
through case studies of optimisation of cold roll formed products. The design 
and finite element simulations, using two practical case studies, were carried out 
in three stages: (1) Developing new product geometries from a proposed / 
existing ones by varying their geometric parameters, against the target 
performance of the product, using parametric modelling technique via the finite 
element package PATRAN (MSC Software), (2) Planning the design of 
experiments (DOE) using a response surface model, running multiple 
simulations, recording the performance of the system at each run and 
determining geometric values that give the target performance: a maximum 
strength to weight ratio - these procedures are done using ADAMS/INSIGHT 
and MARC solver (MSC Software), and (3) Simulating the mechanical tests of 
new products and comparing with recently conducted product test results for 
validation. The two case studies of this FE and optimisation techniques included 
the design and development of a new channel and a steel grating. 
 
Development of a new channel 
 
Finite element analysis and optimisation procedures 
The original shape of the channel had no stiffeners and the new channel had two 
stiffeners positioned at an equal distance to the web centre as shown in Figures 
1. The section has a web depth of 170 mm, a flange width of 63 mm and a 
thickness of 1.60 mm. The steel material has a yield stress of 519 N/mm2 and a 
tensile strength of 550 N/mm2. The position of the two stiffeners influences the 
channel’s strength in a 4-point beam bending test. Braces at close gap (200-300 
mm) were used to ensure local buckling occurred in the beams. In the 
simulation, the position of the stiffeners was changed from a minimum value of 
21.71 mm (Figure 1(c)) to a maximum value of 51.71 mm (Figure 1(b)) with 10 
different values in between.  
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Figure 2 illustrates the model setup for FE analysis that includes boundary 
conditions and loading configuration. By taking advantage of symmetry, only a 
half of the test system was modelled. The simulations were carried out on beam 
specimens, simply supported at both ends. The beam mesh was defined as a 
function of the section width and element size (of 4 mm) so that when the 
section shape changed due to changing the position of the web stiffeners, the 
mesh size and number of the beam were retained. When the stiffeners were 
placed at a maximum value of 51.71 mm, the channel beam was modelled using 
83,220 elements and 84,073 nodes; they are four-node, thin-shell elements with 
global displacements and rotations as degrees of freedom (element type 139). 
The braces were modelled as rigid links connections. Load was applied on the 
two central cleats at their centroids using the displacement-controlled method 
while the two end supports were fully fixed in vertical direction at their 
centroids. Each loading point was at a reference node that connects to a set of 
tied nodes (at the beam web where the cleat connected to the beam). The link 
between the reference node and the tied nodes was based on a rigid link 
connection, only unrestrained in loading direction. The displacement was 
increased in successive increments until the beams failed. A full Newton-
Raphson method was used for the iterative procedure and an implicit, static 
analysis was employed. Simulations of the beams in bending test were 
undertaken in two steps. In the first step, a linear elastic buckling analysis was 
performed on the perfect beam to obtain its buckling mode shapes (eigenvalues). 
In the second step, a nonlinear post-buckling analysis was carried out to predict 
the beam post-buckling behaviour and ultimate load capacity. The shape of 
initial geometric imperfections and magnitude as suggested in Nguyen et al. 
(2013) was taken to generate the initial imperfections for FE analysis; it deemed 
to be similar to the mode observed in tests (for example, FE failed modes were 
compared with experimental ones, as shown in Figure 4). 
 
In this analysis, the input parameter was assigned for the position of the web 
stiffeners and the output parameter was the buckling strength of the beam. 
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Figure 2 FE model of a 4-point bending test setup including boundary conditions 
and a closer view of the meshes at two different positions of the web stiffeners 
 
Results and validation 
Buckling loads were obtained as the target performance and it was found that 
buckling load increased linearly with increasing position of the stiffeners from 
the minimum position to the maximum position, through 10 different positions 
of the stiffeners. The optimum case was achieved when the two stiffeners 
positioned at 51.71 mm to the web centre with a maximum buckling load of 
45.20 kN (compared with 44.04 kN when the two stiffeners positioned at 21.71 
mm). Hence, the channel with two stiffeners positioned at 51.71 mm to the web 
centre was developed and named UltraBEAMTM2. 
 

33



To validate the FE simulations, FE and experimental load-displacement curves 
of the 4-point bending test of the UltraBEAMTM2 channels are shown in Figure 
3. The FE and experimental results were close in both buckling and ultimate 
loads, with a maximum difference of less than 5% in buckling load and 6% in 
ultimate load. The failed mode shape of the channel is shown in Figure 4, in 
which the experimental shapes were also illustrated for validation. The 
comparisons show excellent agreements between simulation and test. 
 

 
Figure 3 FE and experimental curves of 4-point beam bending test of 
UltraBEAMTM2 channels 
 

 
Figure 4 Failed mode shapes of the UltraBEAMTM2 in testing and simulation 
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Development of a new grating 
 
Finite element analysis and optimisation procedures 
In this study, the FE simulation of an existing grating was carried out and the 
results compared with experimental results to validate the simulation setup. The 
existing grating had a length of 499.50 mm, a width of 128.30 mm and a 
thickness of 0.935 mm. Load on the grating was applied through the rigid load 
plate, similar to the condition in real test setup, as illustrated in Figure 5. The 
results in Figure 5 show that there is a good agreement between the FE and test 
results with a maximum difference of 6% for ultimate load (load at a 
displacement of 10 mm). 
 
The validated FE model was then extended for modelling and developing a new 
grating product, as shown in the model setup in Figure 6. The performance of 
the grating was examined by changing parameters including: dimple height 
(scale: 1 – 2), dimple width (1 – 4 mm), slot length (2 – 20 mm), slot width (1 – 
4 mm), plate thickness (3 – 5 mm), plate height (scale: 0.65 – 1), as illustrated in 
Figure 7. The output target results were strength in terms of maximum stresses 
and deflections of the grating.  
 
The grating mesh was defined as a function of the section width and element 
size (minimum of 0.20 mm for the dimple elements, and 1.20 mm for elements 
outside the dimple) so that when the section shape changed due to changing the 
model parameters, the mesh size and number of the beam were retained. When 
the parameters assigned their maximum values, the grating was modelled using 
99,976 elements and 113,091 nodes; they are four-node, thin-shell elements with 
global displacements and rotations as degrees of freedom (element type 139). 
The rubber pad was used to largely spread the load from the steel block (placed 
underneath the load cell) to the grating and it was modelled using 28,800 solid 
elements; they are 3-D eight nodes hexahedron elements. The steel block was 
modelled as a rigid load plate moving vertically in the negative vertical direction 
to a predefined displacement; for the purpose of this study, a small displacement 
of 1 mm was used and all the responses were compared at this applied 
displacement. The contact between the grating, rubber and plate was modelled 
as contact surfaces using 3D contact elements. ‘Glued’ contact was used for 
contact between rubber pad and rigid load plate. ‘Touching’ contact between the 
grating and the rigid support plate, the grating and rubber pad and of the grating 
itself were defined. It was assumed that there is frictionless contact between the 
grating and plate. A full Newton-Raphson method was used for the iterative 
procedure and an implicit, static analysis was employed. Large strain nonlinear 
procedure was used to take into account geometric and material nonlinearity. 
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Figure 5 FE and experimental force-displacement curves of the grating. FE 
model setup of the existing grating similar to test setup (in box) 
 

 
 
Figure 6 FE model setup of the new grating including load path and boundary 
conditions 
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Figure 7 FE mesh of the new grating which shows the studied parameters 
 
The process of varying all the parameters was carried out in the program 
ADAMS/INSIGHT. In which each parameter was assigned three different 
values in the range from min to max value. The target responses selected in this 
study were maximum tress and minimum deflection in the grating. Each 
response was a response surface function of all parameters, and was treated as 
an objective. There were a total 729 runs integrating all parameters while the 
applied loads on the gratings were the same for all the runs.  
 
Results and discussions 
It was found that dimple geometries are the most effective parameters to both 
stress and deflection, as shown in Figure 8. In this figure, ‘Positive’ Effect % 
means response increases with larger parameter value, and ‘Negative’ Effect % 
means response decreases with larger parameter value. In this study, ‘Positive’ 
Effect for the maximum stress response means the stress increases while 
‘Negative’ Effect for the deflection means the deflection decreases, and vice 
versa. It can be seen that increasing ‘dimple height’ is the most effective way to 
increase the grating strength and reduce its deflection, with up to 44% effect; 
increasing ‘plate thickness’ is also one of the most effective solution. However, 
increasing ‘plate height’ parameter value is not effective for both responses; 
therefore, the plate height can be reduced to save the grating weight or material.  
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Figure 8 Effects of parameter values to the grating responses: the maximum 
stress (above) and the deflection (below) 
 
These observations can be also seen in Figure 9 which shows the model of 
central part of one grating (out of 729 runs) in which maximum stresses 
developed around the dimples whilst less stresses generated in the plate. 
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Figure 9 Stresses distribution in the central part of the grating at a predefined 
displacement 
 
Based on these results, the aim of designing the grating is to find a balance for 
the dimple height and plate thickness that can give the maximum strength and 
minimum deflection in the grating. With specified target responses (stress and 
deflection that satisfied the standard test requirements), a set of parameter values 
were determined, and an optimum design of the grating was achieved. 
 
Conclusions 
 
This paper has presented the design and development of new cold roll formed 
products by using a combined approach of the finite element analysis and 
optimisation techniques to simulate the products’ structural responses and obtain 
the optimum design for the products. Two case studies which included a new 
channel beam and a new drain grating subjected to bending were presented to 
illustrate the design concepts. For the channel UltraBEAMTM2, the development 
suggested that when the longitudinal stiffeners were placed on the web as much 
close as possible from each flange, the buckling and ultimate strengths of the 
beam could be maximised comparing with other positions. For the new grating 
development, it showed that when a set of ‘most effective’ parameter values 
were determined, i.e. the dimple height and the plate thickness, and an optimum 
design of the grating could be achieved. This study demonstrates that the finite 
element modelling together with optimisation techniques provide powerful 
practical tools to analyse and obtain optimum design for complex products. The 
successful simulations could enable the cold roll forming industry to provide 
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novel cold roll formed products or alternative products with stiffeners which are 
developed from optimum design concepts. 
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Analyses of thin-walled sections under localised loading for 
general end boundary conditions – Part 1: Pre-buckling 

 
Van Vinh Nguyen1, Gregory J Hancock2 and Cao Hung Pham3 

 
Abstract 
 
The Semi-Analytical Finite Strip Method (SAFSM) for pre-buckling analysis of 
thin-walled sections under localised loading has been developed for general end 
boundary conditions. For different boundary conditions at supports and loading 
point, different displacement functions are required for both flexural and 
membrane displacements. As the stresses are not uniform along the member due 
to localised loading, the pre-buckling analysis also requires multiple series terms 
with orthogonal functions. 
 
This paper briefly summaries the displacement functions used for different 
boundary conditions.  In addition, the theory of the SAFSM for pre-buckling 
analysis of thin-walled sections under localised loading with general end 
boundary conditions is developed. The analysis is benchmarked against the 
Finite Element Method (FEM) using software package ABAQUS/Standard. The 
results from this pre-buckling analysis are deflections (pre-buckling modes) and 
membrane stresses which are used for the buckling analysis described in Part 2 - 
Buckling in the companion paper. 
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1. Introduction 
 
In order to carry out a buckling analysis of a thin-walled member under localised 
loading, it is necessary to compute the pre-buckling membrane stresses in the 
member. The Part 1 - Pre-buckling analysis described in this paper is an 
important step which provides stresses for conducting the buckling analysis 
described in Part 2 in the companion paper. 
 
The analysis of structural members can be performed by a variety of methods. 
Two of the most popular numerical methods are the Finite Element Method 
(FEM) and Finite Strip Method (FSM). While the FEM allows the analysis of 
structural members with all kinds of geometry and general boundary conditions, 
the FSM provides analysis of structural members with complex geometry in 
their section, but simple along the length. For particular types of structures such 
as thin-walled sections, the FSM can be extremely competitive in terms of 
computational efficiency due to the simplicity of displacement functions and the 
decrease in number of degrees of freedom. 
 
The first application of the SAFSM was presented by Cheung (1976). This 
method was first used for buckling analysis by Przemieniecki (1973) to study 
the initial local buckling stresses of plates and plate assemblies under biaxial 
compression. Bradford and Azhari (1995) used two sets of displacement 
functions in the buckling analysis of plates for different ends boundary 
conditions using the SAFSM. Their first basic functions were derived from the 
solution of the beam vibration differential equations employed by Cheung 
(1976) to study plate vibration. However, in static analyses of structural 
members under localised loading for some boundary conditions such as the 
Clamped-Clamped case, the shear stress at the ends of the structural member is 
equal to zero. It is an impossible situation in a beam as there is no reaction to 
resist the applied load at the supports. The second basic functions used by 
Bradford and Azhari are trigonometric functions, and satisfy the boundary 
conditions. However, in the Clamped-Clamped case, the displacement functions 
are fairly complex with the product of two sine functions which cause difficulty 
in solving the integrations in both pre-buckling and buckling analyses. 
 
In this Part 1 - Pre-buckling, the paper summaries the displacement functions for 
different end boundary conditions of structural members. The theory of the 
SAFSM for pre-buckling analysis of thin walled sections under localised loading 
for general end boundary conditions is given as also built into the THIN-WALL-
2 program developed by the authors (Nguyen, Hancock, & Pham, 2015). 
Numerical examples have been performed using the THIN-WALL-2 program 
and compared with the results from the analyses by the FEM using ABAQUS 
(ABAQUS/Standard Version 6.13, 2013) to validate the accuracy of the SAFSM 
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against the FEM. The results from the pre-buckling analysis step are membrane 
stresses and deflections of the structural member which are used for the buckling 
analysis described in Part 2 – Buckling in the companion paper. A convergence 
study of deflections and stresses with the number of series terms is also provided 
in this paper. 
 
2. Displacement functions 
 
2.1. Choice of displacement functions 
 
In the Finite Strip Method (FSM), it is seen that the choice of suitable 
displacement functions for a strip is the most important stage of the analysis, and 
great care must be exercised at such a stage. An incorrectly chosen displacement 
function may lead to results which converge to incorrect answers for 
successively refined meshes. The FSM can be considered as a special form of 
the FEM procedure using the displacement approach. Unlike the standard FEM 
which uses the polynomial displacement functions in all directions, the FSM 
calls the use of simple polynomials in the transverse direction and continuously 
differentiable smooth series in the longitudinal direction, with the stipulation 
that such series should satisfy the boundary conditions at the ends of the strips. 
The displacements of a strip are a combination of the flexural displacements 
perpendicular to the strip and membrane displacements in the plane of the strip. 
Generally, the form of the displacement function is given as a product of 
polynomials and smooth series.  
 
2.2. The flexural displacement functions of a strip 
 
An isometric view of flexural displacements of a strip is shown in Fig.1  

 
Figure 1: Flexural displacements of a strip with both ends simply supported  
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The flexural deformations w of a strip can be described by the summation over μ 
series terms as: 

1 1
1

( ) ( )m m
m

w f y X x
µ

=

= ∑  
 

(1) 

where: 
 µ is the number of series terms of the harmonic longitudinal function 

1 ( )mX x  is the curve for longitudinal variation 

1 ( )mf y  is a polynomial for transverse variation. This function for the mth 

series term is given by: 
2 3

1 1 2 3 4( )m Fm Fm Fm Fm
y y yf y
b b b

α α α α     = + + +     
     

 
 
 

(2) 

{ }Fmα  are the vector polynomial coefficients for the mth series term which 

depend on the nodal line flexural deformations of the strip 

{ } [ ]1 2 3 4

T
Fm Fm Fm Fm Fmα α α α α=  

b and L are the strip width and length respectively. 
 

2.3. The membrane displacement functions of a strip 
 
An isometric view of membrane displacements of a strip is shown in Fig.2  

 
Figure 2: Membrane displacements of a strip with both ends simply supported  

 
The membrane deformations in the longitudinal and transverse directions of a 
strip can be described by the summation over μ series terms as: 
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where: 

1 2( ) and ( )m mX x X x are the longitudinal variation curves for the membrane 

transverse v and longitudinal u deformations respectively 
( ) and ( )vm umf y f y  are the transverse variations. These functions for the mth 

series term are given by: 

1 2( )vm Mm Mm
yf y
b

α α  = +  
 

 
 

(5) 

3 4( )um Mm Mm
yf y
b

α α  = +  
 

 
 

(6) 

{ }Mmα is the vector of polynomial coefficients for the mth series term which 

depends on the nodal line membrane deformations of the strips 

{ } [ ]1 2 3 4

T
Mm Mm Mm Mm Mmα α α α α=

 
 

2.4. Available displacement functions for different boundary conditions 
 
2.4.1. Both ends simply supported (SS) 
 
The displacement functions by Cheung (1976) are:  

1 ( ) sinm
m xX x

L
π =  

 
 

 

(7) 

2 ( ) cosm
m xX x

L
π =  

 
 

 

(8) 

 
2.4.2. One end simply supported and the other end clamped (SC) 
 
The displacement functions by Cheung (1976) are:  

1 ( ) sin sinhm m
m m

x xX x
L L

µ µα   = −   
   

 
 

(9) 

2 ( ) cos coshm m
m m

x xX x
L L

µ µα   = −   
   

 
 

(10) 

 with  4 1
3.9266,7.0685,10.2102,....,

4m
mµ π+

=  

   sin
1,2,3,...,  and 

sinh
m

m
m

m µα
µ

= ∞ =  

 
2.4.3. One end simply supported and the other end free (SF) 
 
The displacement functions by Cheung (1976) are:  
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Case 1: 
11 and 1m µ= =  

11 21( )  and  ( ) 1
xX x X x
L

= =  
 

(11) 

Case 2: 

 
sin

2,3,4,5,...,  and 
sinh

m
m

m

m µα
µ

= ∞ =  

      4 3
3.9266,7.0685,10.2102,13.3520,...,

4m
mµ π−

=
 

1 ( ) sin sinhm m
m m

x xX x
L L

µ µα   = +   
   

 
 

(12) 

2 ( ) cos coshm m
m m

x xX x
L L

µ µα   = +   
   

 
 

(13) 

 
2.4.4. Both ends clamped (CC) 
 
The displacement functions by Cheung (1976) are:  

1 ( ) sinm
m xX x

L
π =  

 
 

 

(14) 

( )
2

1
( ) sinm

m x
X x

L
π +

=  
 

 
 

(15) 

These functions were selected by Cheung (1976) in Chapter 3 to satisfy 
equilibrium at the ends. 
 
2.4.5. One end clamped and the other end free (CF) 
 
The displacement functions by Bradford and Azhari (1995) are: 

1

1
( ) 1 cos

2m
xX x m

L
π  = − −    

 
 

(16) 

2

2 1 1
( ) sin

2 2m
m xX x m

m L
π −   = −        

 
 

(17) 

These functions have been chosen as they are simpler to implement in Part 2 - 
Buckling described later. 
 
2.4.6. Both ends free (FF) 
 
The new displacement functions which are used in this paper are:  
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Case 1: 1m =    

11 21( ) 1 and ( ) 0X x X x= =  (18) 

Case 2: 2m =    

12 22

2 1
( ) 1  and ( )

xX x X x
L π

= − = −  (19) 

Case 3: 3m ≥   

( )
1

2 5
( ) 1 2sinm

m x
X x

L
π −

= −  
 

 
 

(20) 

( )
2

2 52 5
( ) 2 cosm

m xmX x
m L

π −− = −   
   

 
 

(21) 

These functions have been chosen as they are simpler to implement in Part 2 - 
Buckling described later. 
 
3. Load vector 
 
The localised load applied on the structural member is assumed to be line loads 
as shown in the Fig.3. The loads may be applied in different directions and at 
any position along the structural member. 

 
Figure 3: Localised loading applied on a strip 

The deformation of the nodal line u,v,w in Z,X,Y directions is given by: 

1 1 ( )m mv V X Z=  

1 1 ( )m mw W X Z=  

1 2 ( )m mu U X Z=  

 

 
(22) 

where: 
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F  (Z)  is the line load by X directionX

F  (Z)  is the line load by Y directionY

F  (Z)  is the line load by Z directionZ

M  (Z)  is the moment by Z directionZ
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1 ( )mX x is the longitudinal variation curve for the membrane transverse 

deformation (v), also for the flexural deformation 

2 ( )mX x  is the longitudinal variation curve for the membrane longitudinal 

deformation (u) 

1 1 1, ,m m mU V W are amplitude deformations of the loaded nodal line for the mth 

series term 
 
The terms in the load vector can be derived from the potential energy of the 
external forces to be: 

2 2

1 1

2 2

1 1

1 1

2 1

( ) ( )  ;  ( ) ( )

( ) ( )  ; ( ) ( )

L L

Xm X m Ym Y m
L L

L L

Zm Z m Mm Z m
L L

W F Z X Z dZ W F Z X Z dZ

W F Z X Z dZ W M Z X Z dZ

= =

= =

∫ ∫

∫ ∫

 

 

 
 

(23) 

where: 
L1 and L2 are the starting and ending points of the line loads respectively as 
shown in Fig.3  

( ), ( ), ( ) and ( )X Y Z ZF Z F Z F Z M Z are the distributed lines load in the X, Y, Z 

directions. These loads may be constant or vary with Z 
, ,  and Xm Ym Zm MmW W W W are the X,Y,Z and M components of the load 

vector for each nodal line for the mth series terms. 
 
4. Strain energy and potential energy 
 
In order to compute the stiffness matrix of a strip according to conventional 
finite strip theory (Cheung, 1976), it is necessary to define the strain energy in 
the strip under deformation and the potential energy of the external forces. 
 
4.1. Strain energy of a strip 
 
The flexural strain energy UF is given by: 

2 2 2

2 2
0 0

1
2

2

L b

F x y xy
w w wU M M M dydx

x y x y
 ∂ ∂ ∂

= − − + ∂ ∂ ∂ ∂ 
∫ ∫  

 

(24) 

 { } { }
1 10 0

1

2

L b
T

F Fm Fn
m n

U dydx
µ µ

σ
= =

= ∈∑∑∫ ∫  
 

(25) 

where { } { } and Fm Fnσ ∈ are the flexural stress and strain vectors respectively 

The membrane strain energy UM is given by: 
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( )
0 0

1
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L b

M x x y y xy xyU tdydxσ σ τ γ= ∈ + ∈ +∫ ∫  
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1

2

L b
T

M Mm Mn
m n

U tdydx
µ µ

σ
= =

= ∈∑∑∫ ∫  
 

(27) 

where { } { } and Mm Mnσ ∈ are the membrane stress and strain vectors respectively 

 
4.2. Potential energy of the external forces 
 
The potential energy of the external forces is given by: 

0

( ) ( )
L

W mV F Z X Z dZ= −∫  
 

(28) 

where ( )F Z  and ( )mX Z  are the line load and displacement functions 

respectively for different directions. 
 
5. Stiffness matrix 
 
The flexural strain energy UF from equation (25) is rewritten as given: 

{ } [ ]{ }T
F Fm Fmn FnU kδ δ=  

 

(29) 

where [ ]Fmnk is the flexural stiffness matrix corresponding to the mth and nth 

series terms and [ ]Fnδ  is the flexural displacement vector of a strip 

corresponding to the nth series term. The matrix [ ]Fmnk is given in the Research 

Report 958 (Nguyen, Hancock, & Pham, 2016). The coefficients I1F, I2F, I3F, I4F, 
I5F in the report have been evaluated exactly for the displacement functions 
satisfying the different boundary conditions described in 2.4 
 
The membrane strain energy UM from equation (27) is rewritten as: 

{ } [ ]{ }T
M Mn Mmn MnU kδ δ=  

 

(30) 

where [ ]Mmnk is the membrane stiffness matrix corresponding to the mth and nth 

series terms and [ ]Mnδ  is the membrane displacement vector of a strip 

corresponding to the nth series term. The matrix [ ]Mmnk is given in the Research 

Report 958 (Nguyen et al., 2016). The coefficients I1M, I2M, I3M, I4M, I5M, I6M, I7M, 
I8M  in the report have been evaluated exactly for the displacement functions 
satisfying the different boundary conditions described in 2.4. 
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The stiffness matrix of a strip is assembled from both the flexural stiffness 
matrix and the membrane stiffness matrix in local coordinates. These matrices 
are transformed to global coordinates by a multiplication with transformation 
matrices. The stiffness matrix of the whole section for each series term is 
assembled from the stiffness matrices of individual strip. Finally, the complete 
stiffness matrix of the whole section is assembled from the stiffness matrices 
taken over the series terms, thus the size of this matrix is 4 times the node 
number and times the number of series terms. 
 
6. Pre-buckling analysis 
 
The total potential energy is the sum of the elastic strain energy stored in a strip 
and the potential energy of the external loads, thus: 

WU Vφ = +  (31) 

The principle of minimum total potential energy requires that: 

{ } { }0
p

φ
δ

 ∂  = 
∂  

 
 
 

(32) 

Thus, we have: 

[ ]{ } { }pK Wδ =  
 

(33) 

where [ ]K  is the system stiffness matrix based on a strip subdivision of a thin-

walled section, { }pδ are the nodal line displacements (pre-buckling modes) of 

strips in the global X,Y,Z axes, and{ }W  are the nodal line forces (line loads) 

given by Eq.(23).   
 
The amplitude of the pre-buckling displacements is obtained from Equation 
(33). These values are multiplied with the displacement functions to get the pre-
buckling deformations for all sections along the structural member. 
The membrane stresses of a strip are given by: 

{ } [ ]{ }Mm M MmDσ = ∈  
 

(34) 

where{ }Mm∈  is the membrane strain vector:    

{ } [ ]{ }Mm Mm MmB α∈ =  
 

(35) 

The summation can be taken over the m series terms at any longitudinal position 
to get the membrane stresses for all sections: 

{ } { }
1

M Mm
m

µ

σ σ
=

= ∑  
 

(36) 
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7. Numerical example 
 
A pre-buckling analysis has been performed for a lipped channel section with 
rounded corners and lips under localised loading using the THIN-WALL-2 
program. The geometry of the beam and the loading are shown in Fig.4. The 
beam is analysed with different boundary conditions for the web and the flanges 
of the end sections. In addition, lateral restraints are applied along the beam at 
Nodal Lines 11 and 35 to avoid twisting caused by eccentric loading. The results 
from the pre-buckling analysis of the beam under localised loading include 
deflections and stresses. The stress and deflection values are obtained from 
Nodal Line 23 in the middle of the section for all sections along the beam.  
 
The beam has also been analysed using a pre-buckling analysis by ABAQUS 
with an equivalent loading and boundary conditions. It was meshed into 5mm x 
5mm, except at the section’s corners. The corners were modelled with 1mm x 
5mm mesh to accurately represent the influence of corner radius. The stress and 
deflection values are obtained from a group of nodes at the same positions as the 
nodal lines from THIN-WALL-2. 

 

Figure 4: Lipped channel section under localised loading 
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The comparison between the stresses and deflections from the SAFSM and the 
FEM are shown in Table 1 and Table 2 for the Clamped - Free (CF) case which 
uses the Bradford and Azhari (1995) displacement functions. The results for 
other boundary conditions can be seen in the Research Report 958 (Nguyen et 
al, 2016).  The comparison demonstrates the accuracy of the SAFSM when 15 
series terms are used particularly for the transverse and shear stresses. There is a 
small difference in the local peak of the longitudinal stress at the centre but this 
is unlikely to have an effect on the buckling analysis in the companion paper – 
Part 2 - Buckling. 
 

Table 1: Stress comparison for CF case (Nodal Line 23) 
 

  
SAFSM (THIN-WALL-2) 

(15 series terms) 
 

 
FEM (Abaqus) 

 

 
 
 
 

Sx 
(MPa) 

 

 

 

 
 
 
 
 

Sy 
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Txy 
(MPa) 
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Table 2: Deflection comparison for CF case (Nodal Line 23) 
 

  
SAFSM (THIN-WALL-2) 

(15 series terms) 
 

 
FEM (Abaqus) 

 

 
 
 
 
Mode 

 

 
 

 

 

 
 
 
 

Dx 
(mm) 

 

 
 

 

 
 
 
 
 

Dy 
(mm) 

 

 
 

 

 
 
 
 
 

Dz 
(mm) 
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8. Convergence study 
 
A study has been performed for the lipped channel section in 7 with different 
boundary conditions and different numbers of series terms to find the acceptable 
number of series terms for the pre-buckling analysis. The relationships between 
the longitudinal stress at Nodal Line 23, Section 11 at the middle of the beam 
and the number of series terms are shown in Fig.5 for different boundary 
conditions. There is convergence of the longitudinal stress when the number of 
series terms reaches 25 in comparison with ABAQUS as shown in Table 1. It 
means that about 25 series terms are required to get the converged stresses as 
well as deflections in the pre-buckling analysis for a localised load one tenth the 
length of the member. 
 

  
 

Figure 5: Convergences of longitudinal stress (Sx) 
9. Conclusion 
 
A Semi-Analytical Finite Strip Method of pre-buckling analysis of thin-walled 
section under localised loading has been developed for general end boundary 
conditions. This method has been benchmarked against the Finite Element 
Method. 
 
Suitable displacement functions are used for different support and loading 
conditions for both flexural and membrane displacements. For a load over one-
tenth of the span, about 25 series terms are required in the analysis process to get 
accurate pre-buckling results, particularly stress.  
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Abstract 
 
Thin-walled sections under localised loading may lead to buckling of the 
sections. This paper briefly introduces the development of the Semi-Analytical 
Finite Strip Method (SAFSM) for buckling analyses of thin-walled sections 
under localised loading for general end boundary conditions. This method is 
benchmarked against the Finite Element Method (FEM). 
 
For different support and loading conditions, different functions are required for 
flexural and membrane displacements. In Part 1- Pre-buckling described in a 
companion paper at this conference, the analysis provides the computation of the 
stresses for use in the buckling analyses in this paper. Numerical examples of 
buckling analyses of thin-walled sections under localised loading with different 
end boundary conditions are also given in the paper in comparison with the 
FEM. 
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1. Introduction 
 
Thin-walled plates and sections subjected to localised loading and experiencing 
plate buckling have been studied over a long period by numerous investigators 
who mainly focused on web plates of sections under concentrated load. Two 
comprehensive investigations in this research area were Khan and Walker 
(1972) for the buckling of plates under localised loading and Johansson and 
Lagerqvist (1995) for the resistance of plate edges under localised loading. In 
the application of the General Beam Theory (GBT), Natário, Silvestre, and 
Camotim (2012) further extended investigations for beams under concentrated 
loading. The results for plates, unlipped channel sections and I sections from the 
GBT have been benchmarked against previous research and the Shell Finite 
Element method (SFE).   
 
The Finite Strip Method (FSM) developed by Cheung (1976) is an efficient 
method of analysis in comparison with the FEM. This method is used 
extensively in the Direct Strength Method (DSM) of design of cold-formed 
sections in the North American Specification for the Design of Cold-Formed 
Steel Structural Members AISI S100-2012 (2012) and the Australian/New 
Zealand Standard AS/NZS 4600:2005 (2005).  It is therefore very important to 
extend the FSM of buckling analysis to localised loading. The SAFSM was 
applied in Chu, Ye, Kettle, and Li (2005) and Bui (2009) to the buckling 
analysis of thin-walled sections under more general loading conditions, where 
multiple series terms were used to capture the modulation of the buckles. The 
limitation of these investigations is that the transverse compression and shear are 
not included. Hancock and Pham (2013) applied the SAFSM to the buckling 
analysis of thin-walled sections subjected to shear forces. More recently, 
Hancock and Pham (2014) have extended the SAFSM to the analysis of thin - 
walled sections under localised loading for simply supported boundary condition 
using multiple series terms. In the longitudinal direction, a pre-buckling analysis 
was performed to compute stresses prior to the buckling analysis using these 
stresses. Solution convergence with increasing number of series terms was 
provided. However, in practice, cold-formed members are connected together by 
welds or bolts so that the end boundary conditions are expected to be different 
from simply supported. Thus, it is necessary to extend this method to the 
analysis of thin-walled sections under localised loading for general end 
boundary conditions. 
 
In this Part 2 – Buckling, the paper briefly introduces the functions used to 
compute the stress distributions in the strips of the structural member for 
different end boundary conditions. In addition, the theory of the SAFSM for 
buckling analysis of thin walled sections under localised loading for general end 
boundary conditions is developed. Numerical examples have been performed by 
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the SAFSM built into the THIN-WALL-2 program developed by the authors 
(Nguyen, Hancock, & Pham, 2015). The numerical solutions are compared with 
those from the analyses by the Finite Element Method (FEM) on ABAQUS 
(ABAQUS/Standard Version 6.13, 2013) to validate the accuracy. 
 
2. Strip displacements 
 
2.1. Flexural displacement 
 
An isometric view of flexural displacements of a strip is shown in Fig.1 of the 
companion paper Part 1 - Pre-buckling. 
 
The flexural deformations w of a strip can be described by the summation over μ 
series terms as: 

1 1
1

( ) ( )m m
m

w f y X x
µ

=

= ∑  
 

(1) 

where: 
µ is the number of series terms of the harmonic longitudinal function, 

1 ( )mX x  is the curve for longitudinal variation, as described in Part 1 - Pre-

buckling 

1 ( )mf y  is a polynomial for transverse variation. This function for the mth 

series term is given by: 
2 3

1 1 2 3 4( )m Fm Fm Fm Fm
y y yf y
b b b

α α α α     = + + +     
     

 
 

(2) 

{ }Fmα  are the vector polynomial coefficients for the mth series term which 

depend on the nodal line flexural deformations of the strip, 

{ } [ ]1 2 3 4

T
Fm Fm Fm Fm Fmα α α α α=  

b and L are the strip width and length respectively. 
 

The flexural deformations w can be written in matrix format: 

( )[ ][ ] { }1

1
1

m FL F Fm
m

w X x C
µ

δ−

=

= Γ∑  
 

(3) 

where: 

{ } [ ] { }1

Fm F FmCα δ−=  

[ ]{ }1 ( )m FL Fmf y α= Γ  

[ ] ( ) ( ) ( )2 3
1 / / /FL y b y b y b Γ =  
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{ }Fmδ  is the flexural displacement vector for nodal line displacements 

[ ]FC  is the evaluation matrix of the flexural displacement functions at the 

nodal lines 
In the computation of the flexural potential energy described later, the 
derivatives of the flexural deformation are required. The derivatives used are as 
follows: 

( )[ ]{ }'
1

1
m FL Fm

m

w X x
x

µ

α
=

∂
= Γ

∂ ∑  
 

(4) 

( ) [ ]{ }1
1

1
m FT Fm

m

w X x
y b

µ

α
=

∂
= Γ

∂ ∑  
 

(5) 

where [ ] ( ) ( )2
0 1 2 / 3 /FT y b y b Γ =  

 

 
2.2. Membrane displacement 
 
An isometric view of membrane displacements of a strip is shown in Fig.2 of the 
companion paper Part 1 - Pre-buckling. 

 
The membrane deformations in the longitudinal and transverse directions of a 
strip can be described by the summation over μ series terms as: 

1
1

( ) ( )vm m
m

v f y X x
µ

=

= ∑  
 

(6) 

2
1

( ) ( )um m
m

u f y X x
µ

=

= ∑   
(7) 

where: 

1 2( ) and ( )m mX x X x is the longitudinal variation curve for the membrane 

transverse v and longitudinal u deformations respectively, as described in 
Part 1 - Pre-buckling 

( ) and ( )vm umf y f y  are the transverse variations. These functions for the mth 

series term are given by: 

1 2( )vm Mm Mm
yf y
b

α α  = +  
 

 (8) 

3 4( )um Mm Mm
yf y
b

α α  = +  
 

 (9) 

{ }Mmα  is the vector of polynomial coefficients for the mth series term 

which depend on the nodal line membrane deformations of the strips 

{ } [ ]1 2 3 4

T
Mm Mm Mm Mm Mmα α α α α=  
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The membrane deformations of the strip can be written in matrix format: 

( )[ ][ ] { }1

1
1

m Mv M Mm
m

v X x C
µ

δ−

=

= Γ∑  
 

(10) 

( )[ ][ ] { }1

2
1

m Mu M Mm
m

u X x C
µ

δ−

=

= Γ∑  
 

(11) 

where: 

{ } [ ] { }1

Mm M MmCα δ−=  

[ ]{ } [ ]{ }( )            and      ( )vm Mv Mm um Mu Mmf y f yα α= Γ = Γ   

[ ] [ ] [ ] ( )1 ( / ) 0 0     and    0 0 1 /Mv Muy b y b Γ = Γ =    

{ }Mmδ : is the membrane displacement vector 

In the computation of the membrane potential energy described later, the 
derivatives of the membrane deformations are required. The derivatives used are 
as follows: 

( )[ ]{ }'
1

1
m Mv Mm

m

v X x
x

µ

α
=

∂
= Γ

∂ ∑  
 

(12) 

( )[ ]{ }'
2

1
m Mu Mm

m

u X x
x

µ

α
=

∂
= Γ

∂ ∑  
 

(13) 

 
3. Membrane stresses 
 
3.1. Membrane stresses calculation 
 
The membrane stresses of a strip are given by: 

{ } [ ]{ }Mm M MmDσ = ∈  (14) 

where{ }Mm∈  is the membrane strain vector:    

{ } [ ]{ }Mm Mm MmB α∈ =  (15) 

Hence:       
{ } [ ][ ]{ }Mm M Mm MmD Bσ α=  (16) 

 
3.2. Stress distribution in a strip 
 
A strip subjected to loading will have complex stresses as shown in the Fig.1 
where the stresses due to the k=1 series term are drawn. The stresses are 
obtained from the pre-buckling analysis step described in Part 1- Pre-buckling. 
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Figure 1: Stress distribution of a strip with both ends simply supported (k=1) 

 
The longitudinal stress for buckling analysis which is obtained from Equation 
(16) varies in both the longitudinal and transverse directions and is given by: 

( ) ( ) ( )1 1 2 2 3
1 1

x k L k k L k L k
k k

yx x x
b

µ µ

σ σ σ σ σ σ
= =

 = + +  
∑ ∑  

 

(17) 

where: 
k is the series term of the stress functions 

( )x xσ is the longitudinal stress 

1 2 3, ,L k L k L kσ σ σ are the amplitude components of the longitudinal stress for 

series term k 

12
1 2 2 3 2 3 4 2;  and L k Mk L k Mk L k Mk

E E E
b

σ α σ α σ α= = =  

1 2( ), ( )k kx xσ σ  are the functions for the variation of the longitudinal stress 

( ) ( ) ( ) ( )'
1 1 2 2 and k k k kx X x x X xσ σ= =  

The transverse stress for buckling analysis which is obtained from Equation (16) 
is the average transverse stress in a strip and is given by: 

( ) ( ) ( )1 1 2 2
1 1

y k T k k T k
k k

x x x
µ µ

σ σ σ σ σ
= =

= +∑ ∑  
 

(18) 

where: 
( )y xσ is the transverse stress 

1 2,T k T kσ σ  are the amplitude components of the transverse stress for series 

term k 
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1
1 2 2 3 12 4 12

1
 and 

2T k Mk T k Mk Mk
E E E
b

σ α σ α α = = +  
 

1 2( ), ( )k kx xσ σ  are the functions for the variation of the transverse stress 

( ) ( ) ( ) ( )'
1 1 2 2 and k k k kx X x x X xσ σ= =    

The shear stress for buckling analysis which is obtained from Equation (16) is 
the average stress in a strip and is given by: 

( ) ( ) ( )1 1 2 2
1 1

xy k k k k
k k

x x x
µ µ

τ τ τ τ τ
= =

= +∑ ∑  
 

(19) 

where: 
( )xy xτ is the shear stress 

1 2,k kτ τ  are the amplitude components of the shear stress for series term k 

1 1 2 2 4

1
 and 

2k Mk Mk k Mk
GG G
b

τ α α τ α = + =  
  

1 2( ), ( )k kx xτ τ  are the functions for the variation of the shear stress 

( ) ( ) ( ) ( )'
1 1 2 2 and k k k kx X x x X xτ τ= =  

For different boundary conditions, different functions are required for flexural 
and membrane displacements, as described in Part 1 - Pre-buckling 
 
4. Strain energy and potential energy 
 
In order to compute the stiffness matrix of a strip according to conventional 
finite strip theory (Cheung, 1976), it is necessary to define the strain energy in a 
strip under deformation and the potential energy of the membrane stresses. 
 
4.1. Strain energy of a strip 
 
The flexural strain energy UF and the membrane strain energy UM are given in 
Part 1 - Pre-buckling. 
 
4.2. Potential energy of the membrane stresses 
 
The flexural potential energy of the membrane stresses is given by: 

( ) ( )

( ) ( )

22

0 0

1

2

x yL b

F

xy xy

w wx x
x y

V tdydx
w w w wx x
x y y x

σ σ

τ τ

  ∂ ∂  + +   ∂ ∂   = −     ∂ ∂ ∂ ∂    + +       ∂ ∂ ∂ ∂       

∫ ∫
 

 
(20) 
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Substitution of equations (17), (18), (19) into equation (20) and using Equations 
(4), (5) results in: 

1 2F FL FT FS FSV V V V V= + + +  (21) 

where: 

{ } [ ] ( ) ( ) ( )

( )[ ]{ }

'
1 1 1 2 2 3

1 1

1 10 0 '
1

1

2

T TL b
Fm FL m k L k k L k L k

k kFL
m n

n FL Fn

yX x x x
bV

X x tdydx

µ µ
µ µ α σ σ σ σ σ

α
= =

= =

  Γ + +  = −   
Γ

∑ ∑∑∑∫ ∫
 

 

(22) 

{ } [ ] ( ) ( ) ( )

( )[ ]{ }

1 1 1 2 22
1 1

1 10 0
1

1
1

2

T TL b
Fm FT m k T k k T k

k kFT
m n

n FT Fn

X x x x
bV
X x tdydx

µ µ
µ µ α σ σ σ σ

α
= =

= =

 
Γ + = −  

Γ

∑ ∑∑∑∫ ∫
 

 
(23) 

{ } [ ] ( ) ( ) ( )

( )[ ]{ }

'
1 1 1 2 2

1 1 1
1

0 0
1

1

2 1

T T
L b Fm FL m k k k k

m n k k
FS

n FT Fn

X x x x
V

X x tdydx
b

µ µ µ µ

α τ τ τ τ

α

= = =

 
Γ + 

 = −

Γ

∑∑ ∑ ∑
∫ ∫

 

 
(24) 

{ } [ ] ( ) ( ) ( )

( )[ ]{ }

1 1 1 2 2
1 1 12

0 0 '
1

1
1

2

T TL b
Fm FT m k k k k

m n k kFS

n FL Fn

X x x x
bV

X x tdydx

µ µ µ µ

α τ τ τ τ

α
= = =

 
Γ + = −  

Γ

∑∑ ∑ ∑
∫ ∫  

 
(25) 

 
Note that in Equations (21) to (25), summation is taken over the k=1 to µ series 
term for stress as well as the m, n=1 to µ modal terms. 
 
The membrane potential energy of the membrane stresses is given by: 

2 2

0 0

1
( ) ( )

2

L b

M x x
v uV x x tdydx
x x

σ σ
 ∂ ∂   = − +     ∂ ∂    

∫ ∫  
 

(26) 

As stated in Plank and Wittrick (1974), it is believed that there are no membrane 
instabilities associated with transverse stress and shear stress so that there are no 
term in above equation associated with these. 
 
Substitution of equation (17) into equation (26) and using equations (12), (13) 
results in: 

M Mv MuV V V= +  (27) 

where: 

{ } [ ] ( ) ( ) ( )

( )[ ]{ }

'
1 1 1 2 2 3

1 1

1 10 0 '
1

1

2

T TL b
Mm Mv m k L k k L k L k

k kMv
m n

n Mv Mn

yX x x x
bV

X x tdydx

µ µ
µ µ α σ σ σ σ σ

α
= =

= =

  Γ + +  = −   
Γ

∑ ∑∑∑∫ ∫
 

 
(28) 
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{ } [ ] ( ) ( ) ( )

( )[ ]{ }

'
2 1 1 2 2 3

1 1

1 10 0 '
2

1

2

T TL b
Mm Mu m k L k k L k L k

k kMu
m n

n Mu Mn

yX x x x
bV

X x tdydx

µ µ
µ µ α σ σ σ σ σ

α
= =

= =

  Γ + +  = −   
Γ

∑ ∑∑∑∫ ∫
 

 
(29) 

 
5. Stability matrix 
 
5.1. Flexural and membrane stiffness matrices 
 
The flexural and membrane stiffness matrices are given in Part 1 – Pre-buckling. 
 
5.2. Flexural stability matrix  
 
The total flexural potential energy of the membrane stresses can be written as: 

{ } [ ]{ }1

2

T
F Fm Fmn FnV gδ δ= −  

 

(30) 

where [ ]Fmng  is the flexural stability matrix corresponding to the mth and nth 

series terms and { }Fnδ  is the flexural displacement vector of a strip 

corresponding to the nth series term. The matrix [ ]Fmng is given in the Research 

Report 959 (Nguyen, Hancock, & Pham, 2016). The coefficients CLw1mnk ,  
CLw2mnk ,  CT1mnk ,  CT2mnk ,  CS11mnk ,  CS12mnk ,  CS21mnk ,  CS22mnk in the report have 
been evaluated exactly for the displacement functions satisfying different 
boundary conditions as described in Part 1 - Pre-buckling. 
 
5.3. The membrane stability matrix 
 
The total membrane potential energy of the membrane stresses can be written as: 

{ } [ ]{ }1

2

T
M Mm Mmn MnV gδ δ= −  

(31) 

where [ ]Mmng  is the membrane stability matrix corresponding to the mth and nth 

series terms and { }Mnδ  is the membrane displacement vector of a strip 

corresponding to the nth series term. The matrix [ ]Mmng is given in the Research 

Report 959 (Nguyen et al., 2016). The coefficients CLv1mnk , CLv2mnk , CLu1mnk , 
CLu2mnk in the report have been evaluated exactly for the displacement functions 
satisfying different boundary conditions as described in Part 1 - Pre-buckling. 
 
5.4. The stability matrix of whole section 
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The stability matrix of a strip is assembled from both the flexural stability matrix 
and the membrane stability matrix in local coordinates. These matrices are 
transformed to global coordinates by a multiplication with transformation 
matrices. The stability matrix of the whole section for each series term is 
assembled from the stability matrices of individual strip. Finally, the complete 
stability matrix of the whole section is assembled from the stability matrices 
taken over the series terms, thus the size of this matrix is 4 times the node 
number and times the number of series terms. 
 
6. Buckling analysis 
 
The total potential energy is the sum of the elastic strain energy stored in a strip 
and the potential energy of the membrane stresses, thus: 

U Vφ = +  (32) 

The principle of minimum total potential energy requires that: 

{ } { }0
b

φ
δ

 ∂  = ∂  
 

 
(33) 

Thus, we have: 

[ ] [ ]( ){ } { }0bK Gλ δ− =  (34) 

where  
[K] and [G] are the system stiffness and stability matrix respectively 
λ is the load factor against buckling 

{ }bδ  are the vector of nodal line displacements which are the buckling 

mode 
 r is the size of the stiffness matrix [K] and the stability matrix [G], 

4r nµ= × ×  

µ is the number of series terms 
n is the number of nodes in the section 
 

Equation (34) is called a Linear Eigenvalue Problem. The r values of λ for 
which the determinant of ([K]- λ[G]) is zero are called the Eigenvalues. The r 
eigenvalues are the load factors for buckling in the r different modes. Obviously 
the section will buckle at the lowest calculated value of  λ. The eigenvalue λ is 
obtained from this equation by using Eigenvalue routines in Matlab. The values 
of { }bδ  corresponding to the values of λ are called the Eigenvectors. They are 

the buckling modes of the section which are obtained from Eq (34). Each 
eigenvector { }bδ  corresponds to a practical eigenvalue λ in the above equation. 

The eigenvectors are computed by solving Eq (34) in Matlab. In the calculation, 
the buckling mode is the eigenvector corresponding to the minimum eigenvalue. 
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 7. Numerical example 
 
A buckling analysis has been performed for a lipped channel section with 
rounded corners and lips under localised loading using the THIN-WALL-2 
program. The geometry of the beam and the loading are shown in Fig.2. The 
beam is analysed with different boundary conditions for the web and the flanges 
of the end sections. In addition, lateral restraints are applied along the beam at 
Nodal Lines 11 and 35 to avoid twisting caused by eccentric loading. The results 
from the buckling analysis of the beam under localised loading include buckling 
modes and load factor. The buckling modes are obtained from Nodal Line 23 for 
all sections.  
 
A buckling analysis of the beam has been performed using the ABAQUS 
software with an equivalent loading and boundary condition. It was meshed into 
5mm x 5mm, except at the section’s corners. The corners were modelled with 
1mm x 5mm mesh to accurately represent the influence of corner radius. The 
buckling mode values are obtained from Nodal Line 23 for all sections. 
 

 
 

Figure 2: Lipped channel section under localised loading 
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A buckling analysis of the section has been performed for different boundary 
conditions by both the SAFSM and the FEM. The detail comparison of the 
buckling load factor λ for the different boundary conditions is shown in Table 1. 
It is clear that the SAFSM provides accurate estimates of buckling load factor in 
comparison with the FEM. 
 

Table 1: Buckling load factor (λ) comparison 
 

Boundary 
conditions 

SAFSM 
(THIN-WALL-2) 
(15 series terms) 

FEM 
(Abaqus) 

Different 
(%) 

SS 2.88402 2.87770 0.2196% 

SC 3.23008 3.19310 1.1582% 

SF 3.30027 3.30360 0.1008% 

CC 3.45942 3.43930 0.5850% 

CF 3.18921 3.18080 0.2643% 

FF 2.88612 2.88610 0.0007% 

 
The comparison between the results from the SAFSM and the FEM are shown 
in Table 2 for the Clamped - Free (CF) case which uses the Bradford and Azhari 
(1995) displacement functions with 15 series terms. The results for other 
boundary conditions can be seen in the Research Report 959 (Nguyen et al., 
2016). 
 
8. Convergence study 
 
A study has been performed for the lipped channel section in 7 with different 
boundary conditions and different number of series terms to find the required 
number of series terms for a converged buckling analysis. The relationships 
between the load factor (λ) and the number of series terms are shown in Fig.3 
for different boundary conditions. There is convergence of the buckling load 
factor (λ) from 0.0007% to 1.158% when the number of series terms reaches 15 
in comparison with ABAQUS as shown in Table 1. It means that a smaller 
number of series terms is required for buckling analysis in comparison with the 
number of series terms for pre-buckling analysis as described in Part 1 - Pre-
buckling. 
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Table 2: Buckling modes comparison for CF case (Nodal Line 23) 
 

  
SAFSM (THIN-WALL-2) 

(15 series terms) 
 

 
FEM (Abaqus) 

 

 
 
 
 
Mode 

 

 
 

 

 

 
 
 
 

Dx 
(mm) 

 

 
 

 

 
 
 
 
 

Dy 
(mm) 

 

 
 

 

 
 
 
 
 

Dz 
(mm) 
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Figure 3: Convergence of load factor (λ) 

 
9. Conclusion 
 
The Semi-Analytical Finite Strip Method of buckling analysis of thin-walled 
section under localised loading has been developed for general end boundary 
conditions. This method has proven to be accurate and efficient in comparison 
with the Finite Element Method.  
 
Different displacement functions are required for flexural and membrane 
displacements for different support and loading conditions. The buckling 
analysis requires a smaller number of series terms than the pre-buckling analysis 
to obtain the converged buckling load factor and buckling modes in comparison 
with the FEM. 
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Measured geometric imperfections for  

Cee, Zee, and Built-up cold-formed steel members 

X. Zhao1, B. W. Schafer2 

Abstract  

Geometric imperfections play an important role in the performance and behavior 

of cold-formed steel members. The objective of this paper is to present recent 

results from measurements of cold-formed steel members conducted by a laser 

scanner. The measurements provide complete and precise three-dimensional point 

clouds of the specimens and can be processed to determine dimensional variations 

as well as variations within the plates. Processing of the data can range from 

simple: e.g., mean lip length, to complex: e.g., modal decomposition magnitudes 

of the measured imperfections. Three different shapes of cold-formed steel 

members are selected for study: Cee, Zee, and built-up sections comprised of 

back-to-back Cee’s. Realized dimensions of the studied cold-formed steel 

members are statistically explored providing mean and standard deviation and 

correlation data amongst the dimensions (flange width, lip length, flange-to-lip 

angle, etc.) can be readily performed. In addition, global (bow, camber, and twist) 

imperfections and cross-section Type I and Type II plate imperfections are 

determined from the scanned specimens. Modal imperfections decomposed into 

local, distortional, and global can also readily be calculated. The paper aims to 

demonstrate the worth of performing the three-dimensional geometric 

imperfection scanning and to provide useful data for simulations of cold-formed 

steel members. In the future it is anticipated that a systematic study of member 

imperfections could be used to provide definitive characterizations to help enable 

geometric imperfection selection in new analysis-based design approaches. 
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Introduction 

The strength and stiffness of a cold-formed steel member is sensitive to geometric 

deviations or imperfections due to its thin-walled nature and the varying 

sensitivity of local, distortional, and global buckling to such imperfections. Due 

to this fact, imperfections in cold-formed steel members have been studied for 

some time. For example, Dat and Pekoz [1] measured global member out-of-

straightness at the middle of the web with reference to a straight line between the 

ends of his specimens for his column tests. Mulligan [2] conducted similar 

imperfection measurements for his testing on short and long columns. Young [3] 

increased the imperfection measurement fidelity significantly by utilizing a single 

point line laser to track longitudinal imperfections along 5 cross-section points 

and was thus able to assess both global deviations and cross-section imperfections 

in detail.  

 

Schafer and Pekoz [4] employed a set up similar in spirit to Young’s using a 

DCDT and measured 11 lipped channel sections in detail. In addition, they 

categorized cross-section imperfections into Type 1 and Type 2, and compiled a 

database on geometric imperfections existing at that time. This work was 

augmented by Shifferaw et al.[5] who conducted both global and cross-section 

imperfections for a series of channel sections and  who utlized a postion 

transducer on a manual linear stage to measure global imperfections for a large 

variety of channel sections. Even with these studies Zeinoddini and Schafer [6] 

concluded that the cross-section imperfection studies available to date are not of 

high enough fidelity (dense enough in their imperfection information) for many 

advanced numerical simulations and improved measurements are needed.  

 

Zhao et al. [7] developed a 3D laser measurement platform which can provide 

full-field measurement point clouds of target specimens placed on the platform. 

Extracted geometry information from measurement point clouds allows 

traditional cross-section imperfections to be better estimated, such as Type 1 and 

Type 2 imperfections, but also afford opportunities to measure other imperfection 

quantities and even dimensional quantities. Most past imperfection measurements 

have focused on lipped and unlipped channel sections; few studies of geometric 

imperfections are carried out on other cold-formed steel shapes. 

 

This paper demonstrates the application of the laser measurement platform 

developed by Zhao and Schafer [8]; including determination of dimensional 

variations, as well as global and cross-section imperfections for Zee, Cee, and 

built-up sections. The second section of this paper provides background on the 

laser measurement platform and the measurement schemes employed. 
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Dimensions of the three different shapes studied are collected and statistically 

analyzed in the following section. Next, imperfection measurements and related 

statistical analysis are presented, followed by discussion and conclusions. 

  

Background of Laser Measurement  

An imperfection measurement rig, Figure 1, was constructed in the Thin-Walled 

Structures Laboratory at Johns Hopkins University. The objective of the 

imperfection measurement rig is to achieve reasonably high-throughput and high-

accuracy representations of the three-dimensional geometry of as-manufactured 

members, for example, cold-formed steel members in this paper. The imperfection 

rig is designed to measure a specimen of at least 10 in (250 mm) in width or depth 

and 8 feet (2400 mm) long, which in turn determined the scanning area. The 

imperfection measurement rig contains three major components: laser scanner, 

rotary stage, and linear stage.  

 

Figure 1 Laser-Based Imperfection Measurement Platform: (a) Laser Scanner; 

(b). Large Rotary Stage; (c). Linear Motion System; (d). Zee-shaped Specimen 
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The laser scanner is a 2D line laser which can generate 800 points per reading, 

covering a width of up to 9.5 in (240 mm). The laser is installed on a rotary stage, 

the diameter of which is 25 in (635 mm). This allows the laser to scan different 

segments of a target specimen while the stage rotates. The linear motion system 

drives the rotary ring and positions the laser along the specimen. Full-field 

geometric information of a target specimen can be achieved by scanning the 

specimen at multiple angles of view and registering the individual scans into the 

same final global coordinate system (Figure 2). In general, the number of scan 

angles depends on the complexity of the geometry in order to achieve the desired 

resolution of scanning segments. In the work conducted here, a Zee shape required 

seven different angles for building up the measurement, while a Cee shape 

required five different angles, and a built-up shape required nine different angles 

to develop the desired resolution. Further documentation of the imperfection 

measurement rig is available in Zhao, et al. [7]. 

  

 
Figure 2 Example of Nine Different Scans Used to Develop Built-up Cee 

 

A series of steps are applied to the scanned segments to develop a full model. The 

scanned segments are first globally registered and colored based on deviation 

from nominally expected dimensions as shown in Figure 3. The reconstructed 3D 

models are categorized based on its geometric characteristics, i.e. corners, lips, 

flanges, and web [9]. Results from this step can be applied into studies on 
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dimensions, imperfection estimations, or even used as the true geometry in shell 

finite element modeling. This paper mainly discusses the first two applications, 

see Zhao, et al. [9] for an example of the last application. 

 
Figure 3 Example 3D Reconstructed Models from Laser Measurement Platform;  

(a) Zee; (b) Built-up Cees; (c) Cee  

 

Analysis of Member Dimensions from Laser Scanner Data 

Dimension Definition 

One important application from laser measurement point clouds is the calculation 

of cross-section dimensions. Dimensional variation, which can be considered as a 

primary imperfection, leads to variation in section properties, contributing to 

variation of strength and stiffness of a structural member. However, due to the 

constraints of conventional dimensional measurement tools, minimal statistical 

data exists on cold-formed steel cross-section variation. Thus, the laser 

measurement point clouds potentially fill in this gap. Dimensions of three shapes 

of studs have been estimated from reconstructed laser measurement models. 

Dimensional quantities are in Figure 4-6. Radii are estimated from corners. Best-

fit linear segments are fit to other regions intersections of which are used for 

estimating out-to-out dimensions.  

77



 
Figure 4 Dimension Definition for Zee Shape 

 
Figure 5 Dimension Definition for Cee Shape 

 
Figure 6 Dimension Definition for Built-Up Cee Shape 
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Dimension summary from measurements 

The study conducted herein includes 19 nominally identical Zees, 8 Cees, and 8 

members built-up from Cees. The Zees members are all 4 ft (1219 mm) long and 

7 in. (178 mm) deep (additional dimensional details in Table 1). The Cees are of 

two types, i.e., four 362S162-68 specimens and four 600S137-54 specimens (AISI 

S200-12 nomenclature). Similar to the Cees, the built-up members contain two 

different types, eight 362S162-68 specimens comprising four built-up members, 

and eight 600S137-54 specimens comprising an additional four built-up members. 

Both the Cees and built-up Cees are 6 ft (1829 mm) long.  

 

  
Figure 7 Typical Dimension Measurement of a Scanned Cee Specimen;  

(a) Histogram of Web Heights; (b) Typical Web Height Longitudinal Variation 

 

Typical dimensions derived from the laser scanned point clouds are provided in 

Figure 7 for a single specimen. Statistical summaries including the 5%, 10% and 

50% CDF values for the dimensions as well as the mean and standard deviation 

of the dimensions are provided with respect to the Zee, Cee, and built-up members 

in Table 1 - 3. Comparisons are also provided to the nominal specified dimensions 

in the Table. 

 

As expected, variation in the web depth, compared to all other dimensional 

quantities, are minimal in general. Corner radii, in general, differ greatly from 

specified dimensions. However, corners adjacent to the web generally have better 

manufacturing control and the difference with nominal dimensions are smaller 

than those adjacent to the lips. Angles between elements, particularly the flange 

and lip, also have large variations. The statistics supplied here can be used to 

develop cross-sections with a certain probability of occurrence, compare against 

quality control standards, or form the basis for fundamental reliability studies. 

a) b) 
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Analysis of Imperfections from Laser Scanner Data 

Imperfection Definition 

Geometric imperfections can be automatically identified from the measurement 

point clouds, e.g. Figure 3, for different member geometries. In this paper, three 

member types are studied following conventional imperfection definitions, i.e.: 

[4]. Figure 8 through Figure 10 depict the 3 global imperfections related to bow, 

camber and twist, and the 2 cross-sectional imperfections related to Type 1 (d1) 

and Type 2 (d2) for the Cee, built-up Cee, and Zee sections respectively. 

    

 
Figure 8 Imperfection Definition of Cee Shape; (a) Bow Imperfection - G1; (b) 

Camber Imperfection - G2; (c) Twist Imperfection - G3; (d) Type 1 Imperfection 

- d1; (e) Type 2 Imperfection - d2 

 

       
Figure 9 Imperfection Definition of Built-up Cee Section; (a) Bow Imperfection 

- G1; (b) Camber Imperfection - G2; (c) Twist Imperfection - G3; (d) Type 1 

Imperfection - d1; (e) Type 2 Imperfection - d2 

 

(a) (b) (c) 

(d) (e) 

(a) (b) (c) 

(d) (e) 
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Figure 10 Imperfection Definition of Zee Shape; (a) Bow Imperfection - G1; (b) 

Camber Imperfection - G2; (c) Twist Imperfection - G3; (d) Type 1 Imperfection 

- d1; (e) Type 2 Imperfection - d2 

 

The imperfection magnitudes are calculated from the reconstructed three-

dimensional point clouds from the laser scanner (i.e. Figure 3). Bow (G1) and 

camber (G2) imperfections are established by finding the centroid of each 

measured cross- section and comparing to the nominal cross-section centroid. It 

is always assumed that centroids at the ends’ of the sections coincide with those 

of the nominally perfect specimens. The maximum values found from the 

comparisons are denoted as extreme imperfections of bow and camber 

respectively (one per each measured specimen – this statistic is collected because 

historically this value was often recorded). A mid-span cross-section is used to 

find the angle of twist of the entire specimen. The angle of twist is defined as the 

difference between the two ends, and is the extreme G3 imperfection. Cross-

section imperfection, Type 1 magnitude (d1) is constructed by fitting a best-fit line 

to the ends of the web flat region and taking the maximum perpendicular deviation 

from that line. Type 2 magnitude (d2) is constructed from every cross-section by 

projecting an ideal flange 90° from the web flat and finding the perpendicular 

distance from this ideal flange to the measured flange. 
 

Imperfection Measurement Summary 
 

A typical realization for G1, G2, G3, d1, and d2 imperfections along the length of 

a specimen are provided in Figure 11. The results are consistent across most 

specimens and suggest first buckling mode shapes for G1 and G2 are generally 

consistent with measured imperfections. Twist (G3) and cross-section 

imperfections are more complex and analysis in the frequency domain can be 

useful [10].  

(a) (b) (c) 

(d) (e) 
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Figure 11 Typical Imperfection Findings towards a target sample; (a) Bow 

Imperfection - G1; (b) Camber Imperfection - G2; (c) Twist Imperfection - G3; 

(d) Type 1 Imperfection - d1; (e) Type 2 Imperfection - d2 of Left Flange; (f) 

Type 2 Imperfection - d2 of Right Flange. 

 

Although complete CDFs can be constructed, only the mean and standard 

deviation of the maximum measured imperfections are provided in Table 4. In 

addition, the 50% CDF values from past studies (Zeinoddini and Schafer 2014) 

and the maximum tolerances from ASTM C955 are provided for reference. The 

measured imperfections indicate that current tolerances can be challenging to 

meet particularly for camber (G2), twist (G3), and cross-section/element out-of-

straightness (d2). Also, imperfections for the studied Zees are considerably larger 

than the typical imperfections summarized through past data (listed as Zeinoddini 

in Table 4).  

(a) (b) 

(c) (d) 

(e) (f) 
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Table 4 Statistical summary of maximum geometric imperfections 
  Type1 Type2 Type2 Type1 Type2 Type2 G1 G2 G3 

 d1/t d2L/t d2R/t d1/t d2L/t d2R/t L/δ L/δ °/ft 

 mean 1.086 1.073 1.010 1.238 1.19 1.327 3772 1705 0.2 

BUCa std.dev. 0.441 0.299 0.283 0.434 0.428 0.342 2356 538 0.1 

Cee mean 1.05 1.471 1.360    1754 2806 0.2 

 std.dev. 0.046 0.552 0.581    952 745 0.2 

Zee mean 0.68 1.78 3.37    1000 372 1.7 

 std.dev. 0.23 0.5 1.78    2087 857 0.3 

 50%b 0.34 0.94 0.94 0.34 0.94 0.94 2242 3477 0.1 

 C955c  1.05 1.05  1.05 1.05 960 960 0.1 

Notes:  
a. BUC indicates built-up Cee shape 

b. statistical summary from measurements on lipped channels [10] 

c. reference tolerances from ASTM C955 for Cees, d2 tolerance is ±1.05t; G1 (bow) and G2 
(camber) are L/960; G3 is 1/32 in./ft of a specimen. 

Discussion 

Technology related to the ability to scan 3D objects and create accurate point 

clouds of the resulting object is growing quickly. The potential of such 

information is vast, particularly for imperfection sensitive objects such as thin-

walled cold-formed steel members. This paper provides an introduction to the 

possibilities of what may be realized through such information based on 

measurements of industry standard profiles using a laser scanner. Additional 

examples are discussed in Zhao et al. [9]. Information on using photogrammetry 

for similar measurements in cold-formed steel are also available [11] . In addition, 

the potential to use the scanner information in reliability studies [12] or to improve 

simulated imperfections [10] also significant. The first author is currently 

completing her Ph.D. dissertation on this topic with a dissertation expected in the 

Summer of 2016.  

Conclusions 

High-throughput high accuracy laser-based measurements may be performed to 

develop accurate 3D point clouds of cold-formed steel cross-sections. Scans on 

Cees, Zees, and built-up Cee shapes are completed to demonstrate the potential of 

the recorded data. With tens of thousands of points per specimen it is possible to 

provide highly accurate dimensions as well as the statistics of how dimensions 

vary along the member length. In addition, it is readily possible to synthesize the 

data to point estimates at desired statistical levels for key imperfection quantities 

such as bow, camber, twist, plate flatness, and element out-of-straightness. 

Together these provide powerful tools in potential quality control and quality 

assurance measures. The laser scanning also affords a number of additional 

possibilities in simulation and reliability studies that can significantly aid in our 

understanding of cold-formed steel members.     
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Abstract 

 

In this paper the buckling behavior of thin-walled members with cross-sections 

with curved parts is investigated. Due to the curved parts, shell-like buckling is a 

potential mode of failure. The objective of the research is to understand whether 

shell-like buckling behavior might be governing in practical cold-formed steel 

members. For this aim, numerical studies have been carried out, involving linear 

buckling analysis as well as nonlinear analysis with imperfections, by 

considering various cross-sections. Based on the results it is concluded that 

shell-like behavior might be critical in certain cases. 

 

Introduction 

 

As linear cold-formed steel profiles have become everyday solutions in many 

applications (e.g., purlins, rafters), several research activities started with aiming 

to develop more efficient cross-sections. These research and/or innovation 

activities led to more refined cross-section shapes, e.g. with multiple 

longitudinal stiffeners. Lately, attempts for a more formal mathematical 

optimization have been reported by various research groups, see e.g., Gilbert et 

al. (2012), Leng et al, (2014), Moharrami et al. (2014). In many cases the found 

optimal cross-section shapes tend to consist of curved parts rather than flat parts, 

at least if no special constraints are used to avoid the formation of curved parts.  

 

Though the highly curved cross-section shapes might be impractical, it is 

reasonable to assume that some combination of flat and curved parts might be 

feasible and advantageous, e.g., by assuming some classical cross-section, but 

with unusually large corner radii. The problem is, however, that the behavior of 

such thin-walled members with curved cross-section parts is not yet investigated 

in a comprehensive manner, therefore it is questionable whether the reported 

optimal cross-sections are properly analyzed by considering all possible failure 

modes. Namely: since curved cross-section parts mean cylindrical surfaces, 

shell-like behavior is theoretically possible, but shell-like behavior is not 
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considered in current cold-formed steel member design. Note, though plate-like 

and shell-like buckling are geometrically similar, both being associated with 

small buckling waves, they might have significantly different post-buckling 

behavior: plate-like buckling has typically considerable post-buckling reserve 

(i..e, the load-bearing capacity might be considerably above the critical load), in 

case of shell-like behavior, however, the capacity is typically much smaller than 

the critical load. Therefore, proper distinction in between plate-like and shell-

like buckling can (and will) be made based on the post-buckling behavior.  

 

In this paper the results of numerical parametric studies are presented. The 

calculations are completed by shell finite element analysis. Both column and 

beam members are investigated, considering two cross-section topologies, but a 

large number of curved and non-curved cross-sections, by systematically 

changing the corner radii in a wide range. In this paper linear buckling analysis, 

and geometrically and materially nonlinear analysis with imperfections (i.e., 

GMNI analysis) are presented. The results suggest that in certain cases shell-like 

behavior should be considered in predicting the capacity. 

 

 

Overview, solution strategy 

 

The objective of the research is to check whether shell-like buckling can or 

cannot be governing in case of thin-walled cold-formed steel column and beam 

members. In other words, we want to check whether the presence of curved 

parts in the cross-section geometry deteriorates the post-buckling reserve of the 

buckling (i.e., buckling characterized by small waves). The aim is not to 

investigate specific products, but to analyse the phenomena. Therefore, only 

simple cross-section geometries are selected. One single cross-section topology 

is chosen for pure compression, and another one for pure bending. The topology 

for compression is a doubly-symmetrical hollow section shape, (with a 

maximum dimension of 100 mm,) while the topology for bending is a C-like 

singly-symmetrical open cross-section shape (with 100 mm width and 130 mm 

height). (Note, this slightly unusual lipped-channel geometry is selected in order 

to make eliminate distortional buckling and/or buckling of the lip.)  Since the 

emphasis is on the curved parts, within the given topology the corners are 

rounded with variable corner radius, the radius being varying in between zero 

(i.e., sharp corners) and the physically possible maximum (i.e., 50 mm). In case 

of the hollow section, therefore, the increasing radius transforms the shape from 

a square hollow section (SHS) to a circular hollow section (CHS), as shown in 

Fig. 1. The figure shows the considered C-like shapes with the changing corner 

radius, too. 
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Since the aim here is to analyze buckling with short buckling waves, only short 

members are considered, with a length equal to 200 or 300 mm, which is 

roughly twice as much as the maximum cross-section dimension for the SHS 

type and the C-like section respectively. The selection of short member length 

automatically eliminates the global buckling phenomena. It is also to mention 

that distortional buckling is practically also eliminated by the selection of 

member length and cross-section shapes. In case of hollow sections distortional 

buckling mode theoretically exists, however, the associated critical load is much 

larger than those belong to local-plate buckling, hence, it is reasonable to 

assume that the effect of distortional buckling for the considered column 

problems is negligible. In case of C-like cross-sections distortional buckling is 

typically important, however, in our cases the flange lips are relatively large, 

and if such a cross-section is subject to bending, the lips are lightly compressed, 

hence distortional buckling and/or lip buckling has minor role.  

 

The final goal of the numerical studies is to estimate the load-bearing capacity 

of the members with (and without) significant curved parts. In the lack of real 

experiments, the load bearing estimation is carried out by finite element analysis, 

using shell finite elements, and considering material and geometric nonlinearity 

with imperfections (i.e. GMNI analysis). Only geometric imperfections are used, 

taken as properly scaled buckling shapes.  

 

 
 

 
Figure 1: Cross-sections 
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The major steps of the research work therefore are as follows: 

 parametric finite element model definition, 

 linear buckling analysis for a large number of cases, by systematically 

changing the model parameters in a wide range, 

 development of a method to numerically characterize the buckling 

modes (in an automated way), 

 imperfection sensitivity analyses by using elastic material and 

geometric nonlinear analysis with geometric imperfections (i.e., GNI 

analysis), 

 load bearing capacity estimation with geometrically and materially 

nonlinear analysis (i.e., GMNI analysis). . 

Based on the results of the GMNI analyses the load bearing capacity of the 

members can be assessed and conclusion can be drawn. 

 

In this paper the focus is on the GMNI analysis, while GNI analysis is discussed 

in Ádány et al (2016).  

 

 

Finite Element model 

 

For the parametric studies a parametric finite element model was built in Ansys. 

The geometry of the analyzed cross-section topologies is illustrated in Fig. 1. 

Eight-node quadratic shell element have been used, with six degrees of freedom 

at each node. This element is called SHELL281 in Ansys terminology. A 

relatively fine mesh is used, the total degrees of freedom being approx. 34000-

47000 in case of the SHS-like sections and 51000-98000 in the C-like sections. 

The size of the equation system was a key factor since thousands of cases have 

been investigated, therefore, a balance had to be kept in between accuracy and 

running time. It is to mention that some other element types have been tested, 

too, but it was concluded that there is no significant difference in the results if 

appropriate mesh density is chosen. 

 

A globally and locally hinged support was defined for both end sections. 

Warping is restrained. One may think of this support arrangement as if thick 

plates were welded to the end cross-sections, and the plate is supported in one 

point by a hinge (i.e. by restraining translations and twisting rotation around the 

longitudinal axis of the member, while allowing the rotations around the other 

axes). Practically, a master node is defined at each end to which each end cross-

section node is linked by rigid constraint equations. It is to note that some 

slightly different support arrangements were also considered, but it had not any 

significant influence on the local behavior. 
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Linear buckling analysis 

 

Linear buckling analyses are performed for both cross-section topologies, with 

varying corner radius and thickness. More specifically, the thickness varied from 

0.4 mm to 1.0 mm by 0.1 mm steps and from 1.0 mm to 3.0 mm by 0.2 mm 

steps. while the corner radius varied from zero to the physically possible 

maximum 50 mm by 5 mm steps. Altogether 685 cases are analyzed, and in each 

case the first 200-300 critical loads and corresponding buckled shapes are 

calculated. (Note, in certain cases much more modes are calculated, up to 2-

3000 modes.) Some of the modes are shown in Figs. 2 and 3.  

 

In general, if the deformations are concentrated to the flat parts of the member 

(while the curved parts are subject to much smaller deformations), the buckled 

shape is most likely “plate-like” buckling. On the other hand, if significant 

deformations appear at the curved parts, the buckled shape is most likely “shell-

like” buckling. If deformations are important in both the flat and curved parts, 

the mode is considered as “mixed”. 

 

By the visual inspection of the buckling modes it can be concluded that:  

 in case of small corner radius (r<25 mm) the first few hundred buckling 

modes can be classified as (classic) plate-like modes,  

 in case of larger corner radius the first buckling modes are plate-like, 

but shell-like modes appear among the higher modes,  

 the larger the corner radius, the sooner the shell-like buckling appears,  

 both “shell-type” (see Fig. 2, #110) and “axisymmetric-type” (see 

Fig. 2, #158) modes appear, however, axisymmetric modes are found 

only as very high modes and/or in case of very large corner radius, 

 the increasing tendency of the critical loads are dependent on the cross-

section shape: the larger the corner radius, the slower the increasing of 

the critical loads (e.g., in case of a hollow section with r=5 mm and 

t=1 mm, the ratio of the 200th to the 1st critical load is 16.8, while the 

same ratio is 4.3 if the radius is 40 mm). 
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Figure 2: Buckling shapes of SHS-like sections, r=5-30-40 mm, t=1.0 mm 
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Figure 3: Buckling shapes of C-like sections, r=5-30-40 mm, t=1.0 mm 
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Spectral analysis of the buckling shapes 

 

Buckled shapes are intended to be used as geometric imperfections in nonlinear 

analyses for a large number of cases. It is known that the various buckling 

modes have very different post-critical behavior. It is expected, therefore, that 

the member will show significantly different imperfection sensitivity depending 

on the nature of the imperfection, i.e., depending on the nature of the buckling 

mode which is used as geometric imperfection. Since we have many different 

cross-section shapes, and hundreds of buckling modes for each case, it is highly 

beneficial to be able to numerically characterize the buckled shapes, which 

numerical characterization might later be connected to the imperfection 

sensitivity (or: post-critical behavior). 

 

Here a simple and automatic characterization is proposed and used, which can 

be summarized as follows:  

 longitudinal straight lines are defined at some characteristic points of 

the member,  

 the displacements along the lines are collected,  

 the displacement function along each line is approximated by 

trigonometric series,  

 the coefficients of interpolation functions are normalized.  

Since in most of the cases only a few coefficients have non-zero values, the few 

non-zero coefficients show the characteristic buckling length(s), as well as 

highlight those parts of the member where the deformations are dominant.  

 

To illustrate the spectral analysis of the buckling shapes, a hollow section with 

r=40mm and t=1mm is considered here, with the 3 buckling modes shown in 

Fig. 2. The straight lines are defined as shown in Fig. 4, namely: two in the flat 

part of the cross-section (f1,f2), and two in the curved part (c1,c2). Table 1 

shows the normalized coefficients for the 4 lines.  

 

 
 

Figure 4: Position of longitudinal lines for spectral analysis of buckling shapes 
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Table 1. Spectral decomposition of selected buckling modes 

 

Hollow section r=40mm, t=1mm 

Buckl. shape #1 Buckl. shape #110 Buckl. shape #158 Half-wave 

Node sets Node sets Node sets length 

f1 f2 c1 c2 f1 f2 c1 c2 f1 f2 c1 c2 mm 

0 0 0 0 0 4 1 1 0 0 0 0 200 

1 1 0 0 0 0 0 0 1 1 0 1 100 

0 0 0 0 0 42 18 19 0 0 0 0 67 

3 3 0 0 0 0 0 0 1 0 3 0 50 

0 0 0 0 0 100 32 38 0 0 0 0 40 

100 85 2 2 0 0 0 0 0 0 1 0 33 

0 0 0 0 0 16 1 6 0 0 0 0 29 

71 61 1 1 0 0 0 0 0 0 1 0 25 

0 0 0 0 0 9 1 2 0 0 0 0 22 

0 0 0 0 0 0 0 0 0 0 1 1 20 

0 0 0 0 0 7 1 1 0 0 0 0 18 

0 0 0 0 0 0 0 0 0 0 1 3 17 

0 0 0 0 0 7 0 0 0 0 0 0 15 

0 0 0 0 0 0 0 0 0 0 4 7 14 

0 0 0 0 0 20 1 1 0 0 0 0 13 

0 0 0 0 0 0 0 0 2 1 17 61 12.5 

0 0 0 0 0 6 0 0 0 0 0 0 12 

0 0 0 0 0 0 0 0 4 2 37 100 11 

0 0 0 0 0 1 0 0 0 0 0 0 10.5 

0 0 0 0 0 0 0 0 1 0 2 14 10 

 

 

It can be observed that  

 mode #1 is clearly plate-like buckling since the numbers (and thus the 

deformations) in the corner region (c1,c2) are much smaller than 

those in the flat parts (f1,f2),  

 mode #158 is clearly shell-like buckling,  

 mode #110 shows both plate-like and shell-like characteristics. 

It can be concluded, therefore, that the here-introduced spectral analysis of the 

buckled shapes is simple-to-use, practically automatic (for the considered cases), 

and makes it possible to geometrically categorize the buckling modes.  
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Capacity estimation by GMNI analysis 

 

To estimate the load-bearing capacity of the members, geometrically and 

materially nonlinear analyses are carried out. (Note, since the members are short, 

and global and distortional behaviour are practically excluded, the calculated 

load-bearing capacity characterizes the local behaviour only.) Since it is known 

that different imperfection patterns lead to different nominal capacities, 

parametric study is performed here by considering a large number of possible 

imperfection patterns. In all the cases, the imperfection pattern is assumed to be 

in the shape of that of a linear buckling mode.  

 

The parametric study has been intended to be comprehensive, at least for the 

selected two cross-section topologies. The varying parameters are the following: 

the thickness, the corner radius, the imperfection pattern, the imperfection 

amplitude, and the yield strength of the material. It is realized, however, that a 

comprehensive parametric study would require unrealistic computation time, 

therefore, the parameters are carefully selected, as follows. 

 

Based on some preliminary calculations it was concluded that the yield strength 

does not affect the tendencies (though the numerical values are obviously 

affected), thus, it was decided to use one single yield strength value, namely: 

350 MPa (which is a frequently used basic yield strength for cold-formed steel 

members). 

 

For the other parameters: we have considered both cross-section topologies, 

three thickness values: 0.5, 1.0, and 2.5 mm, and (in most of the cases) five 

corner radius values: 5, 15, 25, 30, and 40 mm.  

 

The number of imperfection patterns may practically be infinite. To have a 

realistic amount of imperfection patterns, we have selected the first 50-200 

linear buckling modes for all the considered cases, plus we have selected the 

shell-like and mixed modes (by applying the above-described spectral analysis 

procedure) from the first few thousand buckling modes. This selection of 

imperfection patterns is based on the observation that the first buckling modes 

are mostly (or exclusively) plate-like modes and the first dozens of plate-like 

modes will always contain the most unfavorable plate-like imperfection pattern, 

therefore, it is enough to select only the shell-like patterns from the higher 

modes. Thus, this selection of imperfection patterns ensures that all the 

potentially most unfavorable patterns will be considered, while the number of 

considered imperfection patterns remains practically acceptable. 
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As far as imperfection magnitude is concerned, it is known that the general 

tendency is: the larger the imperfection magnitude is, the smaller the calculated 

capacity is. However, in many cases the influence of the imperfection magnitude 

on the calculated capacity is not too significant, at least in the practically 

important range of possible imperfections. Therefore, our aim was to select a 

limited number of imperfection magnitudes. In case of plate-like buckling 

behaviour (of sharp-cornered members), the Eurocode for steel plated elements 

(CEN 2006) gives guidance for the determination of the magnitude of the initial 

equivalent imperfection. In case of shell-like buckling behaviour, at least in case 

of compressed cylindrical shells, guidance is given in the Eurocode for steel 

shells (CEN 2007). In this latter design standard the value of the imperfection 

magnitude is greatly dependent on the wall thickness, that is why we have 

selected one single imperfection magnitude for each considered thickness. The 

selected initial imperfection magnitudes are: 0.5, 0.7, and 1.5 mm for the 

thickness of 0.5, 1.0, and 2.5 mm respectively. These values can be regarded as 

upper limits that are proposed or allowed by the referenced design codes. It is to 

note, although these values are technically correct, sometimes they seem to be 

slightly unrealistic, since the half-wavelength of higher buckling modes is 

normally between 5-20 mm (for the considered cases). Still, it is believed that 

the performed analyses and the results correctly show the behavior and the 

tendencies. As far as the actual load-bearing capacities are concerned, the here-

presented values can be regarded as realistic estimations (most probably: slightly 

conservative estimations), but not as precise (design) values. 

 

In the GMNI analysis load-displacement curves are established. The nominal 

capacity is the maximum point of the load-displacement curve. In order to be 

able to compare the various cross-sections, we have used a normalized version 

of the capacity, i.e., the maximum normal force or maximum bending moment 

divided by the cross-sectional area. Samples are shown in Fig. 5. 

 

Calculated nominal capacities are given in Tables 2 and 3. Three capacity values 

are given for all the considered cases, as follows. The value earmarked as “first 

mode” means the calculated capacity if the first linear buckling mode is used as 

geometric imperfection. The value of “first 10 modes” means the minimal 

capacity of the capacities calculated with the first 10 buckling modes. Finally, 

“all modes” capacity is the minimal value among all the considered geometric 

imperfections (including very high linear buckling modes).  

 

Since the first 10 linear buckling modes are always plate-like modes, the value 

of “first 10 modes” can be regarded as an estimation of the capacity that belongs 

to plate-like behaviour. On the other hand, the value “all modes” can be 

regarded as an estimation of the final capacity. 
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Figure 5: Load-displacement curves from GMNI analysis for SHS-like sections:  

r=5 mm 

r=30 mm 

r=40 mm 
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Table 2. Estimated capacities for SHS-like sections 
 

  first mode first 10 modes all modes 

t r capacity mode nr capacity mode nr capacity mode nr 

mm mm N/mm2 as imperf N/mm2 as imperf N/mm2 as imperf 

0.5 5 88 1 83 10 79 1998 

0.5 15 151 1 139 7 122 1106 

0.5 25 180 1 180 1 110 603 

0.5 30 212 1 204 2 142 472 

0.5 40 273 1 257 7 182 218 

1.0 5 147 1 147 1 142 19 

1.0 15 212 1 190 8 190 8 

1.0 25 242 1 237 2 231 435 

1.0 30 253 1 253 1 247 352 

1.0 40 294 1 292 8 243 155 

2.5 5 242 1 242 1 242 1 

2.5 15 257 1 257 1 257 1 

2.5 25 317 1 289 4 284 283 

2.5 30 298 1 297 7 254 139 

2.5 40 313 1 308 9 276 74 

 

 
Table 3. Estimated capacities for C-like sections 

 

  first mode first 10 modes all modes 

t r capacity mode nr capacity mode nr capacity mode nr 

mm mm Nmm/mm2 as imperf Nmm/mm2 as imperf Nmm/mm2 as imperf 

0.5 5 5093 1 4511 8 4511 8 

0.5 15 7165 1 68515 2 6309 904 

0.5 30 9824 1 8946 5 6779 325 

0.5 40 11354 1 10156 6 8121 196 

1.0 5 8154 1 8154 1 8092 27 

1.0 15 9032 1 9032 1 8365 585 

1.0 30 12005 1 11972 9 10971 186 

1.0 40 12950 1 12950 1 11640 90 

2.5 5 13420 1 13417 2 13417 2 

2.5 15 13210 1 13210 1 13210 1 

2.5 30 14419 1 14370 5 14170 102 

2.5 40 15147 1 13894 9 13526 52 
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As the numerical values of Tables 2 and 3 suggest, the capacity degrading effect 

of shell-like buckling exists, but only for small thickness and/or large corner 

radius. It seems that the r/t ratio must be larger than approx. 20-30 so that the 

shell-like behavior could become critical. This requires a relatively slender 

member with unusually large corner radii.  

 

Another important observation is that the calculated capacity increases with the 

corner radius even in the case of most unfavorable imperfection patterns. Note, 

however, that in this study only plate-like and shell-like buckling behavior are 

considered, (while global and distortional buckling are excluded,) therefore the 

observed beneficial effect of the larger corner radii is interpreted only for the 

local buckling behavior.  

 

 

Concluding remarks 

 

In this paper the buckling behavior of thin-walled members with cylindrically 

curved parts has been investigated. The focus is on the local buckling behavior, 

including plate-like and shell-like buckling. Parametric numerical studies have 

been completed on two selected cross-section types, namely hollow section and 

C-like section, by systematically varying the radius of the curved parts. Elastic 

linear buckling modes have been determined first, which characterized 

numerically, then used as geometric imperfections in non-linear analyses. Based 

on the results the following conclusions can be drawn. 

 

If the curved parts are significant in the cross-section, shell-like buckling is 

possible. In linear buckling analysis the shell-type modes are among the higher 

modes. The corresponding critical load values are typically multiples of the 

lowest critical load value with the tendency as follows: the smaller the 

cylindrical part of the cross-section, the larger the ratio of the shell-type critical 

load to the lowest critical load. 

 

By using the buckled shapes as initial geometric imperfections, elastic or 

inelastic capacities can be calculated. Capacities calculated via a materially and 

geometrically non-linear analysis with properly scaled geometric imperfections 

(GMNI) can be regarded as estimations of real capacities. In the actual study 

only short members and only a few cross-section topologies have been 

considered, which also means that only local behavior is analyzed. Therefore, 

the observations are valid only for the capacities that belong to the local 

behavior, while other behavior modes (e.g. distortional or global buckling) are 

disregarded.  
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Based on the results of large number of such GMNI analysis it is concluded that 

the post-critical behavior of plate-like buckling (i.e., when buckling 

deformations are mostly at the flat parts of the member) and post-critical 

behavior of shell-like buckling (i.e., when buckling deformations are 

concentrated at the curved parts of the member) are distinctly different. It is 

found that shell-like behavior can be governing for certain cross-section 

geometries, namely if the radius-to-thickness ratio is larger than approx. 20-30.  

It is also observed, however, that the unusually large corner radius is beneficial 

from the local capacity point-of-view, since the general tendency is that the 

larger the corner radius, the larger the member capacity is. Nevertheless, in case 

of large corner radius the existing cold-formed steel design procedures must be 

supplemented to consider shell-like behavior, too. 
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Abstract 
 
It is highly important to clarify the high temperature mechanical properties in 
the design of cold-formed steel structures under fire condition due to the unique 
deterioration feature in material properties under fire environment and 
associated reduction to the mechanical performance of members. This paper 
presents the material properties of coupons cut from raw cold-rolled thin-walled 
steel plates at elevated temperatures. A set of high temperature extensometer 
with a range of 12.5mm relative to 50mm gauge was employed in the 
experiments, which could collect more displacement data between the gauge 
scope before the coupon fail. The coupons were extracted from original cold-
rolled plates of GR340, GR410 and G550 steels with thickness of 1.0mm and 
1.2mm, and a total of 50 tensile tests were carried out by steady state test 
method for temperatures ranged from 20 to 700°C. Based on the tests, material 
properties including the yield strengths, ultimate strengths, the elasticity 
modulus and the stress-strain curve were obtained. Meanwhile, the ductility of 
cold-formed steel plates were discussed. Finally, the temperature-dependent 
retention factors of all the material properties were compared to those provided 
by design codes and former researchers.  
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Introduction 
 
As the main components in steel structural buildings, cold-formed steel (CFS) 
members are manufactured from cold bent sheet steel, approximately from 
0.5mm to 25.0mm thick. The most common members are channels (tracks) and 
lipped channels (studs and joists). Cold-formed steel studs and tracks are used 
extensively in low-rise residential, factories and office buildings as the frame for 
interior partition walls, exterior curtain walls, and more recently as the complete 
load-bearing system. Consequently, fire issues gradually reveal in facilitating 
process of these type of structures. However, there are limited investigations 
about fire-resistance on cold-formed steel sections, and no related provisions in 
standard design codes around world. 
 
Understanding the temperature dependence of CFS material properties is an 
essential step towards the development of accurate and effective fire design 
methods for CFS structural engineering application. As temperature increasing, 
steel members lose strength and stiffness, retaining only part of their ambient 
temperature capacity. The considerably material degradation at elevated 
temperatures, which is commonly considered via the use of retention factors, is 
the major cause of the above-mentioned failure. Generally, retention factors for 
the mechanical properties of CFS at elevated temperatures would be provided by 
design codes and standards, but the current provisions on temperature related 
retention ratios of CFS are based on the investigation upon hot-rolled steels 
(AISC 2010, AS 1998, BSI 1990, CEN 2005). However, CFS members develop 
faster heating rates for having higher thermal conductivity ratio and thinner 
sections than hot-rolled steel members. Then, the strength reduction of CFS at 
elevated temperatures may be higher than that of hot-rolled steels due the 
chemical composition and cold-rolling process effects. Moreover, when heated 
up, CFS are also likely to lose the strength gained through cold-working in the 
forming process (Lee et al. 2003). Therefore, retention factors obtained from 
hot-rolled steel tests may overestimate the capacity of CFS mechanical 
properties under fire.  
 
In recent times, some studies have been under taken for mechanical properties of 
CFS at elevated temperatures (Outinen 1999, Lee et al. 2003, Chen and Young 
2007, Ranawaka and Mahendran 2009, Kankanamge Mahendran 2011, Chen 
and Ye 2012, Ye and Chen 2013). In general, tested specimens range from 0.50 
mm to 3.00 mm thick, with yield strengths from 250 MPa to 550 MPa at 
ambient temperature. Retention factors differ among research results and the 
proposed prediction equations vary as well. Differences are mainly attributed to 
the test method, strain rate, heating rate, material grade, material thickness, the 
criteria used to determine the yield strength and elastic modulus, and the fitting 
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method used to generate constitutive equations. Previously, the specimens in 
most of research efforts were cut from CFS members which contain the cold-
formed effect, and a 25mm gauge with small displacement range was commonly 
adopted leading to limited strain collection during tests. 
 
This paper presents a detailed experimental investigation of the material 
properties of three types of sheets cut from original CFS coils. The steady state 
methods are considered and a wide-range high temperature extensometer system 
was applied. Finally, the reduction factors of the mechanical properties are 
compared with those in current design codes and other available literatures. 
 
Experimental study 
 
Test method 
Different methods may be used to evaluate the mechanical properties of building 
materials under fire. The most popular method currently used to investigate the 
mechanical behavior of steel at elevated temperatures is the steady-state test in 
which the specimen is heated up to a target temperature and then, when the 
temperature is stable and uniform in the plate, gradually subjected to a tensile 
load until fracture happens. Another common method is the transient-state test in 
which the specimen is applied a static load and then heated up evenly until 
failure criterions are met. Most of researchers employ steady-state test 
techniques since it is able to obtain stress-strain curves directly, avoids fluctuant 
temperature environment, eliminates the influence of creep deformation, and 
generally saves resources. Therefore, steady-state test method was adopted in 
this experimental investigation. 
 
Test specimens 
The coupons were cut from original cold-rolled plates of GR340 and GR410 
steels with nominal thickness of 1.0mm, and G550 steels with nominal thickness 
of 1.2mm. All of the test specimens were cut in the transverse direction of the 
cold-rolled steel plates by a wire cutting machine. The dimension of the test 
specimens was determined by ISO 6892-2, as presented in Figure 1. The 
specimens were flat with small lug for fixing extensometer system and two holes 
for pinned connections. The average thickness of zinc coating of specimens was 
0.03mm provided by mill sheet. The metal thickness and gage width of the 
specimens were measured at three points within gauge lengths by using a 
micrometer before testing. The base metal thickness and real gage width were 
used in the calculations of the initial cross sectional area. 
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Figure 1. Dimension of test coupons 

 
Test devices and procedure 
The tests were conducted in the Fire Safety of Engineering Structures Testing 
Division of State Laboratory for Disaster Reduction in Civil Engineering in 
Tongji University. The test system is shown in Figure 2, which contains a 
testing machine with a capacity of 100kN, a high temperature furnace with a 
maximum temperature of 1200°C, a set of linear displacement grating with high 
temperature resistance extension rods, three thermal couples binding in a range 
of 150mm, and controlling computers. Figure 3 and Figure 4 present details of 
the testing devices. 
 

 
Figure 2. Testing system 
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Figure 3. Details of the testing devices 

 

 
Figure 4. High temperature extensometer system 

 
High temperature extensometer system, shown in Figure 3, creates a 50mm 
gauge which could collect more displacement data between the gauge scope 
before the coupon fail and guarantee that the fractures occur within the gauge. 
Three thermal couples, connected with temperature control system, binding in a 
range of 150mm separately on upper rod, surface of specimen and lower rod. 
Thus, a uniform temperature zone will be generated when the temperature of 
three thermal couples remain stable. 
 
Steady state test method has been used in these tests. First, the specimen was 
heated up to a pre-selected temperature at a rate of 20°C/min. During the heating 
process, free thermal expansion was allowed by keeping zero tensile load. The 
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temperature levels in this investigation basically were 20°C, 100°C, 200°C, 
300°C, 400°C, 500°C, 600°C and 700°C. Then the load was applied by 
controlling the displacement of the electronic tensile grip until failure while 
maintaining the set temperature. The strain rate was set to 0.00007/s as the 
minimum rate specified by ISO 6892-2. Moreover, the sampling frequency was 
10 Hz. Most of the experiments were repeated twice for double checking. 
 
Results and discussion 
 
Failure modes 
Figure 5~Figure 7 present the failure modes of the all the tested coupons. The 
caliper read 50mm in every picture as a measuring scale. For GR340 and GR410 
steels, visually noticeable elongation and necking of the specimens is occurred 
at 300°C and higher temperatures. For G550 steels, significant elongation and 
necking could not be observed until temperature reaches 600°C. All coupons 
fractured within the gauge scope as wished prior to tests, which means the 
stress-strain curves recorded from test data acquisition system are real stress-
strain relationships along the gauge length. Specifically, GR340 and GR410 
steels presented a blue brittle phenomenon around 300°C, evidenced by the dark 
blue colored oxidation film on the fracture section of specimens, and Figure 8 
shows the fracture details. 
 

 
Figure 5. Failure modes for GR340 steel plates 
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Figure 6. Failure modes for GR410 steel plates 

 

 
Figure 7. Failure modes for G550 steel plates 

 

 
Figure 8. Blue brittle phenomenon for GR340 and GR410 steel plates 
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Stress-strain curves 
Since the measurement range of the displacement grating is 12.5mm, the stress-
strain curves are given within the strain of 0.2, as shown in Figure 9~Figure 11. 
 

 
Figure 9. Stress-strain curves of GR340 steels at different temperatures 

 

 
Figure 10. Stress-strain curves of GR410 steels at different temperatures 
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Figure 11. Stress-strain curves of G550 steels at different temperatures 

 
As shown in Figure 9 and Figure 10, the stress-strain curves of GR340 and 
GR410 steels present similar variation trend: 1) For temperatures below 200°C, 
an obvious yield plateau occurs when the load reaches the ultimate strength, and 
disappears after temperatures beyond 200°C. 2) From 20~300°C, the strain-
hardening ranges at different temperatures pinch into a small zone, which 
illustrates that only yield strength experiences degradation at those temperature 
cases but ultimate strength dose not. 3) At temperatures beyond 200°C the 
stress-strain curves were of the gradual yielding type, and both yield strength 
and ultimate strength deteriorate with temperature rising.  
 
Unlike the previous two grade steels, the high strength steel (G550) gave 
gradual yielding type stress-strain curves at both ambient and elevated 
temperatures, referring to Figure 11. Then, it appears that the yield strengths do 
not decrease much up to 200°C. Furthermore, the stress-strain curves have a 
similar shape and ultimate deformation at temperatures from 300°C to 500°C. 
When temperature reaches 600°C, the ultimate strain increases significantly. 
Meanwhile, the load decreases very slowly after the ultimate strength at this 
condition, and the corresponding failure mode changes to ductile fracture with 
clear necking. 
 
Retention factors 
Primarily, Table 1 shows the tensile test results of all three steels at ambient 
temperature, which are fundamental parameters for calculating high temperature 
material properties. Besides the apparent higher strength of G550 steels, the 
elastic modulus of this high strength steel is also higher than that of GR340 and 
GR410 steels at room temperature. 
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Retention factors for the elastic modulus, yield strength and ultimate strength 
were computed as the ratios of material properties at high temperatures to their 
values at ambient conditions which is 20°C in this paper. The elastic modulus 
was calculated by fitting the initial portion of the stress-strain curves via using 
the least squares method, following ISO 6892-2. For the curves with smooth and 
long yield plataeu, the yield strength was taken as the average value of stresses 
in the plataeu. Then for the gradual yielding cases, the yield strength was 
determined by the 0.2% proof stress method, which uses the intersection point of 
the stress-strain curve and the proportional line offset by 0.2% strain. Results are 
shown in Table 2. 
 

Table 1. Mechanical properties of cold-formed steel plates at ambient temperature 
Steel Grade E20(Gpa) Fy0.2,20(Mpa) Fu,20(Mpa) 

GR340 211.9 411.3 472.2 

GR410 212.9 434.6 488.1 

G550 218.5 686.8 689.8 

 
Table 2. Retention factors for the elastic modulus, yield strength and ultimate strength 

T(°C) 

GR340, t = 0.96 mm GR410, t = 0.96 mm G550, t = 1.16 mm 
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20 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

100 0.9375 0.8697 0.9492 0.9413 0.9365 0.9659 1.0262 0.9593 0.9712 

200 0.9674 0.7869 1.0516 0.9672 0.6770 1.0044 0.9756 0.9774 1.0572 

300 1.0755 0.5932 1.0540 1.0556 0.5725 1.0414 0.9132 0.8358 0.9142 

400 0.8914 0.4666 0.6802 0.7846 0.4674 0.6888 0.6099 0.6649 0.7066 

500 0.6024 0.2138 0.3807 0.5777 0.2130 0.3844 0.4657 0.3569 0.3964 

600 0.2872 0.1761 0.1809 0.3139 0.1822 0.1924 0.2534 0.0652 0.0941 

700 0.1590 0.0698 0.0675 0.1672 0.0700 0.0743    

 
Ductility 
In this study, the final gauge length after fracture for cooled down specimens 
were measured by piecing the segments of specimens tightly on fractures. 
Afterwards, percentage elongation after fracture, calculated from original and 
final gauge length, was used to indicate the ductility of steel plates. Table 3 
gives the average percentage elongation after fracture at different temperatures 
for three types of steels and its normalized value is shown in Figure 12. 
 
Table 3. Average percentage elongation after fracture (cooling down) at different temperatures 

T(°C) Percentage elongation after fracture AT , 0

0

100u Tl l
l

×=
−

(%) 
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GR340 GR410 G550 

20 32.02 29.99 2.76 

100 22.71 20.82 6.06 

200 22.40 23.92 3.94 

300 40.25 41.41 12.01 

400 43.18 45.67 10.34 

500 49.07 54.17 10.68 

600 63.80 66.97 68.38 

700 64.00 56.80  

 

 
Figure 12. Normalized average percentage elongation after fracture at different temperatures 

 
It is interesting to note that the ductility of GR340 and GR410 steels, from 20°C 
to 200°C, decreases with increasing temperature. This material behavior may be 
attributed to chemical transformations taking place in the steel base. After 300°C, 
the ductility grow continually for chemical change having been taken over by 
temperature as the dominate factor.  
 
High strength steel (G550) shows lower ductility than that of middle strength 
steel (GR340 and GR410) at ambient temperature due to the different treatments 
in manufacturing process. Before 200°C, the ductility of G550 steels maintain 
low values and even close to room temperature value. Then there was a higher 
platform of ductility in the range 300°C~500°C, which was still lower than that 
of middle strength steel at same temperatures. Up to 600°C, effect of strain 
hardening and heat treatment has been eliminated so that three different steels 
perform a same level of ductility. 
 
Comparison of reduction factors with those provisioned in design codes and 
available research results 
Figure 13~Figure 16 provide the retention factors for CFS plates obtained 
through steady-state tests from this study, current design codes and other 
publications available in the literature. 
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Figure 13. Comparison of the retention factors of elastic modulus for GR340 and GR410 steels 

according to test results with the current design rules and available research results. 
 

 
Figure 14. Comparison of the retention factors of yield strength for GR340 and GR410 steels 

according to test results with the current design rules and available research results. 
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Figure 15. Comparison of the retention factors of elastic modulus for G550 steels according to 

test results with the current design rules and available research results. 
 

 
Figure 16. Comparison of the retention factors of yield strength for G550 steels according to 

test results with the current design rules and available research results. 
 
Those scatter diagrams show that a significant dispersion in existed data on the 
retention factors of elastic modulus and yield strength which can be mainly 
attributed to the measuring method, strain rate, heating rate, material type, and 
the criteria used to determine the parameters. However, it is still meaningful to 
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produce statistical conclusion for reduction of material properties on CFS at 
elevated temperatures. 
 
By comparing tests data in this paper and other research efforts for CFS sheet 
with current design codes, retention factors from existing steel design codes are 
generally unsafe, especially for yield strength prediction. Yield strength 
retentions factors from hot-rolled steel experimental data provisioned by AISC 
and Eurocode 3 were the most unconservative, whereas AS 4100 and BS5950 
are less unconservative relatively. This confirms that by direct using retention 
factors developed for hot-rolled steel to calculate yield strength are not suitable 
for CFS. As for elastic modulus, retentions factors predicted by Eurocode 3 and 
AISC agree well with the present middle strength steels tests data before 500°C, 
but somewhat unconservative beyond 500°C. These two curves are also suitable 
for G550 steels, although a little conservative around 300°C. In addition, the 
elastic modulus retentions factors curve provided by AS 4100 are 
unconservative beyond 400°C for both middle and high strength steels.  
 
Therefore, the provisioned curves in current codes cannot be used to calculate 
the retention factors for CFS plates considered in this study. Also, most of the 
provisioned equations based on past investigations are not suitable for predicting 
the degradation properties of CFS sheets mentioned in this paper due to 
significant scatters existence. 
 
Future work 
Considering the dispersion of tests data on CFS plates and inapplicability of hot-
rolled steel high temperature material models, it is highly important to propose a 
set of accurate and easy to use prediction constitutive models for CFS sheets at 
elevated temperatures by means of statistical approaches and numerical 
calculations. 
 
Conclusions 
 
This paper has reported a detailed experimental study of the material properties 
of cold-rolled thin-walled steel plates at elevated temperatures. The 
experimental study included tensile coupon tests conducted on GR340, GR410 
and G550 steels via steady state test methods, and a careful discussion of the test 
results was included. Neither the current design codes nor the proposals by other 
researchers provided accurate retention factor predictions for both the yield 
strength and the elastic modulus of cold-formed steel plates considered in this 
study. At last, further efforts for retention factor prediction equations and 
constitutive models of CFS plates have been schemed. 
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Appendix. –Notation 
 
The following symbols are used in this paper: 
A20 = Percentage elongation after fracture at 20°C 
AT = Percentage elongation after fracture at T°C 
E20 = Elastic modulus at 20°C 
ET = Elastic modulus at T°C 
Fy0.2,20 = Yield strength at 20°C 
Fy0.2,T = Yield strength at T°C 
Fu,20 = Ultimate strength at 20°C 
Fu,T = Ultimate strength at T°C 
l0 = Original gauge length 
lu,T = Final gauge length at T°C 
T = Temperature 
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Buckling strength of cold-formed circular steel column 

subjected to axial load 

Ayana ITO1, Nobutaka SHIMIZU1, Keiichi SATO1 and Yoshimichi KAWAI1 

Abstract 

In this study, the global buckling behavior of a cold-formed circular steel 
column was discussed with a focus on the effects of its mechanical properties 
and initial imperfections on the behavior. As the first step, the stress–strain 
curves of the column under tensile and compressive loads as well as its residual 
stresses were investigated. Subsequently, a finite element analysis was 
conducted to clarify if the analysis properly simulated the stub column behavior. 
The analysis results obtained using measured compressive stress–strain curves 
and residual stresses agreed well with experimental results. Finally, another 
finite element analysis was performed on the long column buckling to examine 
the effects of its mechanical properties and initial imperfections. It was shown 
that the global buckling strength was affected not only by imperfections such as 
residual stress and out-of-straightness but also by the anisotropic mechanical 
properties of the material. 
 

1. Introduction 

It is well known that structural steel members have initial imperfections such as 
residual stress and out-of-straightness and that these imperfections affect the 
global buckling behavior of a member under axial compressive load. Extensive 
research on the global buckling behavior considering the effects of such 
imperfections has been conducted in the past, concluding that imperfection 
effects are quite significant, especially in cold-formed steel members. Reflecting 
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these facts, Eurocode3 (European Committee for Standardization 2005) 
introduced a penalty in global buckling design strength formulas for 
cold-formed steel members, resulting in a decrease in their design strength 
compared with hot-rolled steel members. 
 
A cold-formed steel column, a type of cold-formed structural member, 
undergoes various cold-working processes, such as expansion, shrinkage, 
bending, and unbending, during the production. In addition, the member is 
subjected to complex loading. Strain hardening and the Bauschinger effect can 
induce large residual stresses, and more importantly, they may cause the 
material to have anisotropic mechanical properties. It is known that cold 
working makes a material anisotropic, which may affect its column buckling 
behavior by Winter (1968), Wakabayashi (1969), Kato (1978), Toma (1979), 
Aoki (1983) and Schmidt (1989). However, previous studies on column 
buckling have not paid much attention to the effects of material anisotropy. 
Further study on the effects of mechanical properties as well as of initial 
imperfections such as residual stress and out-of-straightness on column buckling 
is needed. 
 
From the background mentioned above, this study aimed to quantitatively clarify 
the effects of anisotropic mechanical properties and initial imperfections on the 
global buckling strength of cold-formed steel columns. For this purpose, 
stress–strain curves under tensile and compressive loads and residual stress 
distribution were first investigated using an electric-resistance-welded (ERW) 
circular tube. Then, two finite element analyses were conducted. The first series 
intended to demonstrate whether the analyses with the measured stress–strain 
curves and residual stress distribution agreed with the test results. The second 
series was performed as a parametric study to clarify in detail the effects of 
material anisotropy on the global buckling strength.  

2. Measurement of residual stress  

2.1. Measurement method 

To investigate the residual stress and its distribution of ERW circular steel tubes, 
an ERW tube, to which strain gauges were already attached, was cut into small 
coupons. The strains released by the cutting were measured using the gauges to 
determine the residual stresses. A JIS-STK400 steel (typical mild steel) tube 
having a diameter (D) of 114.3 mm and thickness (t) of 6 mm was used as the 
specimen. The strains were measured as follows (e.g., see Kato 1978): 
i) Bi-axial strain gauges were attached at the positions shown in Fig. 1 
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(numbers denote measurement positions) along the circumference of the tube 
on both the outer and the inner faces. The steel tube member with attached 
gauges had a length of 230 mm. The length (L) was twice as large as the 
diameter (=2D). 

ii) A ring-like specimen was cut 
from the tube, as shown in Fig. 1. 
The ring width was 30 mm, and 
strain gauges were attached along 
the midpoint of the width.  

iii) Then, the ring-like specimen was 
further cut into 30 mm × 30 mm 
square pieces to include a pair of 
bi-axial strain gauges in each 
piece. 

iv) The strains released due to the 
cutting were measured, and these 
measured values were defined as 
residual strains in the tube. 

2. 2 Measurement results 

The measured residual strains are shown in Fig. 2. Note that numbers 1 and 13 
are absent in the figure because the corresponding strain gauges broke when the 
columns were cut into pieces. The results show that the residual strains have 
relatively uniform distributions in both the longitudinal and the circumferential 
directions, except for the seam weld portion. The strains are in tension on the 
outer surface and in compression on the inner surface along both the 
longitudinal and the circumferential directions. The strains in the longitudinal 
direction are larger than those in the circumferential direction. 
 
Residual stresses at the outermost edge along the thickness were calculated from 
these measured strains by using Hooke’s law in the plane stress condition with a 
Young’s modulus of 205,000 MPa and Poisson’s ratio of 0.3, and they are shown 
in Fig. 3. As can be seen in the strain distributions, tension stresses act on the 
outer face and compression stresses act on the inner face in both the longitudinal 
and the circumferential directions. In addition, the residual stresses are larger in 
the longitudinal direction than those in the circumferential direction. As 
indicated later, the yield strength of the material is around 415 MPa (Table 1). 
Therefore, the residual stresses in the longitudinal direction reach the material 
yield strength. These stresses are quite high compared to the residual stresses 
typically assumed in cold-formed open sections. 

Fig. 1 Measurement of residual strains 
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Fig. 2 Measured strains 

 

Fig. 3 Residual stresses calculated from measured strains 

3. Measurement of mechanical properties 

3. 1 Testing method 

To obtain the stress–strain curves of the material, both tensile and compressive 
coupon tests were conducted as follows:  
1) Tensile coupon test: The test specimen is shown in Fig. 5(a). The specimen, 

which had a diameter of 3 mm and gauge length of 10 mm, was sampled 
directly from the positions shown in Fig. 4. Specimen strains were measured 
by strain gauges attached to its central portion. The loading speed was 
assumed to be static with a strain rate of 5.0 × 10−3 s−1. 

2) Compressive yield test: A compressive yield test (e.g., see Tsuru 2004) was 
performed using the test specimen shown in Fig. 5(b), the diameter and 
height of which were 4.2 mm and 8.4 mm, respectively. This specimen was 
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also sampled from the same positions as those for the tensile test specimens. 
The strains of the specimen were measured by strain gauges attached to its 
central portion. The loading speed was the same as that in the tensile test. To 
prevent the end constraint, the ends of the specimen were greased with 
lubricating oils.  

 

Table 1 Mechanical properties 

 

Fig. 4 Sampling 

locations 

Fig. 5 Coupon test 

specimens 

 
(a) Number 0 (b) Number 8  

Fig. 6 True stress–strain curves  

3. 2 Test results 

The measured true stress–strain curves are shown in Fig. 6: (a) the number 0 
denotes the seam-welded portion; (b) the number 8 denotes the side opposite to 
the seam-welded portion. The curves under tensile loads are higher than those 
under compressive loads. The mechanical properties under both tensile and 
compressive coupon tests are summarized in Table 1, where the yield strength 
was defined either as the lower yielding point when a yield plateau was observed 
or as the 0.2% offset value when no yield plateau was observed. The yield 
strength at the seam-welded portion is approximately 20% larger than that at the 
other portions, and this might be ascribed to the heat treatment effect through the 
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10 409 471 87 346 0.85

11 410 471 87 347 0.85

12 413 471 88 349 0.85

13 416 474 88 354 0.85

14 424 476 89 355 0.84

15 427 474 90 356 0.83

average
(Number 1-15) 415 471 88 355 0.85
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seam welding. Most of the yield strengths under tensile and compressive loads 
fall into certain ranges (i.e., tension: 409 MPa–427 MPa; compression: 343 
MPa–375 MPa), excluding that of the seam-welded portion. The average ratio of 
the compression yield strength to the yield strength (C/T) is 0.85, meaning that 
the compressive values are lower than the tensile ones. This anisotropic 
mechanical property pertaining to yield strength can possibly be ascribed to 
strain hardening and the Bauschinger effect through the cold-forming processes. 

4. Stub column test 

4. 1 Experimental procedure 

Three stub column specimens (D = 114.3 mm, t = 6 mm, and L = 342.9 mm) 
were tested under axial compressive loading to examine the local buckling 
behavior. The length of the stub columns L was three times as large as the 
diameter (=3D), which was short enough to restrain the interaction with global 
buckling.  
 
The specimens were loaded between the top and bottom plates (500 × 500 × 20 
mm) by a testing machine, and the compressive force P and longitudinal 
displacements  were measured, respectively, by a load cell and displacement 
transducers. To have a uniform loading, both end surfaces of the specimens were 
mill finished, and the top and bottom plates were fixed about rotation. For 
securing a close contact with the plates, a hemispherical bearing was first set 
between the bottom plate and the head of the testing machine, and then after 
giving a initial loading (until P = 100 kN–200 kN), the bearing was locked with 
wedges. Axial load was applied statically until an apparent load decline was 
observed after the maximum strength. 

4. 2 Test results 

The load–displacement (P–) curves of the three stub columns are plotted in Fig. 
7. After a linear behavior at the early loading stage, the P– curves of all 
specimens show gradual stiffness decrease and reach an ultimate strength 
determined by local buckling, as shown in Fig. 9. The P– curves of the three 
specimens agree well with each other until their maximum strengths.  
 
The stress–strain curves derived from the stub column tests and coupon tests are 
plotted in Fig. 8. For the stub column tests, the stress was calculated as the ratio 
of the axial load P to the cross-sectional area, and the strains were determined 
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from the ratio of the displacement  to the stub column length L. In the stub 
column tests, the tangent modulus up to the yield strength is smaller than that in 
the coupon tests apparently due to the residual stress. The stress–strain curves 
obtained in the stub column tests agree reasonably well with the compressive 
curves, although the tensile curves do not agree and lager than the stub column 
test results. 
 

 

Fig. 7 Load-displacement 

curves 

Fig. 8 Comparison of results for 

stub column test and coupon tests

Fig. 9 Failure 

mode 

5. Finite element analysis of the stub column 

5. 1 Analytical procedure 

The buckling behavior of the stub column under compressive loads was 
analyzed using “MARC,” a finite element analysis (FEA) program. In the 
analysis, the stub column specimen tested [D = 114.3 mm, t = 5.7 mm 
(measured thickness), L = 342.9 mm] was modeled with thick-shell elements 
with nine layers along the thickness.  
 
A multi-linear stress-strain curves and the von Mises yield criterion were used in 
the FE models, assuming that Young’s modulus and Poisson’s ratio were 
205,000 MPa and 0.3 respectively. Two types of stress-strain curves that were 
modeled based on the data obtained from the tensile and compressive coupon 
tests (called “tensile model” and “compressive model” hereafter) were 
considered in the analyses. Residual stresses were implemented into the 
thick-shell elements by applying those measured at the surfaces of the ring-like 
specimen (see Chapter 2). A linear distribution was assumed through the 
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thickness, and the corresponding residual stresses were introduced at the 
integration points in the element layers, as shown in Fig. 10(b). 
 
As shown in Fig. 10(a), the displacements and rotations were fixed on the top 
and bottom faces of the FE model, except for the z direction displacements on 
the top face. To inhibit the sectional distortion at both ends of the model, nodes 
of each end were connected to each centroidal axis of the section [supporting 
point and loading point shown in Fig. 10(a)] with rigid links. In this model, no 
initial out-of-straightness was applied. 
 

 
(a) FE model (b) Residual stress approximation 

Fig. 10 Finite element analysis 
 

  

Fig. 11 Comparison of FEA and stub column test results 
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 5. 2 Verification of the finite element model 

A comparison between the FEA and test results is shown in Fig. 11. The figure 
shows that the results of the compressive model agree reasonably well with the 
test results, whereas the results of the tensile model do not fit with them. Thus, it 
is preferable that the FE models with compressive stress–strain curves 
(compressive model) be used to analyze the stub-column behavior of ERW tubes 
under axial compressive loads.  

 

6. Effects of initial imperfections and anisotropic mechanical properties on 

global buckling strength 

 

6. 1 Analytical procedure 

The stub column FE model was expanded to a slender column FE model in 
order to investigate the effects of initial imperfections and anisotropic 
mechanical properties on the global buckling strength of ERW circular steel 
columns. The sectional dimensions of the steel columns were set based on the 
nominal values as D = 114.3 mm and t = 6 mm. In that model, the rotation 
around the x axis was allowed at the top and bottom ends, so that a simply 
supported condition at the both ends was realized. A series of finite element 
analyses were conducted to clarify what factors affected the buckling strengths 
at what degree. To do this in a rational manner, the Design of Experiment (DoE) 
approach (e.g., see Kempthorne 1952) was employed to make its analysis plan. 
 
The prime factors considered here were as follows: i) residual stress in the 
longitudinal direction, ii) residual stress in the circumferential direction, iii) 
initial out-of-straightness, and iv) anisotropic mechanical properties. The effects 
of the above prime factors were examined for three column cases with different 
lengths (L = 1339, 2678, and 4016 mm; non-dimensional slenderness ratios n = 
0.5, 1.0, and 1.5). Two levels (upper and lower levels) were considered for each 
factor in making the analysis plan based on the DoE. The followings are the 
descriptions about the prime factors: 
 (1) Residual stresses 

The measured residual stress distributions in the longitudinal and 
circumferential directions were directly applied to the analyses with two 
levels of maximum stress values: 200 MPa for the lower case and 400 MPa 
for the upper case.  
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(2) Initial out-of-straightness 
The initial out-of-straightness was chosen as a sinusoidal initial curve with a 
central bow of 1/1000 and 1/5000 of the member length (L). The L/1000 was 
set according to Eurocode 3 (European Committee for Standardization 
2005), whereas the L/5000 was chosen based on the average of the measured 
results (e.g., see Wakabayashi 1969). 

(3) Anisotropic mechanical properties 
The true stress–strain curves under tensile and compressive loads were 
approximated by the Swift-type equation (Swift 1952), which is expressed as 
follows: 

  npC   0  (1)
 

where C, 0, and n are the material constants, which can be identified by 
comparison with experimental data. The constants obtained based on the 
least-squares method are listed in Table 2. The approximated stress–strain 
curves agree with the test results, as shown Fig. 12. For applying the DoE, 
two levels were set using the n value: 0.08 for the lower case and 0.10 for the 
upper case.  

 
Table 3 shows the prime factors considered and the two levels set in this analysis. 
Assuming that the four prime factors are independent each other, an orthogonal 
array of L8 (27) was used for importance evaluation among the factors. Eight 
combinations of the factors were allotted, as summarized in Table 4. The array 
was applied to three column length cases (n= 0.5, 1.0, and 1.5); therefore, in 
total, 24 finite element models were executed.  
 
 

Table 2 Swift equations  Table 3 Factors  

 

C 0 n

Tension 634 0.0017 0.08

Compression 634 0.0017 0.10

Factor 1 2

Circumferential residual stress[MPa] 200 400

Longitudinal residual stress[MPa] 200 400

Initial out of straightness[mm] L /5000 L /1000

Mechanical property, n  value 0.08 0.10
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(a) Tension (b) Compression 

Fig. 12 Comparison of Swift equations with test results 

Table 4 L8 Orthogonal array Table 5 FEA results 

 

 6. 2 Analysis results 

The maximum strengths obtained from the FEA results of the slender columns 
are listed in Table 5. The results were then analyzed using Analysis of Variance 
(ANOVA) (e.g., see Kempthorne 1952), which is a statistical analysis technique 
that helps reduce the error variance and quantifies the dominance of factors. 
Table 6 presents the ANOVA tables for each column length case (n= 0.5, 1.0, 
and 1.5).  
 
In the case of n= 0.5 [Table 6(a)], the mechanical properties have the highest 
contribution of 89.5%, followed by initial out-of-straightness (5.6%), and 
residual stress along the circumferential direction (4.7%). The contribution of 
the residual stress along the longitudinal direction is zero in this case. 
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Mechanical
property,
(n value)

Initial out-of-
straightness

[mm]LongitudinalCircumferential

Residual stress[MPa]

n =0.5 n =1 n =1.5

No.1 758 625 365

No.2 733 562 330

No.3 668 493 299

No.4 642 451 271

No.5 642 532 341

No.6 624 474 305

No.7 737 570 327

No.8 714 510 300

Maximum strengh of slender columns[kN]
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In the case of n= 1.0 [Table 6(b)], the mechanical properties have the highest 
contribution (55.1%), followed by initial out-of-straightness (27.2%), residual 
stress along the longitudinal direction (15.5%), and residual stress along the 
circumferential direction (0.9%).  
 
In the case of n= 1.5 [Table 6(c)], the residual stress in the longitudinal 
direction has the most significant effect (42.9%), while mechanical properties 
(23.1%) and initial out-of-straightness (32.8%) have lesser influence. The 
contribution of the residual stress in the circumferential direction is zero for this 
slenderness ratio. 
 
According to the relationship between the contributions obtained from the 
ANOVA and the non-dimensional slenderness ratio (n), which is shown in Fig. 
13, the contribution ratios depend on the non-dimensional slenderness ratio. For 

Table 6 ANOVA table for responses 

 

Factor
Degree of
freedom

Sum of
squares

Variance F value
Contribution

ratio

Circumferential residual stress 1 882 882 139 4.7%

Longitudinal residual stress 1 2 2 0 0.0%

Mechanical property, n  value 1 16745 16745 2644 89.5%

Initial out of straightness 1 1058 1058 167 5.6%

Error term 3 19 6 - 0.2%

Total 7 18706 18693 2951 100.0%

Factor
Degree of
freedom

Sum of
squares

Variance F value
Contribution

ratio

Circumferential residual stress 1 253 253 6 0.9%

Longitudinal residual stress 1 3570 3570 81 15.5%

Mechanical property, n  value 1 12561 12561 285 55.1%

Initial out of straightness 1 6216 6216 141 27.2%

Error term 3 132 44 - 1.4%

Total 7 22733 22645 512 100.0%

Factor
Degree of
freedom

Sum of
squares

Variance F value
Contribution

ratio

Circumferential residual stress 1 8 8 1 0.0%

Longitudinal residual stress 1 2592 2592 239 42.9%

Mechanical property, n  value 1 1405 1405 130 23.1%

Initial out of straightness 1 1985 1985 183 32.8%

Error term 3 33 11 - 1.2%

Total 7 6022 6000 553 100.0%

(a)  n =0.5

(b)  n =1.0

(c)  n =1.5
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small slenderness ratios (n= 0.5 and 1.0), the mechanical properties affect 
buckling strength more than the initial imperfections. In contrast, for large 
slenderness ratios (n= 1.5), the contributions of the mechanical properties and 
imperfections (residual stress in the longitudinal direction and initial 
out-of-straightness) are relatively comparable. Hence, the mechanical properties 
obviously become a significant factor for plastic buckling, whereas the residual 
stress and the initial out-of-straightness greatly influence elastic buckling.  
 

   

Fig. 13 Effects of imperfections and anisotropic mechanical properties 

 7. Conclusion  

This study was conducted to clarify the effects of anisotropic mechanical 
properties and initial imperfections on the global buckling strength of 
cold-formed steel columns (ERW tubes) in a quantitative manner. Based on the 
results, the following conclusions were drawn: 
(1) The residual stress distributions and the stress–strain curves of the ERW 

tubes were investigated. The measured results confirmed that the ERW tube 
had large residual stresses and anisotropic mechanical properties. It was 
anticipated that the anisotropic mechanical properties were caused by strain 
hardening and the Bauschinger effect during the cold-forming processes. 

(2) FEA of a stub column of an ERW tube was described and performed in this 
study. A method for building the models considering the residual stresses and 
the compressive stress–strain curves was presented. The numerical predictions 
agreed reasonably well with the experimental load-deformation curves. 

(3) The DoE approach and the ANOVA method were used to investigate the 
contribution of each parameter on the global buckling strength of ERW tubes. 
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It was found that the anisotropic mechanical properties affected the strength 
most, followed by the initial out-of-straightness and the residual stresses for 
small slenderness ratio cases. For large slenderness ratio cases, the residual 
stress along the longitudinal direction and the initial out-of-straightness were 
major affecting factors. 

Through this study, it was shown overall that the global buckling strength was 
affected not only by imperfections, such as residual stress and 
out-of-straightness, but also by the anisotropic mechanical properties of the 
material.  
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Abstract 

This paper present and discusses proposals for the codification of efficient design 

approaches for cold-formed steel columns affected by local-distortional (L-D) interaction. 

These proposals, based on the Direct Strength Method (DSM), were developed, calibrated 

and validated on the basis of experimental and numerical (shell finite element) failure 

load data concerning columns with several cross-section shapes and obtained from 

investigations carried out by various researchers. Three types of L-D interaction are taken 

into account, namely “true L-D interaction”, “secondary local bifurcation L-D interaction” 

and “secondary distortional bifurcation L-D interaction”. Moreover, previously available 

DSM-based design approaches to handle column L-D interactive failures are reviewed 

and their merits are assessed and compared with those exhibited by the present proposals. 

The paper also presents reliability assessments of the failure load predictions provided 

by the available and proposed DSM-based design approaches, following the procedure 

prescribed by the current version of the North American Specification (NAS) for the 

Design of Cold-Formed Steel Structures (AISI 2012). 

 

1. Introduction 

Cold-formed steel (CFS) members invariably display very slender thin-walled open 

cross-sections, a feature responsible for their high susceptibility to several individual 

(local – L, distortional – D, global – G) or coupled buckling phenomena (L-G, L-D, D-G, 

L-D-G). Nowadays, it is consensual amongst the technical and scientific communities 

working with CFS structures that it is necessary to establish efficient (safe and accurate) 

design approaches to handle interactive failures, a goal that has long been achieved 

for L-G interaction, a coupling phenomenon affecting both cold-formed and hot-rolled 

steel members. In the case of CFS members, design approaches based on the “Effective 

Width” and “Direct Strength” concepts are currently codified. Concerning interactive 

                                                           
1
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failures involving distortional buckling, virtually exclusive of CFS members, the situation 

is completely different and adequate design approaches can only be established after 

in-depth knowledge about the structural response of members affected by the coupling 

phenomenon under consideration has been acquired. In the case of CFS columns 

undergoing L-D interaction, such knowledge already exists, mainly due to the efforts 

of the authors. Moreover, design approaches based on the Direct Strength Method (DSM 

− Schafer 2008) have been proposed to predict specifically L-D interactive failures in 

columns exhibiting most of the cross-section shapes of practical interest − the estimates 

provided by such design approaches were shown to be safe and reliable. Thus, it may be 

rightfully argued that only the codification of DSM-based design approaches against 

column L-D interactive failures is missing − indeed, the currently codified DSM 

column design curves concern only L, D, G and L-G (interactive) collapses, i.e, the 

column nominal strength is given by Pn=min{PnL, PnD, PnG, PnLG}
2
. The aim of this work 

is to propose additional design approaches, so that Pn=min{PnL, PnD, PnG, PnLG, PnLD}. 
 
As mentioned in the previous paragraph, the objective of this paper is to present and 

discuss proposals for the codification of efficient DSM-based design approaches for CFS 

columns experiencing L-D interaction. These proposals were developed, calibrated and 

validated on the basis of (i) experimental failure loads obtained from test campaigns 

carried out be several researchers (the authors were involved in some of them), and (ii) 

extensive numerical failure load data obtained from shell finite element (SFE) materially 

and geometrically non-linear imperfect analyses (GMNIA). The above experimental and 

numerical failure loads concern columns with various cross-section shapes, namely plain, 

web-stiffened and web/flange-stiffened lipped channels, hat-sections, zed-sections and 

rack-sections – hereafter termed “C”, “WSLC”, “WFSLC”, “H”, “Z”, “R” −, i.e., those 

displayed in Fig. 1)
3
. Moreover, three types of L-D interaction are taken into account, 

namely (i) “true L-D interaction” (TI), occurring for columns with close local and 

distortional critical buckling loads (strongest L-D interaction effects), (ii) “secondary 

local bifurcation L-D interaction” (SLI) and (iii) “secondary distortional bifurcation L-D 

interaction” (SDI) − the last two occur for columns with the non-critical buckling load 

visibly above the critical one, but significantly below the squash load. Since the SLI was 

found to cause only negligible failure load erosion (with respect to the distortional 

ultimate strength), the corresponding column failures can be deemed adequately covered 

by the currently codified DSM column distortional design curve. However, the remaining 

two L-D interaction types must be addressed, i.e., specific design approaches have to be 

established to handle the corresponding column interactive failures. While the authors 

believe that, on the basis of the existing knowledge, the codification of an efficient design 

approach for columns undergoing TI constitutes a fairly straightforward task, attaining the 

same goal for columns experiencing SDI still poses a few challenging problems, namely 

those dealing with the identification of a “border” beyond which L-D interaction is 

                                                           
2 The values of PnL and PnLG are obtained from the same set of expressions. 
3 It is worth noting that, currently, the WFSLC are not “pre-qualified column cross-sections”.  
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no longer relevant. Moreover, some previously available DSM-based design approaches 

for columns failing in L-D interactive modes are reviewed, and their merits are assessed 

and compared with those exhibited by the proposed ones
4
. Finally, the paper also presents 

reliability assessments of the failure load predictions provided by the proposed DSM-

based design approaches, following the procedure prescribed by the North American 

Specification (NAS) for the Design of Cold-Formed Steel Structures (AISI 2012). 
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   (a) (b)     (c)   (d)    (e)     (f) 

Fig. 1. CFS cross-section dimensions of the columns analyzed: (a) lipped channel, (b) hat-section, (c) zed-

section, (d) rack-section, (e) web-stiffened lipped channel and (f) web-flange-stiffened lipped channel 

 
2. Database of Failure Loads of CFS Columns Experiencing L-D Interaction 

2.1 Experimental Failure Loads 

Although there exist a few test campaigns reported in the literature that were carried out 

with the specific aim of investigating L-D interaction in fixed-ended CFS columns, 

exhibiting both plain and stiffened lipped cross-sections, the specimens providing clear 

experimental evidence of this coupling phenomenon and ensuing failure load erosion are 

relatively scarce – certainly, much less than those collected to propose/calibrate the 

existing L, D, G and L-G DSM design curves/expressions approaches (Schafer 2008). 

Indeed, the available experimental results evidencing the occurrence of L-D interaction in 

fixed-ended CFS columns are due to (i) Kwon and Hancock (1992), Young & Rasmussen 

(1998), Kwon et al. (2009), Loughlan et al. (2012) and Young et al. (2013), for C 

columns, (ii) Kwon et al. (2005), for C and H columns, (iii) Dinis et al. (2014a), for 

R columns, (iv) Kwon & Hancock (1992), Kwon et al. (2009), Yap & Hancock (2011) 

and He et al. (2014), for WSLC columns, (v) Yang & Hancock (2004), for WFSLC 

columns, and (vi) Yap & Hancock (2008), for columns with complex-stiffened cross-

sections
5
 – no Z column test results were found in the literature. 

 
Table 1 summarises the available test results concerning fixed-ended CFS experiencing 

L-D interaction
6
. The reported/measured geometrical and material properties were used 

to evaluate the column squash and critical local/distortional/global buckling loads, the 

                                                           
4 Due to space limitations, not all the available DSM-based design approaches are reviewed here.  
5 Due to the unusual cross-section shapes, and also the small number of test results reported by Yap & Hancock 

(2008), it was decided to exclude them from this study. 
6 Note that another test campaign involving CFS lipped channel columns was recently reported by Dinis et al. 

(2014b). However, these results were excluded from this study due to the fact that no clear L-D failures were 
observed. Indeed, the specimens tested, which were originally designed to fail in D-G interactive modes, 
exhibited only either D or L-D-G interactive failures (due to poor manufacture). 
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latter by means of the GBTUL code (Bebiano et al. 2008), based on Generalized Beam 

Theory (GBT) − in some cases (e.g., Yap & Hancock 2008, 2011, and He et al. 2014) 

discrepancies were found between the values obtained and those reported (specially the 

distortional buckling loads). Based on these values, the above test results were divided 

into six sets, according to the specimen (i) cross-section shape (plain, web-stiffened and 

web/flange-stiffened lipped channel cross-sections − PCS, comprising C, H, R − WSLC 

and WFSLC) and (ii) L-D interaction nature (SLI, TI or SDI) − the number of specimens 

tested are given between brackets in Table 1. The L-D interaction nature was determined 

as reported by the authors (Martins et al. 2015a): (i) TI if 0.8≤PcrD /PcrL≤1.3 (regardless of 

the yield stress value), (i) SLI
7
 if PcrD /PcrL<0.8 and (iii) SDI if PcrD /PcrL>1.3. 

 
The observation of Table 1 shows that reasonably sized numbers of test results exist only 

for (i) PCS columns affected by SDI (54 tests) and (ii) WSLC columns experiencing TI 

(30 tests) − for the remaining cases, the numbers of test results are scarce or even null. A 

total of 120 test results were collected, a number that, naturally, is considerably below the 

number of tests considered to develop/calibrate the currently codified DSM local (PnL) 

and distortional (PnD) column strength curves (249 tests – see Schafer 2008). 
 

Table 1. Available test results concerning CFS columns experiencing L-D interaction 

 SLI TI SDI 

PCS 

Kwon & Hancock (1992) [1] 

 

 

 

 

 

 

Kwon & Hancock (1992) [4] 

Kwon et al. (2005) [5] 

 

 

Young et al. (2013) [16] 

Loughlan et al. (2012) [20] 

Young & Rasmussen (1998) [3] 

Kwon et al. (2009) [5] 

Dinis et al. (2014a) [10] 

WSLC 

Kwon & Hancock (1992) [3] 

 

 

Yap & Hancock (2011) [5] 

Kwon & Hancock (1992) [3] 

Kwon et al. (2009) [7] 

He et al. (2014) [14] 

Yap & Hancock (2011) [6] 

Kwon et al. (2009) [3] 

He et al. (2014) [3] 

 

WFSLC  Yang & Hancock (2004) [8] Yang & Hancock (2004) [4] 

 9 47 64 

2.2 Numerical Failure Loads 

Extensive parametric studies, consisting of ABAQUS (Simulia 2008) SFE GMNIA, were 

conducted in the last few years to complement the experimental failure load database 

given in Table 1 with numerical failure load data. Due to space limitations, the modelling 

issues involved in the above studies are not addressed here − they can be found, e.g., in 

Silvestre et al. (2012). The columns analyzed were (i) C columns with 0.9≤PcrD /PcrL≤1.0 

(TI), reported by Silvestre et al. (2012), and with 0.4≤PcrD /PcrL≤2.4 (SLI, TI, SDI), 

reported by Martins et al. (2015a), (ii) H, Z and R columns with 0.9≤PcrD /PcrL≤1.0 (TI), 

reported by Dinis & Camotim (2015), and with 0.4≤PcrD /PcrL≤2.4 (SLI, TI, SDI), 

reported by Martins et al. (2015a), (iii) WSLC columns 0.4≤PcrD /PcrL≤2.4 (SLI, TI, SDI), 

                                                           
7 In this type of L-D interaction, the identification of the “border” between pure distortional collapses and L-D 

interactive ones (stemming from SLI and occurring for “high enough yield stresses”) is only of academic 
interest, due to the negligible failure load erosion (with respect to the pure distortional failure loads). 
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reported by Martins et al. (2016a), and (iv) WFSLC columns 0.4≤PcrD /PcrL≤2.0 (SLI, 

TI, SDI), reported by Martins et al. (2015b, 2016b), totalling over 2000 results. Since all 

the numerical failure load data were obtained for columns containing critical-mode initial 

geometrical imperfections (IGI) with small amplitudes (10% of the wall thickness t), an 

imperfection sensitivity study is carried out next, in order to assess the influence of the 

initial imperfection amplitude on the column failure load. 
 
Although there are no definitive guidelines concerning what IGI type and amplitude 

should be included in SFE GMNIA of CFS members, most researchers usually adopt the 

statistical approach developed by Schafer & Peköz (1998), which is also followed here. 

Therefore, two different IGI types/shapes are considered: local and distortional (Types 

I and II, in the nomenclature of Schafer and Peköz (1998)), akin to the corresponding 

two critical buckling modes. Four initial imperfections amplitudes were considered for 

each of them, namely (i) 0.1t (value adopted in all the previous numerical simulations), 

and (ii) values corresponding to a given probability (P) that a random imperfection 

amplitude (∆) is below a given one (δ), i.e., P(∆<δ) − the probabilities considered were 

25%, 50%, 75%, leading to 0.14t, 0.34t, 0.66t (Type I), and 0.64t, 0.94t, 1.55t (Type II). 
 
The imperfection sensitivity study concerns C columns with bw=120, bf=110, bl=10, t=1.4 

and L=900mm (see Fig. 1), for which PcrD≈PcrL. Figs. 2(a)-(b) plot, against λL and λD (≡λ), 

the PU /Py (failure-to-squash load) ratios of columns containing Type I and Type II IGI, 

respectively. The observation of these figures shows that: 

(i)  For both Type I and Type II IGI, the ultimate strength of the columns exhibiting 

moderate-to-high slenderness (λ>1.25), i.e., those predominantly governed by 

the geometrically non-linear effects, is virtual insensitive to the IGI amplitude. 

(ii) On the other hand, the stocky columns (λ≤1.25) are, naturally, strongly affected by 

the IGI amplitude − the influence is most relevant for the Type I IGI (see Fig. 2(a)). 

(iii) The IGI amplitude adopted in the previous studies (0.1t) may be deemed adequate, 

since (iii1) the most detrimental IGI shape was found to be the distortional one (in the 

context of columns experiencing TI − Silvestre et al. 2012, Dinis & Camotim 2015), 

(iii2) the number of columns with λ≤1.25 that exhibit failure load erosion due to L-D 
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0.94t 

1.55t 

λL 

 

PU /Py 
 

0.0  0.5     1.0    1.5    2.0    2.5    3.0    3.5   

PcrD /PcrL =1.0 C-columns 
 1.0 

 
 

 
 
 

 
 

0.8 
 
 
 

0.6 
 
 
 

0.4  
 
 
 

0.2 
 
 

0.0 

 

NL 

PcrD /PcrL =1.0 C-columns 
 

λD 
 

ND 

0.0  0.5     1.0    1.5    2.0    2.5    3.0   3.5    
   (a) (b)     

Fig. 2. Imperfection sensitivity study: (a) local (Type I) and (b) distortional (Type II) initial imperfections  
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 interaction is rather small, and (iii3) the additional local IGI shape adopted by Martins 

et al. (2015a,b,2016a,b) when analyzing columns with PcrD>PcrL (SDI), was shown to 

erode only the failure loads of columns exhibiting moderate-to-high λL values. 

 

3. DSM-Based Approaches to Handle Columns for L-D Interactive Failures 

Several DSM-based approaches intended to handle CFS column L-D interactive failures 

have been proposed in the relatively recent past. Indeed, almost all the authors appearing 

in Table 1 either proposed new design expressions or suggested modifications of the 

existing ones. However, the more consensual for the CFS technical/scientific community 

are due to Schafer (2002): the NLD and NDL approaches, both based on the currently 

codified local (PnL)
8
 and distortional (PnD) strength curves. The corresponding “Winter-

type” expressions are obtained by replacing Py by either (i) PnD in the PnL equations (NLD 

approach – PnLD) or (ii) PnL in the PnD equations (NDL approach – PnDL), and read 
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where λDL=(PnL/PcrD)
0.5

 and λLD=(PnD/PcrL)
0.5

 are the distortional (local) slenderness based 

on the local (distortional) strength. Since the NDL and NLD approaches yield similar 

results, and due to space limitations, only the former is kept in the remainder of this work. 
 
The three types of L-D interaction are addressed separately in the next sections: first TI 

(0.8≤PcrD/PcrL≤1.3), then SDI (PcrD/PcrL>1.3) and, finally, SLI (PcrD/PcrL<0.8) − this 

order is associated with a decreasing failure load erosion due to L-D interaction. Several 

design approaches are considered for each type of L-D interaction and their merits are 

assessed though the evaluation of the LRFD (Load and Resistance Factor Design) 

resistance factor (φ) prescribed by the North American Specification (NAS) for Cold-

Formed Steel Structures (AISI 2012 − Section F.1.1), which is given by 

 
2 2 2 2

o M F P P QV V C V V

m m m
C M F P e

β

φφ
− + + +

=  (3) 

where Cφ =1.52 (calibration coefficient for LRFD), Mm=1.10 and Fm=1.00 (taken from 

Table F1 of AISI 2012) are the material and fabrication factor mean values, β0 is the target 

reliability value (β0=2.5 for structural members in LRFD), VM=0.10, VF=0.05 and 

VQ=0.21 (again taken from Table F1 of AISI 2012) are the material factor, fabrication 

factor and load effect coefficients of variation, respectively, and Cp is a correction factor 

                                                           
8 The currently codified PnL curve is intended for the design against pure local and local-global interactive failures 

− in fact, it may be said that it is a PnLG curve. In this work the pure PnL curve is considered – it is 
obtained from the currently codified one (AISI 2012) by replacing PnG with Py. 
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dependent on the number of tests. Pm and Vp are the mean and standard deviation of the 

“exact”-to-predicted failure load ratios. The value recommended for members under 

compression is φ=0.85, regardless of the failure mode nature (L, D, G or interactive). 

3.1 True L-D Interaction (TI) 

The “generalized modified NDL approach” (MNDL) has been successfully used by the 

authors to predict failure loads of C, H, Z, R, WSLC, WFSLC columns undergoing TI. 

Initially developed by Silvestre et al. (2012), in the context of C columns, it was later 

extended (i) to H, Z, R columns, by Dinis & Camotim (2015), and also (ii) to WSLC, 

WFSLC columns, by the authors (Martins et al. 2015b, 2016a,b). This design approach
9
 

is based on the definition of a modified local strength P
*
nL, dependent on the column 

critical half-wave length ratio LcrD/LcrL (obtained from simply supported column signature 

curves), and estimates the column failure loads by replacing PNL with P
*
NL in the NDL 

equations (1) – this modified local strength leads to PnD and PnDL estimates, respectively 

for LcrD/LcrL≤ a and LcrD/LcrL≥ b – see the graphical illustration in Fig. 3(a). The integers 

“a” and “b” vary with the cross-section shape: (i) a=4 and b=8 (C, H, Z, R), (ii) a=8 

and b=12 (WSLC) and (iii) a=14 and b=40 (WFSLC). The PMnDL approach is given by 
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where λ∗
DL=(P

*
nL/PcrD)

0.5
 denotes the distortional slenderness based on the modified 

local strength P
*
nL. 

 
Figs. 4(a)-(b) plot the PExp /PnDL and PExp /PMnDL ratios against λD for all the available 

experimental results concerning columns undergoing TI (see Table 1). On the other 

hand, Figs. 5(a)-(f) and 6(a)-(f) plot the PU /PMnDL and PU /PnDL ratios against λD for the 

numerical failure loads obtained by the authors – the values concerning the C, H, Z, R, 

WSLC, WFSLC columns are plotted separately. Finally, Tables 2 and 3 show the n 

(number of failure loads), Pm, Vp and φ values concerning the NDL and MNDL estimates 

of the (i) experimental and (ii) numerical failure loads. The observation of all these results 

leads to the following comments: 

                                                           
9 Originally, this design approach adopted PnD for stocky columns (λD<1.5). However, in view of the imperfection 

sensitivity study presented in Section 2.2, this condition was not longer adopted in this work. 
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Pn/Py 

λD=λL 

PnL /Py  

PnD /Py ≡ PMnDL/Py (LcrD/LcrL≤a) 

PnDL/Py ≡ PMnDL/Py (LcrD/LcrL≥b) 

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

PMnDL/Py 

1.0 

Pn/Py 

     λL 

PnL /Py  

PnSDB /Py  
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PnDL /Py 

P1 /Py1  

P2 /Py2  

λL1 λL2 

∆λL 

 
 (a)  (b) 

Fig. 3. Strength curves associated with the (a) generalized MNDL (PMnDL /Py vs. λD≡λL) and (b) 

NSDB (PnSDB /Py vs. λL) design approaches 
 
(i) Figs. 4(a)-(b) show that the NDL approach outperforms its MNDL counterpart in 

predicting the experimental failure loads: mean values and standard derivation equal 

to (i1) 1.04 and 0.18, and (i2) 0.88 and 0.10, respectively. This assertion is also 

corroborated by the resistance factors given in Table 2: φ=0.81 vs. φ=0.77. It is worth 

noting that these values are quite “penalized” by the high scatter of the experimental 

failure loads − high underestimations of the test results of Kwon & Hancock (1992) 

and equally high overestimations of the test results of Kwon et al. (2009), even if the 

overall mean value is above 1.0. If the test results reported by Kwon et al. (2009)
10

 

were to be removed, both approaches would perform better (particularly the NDL 

one): φ=0.85 vs. φ=0.78 – the former value now satisfies the NAS reliability 

demand for compression members (φ=0.85) – see Table 2. 

(ii)  Fig. 5(a)-(f) and 6(a)-(f) lead to a conclusion opposite to that drawn in the previous 

item: now the MNDL approach clearly outperforms its NDL counterpart. Indeed, 

the latter provides overly conservative estimates, as attested by the statistical indicators 

of PU /PnDL shown in those figures – note that the minimum value is very close to 1.0 
  

PExp / PnDL 

1.0    1.5      2.0     2.5     3.0     3.5 

Mean=1.04 
St. Dev.=0.18 
Min=0.58 
Max=1.47 

λD 

1.50 
TI TI PExp /PMnDL 

Mean=0.88 
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λD 

[C]            Kwon & Hancock (1992) 

[H]            Kwon et al. (2005) 

[WSLC]   Kwon & Hancock (1992) 

[WSLC]   Yap & Hancock (2011) 

[WSLC]   Kwon et al. (2009) 

[WSLC]   He et al. (2014) 

[WFSLC] Yang & Hancock (2004) 
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   (a) (b)  

Fig. 4. Plots (a) PExp /PnDL and (b) PExp /PMnDL vs. λD concerning the available experimental failure 

loads for columns undergoing true L-D interaction (TI) 

                                                           
10 In these tests, the specimen fixed-ended support conditions are a bit “suspicious”, since they were achieved 

through a polyester resin capping system. The authors suspect that this arrangement is not capable of ensuring 
fully fixed-ended columns at advanced loading stages, making it logical to expect lower failure loads. 
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Table 2. LRFD resistance factors φ according to AISI (2012) concerning the experimental failure loads 

for columns undergoing true L-D interaction (TI) − NDL and MNDL approaches 

 NDL MNDL Cross 

section 
Reference 

n Pm Vp φ Pm Vp φ 

C Kwon & Hancock (1992) 4 1.40 0.06 1.20 1.00 0.04 0.90 

H Kwon et al. (2005) 5 0.92 0.05 0.82 0.83 0.05 0.75 

WSLC Kwon & Hancock (1992) 3 1.20 0.08 0.94 0.94 0.00 0.86 

WSLC Kwon et al. (2009) 7 0.86 0.13 0.69 0.82 0.13 0.66 

WSLC Yap & Hancock (2011) 6 0.91 0.07 0.81 0.82 0.06 0.73 

WSLC He et al. (2014) 14 1.01 0.09 0.88 0.84 0.04 0.77 

WFSLC Yang & Hancock (2004) 8 1.17 0.12 0.96 1.00 0.12 0.83 

               Total 

    Total excluding Kwon et al. (2009) 

47 

40 

1.04 

1.07 

0.18 

0.17 

0.81 

0.85 

0.88 

0.89 

0.10 

0.10 

0.77 

0.78 
 
 for all the columns. Once again, the resistance factors given in Table 3 confirm the 

above assertion: considering all columns, φ is equal to 1.03 and 0.93 for the NDL and 

MNDL approaches − both values fulfil the reliability target by a large margin. 

(iii) Since the experimental and numerical failure load numbers are clearly “unbalanced” 

(47 vs. 1421), its is just logical that the joint consideration of both of them leads to 

resistance factors very similar to those obtained with the numerical failure loads. 

(iv) Based on the contents of the previous items, it seems prudent, for the time being, 

to recommend the codification of the NDL approach to handle columns undergoing 

true L-D interaction (TI), even if it provides farly high underestimations of the 

numerical failure loads. This is because the resistance factor associated with the MNDL 
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   (d) (e)  (f)  
Fig. 5. Plots PU /PMnDL vs. λD concerning the numerical failure loads for columns undergoing true 

L-D interaction (TI): (a) C, (b) H, (c) Z, (d) R, (e) WSLC, (f) WFSLC columns 
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Fig. 6. Plots PU /PnDL vs. λD concerning the numerical failure loads for columns undergoing true 

L-D interaction (TI): (a) C, (b) H, (c) Z, (d) R, (e) WSLC, (f) WFSLC columns 

  
Table 3. LRFD resistance factors φ according to AISI (2012) concerning the numerical failure loads of 

columns undergoing true L-D interaction (TI) − NDL and MNDL approaches 

 NDL MNDL Cross 

section 
Reference 

n Pm Vp φ Pm Vp φ 

C 285 1.29 0.20 0.99 1.05 0.08 0.93 

H 269 1.27 0.18 1.01 1.04 0.07 0.94 

Z 279 1.29 0.18 1.02 1.05 0.08 0.94 

R 

Dinis & Camotim (2015) 
+ 

Silvestre et al. (2012) 
+ 

Martins et al. (2015a) 304 1.23 0.11 1.06 1.08 0.07 0.97 

WSLC Martins et al. (2016a) 144 1.34 0.15 1.10 1.00 0.07 0.90 

WFSLC Martins et al. (2015b, 2016b) 140 1.19 0.07 1.07 0.99 0.11 0.86 

                 Total 1421 1.27 0.16 1.03 1.04 0.08 0.93 
 
 approach falls below the prescribed φ=0.85 value. Nevertheless, it should be noted 

that this φ value is pratically equal to that obtained for the currently codified NL curve 

(φ=0.79 – see Schafer 2008)
11

. The authors believe that additional test results could 

raise the φ value obtained for the MNDL approach, bringing it closer to the prescribed 

one. If this happens, it may be possible to codify the MNDL approach (instead of the 

NDL one) to handle columns affected by TI, thus leading to more economic designs 

and, naturally, benefitting the CFS industry
12

. 

                                                           
11 The low resistance factor associated with the NL curve was “compensated” by considering jointly the local 

(φ=0.79) and distortional (φ=0.90) limit states, leading to a “combined” resistance factor φ=0.85 − see 
Schafer (2008). Since the authors feel that this “compensation” procedure is a bit “forced”, a similar path 
was not followed in this work. 

12 A test campaign, to be carried out at The University of Hong Kong by Prof. Ben Young, is being planned. 
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3.2 Secondary Distortional Bifurcation L-D Interaction (SDI) 

The SDI must also be taken into acount in the design of CFS columns (or any other 

members), due to their well known high local post-critical strength reserve. Naturally, any 

DSM-based approach intended to handle  this type of L-D interaction should be, in one 

way or another, related to the current codified NL design curve. As a first step towards the 

development of such a design approach, it is essential to identify a “border” inside which 

L-D interaction becomes relevant. Based on the work reported by Martins et al. (2015a), 

a border of this nature may be defined (conservatively) by λL=0.85PcrD /PcrL, a condition 

depending on the values of PcrD, PcrL, Py (dependence of the yield stress felt through λL) 

and establishing that (i) local failures occur for λL≤0.85PcrD /PcrL and, conversely, (ii) L-D 

interactive failures occur for λL>0.85PcrD /PcrL. Since the MNDL approach ceases to 

provide accurate estimates when PcrD /PcrL differs visibly from 1.0 (logical, since it was 

developed to handle TI) a novel DSM-based approach (NSDB) is sought. It is defined 

by (i) the NL design curve, for λL≤0.85PcrD /PcrL, (ii) by a “Winter-type” curve (unknown 

coefficients at this stage), for λL≥0.85PcrD /PcrL+∆λL, and, finally, (iii) a linear transition 

between the two previous curves (occurring in the ∆λL=λL2 − λL1 range) − the proposed 

approach, which is illustrated in Fig. 3(b), is defined by 
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where the various parameters (also indicated in Fig. 3(b)) are given by 
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The first estimate for the “Winter-type” curve parameters “a” and “b” was obtained by 

solving a minimization problem involving only the experimental failure load database 

(specimens undergoing SDI − see Table 1), aimed at reaching the reliability target. Then, 

the objective function is defined as 

 ( )
2

.

, ,

1

( ) ( )
N

Exp

U i nSDB i

i

f P P
=

= −∑x x
 

(8)
 

which means that the (multivariable constraint) minimization problem becomes simply 

        ( )

. . :     0.85

min f

s t φ ≥

x  
(9) 

where x=[a, b] is a design variable vector and N is to the number of SDI specimens. As 

for ∆λL, required to calculate the objective function, the evaluation of its value was based 
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on the numerical failure loads of columns experiencing SDI
13

: the value adopted was 

∆λL=0.25 − due to space limitations, no details on how this value was reached are given. 
 
Table 4 gives the n, Pm, Vp and φ values for four different NSDB curves, i.e., four pairs of 

(a, b) values. “Options 1 and 2” correspond to the solutions of the minimization problem 

defined by Eq. (9) − while the former is based on all experimental results, the latter 

excludes the results of Kwon et al. (2009) (reason mentioned earlier). “Options 3 and 4”, 

which also exclude the results of Kwon et al. (2009), were developed to obtain a curve 

“more or less parallel” to the NDL one – see Fig. 3(b). Note that, since this curve is based 

on λDL (not λL), the coefficients in Eq. (1) (0.25, 1.20) are not equivalent to the pair (a, b) 

in Eq. (6). The observation of this table makes it possible to conclude that: 

(i) “Option 1” shows that there exists an (a, b) pair that leads to accurate predictions of 

the experimental failure loads of columns affected by SDI, while fulfilling the 

reliability-based constraint. 

(ii) Excluding the results of Kwon et al. (2009) (“Option 2”) still improves the above 

solution, leading to Pm=1.016(>0.995), Vp=0.086(<0.122) and φ=0.90>0.85, which 

means that the prescribed φ value is outperformed. 

(iii) As for the last two options, it is noted that “Option 3” satisfies the reliability demand, 

while “Option 4” fails to do so by a tiny margin but leads to more economic designs.  
 
Table 4. LRFD resistance factors φ according to AISI (2012) concerning the experimental failure loads 

of column undergoing SDI and associated with four DSM–based design approaches 

 Option 1 Option 2 Option 3 Option 4 

a 1.267 1.248 1.25 1.20 

b 0.338 0.340 0.15 0.15 

n 64 56 56 56 

Pm 0.995 1.016 0.976 0.959 

Vp 0.122 0.086 0.101 0.108 

φ 0.850 0.900 0.853 0.832 
 
Finally, it remains to assess whether the NSDB approach just proposed (“Option 4”) 

also predicts efficiently the numerical failure loads. Since Figs. 7(a)-(b) to 9(a)-(f)
14

 and 

Tables 5-6 are similar to Figs. 4(a)-(b) to 6(a)-(f) and Tables 2-3, their descriptions are 

abbreviated here – the only difference is that the NSDB approach replaces the MNDL 

one. The observation of all these results prompts the following remarks: 

(i) Figs. 8(a)-(f) immediately show that the NSDB approach can predict successfully 

the numerical failure loads associated with SDI. Indeed, the statistical indicators of 

the 670 failure loads given in Table 6 are excellent, both individually (for each cross- 

                                                           
13 It is necessary to have several columns with the same PcrD/PcrL ratio and various yield stresses, i.e., distinct local 

slenderness values – obviously, this requirement cannot be fulfilled with tested specimens (see Fig. 10(a)). 
14 The inclusion of the apparently “illogical” PExp/PnSDB(PnDL) vs. λD in the plots displayed in Figs. 8 and 9, instead 

of the more logical PExp/PnSDB(PnDL) vs. λL ones, was done to improve the readability, since those values were 
obtained by imposing several distortional slenderness values (λL=1.00, 1.25, 1.50, 1.75, 2.00, 2.50, 3.00, 3.25, 
3.50), which means that they would be located on the same vertical line and, therefore, “on top of each other”. 
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Fig. 7. Plots (a) PExp /PnDL vs. λD and (b) PExp /PnSDB vs. λD concerning the available experimental failure 

loads for columns undergoing secondary distortional bifurcation L-D interaction (SDI) 
  
Table 5. LRFD resistance factors φ (AISI 2012) for the experimental failure loads of columns 

affected by secondary distortional bifurcation L-D interaction (SDI) − NDL and NSDB approaches 

 NDL NSDB Cross 

section 
Reference 

n Pm Vp φ Pm Vp φ 

C Young et al. (2013) 16 1.02 0.05 0.93 0.89 0.04 0.81 

C Loughlan et al. (2012) 20 1.30 0.11 1.12 1.07 0.07 0.96 

C Young &Rasmussen (1998) 3 1.07 0.12 0.72 1.02 0.04 0.91 

C Kwon et al. (2009) 5 0.77 0.07 0.67 0.81 0.16 0.58 

R Dinis et al. (2014a) 10 0.95 0.03 0.87 0.83 0.04 0.76 

WSLC Kwon et al. (2009) 3 0.86 0.06 0.72 0.73 0.16 0.40 

WSLC He et al. (2014) 3 1.07 0.03 0.97 0.96 0.02 0.88 

WFSLC Yang & Hancock (2004) 4 0.92 0.06 0.80 0.95 0.06 0.82 

                       Total 

                Total excluding Kwon et al. (2009) 

64 

56 
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Fig. 8. Plots PU /PnSDB vs. λD for the numerical failure loads of columns undergoing secondary 

distortional bifurcation L-D interaction (SDI): (a) C, (b) H, (c) Z, (d) R, (e) WSLC, (f) WFSLC 
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Fig. 9. Plots PU /PnDL vs. λD for the numerical failure loads of columns undergoing secondary 

distortional bifurcation L-D interaction (SDI): (a) C, (b) H, (c) Z, (d) R, (e) WSLC, (f) WFSLC 

 
Table 6. LRFD resistance factors φ (AISI 2012) for the numerical failure loads of columns 

affected by secondary distortional bifurcation L-D interaction (SDI) − NDL and NSDB approaches 

 NDL NSDB Cross 

section 
Reference 

n Pm Vp φ Pm Vp φ 

C 120 1.26 0.14 1.06 1.05 0.07 0.95 

H 130 1.24 0.10 1.08 1.03 0.06 0.94 

Z 130 1.25 0.13 1.06 1.04 0.06 0.94 

R 

Martins et al. (2015a) 

120 1.20 0.06 1.09 1.01 0.07 0.91 

WSLC Martins et al. (2016a) 108 1.18 0.10 1.03 1.02 0.06 0.92 

WFSLC Martins et al. (2015b, 2016b) 62 1.21 0.11 1.04 1.03 0.11 0.89 

                Total 670 1.22 0.11 1.06 1.03 0.07 0.93 
 

section type) and combined − in the latter case, the mean and standard deviation are 

equal to 1.03 and 0.07, respectively, leading to φ=0.93>0.85. On the other hand, 

the NDL approach provides once again conservative results: Pm=1.22, Vp=0.11 and 

φ=1.06>0.93 – see Figs. 9(a)-(f) and Table 6. In order to make it clear that the NSDB 

approach predicts efficiently the numerical failure data, in spite of the fact that it was 

developed on the basis of experimental failure loads, Figs. 10(a1)-(a2) plot PnSDB /Py 

vs. λL for 18 Z-columns (bw=120, bf=100, bl=10 and L=1000mm – see Fig. 1) with 

several yields stresses (λL values): (i1) 9 for a column with PcrD /PcrL=1.5 (t=1.15mm – 

Fig. 10(a1)) and (i2) 9 for a column with PcrD /PcrL=2.0 (t=0.70mm – Fig. 10(a2)). Note 

that, obviously, the NSDB approach depends on the PcrD /PcrL value. In addition, Figs. 

10(b1)-(b2) show the failure modes of the Z+λL=1.5 (local) and Z+λL=3.0 (L-D 

interactive) columns. These figures “illustrate” graphically the above assertion. 
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Fig. 10. Plots of PnSDB /Py vs. λL for Z-columns with λL={1.00, 1.25, 1.50, 1.75, 2.00, 2.50, 3.00, 

3.25, 3.50}, PcrD /PcrL equal to (a1) 1.5, (a2) 2.0 and (b) failure modes for (b1) Z+λL=1.5 and (b2) Z+λL=3.0 
 
(ii) The joint observation of Figs. 7(a)-(b) and Table 5 shows that the PExp/PnDL values 

exhibit higher means and are more scattered than their PExp/PnSDB counterparts. 

Nevertheless, however, there no significant difference between the corresponding 

resistance factors − φ=0.83 vs. φ=0.80 or φ=0.89 vs. φ=0.83, depending on whether 

the results reported by Kwon et al. (2009) are considered or not. 

(iii) It seems clear that the NSDB approach is the most adequate design proposal to 

account for the SBI effects, since it exhibits reasonably good statistical indicators 

for both the experimental and numerical failure loads, while leading to more 

economic designs than the NDL approach – see Fig. 3(b). 

3.3 Secondary Local Bifurcation L-D Interaction (SLI)  

Numerical results recently reported by the authors (Martins et al. 2015a) showed that SLI 

causes only negligible failure load erosion with respect to the ultimate strength provided 

by the currently codified distortional design curve (ND). The moderate distortional post-

critical distortional strength reserve (when compared with its local counterpart) precludes 

the occurrence of significant L-D interaction even for very high yield stresses. Like in 

the SDI case, addressed in Section 3.2, it is possible to think of a “border” separating the 

columns failing in (i) distortional and (ii) L-D interactive modes − based on the study of 

Martins et al. (2015a), such border may be conservatively defined by λD=3.5PcrD /PcrL
15

. 

In order to assess the validity of this assertion, Figs. 11(a)-(b) plot PExp /PnD vs. λD for the 

failure loads of tested specimens undergoing SLI and provide the corresponding n, Pm, 

Vp, φ values associated with the DSM distortional strength predictions (PnD). On the other 

                                                           
15 Like its SDI counterpart, this condition depends on the values of PcrD, PcrL, Py. 
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 (a)  (b) 

Fig. 11. (a) Plots PExp /PnD vs. λD for the available experimental failure loads of columns undergoing 

secondary local bifurcation L-D interaction (SLI) and (b) LRFD resistance factors φ (AISI 2012) 
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Fig. 12. Plots PU /PnD vs. λL for the available numerical results failure loads of columns undergoing 

secondary local bifurcation L-D interaction (SLI): (a) C, (b) H, (c) Z, (d) R, (e) WSLC, (f) WFSLC 

 
Table 7. LRFD resistance factors φ according to AISI (2012) for the numerical failure loads 

of columns affected by secondary local bifurcation L-D interaction (SLI) − ND approach 

 ND Cross 

section 
Reference 

n Pm Vp φ 

C 40 1.13 0.05 1.03 

H 38 1.15 0.05 1.04 

Z 37 1.15 0.07 1.04 

R 

Martins et al. (2015a) 

37 1.08 0.06 0.98 

WSLC Martins et al. (2016a) 38 1.10 0.05 1.00 

WFSLC Martins et al. (2015b, 2016b) 38 0.91 0.11 0.79 

                Total 191 1.09 0.11 0.94 
 

 ND Cross 
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Reference 

n Pm Vp φ 

C 
Kwon & Hancock  

(1992) 
1 1.13 0.00 1.05 

WSLC 
Kwon & Hancock  
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3 1.03 0.05 0.88 

WSLC 
Yap & Hancock  

(2011) 
5 0.65 0.04 0.59 
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                  Total                          9 0.83 0.22 0.57 
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hand, Figs. 12(a)-(f), similar to Figs. 5-6 and 8-9 presented in Sections 3.1 and 3.2, 

show plots PU /PnD vs. λL
16

, concerning the available numerical failure loads, and Table 7 

provides the corresponding statistical indicators. The observation of all these results 

prompts the following comments: 

(i) Although the amount of experimental failure loads of columns undergoing SLI is 

very scarce, Fig. 11(a) shows a huge disparity between two set of results. Indeed, 

while the failure loads of the four specimens tested by Kwon & Hancock (1992), 

concerning one C and three WSLC columns, are adequately (safely and accurately) 

predicted by the currently codified distortional design curve, those exhibited by the 

five WSLC column specimens tested by Yap & Hancock (2011) are heavily 

overestimated by that same curve
17

. Although the authors have no clear explanation 

for this large and surprising discrepancy, it should be noted that a similar (but less 

pronounced) trend was observed for the 3 specimen tests reported by Yap (2008), 

which have the same cross-section as those included in Table 1 and failed in local 

modes: mean and standard deviation of the three PExp /PnL values equal 0.79 and 0.06, 

respectively. In addition, this same overestimation tendency was also observed in the 

column specimens tested by this author and undergoing TI and SDI (see Table 1). 

The fact that the failure loads obtained in the tests reported by Yap (2008) and Yap & 

Hancock (2011) are systematically below the expected values seems to indicate 

that either (i1) the authors of this paper have misinterpreted the test data or (i2) some 

features of the test set-up and procedure were not adequately reported or achieved as 

planned (e.g., the test set-up may not have ensured fully fixed end conditions). 

(ii) As expected, the performance of the ND curve in predicting the numerical failures 

loads is much better − indeed, the PU /PnD value mean and standard deviation are 

equal 1.09 and 0.11, leading to a resistance factor φ=0.94>0.85. However, while the 

C, H, Z, R, WSLC columns PU /PnD values exhibit similar “clouds” (along λL), those 

concerning the WFSLC column are clearly different: they decrease faster with λL and 

fall below 1.0 for λL >2.0, which is due to the lower distortional post-critical strength 

reserve, particularly in the high slenderness range (Martins et al. 2015b) − therefore, 

the resistance factor obtained (φ=0.79) is a bit low, due to the inevitable high scatter. 

3.4 Summary and Proposals 

On the basis of the results and findings reported in Sections 3.1 to 3.3, it is now 

possible to propose DSM-based design approaches to predict the failure loads of CFS 

columns experiencing L-D interaction. At this stage it is worth mentioning that these 

proposals are made disregarding a few test results providing failure loads much lower 

than expected on the basis of other test results and numerical simulations, namely (i) three 

tests of by Kwon et al. (2009) (SDI) and (ii) five tests of Yap & Hancock (2011) (SLI). 

                                                           
16 See Footnote 14, now applied to λD. 
17 Although hardly meaningful, due to the minute sample sizes, the LRFD resistance factors associated with the 

three sets of tested specimens indicated in Fig. 11(b), which are (i) φ=1.05 and φ=0.88, for the tests of Kwon & 
Hancock (1992), and (ii) φ=0.59, for the tests of Yap & Hancock (2011), clearly reflect the above huge disparity. 
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Since it was concluded that the failure loads of columns undergoing SLI (i.e., such that 

PcrD /PcrL<0.8) can be adequately predicted by the currently codified DSM distortional 

strength curve, this same curve is proposed to handle such columns. 
 
Concerning the prediction of the failure loads of columns experiencing TI or SDI 

(0.8≤PcrD /PcrL≤1.3 and PcrD /PcrL>1.3, respectively), it is possible to propose a joint DSM-

based design approach, combining the available NDL approach for columns undergoing 

TI with the NSDB one (“Option 4”) for columns undergoing SDI (see Section 3.2), 

which is termed “NLD approach”
18

 and defined by   
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4. Conclusion 

This paper presented and discussed proposals for the codification of efficient design 

approaches for cold-formed steel columns affected by L-D interaction. These DSM-based 

proposals were developed, calibrated and validated on the basis of experimental and 

numerical failure load data reported by various researchers and concerning columns with 

several cross-section shapes, namely plain, web-stiffened and web/flange-stiffened lipped 

channels, hat-sections, zed-sections and rack-sections. Three types of L-D interaction 

were taken into account: true L-D interaction (TI), secondary distortional bifurcation L-D 

interaction (SDI) and secondary local bifurcation L-D interaction (SLI) − the classification 

depends on the ratio between the critical distortional and local buckling loads (PcrD /PcrL). 

In addition, the existing DSM-based design approaches to handle column L-D interactive 

failures were reviewed and their merits were assessed and compared with those of the 

proposed ones. Finally, the paper also presented reliability assessments of the failure load 

predictions provided by the proposed DSM-based design approaches, following the 

procedure prescribed by the North American Specification (AISI 2012). 
 
After collecting the available experimental and numerical failure load data concerning 

columns affected by each of the three types of L-D interaction, the paper addressed the 

existing DSM-based approaches to handle this coupling phenomenon, and also presented 

the formula prescribed in AISI (2012) to evaluate the LRFD resistance factor φ. 
 
Concerning columns undergoing TI, two DSM-based approaches (NDL and MNDL) 

were assessed and opposite conclusions were obtained for the experimental and numerical 

                                                           
18 Do not confuse with the existing DSM design approach, defined in Eq. (2). 
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data: while NDL predicts satisfactorily the experimental data but heavily underestimates 

the numerical ones, MNDL provides excellent predictions of the numerical data but 

clearly overestimates several experimental failure loads. In order to ensure a resistance 

factor such that φ ≥0.85, it was decided to propose the NDL approach. However, the 

authors believe that additional experimental data are likely to enable the codification of 

the MNDL approach, which leads to more economic designs (higher strengths) and, 

therefore, benefits the CFS industry − a test campaign is planned for the near future. 
 
Concerning columns undergoing SDI, a novel DSM-based approach was (i) developed, 

on the basis of the available experimental data, and subsequently, (ii) verified against the 

numerical data. It is termed NSDB approach and depends on PcrD /PcrL and λL (the key 

parameters influencing this coupling phenomenon): its proposal is based on the fact that it 

outperforms the NDL approach in predicting both the experimental and numerical data. 
 
Finally, it was concluded that the failure loads of columns undergoing SDI can be 

adequately predicted by the currently codified distortional design curve, since the 

ultimate strength erosion, with the respect to that curve, was found to be negligible. 
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Abstract 

This paper presents a proposal for the codification of an efficient design approach for 

cold-formed steel short-to-intermediate equal-leg angle columns, consisting of a slight 

modification of a design approach developed by Dinis & Camotim (2015) and based on 

the Direct Strength Method (DSM). After (i) collecting the available experimental and 

numerical failure load data, comprising fixed-ended and pin-ended columns with several 

geometries (cross-section dimensions and length) and reported by various researchers, 

and (ii) briefly reviewing the mechanical reasoning behind the proposed procedures, the 

search for new/simpler expressions to provide the DSM design curves is addressed. Their 

merits are assessed through (i) the quality of the estimates of the available failure load 

data and (ii) the determination of the corresponding LRFD resistance factors. Concerning 

the latter, it is shown that the value recommended, for compression members, by the 

North American Specification (NAS) for the Design of Cold-Formed Steel Structural 

Members (AISI 2012), namely φc=0.85, can also be adopted for angle columns. 

 

1. Introduction 

In spite of their geometrical simplicity, angles exhibit a very complex structural behavior, 

which is responsible for the fact that the North American Specification (NAS) for the 

Design of Cold-Formed Steel Structural Members (AISI 2012) stipulates that short-to-

intermediate equal-leg angle columns (i) are not yet pre-qualified for the design by means 

of the Direct Strength Method (DSM − Schafer 2008) and (ii) are excluded from the 

application of the Load and Resistance Factor Design (LFRD) resistance factor φc=0.85, 

valid for all other cold-formed steel compression members (Ganesan & Moen 2012). 

This is due to the fact that such columns buckle in flexural-torsional modes, associated 

with a practically horizontal Pcr vs. L curve “plateau”, whereas their longer counterparts 

buckle in (“trivial”) minor-axis flexural modes buckling − see the Pcr vs. L curves (L in 

logarithmic scale) plotted in Fig. 1 for fixed-ended (F) and pin-ended (P) angle columns. 

                                                           
1
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Lisboa, Portugal. 
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Fig. 1. Pcr vs. L curves for fixed-ended (F) and pin-ended (P) columns 
 
Because the flexural-torsional buckling deformations in equal-leg angle columns are 

predominantly torsional and, therefore, akin (very similar) to local deformations, these 

columns have been said, erroneously, to fail in “local-global interactive modes”, which 

explains why their design was often based on local strength concepts. Indeed, up to very 

recently, the most successful attempts to develop a DSM-based approach to design equal-

leg angle columns, namely those reported by (i) Young (2004), for fixed-ended columns, 

(ii) Rasmussen (2006), for pin-ended columns
2
, and (iii) Silvestre et al. (2013), for 

fixed and pin-ended columns, involved the use of either the currently codified DSM local 

design curve or a slightly modified (empirically) version of this curve. However, this 

situation was altered by the findings of Dinis et al. (2012) and Mesacasa et al. (2014), 

who provided clear numerical evidence that the failure of angle columns stems from 

the interaction between major-axis flexural torsional and minor-axis flexural buckling, 

a kind of unique coupling phenomenon that does not involve local deformations. Based 

on these findings, Dinis & Camotim (2015) proposed a rational DSM-based design 

approach for short-to-intermediate equal-leg angle columns that (i) uses genuine flexural-

torsional strength curves (instead of the local one), (ii) is valid for both fixed-ended 

and pin-ended support conditions (it takes into to account effective centroid shift effects 

in pin-ended columns), and (iii) yields reliable predictions of the available experimental 

and numerical failure load data (φc=0.85 is applicable). However, a few improvements 

and simplifications, aimed at improving user-friendliness, are needed before this design 

approach may be deemed ready for codification. 
 
The objective of this paper is to provide closure for this research effort, by proposing 

a DSM-based design approach for fixed-ended and pin-ended short-to-intermediate 

equal-leg angle columns that, in the authors’ opinion, is ready for codification. It differs 

from the proposal of Dinis & Camotim (2015) in (i) the formulae providing four 

parameters appearing in the strength equations, which have been simplified, and (ii) the 

inclusion, in the merit assessment procedure, of the additional column experimental 

and numerical pin-ended column failure reported by Landesmann et al. (2016). After 

                                                           
2
 This designation stands for “cylindrically pinned” end supports − fixed with respect to major-axis bending and 

torsion (including fully restrained secondary warping), and pinned with respect to minor-axis bending. 
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presenting the collection of the available experimental and numerical failure loads, for 

both fixed-ended and pin-ended columns, the paper provides an overview of the main 

concepts and procedures involved in the DSM-based design approach proposed by 

Dinis & Camotim (2015). Then, the modification/simplifications incorporated in that 

design approach are addressed in detail, as well as their impact on the quality (accuracy 

and reliability) of the failure load predictions provided by the ensuing strength equations. 

In particular, the reliability assessment prescribed in AISI (2012) (see Section 1.1) shows 

that the LRFD resistance factors associated with the (modified) design approach proposed 

in this work never fall below φc=0.85. 
 
1.1 Load and Resistance Factor Design (LRFD) 

According to Section F.1.1 of the AISI (2012), the LFRD resistance factor φc is given by 

 

2222
0

)( QPPFM
VVCVV

mmmc ePFMC
+++β−

= φφ  (1) 

where (i) Cφ =1.52 (calibration coefficient for LRFD), (ii) Mm=1.10 and Fm=1.00 

(taken from Table F1 of the specification) are the material and fabrication factor mean 

values, (iii) β0 is the target reliability value (β0=2.5 for structural members in LRFD), 

(iv) VM=0.10, VF=0.05 and VQ=0.21 (again taken from Table F1 of the specification) are 

the material factor, fabrication factor and load effect coefficients of variation, respectively, 

and (v) Cp is a correction factor dependent on the number of tests. The Pm and Vp values 

are the mean and standard deviation of the “exact” (experimental and/or numerical)-to-

predicted failure load ratios. The value recommended for compression members is 

φc=0.85, regardless of the column failure mode nature − but for short-to intermediate 

angle columns, which buckle in flexural-torsional modes, that value must be reduced. 

 

2. Failure Load Data of Cold-Formed Steel Angle Columns 

2.1 Experimental Failure Loads 

The experimental failure loads already collected by Dinis & Camotim (2015) concern (i) 

37 fixed-ended columns, tested by Popovic et al. (1999), Young (2004) and Mesacasa Jr. 

(2012), and (ii) 30 pin-ended columns, tested by Wilhoite et al. (1984), Popovic et al. 

(1999), Chodraui et al. (2006) and Maia et al. (2008)
3
. Those columns exhibit leg 

width (b), thickness (t) and length (L) values in the following ranges: 91.6 mm ≥ b ≥ 

50.0 mm, 4.7 mm ≥ t ≥ 1.17 mm, 3500 mm ≥ L ≥ 150 mm. Very recently, Landesmann et al. 

(2016) noted the lack of experimental failure loads of slender pin-ended columns and 

                                                           
3
 It is worth noting that 4 fixed-ended and 5 pined-ended columns tested by Popovic et al. (1999) were excluded 

from this investigation, due to the fact that thy did not buckle in flexural-torsional modes, i.e.,  (their lengths are 
not located in the Pcr (L) curve plateau − they buckled in minor-axis flexural modes. Moreover, none of the 4 
fixed-ended columns tested by Maia et al. (2008) was considered in the failure load database, since the ultimate 
strengths reported do not seem plausible − they are lower than those reported by the same authors for pin-ended 
columns with practically identical geometrical and material characteristics. 
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filled this gap carrying out a test campaign involving 20 such columns with cross-section 

dimensions and lengths t=1.55 mm, 90.0 mm ≥ b ≥ 50.0 mm, 1200 mm ≥ L ≥ 150 mm. 

Therefore, a total of 87 experimental failure loads are available (37 for fixed-ended 

columns and 50 for pin-ended columns), a number that may be deemed acceptable to 

assess the merits of the proposed DSM-based design approach for angle columns. The 

top part of Table 1 provides the numbers and origins of the available test results 

concerning fixed-ended and pin-ended angle columns − details on the measured specimen 

dimensions and steel properties can be found in the appropriate references. 
 
Table 1. Available experimental and numerical failure loads test concerning fixed-ended and 

pin-ended equal-leg angle columns 

   Fixed-ended columns         Pin-ended columns 

Experimental 

tests 

Popovic et al. (1999) 

Young (2004) 

Mesacasa Jr. (2012) 

11 

21 

5 

Wilhoite et al. (1984) 

Popovic et al. (1999) 

Chodraui et al. (2006) 

Maia et al.(2008) 

Landesmann et al.(2016) 

8 

13 

4 

5 

20 

  37  50 

Numerical 

simulations 

Silvestre et al. (2013) 

Dinis & Camotim (2015) 

89 

248 

Silvestre et al. (2013) 

Dinis & Camotim (2015)  

Landesmann et al.(2016) 

This Work  

28 

169 

57 

42 

Total  337  296 

 
2.2 Numerical Failure Loads 

Extensive parametric studies, consisting of ABAQUS (Simulia 2008) shell finite element 

analyses (SFEA), were conducted in the last few years to complement the experimental 

failure load data with numerical load data − the bottom part of Table 1 indicates the 

numbers and authorships of the available numerical results concerning fixed-ended and 

pin-ended angle columns. The modeling issues involved in the above studies can 

be found, for instance, in the work of Silvestre et al. (2013).  
 
The numerical (SFEA) failure loads collected by Silvestre et al. (2013) and Dinis & 

Camotim (2015) and included in Table 1 concern 337 fixed-ended and 197 pin-ended 

columns, exhibiting (i) 7 cross-section dimensions (50×1.2mm, 50×2.6mm, 60×1.5mm, 

70×1.2mm, 70×2.0mm and 90×2.5mm), (ii) lengths selected to ensure critical flexural-

torsional modes buckling, i.e., all columns located inside the Pcr vs. L curve “horizontal 

plateaus” (1200 mm ≥ L ≥ 532 mm), and (iii) yield stresses chosen to cover a wide critical 

slenderness range: 1200 MPa ≥ fy ≥ 30 MPa
4
. Very recently, Landesmann et al. (2016) 

                                                           
4
 In order to achieve the above objective, it was necessary to consider several unrealistic (low and high) values. 
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carried out an additional set of 57 numerical simulations involving pin-ended columns 

with 5 cross-section dimensions (50×1.55mm, 60×1.55mm, 70×1.55mm, 80×1.55mm, 

90×1.55mm), short-to-intermediate lengths (i.e., buckling in flexural-torsional modes) 

and intermediate-to-high slenderness values − 600 MPa ≥ fy ≥ 250 MPa. Moreover, 42 

pin-ended column failure loads, obtained from fresh numerical simulations carried out by 

the authors, are considered in this work, concerning angles with cross-section dimensions 

110×5mm, lengths L = 950; 1000; 1500; 2000; 2500 mm and yield stresses in the range 

1200 MPa ≥ fy ≥ 120 MPa. Therefore, a total of 633 numerical failure loads are available 

(337 for fixed-ended columns and 296 for pin-ended columns), a number providing 

a fairly extensive database for the merit assessment of the proposed DSM-based design 

approach for angle columns. 
 
In all the numerical analyses, the steel material behavior was modeled as elastic-perfectly 

plastic and both residual stress and rounded corner effects were disregarded. Preliminary 

numerical studies showed that the combined influence of strain hardening, residual 

stresses and rounded corner effects has little impact on the angle column failure loads 

(differences never exceeding 3%), which is perfectly in line with the findings reported by 

other authors, namely Ellobody & Young (2005) and Shi et al. (2011).  
 
The initial geometric imperfections considered in the numerical simulations take into 

account (i) the behavior observed in the experimental tests, namely the length-dependence 

of the imperfection-sensitivity, and (ii) the results of a detailed numerical investigation on 

the imperfection-sensitivity recently reported by Mesacasa Jr. et al. (2014), providing 

clear evidence about the relevance of the non-critical minor-axis flexural imperfection 

component (particularly in pin-ended columns). Indeed, although the columns with 

shorter lengths (located in left and central zones of the Pcr(L) curve “horizontal plateaus”) 
were found to be virtually insensitive to minor-axis flexural imperfections (only the 

critical flexural-torsional imperfections are relevant), it was decided to include, in all 

fixed-ended and pin-ended column numerical simulations, both flexural-torsional and 

minor-axis flexural initial geometrical imperfections. Concerning their amplitudes, they 

were equal to (i) 10% of the wall thickness t (0.1 t), for the critical flexural-torsional 

components, and (ii) either L/750 (fixed-ended columns) or L/1000 (pin-ended columns), 

for the non-critical minor-axis flexural components − these values are in line with the 

measurements reported for the column specimens tested by Young (2004) (fixed-ended 

columns) and Popovic et al. (1999) (pin-ended columns). It is still worth mentioning that 

all the minor-axis flexural initial imperfection components were associated with initial 

mid-span major-axis translations “pointing” towards the cross-section corner − note that, 

in pin-ended columns, such initial imperfections are the most detrimental, since they 

reinforce the effective centroid shift effects (Young & Rasmussen, 1999)
5
. 

                                                           
5
 Because of this “biased” minor-axis flexural initial imperfection components, it is logical to expect several pin-

ended column experimental failure loads to be clearly underestimated by the proposed DSM-based design 
approach − a minor-axis flexural initial imperfection component “pointing” towards the cross-section leg free 
ends increases the column failure load (it opposes the effective centroid shift effects − Mesacasa Jr. et al. 2014). 
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3. Overview of the DSM Design Approach developed by Dinis & Camotim (2015) 

Dinis & Camotim (2015) developed and validated a DSM-based approach for the design 

of thin-walled cold-formed steel fixed-ended and pin-ended equal-leg angle columns 

with short-to-intermediate lengths (i.e., buckling in flexural-torsional modes)
 6

, hereafter 

termed “F columns” and “P columns”, which was shown to provide accurate and reliable 

failure load predictions. The main features of this design approach are the following: 

(i) It is based on the fact that most short-to-intermediate angle columns fail in interactive 

modes combing major-axis flexural-torsional and minor-axis flexural deformations. 

(ii) It involves the use of (ii1) the currently codified DSM global design curve and (ii2) a 

set of genuine flexural-torsional strength curves (Pnft), developed in the context of 

columns with fully prevented minor-axis bending displacements. These strength 

curves, useful to design both F and P columns, make it possible to capture the 

progressive drop of the column post-critical strength as its length increases along the 

Pcr (L) curve “horizontal plateau” − Figs. 2(a)-(c) show flexural-torsional strength 

curves concerning three columns with increasing lengths on the Pcr (L) curve plateau. 

(iii) The aforementioned effective centroid shift effects (Young & Rasmussen 1999), 

strongly affecting the pin-ended column failure loads (not the fixed-ended ones), are 
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Fig. 2. Plots of Pu /Py vs. λft and proposed Pnft strength curves for fixed-ended columns with minor-

axis bending displacements fully prevented and (a) ∆f=0.16, (b) ∆f=1.80 and (c) ∆f=7.20 

                                                           
6
 The failure loads of the columns with longer lengths, which buckle in minor-axis flexural modes, are adequately 

predicted by the currently codified DSM global strength curve (AISI 2012). 
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Fig. 3. Plots of the β (λft) curves concerning pin-ended columns with ∆f=0.16, 0.84 and 2.41 

 

 included in the design approach through a coefficient β, which must also reflect the 
change in column flexural-torsional post-buckling behavior along the Pcr (L) curve 

plateau) − Fig. 3 displays the β (λft) curves concerning three columns with increasing 

lengths on the Pcr (L) curve plateau. 

(iv) The length dependence of the column flexural-torsional post-critical strength and 

effective centroid shift effects is quantified by means of a parameter ∆f, defined as 

 100×
−

=∆
bt

crftbt

f f

ff
     (2) 

where fbt and fcrft are the pure torsional and major-axis flexural-torsional (critical) 

buckling stresses
7
. Such buckling stresses can be straightforwardly and exactly 

determined by means of the analytical expressions 
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where E and G=E/[2(1+ν )] are the steel Young’s and shear moduli, and fbf 

stands for the major-axis flexural buckling stress. 
 

The end product of the research effort outlined in the above items are expressions of 

the strength curves providing the nominal strength, against the interactive failure under 

consideration (Pnfte), of fixed-ended and pin-ended angle columns, which are given by 

                                                           
7 The use of parameter ∆f is due to the fact that it was found that the length-dependence of the angle column 

structural response can be “measured” by the relative importance of major-axis flexure on the flexural-torsional 
buckling behavior (critical stress and buckling mode). Note that Eq. (2) differs slightly from the ∆f definition 
originally put forward by Dinis & Camotim (2015) − fbt appears in the denominator, instead of fcrft. This change 
was proposed by Landesmann et al. (2016), for the sake of rationality − these same authors showed that there 
is very little (negligible) impact on the quality of the failure load predictions. 
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where (i) parameter b should not be confused with the angle leg width, (ii) the values 

a=0.4 and b=0.15 were adopted for ∆f =0, which amounts to saying that Eq. (4) coincides 

with the currently codified DSM local-global interactive strength curve for the shorter 

columns (fbt /fcrft very close to 1), and (iii) the slenderness λfte=(Pne/Pcrft)
0.5

 is based on the 

column nominal strength against minor-axis flexural collapses (Pne), obtained from the 

codified DSM global design curve 
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where Pcre is the column minor-axis flexural buckling load and Py=A·fy is the squash load.  
 
The coefficient β, which takes into account the effective centroid shift effects and follows 

an idea originally proposed by Rasmussen (2006), is obtained from 
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which amounts to saying that Eq. (8) coincides with Rasmussen’s expression for the 

shorter columns (fbt /fcrft very close to 1), i.e., one has c=1.0 and d=0.25 for ∆f =0. 
 
Finally, it is still worth mentioning that the expressions providing parameters a, b, c and d 

(Eqs. (5)-(6) and (9)-(10)) were obtained from “trial-and-error curve-fitting procedures”, 

based on the numerical failure load data acquired by Dinis & Camotim (2015). 
 
This DSM design approach provides quite accurate and reliable failure load predictions. 

Indeed, (i) Figs. 4(a)-(b) and 5(a)-(b) plot the Pu/Pnfte (failure-to-predicted) ratios against 

λfte (the average, standard deviation and maximum/minimum values of Pu/Pnfte are also 

given in those figures), and (ii) Table 2 shows the n, CP, Pm, VP and φc values (see Eq. (1)) 

obtained for the whole set of experimental and numerical column failure loads reported 

by Dinis & Camotim (2015) and obtained by Landesmann et al. (2016). The observation 
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Fig. 4. Plots Pu/Pnfte vs. λfte for the F columns: (a) experimental and (b) numerical results  
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Fig. 5. Plots Pu/Pnfte vs. λfte for the P columns: (a) experimental and (b) numerical results 
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Table 2: LRFD φc values concerning the DSM prediction of the experimental, numerical and all 

failure loads reported in Dinis & Camotim (2015) and Landesmann et al. (2016) 

DSM-F approach  DSM-P approach 

nfte

u

P

P
 Exp Num Exp + Num  

nfte

u

P

P
 Exp Num Exp + Num 

n 41 337 378  n 55 254 309 

Pm 1.00 1.02 1.02  Pm 1.16 1.10 1.11 

Vp 0.12 0.12 0.12  Vp 0.22 0.09 0.12 

φc 0.85 0.88 0.88  φ c 0.86 0.97 0.94 

 
of these results clearly shows the quality of the performance indicators associated with the 

DSM design approach − most of all, it should be emphasized that the LRFD resistance 

factor φc=0.85 becomes applicable to cold-formed steel short-to-intermediate angle 

columns. Moreover, note that this design approach has the very important advantage of 

being rational, in the sense that it (i) reflects closely the angle column structural behavior 

and (ii) retains the current DSM global strength curve. 

 

4. DSM Design Approach Proposed for Codification 

Since it is felt that the expressions of the parameters a, c and d, given by Eqs. (5), (9) and 

(10), are a bit too complicated to be codified, it was decided to make an attempt to 

simplify them, without sacrificing the quality of the of the failure load predictions. Next, 

the simplification of the expressions providing parameters (i) a, associated with the 

flexural-torsional strength curves (see Eqs. (4)-(6)), and (ii) c and d, associated with the 

coefficient β (accounting for the effective centroid shift effects), are addressed separately. 
 
4.1 Modification of the Flexural-Torsional Strength Curves −−−− Parameter a 

The search for a simpler expression for parameter a is based on the numerical failure 

load data reported by Dinis & Camotim (2015) and concerning fixed-ended columns 

with fully restrained minor-axis bending displacements, i.e., “forced” to fail in a mode 

combining major-axis flexure and torsion. As before, the values a=0.4 and b=0.15 are 

adopted for ∆f =0. The proposed new expression is a bi-linear approximation of Eq. (5) 

(note that Eq. (6), providing parameter b, is already bi-linear) and its coefficients were 

selected, by means of a “trial and error” procedure, to ensure flexural-torsional ultimate 

strength predictions as accurate as possible. It was found that the best approximation is 

 










≥∆

<∆+∆

=

30.97

30.40.19

f

ff

if

if

a  (11) 

and Fig. 6 shows a comparison between the functions a (∆f) provided by Eqs. (5) and (11) 

− also shown is the (bi-linear) function b (∆f). Moreover, Figs 7(a)-(d) shows a comparison 
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Fig. 6. Plots of parameters a and b against ∆f 
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Fig. 7. Plots Pu /Py vs. λft and proposed Pnft strength curves for F columns with minor-axis bending 

displacements fully prevented, for (a) ∆f=0.16, (b) ∆f=1.77, (c) ∆f=6.43 and (d) ∆f=10.87 
 

between the four flexural-torsional strength curves obtained with Eqs. (11) and (6), for 

∆f=0.16; 1.77; 6.43; 10.87, and the numerical failure loads that must be predicted by them. 

These figures clearly show that the Pnft values provide fairly accurate underestimations of 

the numerical failure loads − their quality is practically identical to that exhibited by the 

curves obtained with Eqs. (5) and (6), which were shown in Figs. 2(a)-(c). 
 
It is worth noting that Eqs. (5) and (11) are valid only for ∆f values up to 11.2. However, 

since a recent study on fixed-ended angle columns with stocky-to-moderate legs (Dinis 

et al. 2016) showed that, regardless of the cross-section geometry, ∆f can never reach 

11.2 (the flexural-torsional “horizontal plateau” never extends that far), the above a (∆f) 

bi-linear approximation is perfectly adequate. 
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In order to assess the impact of the a (∆f) function replacement, Figs. 8(a)-(b) plot 

Pu/Pnfte (failure-to-predicted load ratio) against λfte and show the corresponding 

averages, standard deviations and maximum/minimum values, for all the whole set of F 

column experimental and numerical failure loads considered in this work (see Section 2). 

Moreover, Table 3 gives the LRFD φc values obtained with the new a (∆f) expression. 

The comparison between Figs. 4 and 8, and Tables 2 (left part) and 3, makes it possible to 

conclude that the adoption of the new a(∆f) expression has virtually no impact on the 

DSM design approach indicators. Indeed, the averages, standard deviations, maximum 

values and minimum values of the experimental/numerical Pu/Pnfte ratios only vary by 

0.00/−0.01, −0.01/−0.01, +0.03/−0.03 and +0.02/+0.00, respectively. Moreover, the 

φc values also remain practically the same (above 0.85): they increase by +0.01 for the 

experimental failure loads, and remain unchanged for the numerical and combined ones. 
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Fig. 8. Plots of Pu/Pnfte vs λfte for the F columns: (a) experimental and (b) numerical failure loads 
 

Table 3: LRFD φc values concerning the DSM-F prediction of the experimental, numerical and 

combined failure loads 

DSM-F procedure 

nfte

u

P

P
 Exp Num Exp + Num 

n 37 337 374 

Pm 1.00 1.01 1.01 

Vp 0.11 0.11 0.11 

φc 0.86 0.88 0.88 

 
4.2 Modification of the Reduction Coefficient ββββ −−−− Parameters c and d 

Naturally, the search for simpler expression for parameters c and d is based on the elastic 

post-buckling results reported by Dinis & Camotim (2015) and concerning both fixed-

ended and pin-ended columns. The proposed new expressions constitute now linear 

approximations of Eqs. (9) and (10) whose coefficients were selected, once more by 

means of a “trial and error” procedure, in order to capture, as accurately as possible, the 
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numerically determined strength erosion caused by the effective centroid shift effects. 

Moreover, it was decided to cease enforcing that c=1.0 and d=0.25 for ∆f=0, a condition 

previously adopted for the sake of making Eq. (8) “compatible” with the expression 

proposed by Rasmussen (2006) for the very short columns (∆f≈0). Note that adopting the 

above condition was not a very rational choice, since it led to functions c (∆f) and d (∆f) 

exhibiting rather non-linear and abrupt behaviors in the close vicinity of ∆f=0 (see Fig. 9), 

a feature not at all confirmed by the numerical results. The best linear approximations 

were found to be 

 

0.550.2 +∆−=
f

c   (12) 

 

0.720.08 +∆=
f

d   (13) 

and Fig. 9 shows a comparison between these functions and those provided by Eqs. (9) 

and (10). Moreover, Fig. 10 compares, for ∆f=0.16; 0.83; 2.35, the β (∆f) curves obtained 

with Eqs. (12) and (13) with the corresponding numerical β values reported by Dinis & 

Camotim (2015). These figures clearly show that these curves follow reasonably well the 

trends of the numerical result obtained, even if there are some perceptible differences − 

the most relevant ones concern the very slender shorter columns (∆f=0.16). Nevertheless, 

their estimation quality is practically identical to that exhibited by the previous curves, 

which have been presented in Fig. 3. 
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Fig. 9. Plots of parameters c and d against ∆f 
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Fig. 10. Plots of the β (λft) curves concerning P columns with ∆f=0.16, 0.83, 2.35 
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It is worth that Eqs. (12) and (13) only need to be used for ∆f values up to around 2.4. 

However, since a recent study on pin-ended angle columns with stocky-to-moderate legs 

(Dinis & Camotim 2016) showed that, regardless of the cross-section geometry, ∆f never 

exceeds 2.43 (the flexural-torsional “horizontal plateau” of pin-ended angle columns 
never goes that far), the above c (∆f) and d (∆f) linear approximations are perfectly sound. 
 
In order to assess the impact of the replacement of functions c (∆f) and d (∆f), Figs. 

11(a)-(b) plot the P column Pu/Pnfte ratios against λfte and include the corresponding 
averages, standard deviations and maximum/minimum values, for all the whole set of P 

column experimental and numerical failure loads considered in this work (see again 

Section 2). Moreover, Table 4 gives the LRFD φc values obtained with the new c (∆f) and 

d (∆f) expressions. The comparison between Figs. 5 and 10, and Tables 2 (right part) and 
4, makes it possible to conclude that the adoption of these expressions has also virtually 

no impact on the DSM design approach indicators. Indeed, the averages, standard 

deviations, maximum values and minimum values of the experimental/numerical Pu/Pnfte 

ratios only vary by −0.02/−0.05, −0.02/−0.01, −0.13/−0.09 and +0.02/−0.04, respectively 

− the most meaningful variations concern the maximum values and bring them down. 

Moreover, the φc values also remain practically the same (above 0.85): unchanged for the 

experimental failure loads and dropping by −0.04/−0.03 for the numerical/combined ones. 
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Fig. 11. Plots of Pu/Pnfte vs λfte for the P columns: (a) experimental and (b) numerical failure loads 

 
Table 4: LRFD φc values concerning the DSM-P prediction of the experimental, numerical and 

combined failure loads 

DSM-P procedure  

nfte

u

P

P
 Exp Num Exp + Num 

n 50 296 346 

Pm 1.13 1.04 1.06 

Vp 0.20 0.08 0.11 

φc 0.86 0.93 0.91 
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4.3 Proposal 

Taking into account the contents of the previous sections, it is the authors’ belief that the 
DSM design approach for equal-leg fixed-ended and pin-ended equal-leg angle columns, 

defined by the expressions 
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0.550.2 +∆−=
f

c   (18) 

 

0.720.08 +∆=
f

d      (19) 

can be readily proposed for codification, to be used with the LRFD resistance factor 

recommended for all other compression members (φc=0.85). Recall that one has 

(i) ∆f=[(fbt − fcrft) /fbt]×100, where fbt and fcrft are obtained from Eqs. (3a)-(3b), and (ii) the 

slenderness λfte=(Pne/Pcrft)
0.5 is used, where Pne is obtained from the currently codified 

DSM global design curve. 

 

5. Conclusion 

This paper presented a proposal for the codification of an efficient DSM design approach 
for cold-formed steel equal-leg angle columns with short-to-intermediate lengths, i.e., 

buckling in flexural-torsional modes. It consists of a modification/simplification of the 

design approach originally developed by Dinis & Camotim (2015) and slightly altered by 

Landesmann et al. (2016). Initially, the available experimental and numerical (shell 
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finite element) failure load data, concerning fixed-ended and pin-ended columns with 

several geometries (cross-section dimensions and length) and reported by various 

researchers, were collected and characterized. Next, a brief overview of the proposed 

DSM design approach was presented, including the mechanical reasoning behind the key 
concepts and procedures involved. Then, the main objectives of this work were addressed, 

namely (i) searching for new/simpler expressions to provide the DSM design curves and 

(ii) assessing the merits of those design curves through (ii1) the quality of the prediction 

of the available failure load data and (ii2) the determination of the corresponding 

LRFD resistance factors. 
 
The search for the new/simpler expressions for the parameters a, c and d, appearing in the 
originally proposed DSM design approach (see Eqs. (4)-(10)) was successful and led to 

either bi-linear (a) or linear (c and d) functions of ∆f, which replaced the original cubic 

or quadratic or ones − b was already provided by a bi-linear function. The impact of 

replacing the above three functions, on the quality (accuracy and reliability) of the failure 

load predictions provided by the ensuing strength equations, was then addressed in detail. 

It was found that such impact is minute (negligible), since the indicators of the exact-to-
predicted failure load ratios provided by the DSM design approach based on the new 

functions a (∆f), c (∆f) and d (∆f) remain practically unaltered (some even improve). In 

particular, it was shown that the value recommended, for compression members, by the 

North American Specification for the Design of Cold-Formed Steel Structural Members 

(AISI 2012), namely φc=0.85, can also be adopted for angle columns. Indeed, the three φc 

values obtained on the basis of the experimental, numerical and combined experimental-
numerical failure loads were all higher than 0.85. Therefore, it seems fair to argue that the 

proposed DSM design approach, defined by Eqs. (14)-(19) is ready for codification. 
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Effect of Web Perforation on the Behaviour of Cold-formed 

Steel C-shape Slender Column Subjected to Non-uniform 

Cross-sectional Distribution of Elevated Temperature 
 

S. Yang1 and L. Xu2 

Abstract 

Presented in this paper is a numerical investigation on the effect of web 

perforations on the behaviour of cold-formed steel C-shape columns subjected to 

non-uniform cross-sectional distribution of elevated temperature with use of 

finite element analysis. The length of web perforation investigated varies from 0 

mm to 630 mm (25 in.). The non-uniform cross-sectional distributions of 

elevated temperatures are obtained from finite element thermal analysis of 

insulated CFS walls subjected to standard fire up to 105 minutes. Sequentially 

coupled thermal-stress analyses were carried out under a transient state 

condition. The concentrically loaded cold-formed steel C-shape columns with 

load ratios of 0.6, 0.7, 0.8 and 0.9 are investigated. Initial global geometrical 

imperfection is accounted for in the. It is found that the column failed by global 

buckling about its weak axis together with the local failure around the region of 

the web perforation at mid-height of the column and thermal bowing towards the 

fire-exposed side. The obtained results from the finite element analysis 

demonstrate that the web perforation has an influence on the temperature 

distribution of the cross-section of the C-shape column, but the temperature 

gradient within a cross-section is hardly associated with length of the web 

perforation. As a result, the differences of failure times among the cold-formed 

steel C-shape columns with different lengths of web perforation subjected to a 

same load ratio are found to be within 10%. 

1. Introduction 

Used as wall studs, cold-formed steel (CFS) C-shape columns are often enclosed 

with insulation in the wall cavity and protected by gypsum boards on both sides, 

in CFS wall assemblies. Pre-punched web perforations of the column 

accommodate the passage of utilities and installation intermediate braces in 

practice. A CFS C-shape column in a CFS wall assembly is subjected to non-

uniform cross-sectional distribution of elevated temperature when the wall 
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assembly is exposed to fire attack from one side. Several experimental 

investigations were carried out to study the behavior of CFS C-shape columns 

subjected to local buckling [1, 2, 5], distortional buckling [3] and flexural-

torsional buckling [4] subjected to uniform cross-sectional distribution of 

elevated temperature. The CFS C-shape columns tested in the foregoing 

investigations had no web perforations, except that in [1, 5]. The results from [1, 

5] show that the web perforations can alter the failure modes of short columns at 

temperatures above 400 oC, whereas it has little influence on the load capacity of 

the column. Experimental investigations on the behaviour of CFS C-shape 

columns subjected to non-uniform cross-sectional distribution of elevated 

temperature are commonly carried out by full-scale fire tests of CFS wall 

assemblies, which are costly and time-consuming. Finite element analysis (FEA), 

as an alternative approach, has been used to study the behavior of CFS C-

columns at non-uniform cross-sectional elevated temperature by other 

researchers [6-9]. However, little study is available on CFS C-shape columns 

with web perforations subjected to non-uniform elevated temperatures. This 

study aims to investigate the effect of web perforations on the behaviour of CFS 

C-shape slender columns subjected to non-uniform cross-sectional distribution 

of elevated temperatures with use of finite element analysis. Sequentially 

coupled thermal-stress analyses were carried out under a transient state 

condition. The non-uniform cross-sectional distributions of elevated temperature 

are obtained from the thermal analysis of insulated CFS walls. CFS C-shape 

slender columns subjected to the concentrically axial load with different ratios 

are investigated. The material properties of CFS at elevated temperatures and 

initial geometrical imperfections are considered in the investigation.   

2. Finite element analysis 

2.1 FE model and sequentially coupled thermal-stress analyses 

Illustrated in Figure 1 are the cross-section of CFS wall segment modelled in 

FEA and the nominal cross-sectional dimensions of CFS C-shape column at the 

location of web perforation. The modelled CFS wall segment, 600 mm (24 in.) 

in width and 3200 mm (126 in.) in height, consists of a CFS C-shape column 

(150 mm ×40 mm×15 mm×1.5 mm) sheathed with a double layer of 12 mm 

thick gypsum board on both sides. The 150 mm deep wall cavities are filled with 

glass fibre. Five web perforations are evenly spaced 640 mm o.c. along the 

height of the column. The length of web perforation varies from 0 mm to 630 

mm (25 in.), whereas the width of the perforation remains as a constant of 38 

mm (1.5 in.). Six different lengths of perforation (Lh), i.e., 0 mm (0 in.), 130 mm 

(5 in.), 250 mm (10 in.), 380 mm (15 in.), 510 mm (20 in.) and 630 mm (25 in.) 

are investigated in this study. 

174



 

The finite element program ABAQUS [10] is used in this study. The FEA 

procedure commenced a thermal analysis to obtain the non-uniform cross-

sectional distributions of elevated temperature of a CFS column from a 600mm 

wide CFS wall section and followed by a structural analysis to investigate the 

behaviour of the column at the elevated temperature. The nodal temperatures at 

the elevated temperature obtained from the thermal analysis were applied as a 

predefined boundary condition of the FE model in the structural analysis.  

2.2 FE thermal analysis 

Finite element thermal analysis was performed for insulated CFS walls 

subjected to standard fire. The method used to develop the FE thermal model in 

this study is similar to that from [8] which was verified and calibrated with 

experimental tests. The gypsum boards and glass fibre are modeled using 8-node 

continuum solid elements (DC3D8). The CFS C-shape column is simulated with 

4-node shell elements (DS4). No thermal contact resistance between adjacent 

elements is assumed. Double layers of gypsum board and glass fibre are merged 

into one instance, whereas the thermal properties of each material are defined 

accordingly. The thermal properties of glass fibre, gypsum board and steel, 

including thermal conductivity, specific heat, and density, are adopted from 

those reported in [11]. The temperature degree of freedom of the contact nodes 

between gypsum board and column flanges on both sides and that between glass 

fibre and column web are tied. In the tie constraints specified in ABAQUS, the 

nodes of gypsum board and glass fibre instance act as master nodes whereas the 

nodes associated with column are defined as slave ones. Figure 2 illustrates the 

FE meshes of the CFS wall segment. Heat transfer through solid materials is by 

means of conduction. On the fire-exposed and unexposed sides, the heat 

transmission is described as a combined action of radiation and convection. A 

convection coefficient of h=25 W/m2K and 10 W/m2K is used on the fire-

exposed side and the unexposed side, respectively. Relative emissivity is taken 

as 0.9 for gypsum board surface. The CFS walls are exposed to the standard fire 

curve defined by ISO 834 [12] for up to 105 minutes. The ambient temperature 

is assumed to be 20 oC.  

Figure 3 shows the predicted temperatures in the CFS wall and C-shape column 

at 105 minutes’ fire exposure. The temperature of the gypsum board surface is 

1023 oC on the fire-exposed side (ES), and 66 oC on the unexposed side (UES). 

It can be seen that non-uniform cross-sectional distribution of elevated 

temperature in the CFS C-shape column also varies along the height of the 

column. The maximum temperature in the column is no more than 654 oC. The 

cross-sectional views on Section 1 and 2 illustrate the temperature contours at 

the location without and with web perforation, respectively. It is observed that 
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the temperature of Section 2 is higher on the hot flange and lower on the cold 

flange comparing with the corresponding temperatures of Section 1. The web 

temperature distribution of Section 2 is also different from that of Section 1 due 

to the presence of the perforation. 

 

Figure 1 Configuration of CFS wall section 

 

Figure 2 Finite element mesh of CFS wall segment 

 

               

 
 

C-shape cross-section with web 

perforation 

 

C150 40 15 1.5

600 mm

(2) 12 mm gypsum board

150 mm glass fibre

d
h
=

3
8
 m

m
 (

1
.5

 i
n
.)

H
=

1
5

0
 m

m
 (

6
 i
n
.)

B=40 mm (1.6 in.)

D
=

1
5

 m
m

 (
0

.6
 i
n
.)

t=1.5 mm (49 mil.)

176



 

 

Figure 3 Temperature contour (Lh =380 mm): (a) CFS wall and (b) C-shape column.  

2.3 FE structural analysis 

The FE structural analysis was performed under a transient state condition in 

two steps. At first, a pre-determined axial compression load was applied as the 

a

Section 1 Section 2

b
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Step 1. After that, the temperature distributions obtained from the heat transfer 

analysis was incorporated in the analysis as the Step-2. 

In the structural analysis, the CFS C-shape column is modeled with a rigid plate 

(150 mm×40 mm) attached to each end as shown in Figure 5. The reference 

point of the rigid plate coincides with the centroid of the cross-section of the 

column. The element type and mesh of the CFS C-shape column is the same as 

those of the heat transfer model, for which correlations are required to import 

the temperature from the heat transfer analysis. A global mesh size of 15 mm is 

used to discrete the rigid plate. The time period of Step 2 is specified as 6300 

which corresponds to 105 minutes. In the Step 2, the maximum number of time 

increments is 500; the initial increment size is 30; and the minimum and 

maximum increment size is 1×10-9 and 300, respectively. The CFS column and 

rigid plate are modeled with a 4-node shell element with reduced integration 

(S4R) and rigid bilinear quadrilateral elements (R3D4), respectively.  

When it is exposed to the elevated temperature, mechanical properties of steel 

deteriorate rapidly which consequently reduces the stiffness and strength of the 

CFS column. The yield strength, elastic modulus and Poisson’s ratio of steel at 

ambient temperature are taken as 345 MPa, 203 GPa and 0.3, respectively. 

Figure 4 shows the nominal stress-strain relationship of cold-formed steel at 

elevated temperatures, which is derived base on part 1.2 of Eurocode 3 [13]. 

Steel expands considerably when exposed to elevated temperatures. Therefore, 

thermal bowing will be developed due to the presence of non-uniform 

temperature distributions across the cross-section. Hence, the coefficient of 

thermal expansion of CFS at different temperature needs to be determined for 

the structural analysis of CFS wall systems at elevated temperatures. In this 

study, the coefficient of thermal expansion of CFS stipulated in Eurocode 3 Part 

1.2 [13] is adopted, which is the same as that of hot-rolled steel.  

Figure 5 illustrates the load and boundary conditions of the modelled CFS 

column. The column is simply supported with translational displacements, i.e., 

UX, UY and UZ at the lower end and UX and UY at the upper end are 

restrained. Twisting about the Z axis (URZ) is restrained at both ends. A target 

axial load is applied first via the reference node of the rigid plate at the upper 

end. The load ratio (R), i.e., the ratio of the applied load at the fire limit state and 

the ultimate compressive strength of the CFS column at ambient temperature, 

ranges from 0.6 to 0.9. Table 1 shows the applied axial load of CFS C-shape 

columns in the FE structural model. At ambient temperature, the ultimate 

compressive strength drops gradually as the perforation length increases. For 

example, with length of wen perforation Lh=630 mm, the ultimate strength of the 

CFS C-shape column is only about 60% of that without perforations. Initial 
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global geometrical imperfection is accounted for through eigenvalue buckling 

analysis. The first mode shape and a magnitude of one thousandth of the column 

length (L/1000) is adopted (Figure 6). The time dependent nodal temperatures 

obtained from the thermal analysis (Figure 3(b)) are incorporated into the 

structural model as a predefined boundary condition. The ambient temperature 

of 20 oC is also adopted.  

  

Figure 4 Stress-strain relationship of steel at elevated temperatures 

 

Figure 5 Load and boundary conditions in structural analysis 

Table 1 Applied load at ambient temperature (Step-1) 
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Lh (mm) 
Applied load (kN) 

R=0.9 R=0.8 R=0.7 R=0.6 R=0.5 

0 14.8 13.2 11.5 9.9 8.2 

130 13.3 11.8 10.3 8.9 7.4 

250 12.4 11.1 9.7 8.3 6.9 

380 12.1 10.7 9.4 8.0 6.7 

510 11.2 10.0 8.7 7.5 6.2 

630 9.0 8.0 7.0 6.0 5.0 

 

 

Figure 6 Initial global geometric imperfection (L/1000) 

3. Results and discussions

Figure 7 and 8 shows the predicted external reaction force at the lower end and 

axial deformation of the column at the upper end, respectively, for a CFS C-

shape column with the length of web perforation Lh=380 mm (15 in.) and the 

load ratio R=0.9. As shown in Figure 8, the column shortens initially due to the 

applied axial load at ambient temperature and then gradually expands as the 

increase of temperature. However, the magnitude of the external reaction force 

at the lower end maintains that same as that of applied load until the failure of 

the column occurs. At 48.9 minutes, the column fails evidenced by the rapid 

increase column deformation and sudden decrease of the reaction force at the 

lower end of the column shown in Figure 8. The corresponding end reaction 

force and axial deformation of the column at the failure is about 85% of the 

initially applied load and 54 mm, respectively. 
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Figure 7 Time-end reaction force curve (Lh=380 mm, R=0.9) 

 

 

Figure 8 Time-axial deformation curve (Lh=380 mm, R=0.9) 
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Figure 9 shows the predicted failure mode of the CFS C-shape column with 

Lh=380 mm (15 in.) and a load ratio of 0.9. Global buckling about Y-axis 

together with local failure around the perforation at mid-height is observed. No 

torsional buckling about Z-axis occurs since the rotation URZ is assumed to be 

restrained by the presence of gypsum board on both flanges of the CFS C-shape 

columns. Thermal bowing is towards the fire-exposed side. The flange of the 

column on the fire-exposed side buckles first due to the higher temperature 

which results rapid degradation on both stiffness and strength of the flange. 

Consequently, the flange on the fire-unexposed side bears the increasing load 

and failure subsequently. 

 

 

b 

 

Figure 9 Failure mode (Lh=380 mm, R=0.9): (a) elevation, and (b) YZ plane. 
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Figure 10 compares the effect of perforation length on the predicted failure time. 

At a given perforation length, the failure time decreases rapidly as the load ratio 

increases. For the case of no web perforations i.e., Lh=0 mm, the corresponding 

failure time is 90.2 minutes for R=0.6, and 48.7 minutes when R=0.9. The 

failure time of the latter case is about 46% less than that the former one. It is 

found in this investigation that for a given load ratio, the variation among failure 

times for columns with different Lh is within 10%, which is not significant.  

In addition, for a CFS C-shape column with a specified load ratio, the capacity 

of the column at elevated temperature are significantly influenced by 

degradation of material properties of steel and fire exposure time whereas the 

distribution of non-uniform cross-sectional temperature has a minor influence on 

the capacity of the column. Figure 11 compares the temperature contour of CFS 

C-shape columns with different web perforation lengths Lh=0 mm, Lh=380 mm 

and Lh=630 in the region of mid-height of the columns at the exact failure time. 

It can be seen from the figure there is a minor variation in temperature 

distributions among these cross-sections, which provides further explanations 

for the results presented in Figure 10. The web perforation width investigated in 

this study maintains a constant of 38 mm (1.5 in.), that is, ¼ of the web depth of 

150 mm (6 in.). If the perforation width increases, a larger temperature gradient 

is expected which may consequently result in a greater influence on the 

behaviour of the CFS C-shape columns. 

 

Figure 10 Effect of perforation length on failure time 
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Figure 11 Effect of perforation length on failure mode 

4. Conclusions 

The effects of web perforations on the behavior of CFS C-shape slender 

columns subjected to non-uniform cross-sectional distribution of elevated 

temperatures are investigated in this study. The results from FEA show that 

perforations in the web can result in a minor increase of temperature gradient 

within the cross-section of the column. In addition, increase the length of the 

web perforation does not appear to have a significant influence on the 

temperature gradient as well. However, the length of web perforation does affect 

both stiffness and strength of the column at both ambient and elevated 
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temperatures. At the elevated temperature, the strength of the CFS C-shape 

columns decreases rapidly as the perforation length increases. However, the 

length of web perforation appears to have not a significant influence on the 

failure time as the differences of failure times for the CFS C-shape columns with 

different perforation lengths investigated in this study are found to be within 

10%. 
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Distortional Buckling Experiment on Cold-formed Steel 
Lipped Channel Columns with Circle Holes under Axial 

Compression  

YAO Xingyou1,2, GUO Yanli3,NIE Zhen4 

Abstract 

The objective of this paper is to research the distortional buckling mode and 
load-carrying capacity of cold-formed thin-walled steel columns with circle 
holes in web. Compression tests were conducted on 26 intermediate length 
columns with and without holes. The test members included four different 
kinds of circle holes. Test results show that the distortional buckling 
occurred for intermediate columns with holes and the strength of columns 
with holes was less than that of columns without circle hole. The ultimate 
strength of columns decreased with the increase of the total transverse width 
of hole in cross-section of members. For each specimen, a shell finite 
element Eigen-buckling analysis and nonlinear analysis was also conducted. 
Analysis results show that the holes can affect on the elastic buckling stress 
of columns. The shell finite element can be used to model the buckling 
modes of columns with holes and analyze the load-carrying capacities of 
members with holes. The comparison on ultimate strength between test 
results and calculated results using Chinese code GB50018-2002, North 
American specification AISI S100-2016 and nonlinear Finite Element 
method was made. The calculated ultimate strength show that results 
predicted with AISI S100-2016 and analyzed using finite element method 
are close to test results. The calculated results using Chinese code is higher 
than test results because Chinese code has no provision to calculate the 
ultimate strength of members with holes. So the calculated method for 
cold-formed steel columns with circle holes was proposed. The calculated 
results using this proposed method show good agreement with test results 
and can be used in engineering design of cold-formed steel columns with 
circle hole.  
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Introduction 

Cold-formed steel structural sections used in the walls of residential 
buildings and agricultural facilities are commonly C-shape sections with 
holes in web. These holes located in the web of sections can alter the elastic 
stiffness and ultimate strength of a structural member (Moen, 2008). The 
stud columns with holes tests were conducted (Abdel-Rahman, 1997; 
Banwait,1987; Loove,1984; Ortiz-Colberg,1981; Pu, Godley, and Beale, et 
al, 1999; Rhodes and Schneider, 1994; Sivakumaran,1987) and the type, 
location, and dimension of hole were taken into account. Based on these 
studies, the design method for the ultimate strength of members with holes 
was developed considering local buckling and yielding strength. This design 
method is used in North American cold-formed steel specification 
(AISI-S100-2016, 2016).  In recent years, the elastic buckling performance 
and Direct Strength Method(DSM) of short and intermediate length columns 
with holes were studied (Moen,2008;Moen and Schafer,2008; Moen and 
Schafer,2009a; Moen and Schafer,2009b; Moen and Schafer,2011). These 
researches indicated that the web holes may modify the local and 
distortional elastic buckling half-wavelengths, change the critical elastic 
buckling loads, and decrease the post-peak ductility in some cases. Then the 
DSM for members with holes was put forward. The analysis (He and Zhou, 
2005) demonstrated that the ultimate strength would decrease if the hole 
was in the range of effective width of the element. The equivalent modulus 
method was developed to predict the critical buckling stress of axially 
compressive columns with holes in web and flanges (Zhou and Yu, 2010). 
An equivalent volume method was proposed to consider the effect of holes 
based on test and analysis (Wen, 1996). While these researches did not 
develop a reasonable calculated method in consistent with Chinese 
cold-formed steel specification Technical code of cold-formed thin-wall 
steel structures (GB50018-2002, 2002) to predict the ultimate strength of 
cold-formed steel members with holes.  

The aim of this experiment is to expand the existing columns date, 
especially to columns with multi-holes in web. The buckling mode and 
ultimate capacity are analyzed using Finite Element Method. The proposed 
design method of the ultimate strength for this kind of members is put 
forward based on Chinese cold-formed steel specification.  

Experimental setup and test specimens 

Test set-up 

Twenty-six cold-formed steel lipped channel columns with and without 
circle web holes were tested to failure. The main experimental parameters 
are the holes type and the presence or absence of circle web holes. The 
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specimen naming convention is defined as AC-12-CH-1, where AC means 
axially-compressive members, 12 means the holes type as two holes in one 
row, CH means circle hole, and 1 is the repeated number of specimens. 

The columns compression tests are performed with 200kN capacity loaded 
machine shown in Fig.1. The column specimens bear directly the steel plates. 
Position transducers are used to measure the mid-height lateral flange 
displacement and vertical displacement of specimens under load.  

 
Fig. 1 Overall view of test setup 

Hole type and locations 

The four kinds of circle hole types (Fig.2) are selected to test and all holes 
are in the web of the axially compressive members, where the location of 
holes for the specimens with one row holes is at the mid-height of the 
columns, and the location of holes for the specimens with two rows holes is 
at the 1/3 and 2/3 height of the columns. The nominal diameter (d) of the 
circle hole is 14mm. The nominal transverse (S2) and vertical (S1) distance 
of holes are 50 and 250mm. 

l

d

 
(a) One hole in one row 
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(b) Two holes in one row 

S1

l

d

 
(c) Two holes in one column 

S1

l

d

S 2

 
(d) Four holes in two rows and two columns 

Fig.2 Holes type of the web for specimens 

Section dimensions 

The dimensions reference system and nomenclature for each specimen is 
presented in Fig.3, and the measured value was recorded at 1/4 and 1/2 
points for every specimens, for a total of three measurement location for 
each specimens. Mean measured specimen dimensions are summarized in 
Table 1. The inside bend radius of specimens is 2t, where t is the base 
thickness of members. l is the length of columns.  

h1

a2
a1

h 2

b1

b1

t

 
Fig. 3 Specimen measurement nomenclature 
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Table 1 Summary of measured specimen cross-section dimensions  

Specimens l/mm h1/mm h2/mm b1/mm b2/mm a1/mm a2/mm 
d 

/mm 

t 

/mm 
fy/MPa 

AC-11-CH-1 800.00 99.45 99.61 37.66 38.24 12.05 12.54 13.93 1.51 295 

AC-11-CH-2 799.00 98.96 99.25 37.62 38.30 11.67 12.62 14.02 1.46 295 

AC-11-CH-3 801.00 99.39 99.53 37.53 37.94 12.08 12.40 13.89 1.49 295 

AC-11-CH-4 807.00 99.23 98.95 37.47 38.00 12.39 11.90 13.96 1.46 295 

AC-11-CH-5 800.00 99.13 99.10 37.81 38.06 11.87 12.68 13.88 1.47 295 

AC-11-CH-6 801.00 99.30 99.22 37.51 37.80 12.75 11.83 13.90 1.47 295 

AC-21-CH-1 800.00 100.38 101.74 37.34 37.11 12.30 12.28 14.02 1.45 295 

AC-21-CH-2 806.00 98.85 98.81 37.79 38.27 11.83 12.50 14.03 1.48 295 

AC-21-CH-3 799.00 99.27 98.91 38.15 37.66 12.35 11.96 13.92 1.51 295 

AC-21-CH-4 803.00 99.68 99.17 38.28 37.52 12.66 11.65 13.91 1.48 295 

AC-21-CH-5 797.00 99.13 99.33 38.28 37.55 13.65 12.03 13.99 1.47 295 

AC-21-CH-6 797.00 98.98 99.07 38.13 37.62 12.49 11.47 13.95 1.46 295 

AC-12-CH-1 802.00 99.39 99.29 38.95 37.38 12.70 12.65 13.97 1.47 295 

AC-12-CH-2 801.00 99.46 99.48 37.57 36.84 12.77 12.44 14.56 1.45 295 

AC-12-CH-3 805.00 99.48 99.46 37.55 37.22 12.41 12.53 12.70 1.49 295 

AC-12-CH-4 806.00 99.99 99.85 37.35 37.62 12.64 12.64 14.32 1.4 295 

AC-12-CH-5 803.00 99.78 99.73 37.40 37.47 12.71 11.89 13.28 1.43 295 

AC-12-CH-6 802.00 99.62 99.69 38.00 37.35 12.92 12.09 13.69 1.48 295 

AC-22-CH-1 800.00 99.33 99.82 37.55 37.63 12.39 12.33 13.72 1.44 295 

AC-22-CH-2 797.00 99.35 99.69 38.07 37.58 12.49 12.07 13.06 1.40 295 

AC-22-CH-3 789.00 100.38 100.45 37.65 38.24 11.24 13.21 13.61 1.46 295 

AC-22-CH-4 799.00 99.75 99.37 37.94 38.13 10.09 13.80 13.60 1.50 295 

AC-22-CH-5 803.00 99.39 99.09 37.71 38.20 10.72 14.29 12.70 1.39 295 

AC-22-CH-6 792.00 99.81 99.76 38.01 37.97 13.54 10.25 13.35 1.49 295 

AC-00-NH-1 802.00 99.87 99.85 38.22 37.59 12.39 13.16 / 1.47 295 

AC-00-NH-2 800.00 99.78 99.84 38.17 37.31 13.44 11.75 / 1.46 295 

Material properties  

Tension tests were carried out following the provisions of Metallic 
materials--Tensile testing--Part 1: Method of test at room temperature 
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(GB/T228.1-2010, 2010). Six tensile coupons were taken from two ends of a 
test member including the web flat and two flanges flat. A 200kN capacity 
testing machine was used for the loading. The mean values of six coupon 
test results are summarized. The specimen yield stress, fy, is 295MPa 
reported in Table 1, the steel elastic modulus, E, is assumed as 
2.074x105Mpa, and the specimens elongation is 32%. 

Experimental results 

The failure modes of the specimens are depicted in Fig.4-Fig.6. All columns 
exhibit the local buckling of the web near the supports (Fig.4), one 
distortional half-wave buckling along the length (Fig.5), and the global 
flexural buckling (Fig.6) after the peak load. 

 
Fig.4 Local buckling mode 

      

(a) One hole in one row  (b) Two holes in one row 
 (c) Two holes in one column (d) Four holes in two rows and two columns 

Fig.5 Distortional buckling mode 
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(a) One hole in one row  (b) Two holes in one row 
 (c) Two holes in one column (d) Four holes in two rows and two columns 

Fig.6 Global flexural buckling mode 

The ultimate tested compressive load for all specimens and an average 
ultimate load for each test group are provided in Table 2. The circle hole are 
shown to have a little influence on compressive load for specimens with one 
hole in one row and two holes in one column, with the reduction being 
6.08% and 6.28%, respectively. However, the reduction ups to 9.68% and 
14.06% for the specimens with two holes in one row and four holes in two 
columns, respectively. These test results indicate that the circle holes have a 
significant influence on compressive load when the circle hole is located in 
the range of effective width of the web.   

Table 2 Comparison on ultimate capacity of specimens 

Specimens Pt/kN Statistic analysis of Pt 
Mean value/kN Hole influence 

AC-11-CH-1 57.75 

56.97  6.08%  

AC-11-CH-2 60.30 
AC-11-CH-3 58.65 
AC-11-CH-4 57.95 
AC-11-CH-5 54.05 
AC-11-CH-6 53.10 
AC-21-CH-1 55.60 

56.84  6.28%  

AC-21-CH-2 57.40 
AC-21-CH-3 56.55 
AC-21-CH-4 57.31 
AC-21-CH-5 57.65 
AC-21-CH-6 56.55 
AC-12-CH-1 54.90 

54.78  9.68%  
AC-12-CH-2 53.65 
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AC-12-CH-3 57.65 
AC-12-CH-4 55.55 
AC-12-CH-5 52.05 
AC-12-CH-6 54.90 
AC-22-CH-1 54.00 

52.13  14.06%  

AC-22-CH-2 52.40 
AC-22-CH-3 54.00 
AC-22-CH-4 52.05 
AC-22-CH-5 50.65 
AC-22-CH-6 49.65 
AC-00-NH-1 61.03 

60.66  / 
AC-00-NH-2 60.28 

4 Finite element analysis 

Finite element model  

The thin shell finite element non-linear analysis in ABAQUS was employed 
to simulate the experimental behavior of lipped channel compressive 
members with holes.  

The material model was based directly on the coupon tests. The ideal 
elastic-plastic curve was used based on the experimental steel elastic 
modular and yield stress for simplifying finite element analysis. Residual 
stresses, residual strains and cold-work of forming effects were not included 
in the finite element model. 

The ABAQUS S9R5 thin shell element was adopted for modeling 
compressive members. The mesh density was examined for stability and 
convergence, primarily by considering the impact of the element aspect ratio. 
The aspect ratio was kept below 2:1 for lips, flange, web, and corners along 
the length direction. In the cross-section, for the flange, web, lip, and corner, 
a minimum of 6, 18, 2, and 2 elements, respectively, were found to be 
sufficient. 

The ABAQUS solution control employed was the modified Riks method 
and arc length method was used to ensure a stable numerical solution. All 
tolerances were left at the default, but initial and maximum step sizes were 
modified to insure repeatable and consistent results.  

Imperfection sensitivity was considered in the finite element analysis. The 
magnitudes of the geometric imperfections adopted were L/750 according to 
Chinese cold-formed steel specification. The shape of the geometric 
imperfection was obtained from the first buckling mode shape of a finite 
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element Eigen buckling analysis in ABAQUS. The loading and boundary 
conditions used in the finite element analysis referred to the reference 
(Moen, 2008). The finite element model for specimen and the mesh of the 
holes are depicted in Fig.7. 

 
(a) Columns model  (b) Mesh of holes 

Fig.7 Finite element model 

Elastic buckling analysis 

The critical elastic local buckling load(Pcrl), distortional buckling load(Pcrd), 
and yield strength (Py) are provided in table 3 for compressive columns with 
different holes type and without holes. The nominal dimensions are used in 
the Eigen-value elastic buckling analysis. 

The comparison in Table 3 illustrates that the holes in specimens have a 
little effect on elastic local and distortional strength, but the effect is not 
significant because the ratio of the diameter of hole to the width of web is 
approximate 0.14.   

Table 3 Comparison on critical elastic buckling loads 

Hole type Py/kN Pcrl/kN Pcrd/kN 
AC-11-CH 88.5 69.03 93.68 
AC-21-CH 88.5 68.30 93.24 
AC-12-CH 88.5 68.65 92.88 
AC-22-CH 88.5 67.92 92.97 
AC-00-NH 88.5 71.23 95.29 

The first local buckling and distortional buckling shapes for compressive 
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columns with different holes type and without holes are compared in Fig.8 
and Fig.9.   

  
Fig.8 Comparison on local buckling mode 

  
Fig.9 Comparison on distortional buckling mode 

The comparison in Fig.8 and Fig.9 illustrates that the holes in specimens 
have no significant effect on elastic local and distortional mode when the 
ratio of the diameter of hole is very small.   

Failure mode and capacity 

The deformed shapes for the typical specimens obtained from the FEM 
analysis are presented in Figs. 10, which is agree to the test failure mode 
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depicted in Fig.4 and Fig.5. The local and distortional buckling occurs for 
the columns with holes. This observation suggests that the FE model can 
well model the buckling mode of columns with holes. 

The ultimate compressive capacities (PABA) obtained from the FEM are 
compared with the experimental ultimate capacities (Pt) as shown in Tables 
4 for each specimen. The mean values of the FEM-to-experimental ultimate 
compressive capacities ratio are 1.0237 with the corresponding coefficient 
of variation of 0.0197 for all compressive specimens. The comparison of 
ultimate capacity demonstrates that the ultimate compressive capacity 
obtained from the FEM is close to the experimental ultimate capacity and 
the FE model can also predict the ultimate compressive capacity well.  

 
(a) One hole in one row  (b) Two holes in one row 

(c) Two holes in one column (d) Four holes in two rows and two columns 
Fig.10 Failure mode of columns with holes 

Proposed design method 

Comparison on ultimate capacity  

Two calculated method are used to predict the ultimate capacity of each 
specimens and evaluate every design method: (1) The Chinese cold-formed 
steel specification GB5018-2002, (2) The North America cold-formed steel 
specification AISI-S100 (2016). 

The ultimate capacity of every specimen calculated using Chinese 
cold-formed steel specification, North America cold-formed steel 
specification are provided in Table 4, respectively, including ratios of 
predicted-to-test capacities of each specimen for two design methods, 
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Where PCI and PC are the ultimate capacity predicted using Chinese 
cold-formed steel specification with considering interaction of the elements 
and without considering interaction of the elements, PN is the calculated 
results using North America cold-formed steel specification.  

The mean values of the ratios of calculated compressive capacities to test 
results PCI and PC obtained using Chinese specification with considering 
interaction of the elements and without considering interaction of the 
elements is 1.0275 and 1.0702, respectively. The comparison results indicate 
that the current Chinese cold-formed steel specification is not safe to predict 
the compressive capacity of columns with holes because the code doesn’t 
consider the effect of the holes. So the proposed method for predicting the 
ultimate capacity of compressive columns with holes should be analyzed 
and put forward based on Chinese cold-formed steel specification. 

However the mean value of the ratios of calculated compressive capacities 
to test results using North America cold-formed steel specification is 0.9258 
with the corresponding coefficient of variation of 0.0485 for columns with 
holes. The comparison demonstrates that North America cold-formed steel 
specification takes into account the effect of holes well and is conservative.  

Proposed design method  

The model proposal should be investigated based on the existing EWM in 
Chinese cold-formed steel specification in order to consider the reduction of 
capacity because of the affect of holes in web of compressive columns. 

The effect width of the web with holes proposed for Chinese cold-formed 
steel specification can be determined using expression (1) based on the 
EWM expression of Chinese cold-formed steel specification and calculated 
method for the effective width of the element with circle holes in North 
America cold-formed steel specification when the compressive strength of 
columns with the holes are calculated.  
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where b and t are the width and thickness of the element in question, 
respectively; d is the diameter of circle hole; be is the effective width; α is a 
coefficient, and α=1.15-0.15ψ, or equal to 1.15 if ψ<0; ψ is an uneven 
coefficient of the compression stress distribution (for axially-compressive 
members, ψ=1); bc is the compressive width of the plate; ρ is a calculating 
coefficient, 

1235 / ykk fρ = ; k is the stability coefficient of the element 

under compression; k1 is the interaction coefficient due to the adjacent 
element. If the interaction of the elements is not considered, k1=1. 

Meanwhile, the calculated effective width of web with holes should be less 
than the net section width of web. 

The compressive capacities of each specimen calculated using proposed 
method are provided in Table 4. PS1 and PS2 are the compressive capacity 
calculated using proposed method with considering interaction of the 
elements and without considering interaction of the elements, respectively. 
The mean values of ratios of predicted results PS1 and PS2 using the 
proposed method to test results are 0.9166 and 0.9509 with the 
corresponding coefficient of variation of 0.0483 and 0.0477, respectively. 
The comparison indicates that the proposed method is conservative and can 
be used to calculate the ultimate capacity of the compressive columns with 
holes. 
 

Table 4 Comparison on ultimate capacities between test results and 
calculated results 

specimens 
Pt/ 

kN 
PABA/ 

kN 

PC1/ 

kN 

PC2/ 

kN 

Ps1/ 

kN 

Ps2 

/kN 

PN/ 

kN 
PABA/Pt PC1/Pt PC2/Pt Ps1/Pt Ps2/Pt PN/Pt 

AC-11-CH-1 57.75 57.81 59.47 61.76 52.91 54.76 53.23 1.00 1.03 1.07 0.92 0.95 0.92 

AC-11-CH-2 60.3 60.83 56.39 58.68 50.30 52.14 50.95 1.01 0.94 0.97 0.83 0.86 0.84 

AC-11-CH-3 58.65 60.36 58.12 60.43 51.74 53.60 52.02 1.03 0.99 1.03 0.88 0.91 0.89 

AC-11-CH-4 57.95 58.55 56.22 58.52 50.12 51.97 50.48 1.01 0.97 1.01 0.86 0.90 0.87 

AC-11-CH-5 54.05 56.41 57.05 59.36 50.87 52.72 51.45 1.04 1.06 1.10 0.94 0.98 0.95 

AC-11-CH-6 53.1 55.23 56.92 59.26 50.73 52.61 51.10 1.04 1.07 1.12 0.96 0.99 0.96 

AC-21-CH-1 55.6 58.09 55.66 58.12 49.68 51.65 49.83 1.04 1.00 1.05 0.89 0.93 0.90 

AC-21-CH-2 57.4 59.75 57.55 59.80 51.26 53.07 51.72 1.04 1.00 1.04 0.89 0.92 0.90 

AC-21-CH-3 56.55 58.47 59.33 61.57 52.75 54.56 53.04 1.03 1.05 1.09 0.93 0.96 0.94 

AC-21-CH-4 57.31 57.92 57.54 59.83 51.26 53.10 51.66 1.01 1.00 1.04 0.89 0.93 0.90 

AC-21-CH-5 57.65 57.88 57.44 59.89 51.28 53.25 52.03 1.00 1.00 1.04 0.89 0.92 0.90 

AC-21-CH-6 56.55 55.82 56.24 58.50 50.14 51.96 50.74 0.99 0.99 1.03 0.89 0.92 0.90 

AC-12-CH-1 54.9 53.82 57.42 59.82 51.27 53.20 52.06 0.98 1.05 1.09 0.93 0.97 0.95 

AC-12-CH-2 53.65 54.92 55.76 58.21 49.76 51.73 50.02 1.02 1.04 1.08 0.93 0.96 0.93 

AC-12-CH-3 57.65 58.51 58.08 60.45 51.69 53.60 51.70 1.01 1.01 1.05 0.90 0.93 0.90 

199



 

 
 

AC-12-CH-4 55.55 57.38 52.99 55.52 47.50 49.52 48.18 1.03 0.95 1.00 0.86 0.89 0.87 

AC-12-CH-5 52.05 55.98 54.50 56.92 48.70 50.64 49.14 1.08 1.05 1.09 0.94 0.97 0.94 

AC-12-CH-6 54.9 56.08 57.69 60.08 51.42 53.34 51.75 1.02 1.05 1.09 0.94 0.97 0.94 

AC-22-CH-1 54.00 55.33 55.20 57.61 49.31 51.24 49.85 1.02 1.02 1.07 0.91 0.95 0.92 

AC-22-CH-2 52.40 54.12 52.95 55.37 47.46 49.39 48.44 1.03 1.01 1.06 0.91 0.94 0.92 

AC-22-CH-3 54.00 55.41 56.56 58.96 50.51 52.43 51.30 1.03 1.05 1.09 0.94 0.97 0.95 

AC-22-CH-4 52.05 53.12 58.68 60.91 52.21 54.00 52.60 1.02 1.13 1.17 1.00 1.04 1.01 

AC-22-CH-5 50.65 52.43 52.51 54.97 47.13 49.09 48.23 1.04 1.04 1.09 0.93 0.97 0.95 

AC-22-CH-6 49.65 50.94 58.05 60.29 51.67 53.48 52.23 1.03 1.17 1.21 1.04 1.08 1.05 

AC-00-NH-1 61.03 63.01 58.18 60.45 58.18 60.45 57.98 1.03 0.95 0.99 0.95 0.99 0.95 

AC-00-NH-2 60.28 62.74 56.69 59.01 56.69 59.01 57.61 1.04 0.94 0.98 0.94 0.98 0.96 

Mean value 1.0237 1.0275 1.0702 0.9166 0.9509 0.9258 

Variance 0.0201 0.0504 0.0515 0.0443 0.0453 0.0449 

Coefficient of variation 0.0197 0.0490 0.0482 0.0483 0.0477 0.0485 

Conclusion 

The following conclusions can be attained according the experimental and 
analytical research of 26 axially compressive columns with holes in web. 
The compressive test results on cold-formed lipped channel sections with 
holes in the web have shown that the intermediate length columns display 
the distortional buckling and failure with interaction of local, distortional, 
and global bending buckling. The circle hole in the web has only a small 
influence on elastic buckling mode, buckling half-wavelength, and elastic 
buckling strength of compressive columns. The circle hole in the web can 
decrease the ultimate load of compressive columns. The reduction increases 
with the increase of area of the transverse holes. Modifications about the 
effective width method based on effective width method in current Chinese 
specification have been proposed. Comparison between predicted results 
using proposed method and test value demonstrates that the proposed 
method is well than current Chinese specification. The proposed method 
provides an accurate and reliable design method for cold-formed steel lipped 
channel compressive sections with holes. The failure modes and ultimate 
bending capacity obtained from the FEM analysis are close to test results. 
This comparison indicates that the finite element model can well analyze the 
buckling failure mode and ultimate capacity of cold-formed steel 
compressive members with holes.  

Notation 
 
The following symbols are used in this paper: 

a1、a2 = Measure width of the top and bottom lip 
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b1、b2 = Measure width of the top and bottom flange 
b = Width of element 
bc = Compressed width of element 
be = Effective width of element 
d = Diameter of circle hole 
E = Modulus of elasticity of steel 
fy = Yield stress 
h1、h2 = Measure width of left and right web 
k = Stability coefficient of the element 
k1 = Interaction coefficient due to the adjacent element 
l = Length of member 
PABA = Ultimate capacity analyzed using Finite Element Method 
PC1 = Ultimate capacity calculated using Chinese cold-formed steel 

specification considering interaction of the elements 
PC2 = Ultimate capacity calculated using Chinese cold-formed steel 

specification without considering interaction of the elements 
Pcrd = Elastic distortional buckling strength 
Pcrl = Elastic local buckling strength 
PN = Ultimate capacity calculated using North America 

cold-formed steel specification 
Ps1 = Ultimate capacity calculated using proposed method 

considering interaction of the elements 
Ps2 = Ultimate capacity calculated using proposed method without 

considering interaction of the elements 
Pt = Test results 
Py = Yield strength 
S1 = Vertical distance of circle holes 
S2 = Transverse distance of circle holes 
t = Thickness of member 
α = Coefficient 
ψ = Uneven coefficient of the compression stress distribution 
ρ = Calculating coefficient 
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Numerical Simulations of Solid and Slotted Cold-Formed 
Steel Channels with Different Boundary Conditions in Shear 

 
Vitaliy V. Degtyarev1 and Natalia V. Degtyareva2 

 
Abstract 
 
This paper presents results of a numerical study on the shear strength of cold-
formed steel channels with solid and slotted webs. The effects of four different 
boundary conditions—test setup, realistic, and simply supported with free and 
restrained ends—on the elastic shear buckling load and the ultimate shear 
strength were considered. The study was performed on finite element models 
developed in ANSYS and validated against test data. The obtained results 
showed that the elastic shear buckling loads and the ultimate shear strengths of 
the slotted channels are more sensitive to the boundary conditions when 
compared with the solid channels. The simply supported boundary conditions 
can reasonably well simulate the test setup boundary conditions of the solid 
channels but not the slotted channels. The realistic boundary conditions cannot 
be accurately simulated by the simply supported boundary conditions for the 
solid and slotted channels. 
 
Introduction 
 
Cold-formed steel (CFS) studs and purlins with slotted webs have been 
developed and used to reduce thermal bridging and to make the CFS framing 
thermally efficient (AISI/Steel Framing Alliance 2002b, Höglund and 
Burstrand 1998, and Liptak-Varadi 2010). AISI/Steel Framing Alliance 
(2002a), Kesti (2000), and Salhab and Wang (2008) studied the effects of the 
slotted webs on the strength and behavior of CFS channels in compression and 
bending.  
 
Degtyareva and Degtyarev (2016) experimentally investigated the shear 
strength of the slotted channels and found that the ultimate shear strength was 
greatly affected by web perforations. Tentative equations for the shear capacity 
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of the slotted channels with and without tension field action were proposed. 
The proposed equations can only be used for the channels with the perforation 
pattern tested in the study. Additional investigations are required to determine 
the effects of different slot sizes and patterns on the shear strength of CFS 
channels.  
 
Keerthan and Mahendran (2010b, 2015), LaBoube and Yu (1978), and Pham 
and Hancock (2012) demonstrated that the ultimate shear strength of CFS 
channels with solid webs depended on the test setup and support conditions. 
Based on results of numerical simulations, Degtyarev and Degtyareva (2016) 
showed that the shear strength of the slotted channels is more affected by the 
boundary conditions than the strength of the solid channels.  
 
The objectives of this study were to numerically investigate the effects of 
different boundary conditions on the elastic shear buckling load and the 
ultimate shear strength of CFS channels with solid and slotted webs and to 
determine whether or not simplified boundary conditions can simulate the test 
setup and realistic boundary conditions with acceptable accuracy. The 
simplified boundary conditions are attractive for the use in numerical 
parametric studies because they can be modeled more easily than the tests setup 
and realistic boundary conditions.  
 
The study by Degtyarev and Degtyareva (2016) was expanded in this work to 
include solid and slotted CFS channels with simply supported boundary 
conditions. Two simply supported boundary conditions were considered: with 
coupled and with uncoupled translations of the nodes at the supported web 
edge in the direction parallel to the channel length. Those boundary conditions 
are referenced in this paper as simply supported boundary conditions with the 
restrained and free ends, respectively. 
  
The studies were performed on non-linear finite element (FE) models 
developed in ANSYS and validated against test data. The FE method has 
proven to be an effective and powerful tool for analysis of CFS members in 
shear and for predicting their shear strength and behavior (Degtyarev and 
Degtyareva 2016, Keerthan and Mahendran 2010a, 2011a, 2011b, 2013a, 
2013b, 2014, and 2015, Pham and Hancock 2010, 2012, and 2015, and Pham et 
al. 2014).  
 
Numerical study program 
 
The CFS channels with solid and slotted webs experimentally studied by 
Degtyareva and Degtyarev (2016) were modeled in ANSYS. The tested 
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boundary conditions. The initial geometric imperfection of h/150 was used 
(Degtyarev and Degtyareva 2016). 
 
The FE analysis was performed in two steps. First, the elastic buckling analysis 
was run to obtain the elastic shear buckling loads and modes. Afterwards, the 
nonlinear static analysis was performed to obtain the ultimate shear strength 
and the failure mode of the model. The lowest elastic shear buckling mode was 
used in the nonlinear analysis for modeling the initial geometric imperfections. 
The effects of large deformations and material yielding were taken into 
consideration in the nonlinear analysis. The L2-norm (square root sum of the 
squares) with the tolerance values of 0.05 and 0.005 for moments and forces, 
respectively, was used for the convergence criterion. The sparse direct equation 
solver and the automatic load stepping were specified. 
 
A detailed validation of the developed FE models with the test setup boundary 
conditions against the test data is presented in Degtyarev and Degtyareva 
(2016). Good agreements between the experimental and simulated ultimate 
shear strengths can also be seen in Table 1. 
 
Numerical simulations results and discussion 
 
Elastic shear buckling load 
 
 

Table 2 shows the elastic shear buckling loads of the analyzed channels with 
different boundary conditions obtained from the FE analyses. Typical lowest 
buckling modes of the solid and slotted channels are shown in Figs. 3 and 4, 
respectively.  
 
For the slotted channels, the Vcr-TS/Vcr-R ratios ranged from 1.04 to 2.07 with a 
mean value of 1.52 and a coefficient of variation of 0.233, which indicates that 
the realistic boundary conditions resulted in smaller elastic shear buckling 
loads when compared with those for the test setup boundary conditions. The 
difference in the elastic shear buckling loads increased as the web slenderness 
increased. These results show that the realistic boundary conditions do not 
provide the same restraint for the slotted channels as the test setup boundary 
conditions. 
 
For the solid channels, the Vcr-TS/Vcr-R ratios ranged from 0.70 to 1.49 with a 
mean value of 1.01 and a coefficient of variation of 0.286. In other words, the 
elastic shear buckling loads of solid channels with the test setup boundary 
conditions were either higher or smaller than those for the solid channels with 
the realistic boundary conditions depending on the web slenderness. On 
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average, the elastic shear buckling loads of the studied solid channels with both 
boundary conditions were approximately the same. The obtained results show 
that the elastic shear buckling loads of the solid channels are less sensitive to 
the change in the boundary conditions when compared with the slotted 
channels. 
 
Table 1 
Experimental and calculated ultimate shear capacities of solid and slotted channels 

Specimen Vtest 
(kip) 

VFEA-TS 
(kip) 

VFEA-R 
(kip) 

VFEA-SF 
(kip) 

VFEA-SR 
(kip) 

Vtest/ 
VFEA-TS

VFEA-TS/
VFEA-SF

VFEA-TS/
VFEA-SR

VFEA-R/ 
VFEA-SF 

VFEA-R/ 
VFEA-SR 

C-150-0.9-1 2.579 2.574 2.298 2.529 3.111 1.00 1.02 0.83 0.91 0.74 
C-150-0.9-2 2.534 2.624 2.246 2.525 3.116 0.97 1.04 0.84 0.89 0.72 
C-150-1.5-1 6.708 7.126 7.270 6.623 7.450 0.94 1.08 0.96 1.10 0.98 
C-150-1.5-2 5.706 6.866 7.264 6.598 7.430 0.83 1.04 0.92 1.10 0.98 
C-200-0.9-1 2.241 2.428 2.754 2.531 3.019 0.92 0.96 0.80 1.09 0.91 
C-200-1.5-1 6.666 7.115 7.951 6.596 7.565 0.94 1.08 0.94 1.21 1.05 
C-200-1.5-2 6.202 7.736 7.866 6.911 7.951 0.80 1.12 0.97 1.14 0.99 

CS-150-1.5-1 7.259 7.626 7.117 6.879 7.727 0.95 1.11 0.99 1.03 0.92 
CS-150-2-1 9.930 11.443 9.932 10.274 11.270 0.87 1.11 1.02 0.97 0.88 

CS-245-1.5-2 8.813 9.822 8.140 8.304 10.031 0.90 1.18 0.98 0.98 0.81 
PC-150-0.9-1 1.014 0.969 0.753 0.553 1.144 1.05 1.75 0.85 1.36 0.66 
PC-150-0.9-2 0.928 0.895 0.753 0.515 1.054 1.04 1.74 0.85 1.46 0.71 
PC-150-1.5-1 1.994 1.828 1.407 1.189 2.221 1.09 1.54 0.82 1.18 0.63 
PC-150-1.5-2 1.558 1.720 1.441 1.104 2.012 0.91 1.56 0.85 1.31 0.72 
PC-200-0.9-1 1.129 1.322 0.883 0.663 1.167 0.85 1.99 1.13 1.33 0.76 
PC-200-0.9-2 0.863 1.054 0.767 0.486 0.917 0.82 2.17 1.15 1.58 0.84 
PC-200-1.5-1 2.758 2.983 2.271 1.481 2.727 0.93 2.01 1.09 1.53 0.83 
PC-200-1.5-2 2.419 2.810 1.673 1.544 2.756 0.86 1.82 1.02 1.08 0.61 

PCS-150-1.5-1 2.169 2.219 1.583 1.308 2.048 0.98 1.69 1.08 1.21 0.77 
PCS-150-1.5-2 1.888 2.120 1.349 1.209 1.868 0.89 1.75 1.13 1.11 0.72 
PCS-150-2-1 2.853 3.392 2.426 2.187 3.172 0.84 1.55 1.07 1.11 0.76 
PCS-150-2-2 2.743 3.170 2.017 1.987 2.752 0.87 1.59 1.15 1.01 0.73 

PCS-245-1.5-1 3.811 3.995 3.275 2.979 3.993 0.95 1.34 1.00 1.10 0.82 
PCS-245-1.5-2 3.415 3.846 2.772 2.648 3.482 0.89 1.45 1.10 1.05 0.80 
PCS-245-2-1 4.159 3.968 2.646 2.806 3.628 1.05 1.41 1.09 0.94 0.73 

  All channels MIN 0.80 0.96 0.80 0.89 0.61 
     MAX 1.09 2.17 1.15 1.58 1.05 
     MEAN 0.93 1.45 0.99 1.15 0.80 
     COV 0.084 0.249 0.117 0.162 0.145 
  Solid channels MIN 0.80 0.96 0.80 0.89 0.72 
     MAX 1.00 1.18 1.02 1.21 1.05 
     MEAN 0.91 1.07 0.92 1.04 0.90 
     COV 0.068 0.058 0.080 0.099 0.123 
  Slotted channels MIN 0.82 1.34 0.82 0.94 0.61 
     MAX 1.09 2.17 1.15 1.58 0.84 
     MEAN 0.93 1.69 1.03 1.23 0.74 
     COV 0.093 0.140 0.119 0.159 0.093 

Specimen label: W-D-T-N, where W = channel web type (C = solid unstiffened web, CS = solid stiffened web, PC 
= perforated unstiffened web, PCS = perforated stiffened web); D = nominal channel depth in mm (150, 200, and 
245); T = nominal base steel thickness of channel in mm (0.9, 1.5, and 2); and N = specimen number. 
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Table 2 
Calculated elastic shear buckling loads of solid and slotted channels 

Specimen Vcr-TS 
(kip) 

Vcr-R 
(kip) 

Vcr-SF 
(kip) 

Vcr-SR 
(kip) 

Vcr-TS/ 
Vcr-R 

Vcr-TS/ 
Vcr-SF 

Vcr-TS/ 
Vcr-SR 

Vcr-R/  
Vcr-SF 

Vcr-R/  
Vcr-SR 

C-150-0.9-1 1.920 1.306 1.659 1.767 1.47 1.16 1.09 0.79 0.74 
C-150-0.9-2 1.933 1.295 1.664 1.767 1.49 1.16 1.09 0.78 0.73 
C-150-1.5-1 7.756 8.282 6.825 7.273 0.94 1.14 1.07 1.21 1.14 
C-150-1.5-2 7.623 8.248 6.756 7.250 0.92 1.13 1.05 1.22 1.14 
C-200-0.9-1 1.045 0.818 0.944 0.996 1.28 1.11 1.05 0.87 0.82 
C-200-1.5-1 5.130 5.883 4.804 4.984 0.87 1.07 1.03 1.22 1.18 
C-200-1.5-2 5.546 6.519 5.123 5.350 0.85 1.08 1.04 1.27 1.22 

CS-150-1.5-1 17.719 25.273 16.937 17.701 0.70 1.05 1.00 1.49 1.43 
CS-150-2-1 42.934 55.793 40.533 42.568 0.77 1.06 1.01 1.38 1.31 

CS-245-1.5-2 10.200 12.077 9.775 11.425 0.84 1.04 0.89 1.24 1.06 
PC-150-0.9-1 0.540 0.261 0.407 0.443 2.07 1.32 1.21 0.64 0.59 
PC-150-0.9-2 0.474 0.250 0.384 0.420 1.90 1.23 1.13 0.65 0.59 
PC-150-1.5-1 2.127 1.585 1.659 1.783 1.34 1.28 1.19 0.96 0.89 
PC-150-1.5-2 1.891 1.571 1.571 1.695 1.20 1.20 1.12 1.00 0.93 
PC-200-0.9-1 0.481 0.238 0.353 0.414 2.01 1.36 1.16 0.68 0.58 
PC-200-0.9-2 0.346 0.211 0.283 0.337 1.63 1.22 1.03 0.75 0.63 
PC-200-1.5-1 2.232 1.565 1.632 1.958 1.43 1.37 1.14 0.96 0.80 
PC-200-1.5-2 2.010 1.342 1.803 2.014 1.50 1.12 1.00 0.75 0.67 

PCS-150-1.5-1 1.891 1.637 1.464 2.127 1.16 1.29 0.89 1.12 0.77 
PCS-150-1.5-2 1.677 1.522 1.493 2.124 1.10 1.12 0.79 1.02 0.72 
PCS-150-2-1 5.681 5.146 4.422 6.481 1.10 1.28 0.88 1.16 0.79 
PCS-150-2-2 4.905 4.707 4.483 6.423 1.04 1.09 0.76 1.05 0.73 

PCS-245-1.5-1 3.264 1.796 2.480 2.266 1.82 1.32 1.44 0.72 0.79 
PCS-245-1.5-2 2.884 1.578 2.468 2.275 1.83 1.17 1.27 0.64 0.69 
PCS-245-2-1 6.715 3.912 5.991 5.535 1.72 1.12 1.21 0.65 0.71 

  All channels MIN 0.70 1.04 0.76 0.64 0.58 
    MAX 2.07 1.37 1.44 1.49 1.43 
    MEAN 1.32 1.18 1.06 0.97 0.87 
    COV 0.312 0.086 0.142 0.267 0.280 
  Solid channels MIN 0.70 1.04 0.89 0.78 0.73 
    MAX 1.49 1.16 1.09 1.49 1.43 
    MEAN 1.01 1.10 1.03 1.15 1.08 
    COV 0.286 0.041 0.056 0.217 0.222 
  Slotted channels MIN 1.04 1.09 0.76 0.64 0.58 
    MAX 2.07 1.37 1.44 1.16 0.93 
    MEAN 1.52 1.23 1.08 0.85 0.73 
    COV 0.233 0.075 0.175 0.227 0.146 

 
For the solid and slotted channels, the simply supported boundary conditions 
with the free end resulted in smaller elastic shear buckling loads when compared 
with those for the test setup boundary conditions. The mean value of the  
Vcr-TS/Vcr-SF ratios and their coefficient of variation were smaller for the solid 
channels (1.10 and 0.041 for the solid channels vs. 1.23 and 0.075 for the slotted 
channels). These results indicate that the simply supported boundary conditions 
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The mean values and the coefficients of variation of the Vcr-R/Vcr-SR ratios were 
1.08 and 0.222 for the solid channels and 0.73 and 0.146 for the slotted 
channels. These results are similar to those for the simplified boundary 
conditions with the free end. The additional restraint at the channel end caused 
an increase in the elastic shear buckling loads. The mean value of the  
Vcr-R/Vcr-SR ratios was close to unity for the solid channels but their coefficient 
of variation was relatively high.     
 
The obtained results demonstrate that analyses with the simplified boundary 
conditions cannot accurately predict the elastic shear buckling loads of the 
slotted channels with the test setup and realistic boundary conditions. The 
simply supported boundary conditions with the restrained end appear to be 
capable of simulating the test setup boundary conditions of the solid channels 
for the purpose of determining the elastic shear buckling load. 
 
The buckling modes of the solid unstiffened channels with the test setup and 
simply supported boundary conditions were typical for the shear loading (see 
Fig. 3). In the solid stiffened channels, only one vertical flat portion of the web 
buckled. The slender solid webs of the channels with the realistic boundary 
conditions buckled in a combination of shear buckling and web crippling, 
which caused reductions in the elastic shear buckling loads. The stocky webs 
demonstrated shear buckling only. 
 
The lowest buckling mode of the slotted channels with the test setup and 
simply supported boundary conditions was local buckling of the channel web 
near the slots within the shear span (see Fig. 4). For the realistic boundary 
conditions, the slotted channels with slender webs demonstrated a combination 
of local buckling within the shear span and web crippling at the support, 
whereas the slotted channels with stocky webs buckled locally near the holes 
within the shear span similarly to the slotted channels with the test setup and 
simply supported boundary conditions. 
 
Ultimate shear strength  
 
The ultimate shear strengths of the analyzed channels with different boundary 
conditions are given in Table 1. Figures 5 and 6 show von Mises stresses in the 
solid and slotted channels, respectively, at the maximum applied load. As was 
discussed in Degtyarev and Degtyareva (2016), the realistic boundary 
conditions resulted in a relatively small (4% on average) reduction in the 
ultimate shear strengths of the solid channels when compared with the test 
setup boundary conditions. The ultimate shear strengths of the slotted channels 
reduced significantly more (39% on average) when the boundary conditions 
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test setup boundary conditions. The mean value of the VFEM-TS/VFEM-SF ratios 
was 1.03 with the coefficient of variation of 0.119.  
 
The analyses of the slotted simply supported channels with the free and 
restrained ends resulted in the average ultimate shear strengths that were 
respectively smaller and larger than the average strength of the channels with 
the realistic boundary conditions. The mean values and the coefficients of 
variations of the VFEA-R/VFEA-SF and the VFEA-R/VFEA-SR ratios were 1.23 and 0.159 
and 0.74 and 0.093, respectively, for the slotted channels. 
 
The obtained results show that analyses with the simplified boundary 
conditions with the free and restrained ends can reasonably well predict the 
ultimate shear strengths of the solid channels with the test setup and realistic 
boundary conditions. Analyses with the simplified boundary conditions with 
the restrained end can predict the ultimate shear strength of the slotted channels 
with the test setup boundary conditions with reasonable accuracy. The realistic 
boundary conditions of the slotted channels cannot be accurately simulated by 
the simply supported boundary conditions. This shows that boundary 
conditions affect the ultimate shear strength of the slotted channels more than 
the strength of the solid channels. 
 
The ultimate shear strengths of the solid channel models C-150-0.9-1, C-200-
0.9-1, and C-200-1.5-1 with all considered boundary conditions shown in Fig. 
5 were higher than the elastic shear buckling loads, which indicates that the 
models failed in elastic or inelastic buckling and exhibited the post-buckling 
strength due to tension field action. The von Mises stress contours clearly show 
the tension field action for those models. The solid channel model CS-150-1.5-
1 failed in shear yielding (see Fig. 5). It is also evident from Fig. 5 that channel 
models C-150-0.9-1and C-200-0.9-1 with the realistic boundary conditions 
failed under a combination of shear buckling and web crippling. 
 
The slotted channel models PC-150-0.9-2, PC-200-0.9-2, and PC-200-1.5-2 
with all considered boundary conditions shown in Fig. 6 failed in either elastic 
or inelastic buckling. They developed the post-buckling strength due to the 
tension field action, which can be seen in the von Mises contours in Fig. 6. The 
slotted channel model PCS-150-1.5-2 failed in shear yielding (see Fig. 6).  
 
Conclusions 
 
The effects of the boundary conditions on the elastic shear buckling loads and 
the ultimate shear strengths of CFS channels with solid and slotted webs were 
investigated numerically using non-linear finite element models developed in 
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ANSYS and validated against test data. The study showed that the elastic shear 
buckling load and the ultimate shear strength of the slotted channels are more 
sensitive to the boundary conditions when compared with the solid channels. 
 
The obtained results demonstrated that the simply supported boundary 
conditions with the free and restrained ends can simulate the test setup 
boundary conditions reasonably well for the solid channels only. The analyses 
using the simply supported boundary conditions with the restrained end can 
reasonably well predict only the ultimate shear strengths of the slotted channels 
with the test setup boundary conditions and the solid channels with the realistic 
boundary conditions. Therefore, the use of the simplified boundary conditions 
is not recommended in the FE simulations of the test setup and realistic 
boundary conditions of the slotted channels and for the simulations of the 
realistic boundary conditions of the solid channels.  
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Notation 
 

Vcr-R and Vcr-TS elastic shear buckling loads for the realistic and test setup boundary 
conditions, respectively. 

Vcr-SF and Vcr-SR elastic shear buckling load for the simply supported boundary 
conditions with the free and restrained ends, respectively. 

VFEA-R and VFEA-TS ultimate shear strength for the realistic and test setup boundary 
conditions, respectively. 

VFEA-SF and VFEA-SR ultimate shear strength for the simply supported boundary 
conditions with the free and restrained ends, respectively. 

Vtest shear strength obtained from tests. 
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Buckling Behaviour of Cold-Formed Steel Beams under 
Bending and Torsion 

Hong-Xia Wan1 and Mahen Mahendran2 

Abstract 

This research is concerned with the buckling behaviour and design of cold-
formed steel beams subject to combined bending and torsional actions. A finite 
element model considering the effects of initial geometrical imperfections and 
residual stresses was developed to simulate the combined bending and torsion of 
cold-formed steel beams. The finite element model was used to conduct analysis 
on cold-formed lipped channel sections, Z sections and hollow flange channel 
sections. Elastic buckling analysis was first conducted to study their buckling 
modes and buckling loads. Nonlinear analysis including the effects of large 
deformation and material yielding was conducted to obtain their ultimate 
buckling strength. The interaction between the ultimate bending and torsional 
moment capacities was studied and appropriate design rules were suggested. 
This paper presents the essential details of this research and the important results. 

Introduction 

Cold-formed steel beams are widely used in residential, industrial and 
commercial buildings due to their high strength-to-weight ratio, ease of 
fabrication, and economy of transportation and handling. Most of the cold-
formed steel sections are mono-symmetric or asymmetric, they are easily 
subjected to eccentric transverse loads, and they will thus be subjected to 
combined bending and torsional actions. 

There is very little guidance available for designing cold-formed steel beams 
against combined bending and torsion. The Australian standard for cold-formed 
steel structures AS/NZS 4600(SA, 2005) does not consider torsion, as well as 
the Australian steel structures code AS 4100(SA,1998) . In the 2007 edition of 
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the North American specification for cold-formed steel structural members(AISI, 
2007), newly developed design rules are included for laterally unrestrained 
flexural members subjected to both bending and torsional loading. It states that 
the flexural strength shall be reduced by multiplying it by a reduction factor R, 
which is defined as the ratio of the normal stress due to bending alone divided 
by the combined stress due to both bending and torsional warping at the point of 
maximum combined stress on the cross-section. Eurocode 3 Part 1.3 design 
rules for cold-formed steel structures (EN 1993-1-3, 2006) also says that where 
loads are applied eccentric to the shear centre of the cross-section the effects of 
torsion should be taken into account. It states that the total normal stress and the 
total shear stress due to both bending and torsion should be no more than the 
tensile yield stress and the shear yield stress respectively, and the complex stress 
of the total normal stress and the total shear stress should be no more than the 
tensile yield stress multiplied by 1.1. Inadequately, all these provided rules are 
only for the design of section strength under bending and torsion, there is no 
guideline provided for the design of member buckling strength under bending 
and torsion.  
 
The main objective of this research is to investigate the buckling behaviour and 
design of cold-formed steel beams subject to combined bending and torsion. 
Numerical models were developed to simulate the behaviour and strength of 
cold-formed steel beams under bending and torsion. Elastic buckling analysis 
was first conducted to study their buckling modes and buckling loads. Nonlinear 
analysis including the effects of large deformation and material yielding was 
conducted to study their ultimate buckling strength. The interaction between the 
ultimate bending and torsional moment capacities was studied and appropriate 
design rules were suggested. This paper presents the essential details of this 
research and the important results. 
 
Development of finite element model 
 
A simply supported cold-formed steel beam subject to a mid-span eccentric 
transverse load was used to conduct this research, as seen in Figure 1. Three 
different cold-formed steel sections, lipped channel section, lipped Z section and 
hollow flange channel section(known as LiteSteel Beam, LSB) were adopted, as 
seen in Figure 2. In this figure, “S” and “C” denote the shear centre and the 
centroid of a section, respectively, “P” is the applied transverse load at mid-span 
with an eccentricity “e” from the shear centre, which causes combined bending 
and torsion action. In this study the eccentric load at the mid-span is simulated 
through an equivalent loading condition, as illustrated in Figure 2, it is finally 
replaced by a transverse load (P) applied to the beam web and a couple formed 
by equal and opposite lateral loads (Q) applied to the beam flanges. 
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        (a) Full-span model            (b) Half-span model 
 

Figure 1: A simply supported beam subject to a mid-span eccentric load 
 

 
(a) Lipped channel section 

 
(b) Lipped Z section 

 
(c) Hollow flange channel section 

 
Figure 2: Eccentric load and Equivalent loading conditions 

 
Since the presence of symmetric conditions in loading, support and geometry of 
the beam, a half-span beam model(see Figure 1(b)) was developed by utilization 
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of symmetry. ANSYS Version 13.0 was used to create finite element models and 
to conduct analyses. The element named Shell 181 in ANSYS was used for 
finite element modeling. The Shell 181 element is suitable for analyzing thin to 
moderately-thick shell structures and is well-suited for linear, large rotation, 
and/or large strain nonlinear applications. Element widths equal to or less than 
5mm ( for the flats) or 2.5mm ( for the corners) and a length of 10mm were 
selected as the suitable mesh size to provide an accurate representation for the 
combined bending and torsion behaviour modelling of cold-formed steel beams. 
Linear elastic/perfect-plastic material model was adopted for all the elements, 
with the elastic modulus E and Poisson’s ratio taken as 200,000 MPa and 0.3, 
respectively, and the tangent modulus taken as zero.  
 
Figure 3 shows typical finite element models for cold-formed steel beams. The 
transverse load (P) acting on the web elements was uniformly distributed to 
every node along the web height, and the lateral load (Q) was applied to the 
outside surface elements of the top and bottom flanges, which was also 
uniformly distributed to every node along the flange width. The simple-support 
at beam end was modeled by applying appropriate constraints at the end nodes. 
These nodes were fixed against the in-plane vertical deflection (y direction), out-
of-plane horizontal deflection(x direction), and the rotation about longitudinal 
axis (z axis). While the nodes of loading section(symmetric section for the 
original full-span beam) were fixed against the longitudinal displacement (z 
direction), and the rotations about x axis and y axis.  
 

    
 

Figure 3: Typical finite element models 
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Initial geometric imperfections and residual stresses were both included in the 
finite element models. The first buckling mode obtained from elastic buckling 
analysis was used to input the initial geometric imperfection in the nonlinear 
analysis, and a maximum initial imperfection of L/1000 was adopted. In cold-
formed steel members residual stresses could be idealized as a summation of 
two types: flexural and membrane. Schafer and Pekoz (1998) presented flexural 
and membrane residual stress distributions for cold-formed steel sections. Based 
on their research, flexural residual stresses in lipped channel section and Z 
section were assumed to be 0.39fy , 0.23fy , 0.07fy, and 0.27fy along the web 
(stiffened element), the flanges(edge stiffened elements), the lips, and the 
corners respectively. Membrane residual stress was ignored since it is generally 
small in cold-formed steel members. LSBs have both flexural and membrane 
residual stresses due to the combined electric resistance welding and cold-
forming process used in production. Idealised flexural and membrane residual 
stress distributions in LSBs reported by Anapayan and Mahendran (2011)were 
used in the LSB models. The flexural residual stress was assumed to vary 
linearly across the thickness and five integration points through the element 
thickness were used to model the distribution of flexural residual stress, while 
the membrane residual stress was assumed constant across the thickness. In this 
study both flexural and membrane residual stresses were applied at element 
integration points by reading a user-defined initial stress file. 
 
The developed finite element model was validated by comparing its results with 
available and related experimental results. Put et al. (1999a, b) conducted tests 
on simply supported cold-formed lipped channel beams loaded concentrically 
and eccentrically at mid-span; Anapayan and Mahendran (2011) conducted tests 
on simply supported hollow flange channel beams subject to two quarter point 
loads applied through the shear center; Keerthan and Mahendran (2013) 
conducted shear tests on simply supported cold-formed lipped channel beams 
subject to a mid-span concentric load; Keerthan and Mahendran (2010) 
conducted shear tests and Keerthan et al.(2013) conducted combined bending 
and shear tests on simply supported hollow flange channel beams subject to a 
mid-span concentric load; Wan and Mahendran (2015) conducted bending and 
torsion tests on simply supported hollow flange channel beams subject to a mid-
span eccentric load. Finite element modeling and analysis were conducted on 
these available tests and the obtained numerical results( ultimate strength, load-
deflection curve and failure mechanism) agreed well with the test results. These 
comparisons have proved that the developed finite element model is able to 
simulate the bending and torsional behaviour of cold-formed steel beams, also to 
simulate their bending and/or shear behaviour (by assuming zero eccentricity), 
both with good accuracy. 
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Buckling analysis 
 
Table 1 and Table 2 list the dimensions of cold-formed steel sections used in this 
study. Based on the Australian steel structures code AS 4100 (1998), these 
sections can be classified as compact section (C10019, Z10019 and LSB 
150×45×2.0) and slender section(C10010, Z10010 and LSB 200×45×1.6) 
respectively.  The nominal material yield stress fy is 450 MPa for Sections 
C10019 and Z10019, and is 550 MPa for Sections C10010 and Z10010. For 
LSB sections, it is 450 MPa for the flange elements and 380 MPa for the web 
elements. 
 

Table 1: Dimensions of lipped channel and Z sections 
 

Section 
Section 

depth (mm) 
Flange width 

(mm) 
Lip depth 

(mm) 
Thickness 

(mm) 
Corner inner 
radius (mm) 

C10019 102 51 14.5 1.9 5 

C10010 102 51 12.5 1.0 5 

Z10019 102 51 14.5 1.9 5 

Z10010 102 51 12.5 1.0 5 

 
Table 2: Dimensions of hollow flange channel sections 

 

Section 
Section depth 

(mm) 
Flange width 

(mm) 
Flange depth 

(mm) 
Thickness 

(mm) 

LSB150×45×2.0 150 45 15 2.0 

LSB200×45×1.6 200 45 15 1.6 

 
There are two eccentric loading cases, namely, load applied on the two different 
sides of the shear center. Figure 4 shows the warping longitudinal stress 
distributions due to torsion and Figure 5 shows the loading cases and the signs 
of warping longitudinal stress. In Figure 5, the symbol “-” is used to indicate 
compression and the symbol “+” is used to indicate tension of the warping 
longitudinal stress, they are opposite for the two loading cases, which will lead 
to different combinations of bending and torsion. In this study the sense of load 
eccentricity is defined as negative for loading case A and is defined as positive 
for loading case B. For each case, different levels of combined bending and 
torsional actions were investigated by varying eccentricities, which including 0 
mm, ±5 mm, ±10 mm, ±20 mm, ±30 mm, ±40 mm and ±50 mm.  
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Figure 4: Warping longitudinal stress distributions 

 

 
(a) Loading case A : negative eccentricity 

 
(a) Loading case B : positive eccentricity 

 
Figure 5: Eccentric loading cases 

 
Elastic buckling analysis was first conducted to investigate the eigenvalues and 
eigenvectors of cold-formed steel beams subject to bending and torsion. Figure 6 
shows the first buckling modes for C10010, Z10010 and LSB200×45×1.6 with 
span L = 2m and e =±10 mm. For the C section, it can be seen obvious flange-
lip distortion in the overall lateral and torsional buckling mode under negative 
eccentricity loading case; However, for the Z section, flange-lip distortion is 
not easy to occur, local buckling in the upper web and top flange becomes its 
weakness under positive eccentricity loading case; The LSB section has two 
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torsionally rigid hollow flanges, its web is comparatively flexible and so web 
distortion is observed simultaneously in its overall lateral and torsional buckling 
mode.  
 

      
 

(a) e = -10mm 
 

     
 

(b) e = 10mm 
 

Figure 6: The first buckling modes 
 
Nonlinear static analyses, including the effects of large deformation and material 
yielding, were conducted to obtain the ultimate buckling strength. Figure 7 plots 
the results for the cold-formed steel beams with span L = 2m. In this figure Pe is 
the ultimate load with an eccentricity e and P0 is the ultimate load with zero 
eccentricity (applied through the shear center). For the C sections, negative 
eccentricities are more disadvantageous than positive eccentricities, due to the 
effects of flange-lip distortion occurred in the former condition; For the Z 
sections, positive eccentricities are more disadvantageous, due to the effects of 

web distortion 

local buckling

local buckling

web distortion 

flange-lip distortion 
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local buckling in the upper web and top flange, in some range, negative 
eccentricities could even help to improve the capacities; For the LSB sections, 
the ultimate loads of negative and positive eccentricity loading cases are close 
to each other, the effects of web distortion are not obvious.   
 

 
 

Figure 7: Pe / P0 versus eccentricity 
 
Figure 8 shows the typical von Mises stress distributions and Figure 9 shows the 
typical von Mises plastic strain distributions in the beams as they just reach the 
ultimate strength peak. The failure characteristics of cold-formed steel beams 
under bending and torsion can be clearly observed. The locations of von Mises 
plastic stress and strain are mainly decided by the combination of bending 
normal stress and warping normal stress. An exception is the Z section under 
negative eccentricity loading, it may fail as Figure 8(c)(and Figure 9(c)), or as 
Figure 10, the latter occurs after the absolute value of negative eccentricity 
exceeds 20mm, the beam deforms reversely and bottom flange-lip distortion 
occurs, and the strength will drop obviously after that( see Figure 7 the curves 
for Z sections).  
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      (a) C10010, e= -10mm              (b) C10010, e=10mm 
 

    
 
      (c) Z10010, e= -10mm             (d) Z10010, e=10mm 
 

     
 
      (e) LSB200×45×1.6, e= -10mm     (f) LSB200×45×1.6, e=10mm 
 

Figure 8: Von Mises stress distributions 
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        (a) C10010, e= -10mm             (b) C10010, e=10mm 
 

     
 
       (c) Z10010, e= -10mm             (d) Z10010, e=10mm 
 

        
 
      (e) LSB200×45×1.6, e= -10mm     (f) LSB200×45×1.6, e=10mm 
 

Figure 9: Von Mises plastic strain distributions 
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Figure 10: Von Mises stress and plastic strain distributions(Z10010, e=-30mm) 
 
Interaction equations 
 
Figure 11 shows the relationship between the ultimate bending and torsional 
moment capacities. In this figure, Mu=Pe L/4 is the ultimate bending moment 
and Tu=Pe e/2 is the ultimate torsional moment of an eccentrically loaded beam, 
Mb=P0 L/4 is the nominal member moment capacity under bending alone (zero 
eccentricity loading), and Tt is the nominal torsional moment capacity under 
torsion alone (subject to a mid-span torque). 
 

 
 

Figure 11: Mu / Mb versus Tu / Tt 
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The nominal torsional moment capacities are presented in Table 3. In this table, 
Tt1, Tt2, Tt3 and Tt4 correspond to the torsional moment when the warping 
longitudinal stress at Point 1, Point 2, Point 3 and Point 4(see Figure 4) has just 
reached the yield stress respectively. The maximum warping longitudinal stress 
will appear at Point 1 which means the first yielding in the section, therefore Tt1 
is the minimum torsional moment capacity. The absolute values of warping 
longitudinal stresses at Point 2, Point 3 and Point 4 are smaller and thus their 
yielding will occur lately, which contributes to greater Tt2 , Tt3 and Tt4 . 
 

Table 3: Torsional moment capacities 
 

Section L (mm) Torsional moment capacity ( kNm) 

  Tt1 Tt2 Tt3 Tt4 

C10019 2000 0.076 0.139 0.141 / 

C10010 2000 0.042 0.071 0.078 / 

Z10019 2000 0.095 0.134 0.278 / 

Z10010 2000 0.055 0.074 0.163 / 

LSB150×45×2.0 2000 0.718 1.076 1.209 1.321 

LSB200×45×1.6 2000 0.627 0.836 1.088 1.156 

 
In Figure 11 the data points are plotted with Tt =Tt1 for C sections, Tt =Tt3 for Z 
sections, Tt =Tt1 for LSBs, under negative eccentricity loading condition, and 
plotted with Tt =Tt3 for C sections, Tt =Tt3 for Z sections, Tt =Tt1 for LSBs, 
under positive eccentricity loading condition. It is seen that the straight line 
represented by Eq.(1) can give a good prediction for positive eccentricity 
loading case. While for negative eccentricity loading case, the data points of 
C10010 are far below the line (due to the effects of flange-lip distortion). In this 
condition, the curve represented by Eq.(2) can give a good prediction. It is 
suggested that for positive eccentricity loading case the linear interaction 
equation Eq.(1) can be used as design rule. For negative eccentricity loading 
case, it can be used except for slender C sections, in this condition, the nonlinear 
interaction equation Eq.(2) should be adopted to give a safe prediction. 
 

⁄ ⁄ 1                     (1) 
 

⁄ 1 ⁄                    (2) 
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Conclusions 
 
This paper has presented the essential details of a numerical study on cold-
formed steel beams subject to combined bending and torsional actions. The 
elastic buckling behavior and failure characteristics of C sections, Z sections and 
LSBs under negative and positive eccentricity loading cases were revealed.  
 
For C sections, negative eccentricity loading is more disadvantageous, due to the 
effects of flange-lip distortion. For Z sections, positive eccentricity loading is 
more disadvantageous, due to the effects of web buckling. In some range, 
negative eccentricity can help to improve the capacity of Z section, however, 
greater negative eccentricity can lead to flange-lip distortion and thus strength 
dropping. For LSBs, web distortion is observed, but capacity differences 
between negative and positive eccentricity loading cases are not obvious.  
 
In this study suitable torsional moment capacities were presented for buckling 
strength design of cold-formed steel beams subject to combined bending and 
torsion. The linear interaction equation Eq.(1) is suggested to be used as design 
rule, except for slender C sections under negative eccentricity loading, in this 
condition, the nonlinear interaction equation Eq.(2) should be adopted to give a 
safe prediction. 
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Finite element investigations of the effect of residual stress in 

cold-formed sigma beams 

Feiliang Wang1, Jian Yang2 

Abstract 

Press braking is a cold forming operation used to fold the angle along the flat 
sheet between the top punch and bottom die. The residual stress will be induced 
in this process as a result of plastic deformation. In the welding process, a 
dynamic thermal cycle is introduced to generate a non-uniformly temperature 
distribution on the heat affected zone (HAZ), and the residual stress also occurs 
in the process as a result of uneven cooling along the welding bead. The 
existence of residual stress can superimpose onto the external loadings to affect 
the stiffness and load resistance capacity of the structures. Therefore, a 
comprehensive understanding of the distribution and the impact of residual 
stress on the performance of cold-formed sections (CFS) is essential. 

 

The primary motivation of this paper is to provide a numerical solution for 
exploring the effect of press braking and welding residual stress on CFS sigma 
beams. Modelling methods were validated against the published experimental 
data and the influence of inputs to the model was discussed by parametrical 
studies. Based on the laboratory test results, the effect of residual stress on 
sigma beams was further investigated. It is found that the residual stress on the 
corner region will increase the failure load of sigma beams while the residual 
stress on the flat portion will decrease the failure load.  
 
Key words: Press braking; Welding process; Residual stress; Numerical 
solution; Laboratory test. 
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1 Introduction 

Residual stress is one of the main sources of material imperfections. As a 
manually manufacturing process, press braking is suitable for forming simple 
configurations such as angle and channel sections. The press braking induced 
residual stress can be achieved by analytical study [1-3], laboratory test [4] and 
numerical simulation [5]. Welding is a coupled thermal-mechanical process 
which involves short-term localized heating and metallurgical transformation. 
The welding residual stress is still not well understood as the stress distribution 
is of a time-dependent nature and thus the theoretical and experimental 
prediction of welding residual stress can be rather challenging. However, the 
numerical simulation was considered as an efficient tool in the area thanks to the 
“birth and death” technique [6-8]. The technique can deactivate and reactive the 
elements by multiplying their stiffness by a reduction factor for simulating the 
movement of the heat source. The extensive studies demonstrated that the 
experimental efforts in welding residual stress can be reduced by adequate 
application of FE technique [9, 10]. 
 
The presence of residual stress in a metal component can either be beneficial or 
detrimental to its load resistance capacity, depending on the magnitude and 
distribution of the stress. The effects of residual stress were veiled till the 
scholars from Lehigh University conducted a series of theoretical and 
experimental studies [11-13]. Then, [14] proposed a “second reduction method” 
to quantify the effect of residual stresses on the local buckling behaviour of a 
cold-formed section. More recently, numerical methods were widely introduced 
to study the influence of residual stress. [15] presented an advanced numerical 
approach for predicting the effect of cold work on press-braked thin walled steel 
columns and both residual stresses and the equivalent plastic strains were 
considered in the FE model. In the same year, [16] conducted a parametric study 
to explore the combined influence of isotropic hardening and kinematic 
hardening with residual stresses on the load-deformation responses of steel 
columns.  

2 Numerical studies of press braking and welding process 

2.1 Residual stress in channel section 

In the modelling process, the press braking was simplified as a pure bending 
operation, as shown in Fig. 1. The sheet was placed between a set of top punch 
and bottom die and the angle was then achieved along the sheet when the punch 
moves downward to meet the shape of the die. For verifying the FEM, the 
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numerical result was compared with the test data of specimen P16 (see Fig. 2) 
presented in [18]. In the test, the specimen was saw-cut from the column with 
press-braked channel sections and the yield strength was 219MPa.  

           

Figure 1: Press braking model     Figure 2: Geometric dimensions of P16            

An explicit analysis was conducted in the model for simulating the dynamic 
operation and shell element S4R and rigid element R3D4 were applied for the 
sheet and die, respectively. The hard contact was adopted as the normal 
interaction between tools and sheet to control the overclosure. There was no 
friction applied in the tangential direction on the interacted surfaces as it may 
cause extra surface stresses and strains. The meshed model and the stress 
contour are shown in the Figs. 3 and 4. 

                
        Figure 3: Mesh pattern                      Figure 4: Von mises Stress contour 

The comparison of normalized strain in the longitudinal direction between 
experimental and numerical results is demonstrated in Fig. 5. The sign 
convention of the FEM model was positive for tension and negative for 
compression.  

 
Figure 5: Comparison of the longitudinal strain 
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Fig. 5 shows a good agreement on the corner portion between FEM and test 
results, with the gaps at corner point 3 and 5 are 8.5% and 3.6%, respectively. 
The FEM achieved longitudinal strain is lower than laboratory measurement at 
flat portion because the effect of coiling-uncoiling was ignored in the model.  

2.2 Residual stress in sigma sections 

The same modelling method was further used for simulating the press braking of 
sigma section. The geometric dimensions of sigma sections are illustrated in 
Table 1. 

Table 1: List of sigma sections  

Section 
 

Depth 
mm 

Flange 
mm 

Lip 
mm 

Outer 
Web 
mm 

Thickness 
mm 

Corner 
radius 

mm 

Corner radius 
4mm  

20012 200 62.5 20 45 1.2 4 
20014 200 62.5 20 45 1.4 4 
20024 200 62.5 20 45 2.4 4 
24014 240 62.5 20 50 1.4 4 
24024 240 62.5 20 50 2.4 4 
30020 300 75 20 60 1.8 4 
30030 300 75 20 60 3.0 4 
 
The distribution of longitudinal and transverse residual stresses along thickness 
on the corner portion is presented in Fig. 6.  

 
(a) In longitudinal direction                      (b) In transverse direction 
Figure 6: Residual stress along thickness on the corner portion 

It can be seen from the figure that the residual stress in both directions is non-
linear along the shell thickness and asymmetric to the neutral axis. For the 
corner portion, the maximum longitudinal residual stress is 0.6  locates on the 
quarter of thickness, while the peak transverse residual stress is 0.9  on the 
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surface. A series of parametric studies were further conducted to investigate the 
sensibility of the stress result to the inputs. The press braking residual stress with 
yield strength 235MPa, 345MPa and 450MPa were compared in Fig. 7. Fig. 8 
shows the comparison of press braking residual stress with different sheet 
thicknesses. 

 
 (a) Longitudinal residual stress          (b) Transverse residual stress  

Figure 7: Residual stress with different yield strengths on the corner 

 
(a) Longitudinal residual stress        (b) Transverse residual stress 

Figure 8: Residual stress with different thicknesses on the corner 

According to Fig. 7, the transverse residual stress on the corner reduces 56% and 
25% with increasing yield strength from 235MPa, 345MPa to 450MPa. The 
effect of thickness on longitudinal residual stress on the corner portion is 
insignificant, as shown in Fig. 8, while the transverse residual stress decreases as 
the increase of shell thickness. 

2.3 Modelling of welding process 

In the thermal analysis, the specimen used in the model was a butt-welded sigma 
beam 20012, as shown in Fig. 9. It was assumed that the width of HAZ was 
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60mm on both sides of the weld bead and the effect of solid phase 
transformation and multi-pass welding was insignificant for thin walled section. 
A reference point and a reference path located on the middle of the HAZ were 
selected to characterise the distribution of temperature and residual stress (see 
Fig. 10). In the simulation, it was assumed that the temperature of parent metal 
was equal to ambient temperature (20℃) before welding, the entire heating time 
was 100s and the total cooling time was about 900s. The finite element 
formulation was based on the governing equation for transient nonlinear heat 
transfer (Eq. 1). 
 
                                       (Eq. 1) 

where ,  and  are the thermal conductivities in the x, y and z directions, 
respectively; T is the current temperature; Q is the heat generation;  is the 
density; C is the specific heat; and t is the time.  
 
 

 
Figure 9: Overall view of the model    Figure 10: Reference point & path 

As the material property is critical to the metallurgical conditions of the 
weldment and the results of thermal–mechanical analysis, the temperature-
dependent material properties listed in Fig. 11 were used in the model. 

 
Figure 11: Temperature-dependent material properties (ref. to [20]) 
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The Linear welding energy based on Eq.2 was applied in the model.  
 

                                                                                                   (Eq. 2) 

where Q is the net line energy; η is the arc efficiency; V is the travel speed; U 

and I are the arc voltage and current.  In the analysis, the current was 140A, 
voltage was 9.5V, heat torch was travelling at a speed of 80 mm/min, and  was 
0.5 for thin-walled sections [21].  

2.4 Result discussions 

The visualized temperature flow at 20s, 50s, 100s and 1000s, respectively, is 
demonstrated in Fig. 12.  

 
            a) 20s                b) 50s                    c) 100s                      d) 1000s 

Figure 12: Temperature contours during welding process 

It can be seen that the weldment is heated localized by the heat flux and 
temperature in the vicinity of the weld bead are non-uniformly distributed. The 
maximum temperature during welding is 1261  and then drop to 202  after 
cooling down. The numerical and experimental [20] obtained temperature 
history curves are illustrated in Figs. 13 and 14.  

  
Figure 13: Temperature history         Figure 14: Temperature development 
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Fig. 13 shows that the peak temperature during the welding process is 1261  at 
reference point and decreases to 280  at 400s due to convection. The 
temperature history of the reference point shows a good agreement when 
compared to the test curve, while the experimental curve increases to peak 
temperature around 1190  at 140s and then reduces to 240  at 400s. It can be 
seen from Fig. 14 that the range of HAZ caused by torch is 60mm in width and 
for areas far from the weld bead, the value of the temperature is reduced to zero.  
 
Mechanical analysis was conducted based on the achieved thermal field. It is 
assumed that the direction normal to the weld bead is the transverse direction 
and the direction of the weld bead is the longitudinal direction. Fig. 15 exhibits 
the distribution of longitudinal and transverse residual stress along the reference 
path after cooling down. 

 
        (a) Longitudinal residual stress                 (b) Transverse residual stress 

Figure 15: Residual stress along reference path after cooling down 

Fig. 15 shows that the maximum longitudinal stress is in tension and the max 
value is 300MPa. The transverse stress approaches to zero value almost 25mm 
away from the welding centreline; then tensile stress reverses to compressive 
residual stress.  

 
Figure 16: Longitudinal residual stress along the path 
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Fig. 16 shows that the maximum tensile stress and compressive stress decrease 
with the increases in shell thickness. The occurrence of this phenomenon 
because the increases in thickness will benefit to the convection process and thus 
lead to a lower temperature field and residual stress. 

3 Simply supported beams with the influence of residual stress 

The influence of welding and press braking process on the behaviour of simply 
supported single-span sigma beams was studied numerically herein. In the 
model, the preceding achieved distribution of press braking and welding residual 
stress was imported into FE program as initial stress. The numerical results were 
further validated by values obtained from laboratory test and analytical method.  

3.1 Purlin-sheeting bending test under UDL 

In the test, a vacuum box was introduced to simulate the uniformly distributed 
load (UDL) downward loading condition. A pair of simply-supported identical 
sigma purlins with 6m length was placed in parallel with opposing faces. The 
purlins were bolted by four steel angle cleats placed on two steel stands at both 
ends. The test setup is shown in Fig. 17. Each specimen was butt-welded 
together by three short press-braked components. The location of the weld bead 
is shown in Fig. 18.  The cross-sectional geometric dimensions of each specimen 
can refer to the Table 1.  

 
Figure 17: Overall test assemblies     Figure 18: The purlin with weld beads 

3.2 Strain hardening 

A series of tensile tests were conducted to obtain the stress-strain curve for each 
specimen. The strength enhancement during the press braking process was 
considered according to [22, 23]. The average yield strength  of a cross 
section due to cold working was determined by Eq. 3 and the modified equation 
for plotting a enhanced stress-strain curve was based on Eqs. 4 and 5:     

              ( )
2

ya yb u yb
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kntf f f f
A

= + −  and  
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f f
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+
≤                      (Eq. 3) 
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where Ag is the gross cross-sectional area;  is the basic yield strength; k is a 
numerical coefficient that depends on the type of forming; n is the number of 
90o bends in the cross section. 

                                                                            (Eq. 4) 

                                                                                (Eq. 5) 

Where σ and ε are engineering stress and strain, respectively; E0 is the material’s 
Young’s modulus; σ0.2 is the material’s 0.2% proof stress; n is a strain hardening 
exponent; Y is the yield strength. The tested and enhanced strength is 
summarised in Table 2. 

Table 2: Summary of the test results 

Specimen  

Associated 
section 

thickness 
(mm) 

Elastic 
modulus 

(GPa) 

0.2% Proof 
strength 
(MPa) 

Ultimate 
tensile 

strength 
(MPa)  

Enhanced 
yield 

strength 
(MPa) 

60-20012 1.2 203 178 344 206 
60-20014 1.4 207 185 350 219 
60-20024 2.4 213 201 352 255 
60-24014 1.4 207 185 350 214 
60-24024 2.4 213 201 352 252 
60-30020 2.0 201 175 347 210 
60-30030 3.0 206 186 324 233 

3.3 Numerical modelling 

In the simulations, the true material strength was adopted for the virgin model, 
and the enhanced strength was used for the models with the strain hardening 
effect. In the model, the vertical bolt supports were applied on the upper quarter 
of the circular arc of four bolt holes and lateral restraints were applied to all bolt 
holes as the bolt to beam interaction. The outerweb to flange junction line was 
fully restrained in lateral direction, represented the restraint of roof sheeting to 
the purlin. The UDL was applied along the middle of top-flange as the 
compression from sheeting (see Fig. 19). 

 
Figure 19:  Model of simply supported sigma beam 
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Both press braking and welding residual stresses were considered as the initial 
stress. The welding residual stress was only applied to the HAZ and the 
distribution of welding and press braking residual stress in the longitudinal 
direction is shown in Fig. 20.  

 
Figure 20: Combined residual stress 

The experimental, numerical and theoretical load to deflection curves are shown 
in the Fig. 21. The model with only welding residual stress (only W) and the 
model with combined press braking residual stress and welding residual stress 
(PB and W) are all presented in the figure.  
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Figure 21: Load to deflection curves  

By comparing the curves of virgin model and model with welding residual stress 
of specimen 60-20012 and 60-20014, it can be concluded that the effect of 
welding residual stress is insignificant on the load resistance capacity of sigma 
beam. Meanwhile, the load-deflection curves for all the specimens are enhanced 
by the effect of strain hardening during press braking. A good agreement can be 
found on the failure load of specimens between the theoretical curves and 
numerical curves. The theoretical curves show a greater stiffness than numerical 
curves when exceeding the yield stress due to the ignore of residual stress in the 
theoretical analysis.  
 
In order to further investigate the effects of cold work, the failure loads of 
theoretical model with virgin material ( ), theoretical model with press 
braking effect ( ), FE model with virgin material ( ) and FE model with 
effect of press braking and welding ( ) are summarized in Table 3. 

Table 3: List of failure loads 

Specime
ns 

Failure load (kN/m) 
       

60-20012 1.05 1.20 1.16 1.29 0.91 0.93 1.11 
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60-20014 1.11 1.48 1.34 1.41 0.83 1.05 1.05 

60-20024 2.45 2.89 2.59 2.76 0.95 1.05 1.07 

60-24014 1.69 1.90 1.68 1.79 1.00 1.06 1.07 

60-24024 3.15 3.63 3.57 4.18 0.88 0.87 1.17 

60-30020 3.39 3.58 3.56 4.08 0.95 0.88 1.15 

60-30030 5.40 6.51 5.28 6.81 1.02 0.96 1.29 

Mean  0.93 0.97 1.13 

S.D.  0.07 0.08 0.08 
 
It can be found in Table 3 that the ratio between theoretical and FEM values 
with virgin model is 0.93, and the ratio between theoretical and FEM values 
with press braking and welding effect is 0.97, which indicates the reliability of 
the numerical approach. The enhancement of press braking process on failure 
load is achieved by comparing the FE enhanced model ( ) with the virgin 
model ( ), and the average ratio is 1.13 with the maximum ratio is 1.29.  
 
For exploring the effect of residual stress, more sensitivity studies are conducted 
by FEM. In the study, the effect of strain hardening is ignored and the virgin 
model is compared with two different models: the model with residual stress on 
both corner portion and flat portion (C+F) and the model only with corner 
residual stress (C). The failure loads for each model are listed in Table 4. 

Table 4: List of failure loads 

Specimens 
Failure load (kN/m) 

     
60-20012 1.16 1.10 1.17 0.95 1.01 

60-20014 1.34 1.30 1.36 0.97 1.01 

60-20024 2.59 2.51 2.62 0.97 1.01 

60-24014 1.68 1.62 1.73 0.96 1.03 

60-24024 3.57 3.51 3.59 0.98 1.01 

60-30020 3.56 3.47 3.73 0.97 1.05 

60-30030 5.28 5.22 5.52 0.99 1.05 

Mean  0.97 1.02 

S.D.  0.01 0.02 
 
It can be found that the cold work in corner regions can enhance the load 
resistance of sigma beam, as the average enhancement of the failure load is 1.02. 
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While the residual stress in flat portions lead to reduce the failure load of each 
specimen. The average ratio of the failure load between the model with 
combined residual stress and virgin model is 0.97. The conclusion can be drawn 
that the effect of strain hardening is dominant for the enhancement of load 
resistance capacity of sigma beam with simply supported. The residual stress on 
the corner portion can increase the failure load while the cross-sectional residual 
stress will decrease the failure load. 

4 Conclusions 

The numerical results and discussions presented in the paper allow the following 
conclusions to be made: 
1. The effect of yield strength on residual stress in the longitudinal direction is 
insignificant, the transverse residual stress on the inside surface decreases with 
increasing yield strength.  
2. The welding process may introduce residual stress in weldment of the higher 
magnitude than the yield strength of the base material.  
3. The load-deflection response is sensitive to the effect of residual stresses. The 
existence of residual stress can decrease the stiffness of the sigma beam and the 
strain hardening can increase the peak load of sigma beams.  
4. It can be found that the cold work in corner regions can improve the load 
resistance capability of simply supported sigma beam while the residual stress in 
flat portions reduces the failure load of each specimen.  
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Incorporation of Elastic Local Buckling in a Plain Channel 
Section Beam Subjected to Double-curvature Bending: An 

Effective-width Approach 
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Abstract  

When electrical cabinets are subjected to lateral loads, such as earthquakes, the 
beams of the cabinet frame typically experience double-curvature bending 
deformation. These beams are usually constructed from cold-formed plain 
channel sections so they are vulnerable to elastic local buckling near their ends, 
where high stresses from applied loads are more likely to develop. To capture 
local buckling behavior, structural engineers typically use high-fidelity finite 
element models, but this approach can be complex and computationally 
expensive. A Timoshenko beam element model is simpler and less 
computationally costly but it is not capable of capturing local buckling behavior. 
In this paper, a hybrid Timoshenko beam element model augmented with 
nonlinear nodal springs is proposed to capture elastic local buckling. Local 
buckling behavior is computed using cross sectional moment-curvature data 
generated by an effective-width equation, and the results of computations are 
validated using a high fidelity finite element model (referred to as the 
benchmark model) of the beam. The resulting reduced rotational stiffness is 
incorporated in nonlinear elastic rotational nodal springs introduced at the beam 
ends. A comparison of the hybrid and benchmark model results is presented to 
confirm the accuracy of the hybrid model.  

Wei-Wen Yu International Specialty Conference on Cold-Formed Steel Structures 
Baltimore, Maryland, U.S.A, November 9 & 10, 2016
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Introduction 

The frames of electrical cabinets are usually constructed with thin-walled open 
section cold-formed steel members. Most of these members have a shear center 
that does not coincide with the sectional centroid, and as a result, any forces 
applied at the centroid of the cross section will not only deflect but also twist the 
member. This twisting in an open section will also cause axial deformation 
(warping) which may or not be restrained at the ends. The complexity of this 
situation also increases when the limit states of the members, such as elastic 
local/distortional buckling, are included in an analysis. Localized buckling can 
develop in these sections because the flanges and the webs are thin. Figure 1 
shows the differences between the local and distortional buckling modes for 
channel sections. For a plain channel section, the local and distortional buckling 
modes do not significantly differ. However, if additional lips at the end of the 
flanges are present, the two modes clearly differ. 

Figure 1 Differences between the local and distortional buckling modes in cold-
formed channel section 

The post-buckled strength of local and distortional buckling modes is commonly 
estimated by two general ways: the effective-width method and the direct 
strength method.  The effective-width method is based on the famous effective-
width equation first proposed by Von Karman (Von Karman et al., 1932). Since 
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the first formulation, the equation has undergone several modifications so that it 
is applicable to the design of relevant structural members. Although the 
effective-width method is useful for predicting local buckling behavior, it is 
deficient in predicting distortional buckling behavior. This deficiency is 
overcome by the application of the finite strip method, which has eventually 
become the basis for the development of the direct strength method. In the finite 
strip method, a structural member is divided into a number of longitudinal strips 
along the member. Each strip has a displacement function which is determined 
based on the boundary conditions of the member, and the strength of the 
member is predicted by solving the eigen-buckling equations of the system. 

In terms of contemporary structural analysis, the typical practice in modeling the 
localized buckling behavior of such frame member is to use shell elements in a 
finite element analysis. This technique may be effective for a very simple beam 
structure, but the computational complexity and cost increase sharply for more 
practical cabinet frames.  Several researchers have developed a simpler model 
that captures local buckling behavior. Davies et al. (Davies et al., 1994) and 
Silvestre et al. (Silvestre and Camotim, 2003) improved a framework called the 
generalized beam theory (GBT), which has the capability to capture the local 
and distortional buckling of frame members. However, because of the 
complexity in formulating the element, it has not been widely applied in 
commercial structural analysis software.  

To model a single member, Wang et al. (Wang and Errera, 1971) developed 
another model consisting of several rigid beam elements with rotational springs 
at their ends.  The rotational springs represented the moment-rotation 
relationship of the cross section and had nonlinear properties that were able to 
capture plasticity in the cross section and local buckling in the member. The 
ability to capture local buckling behavior was made possible by applying a 
modification of the effective-width equation proposed by Winter (Winter, 1947) 
to generate the moment-rotation relationship of the springs. The proposed 
method, validated by experimental results, exhibited close agreement with the 
experimental results with an error of less than 10%. Application of this method 
has also been recently adopted by Ayhan and Schafer (Ayhan and Schafer, 
2012). The only difference between the two methods is how the authors 
developed the moment-rotation relation of the springs. In their approach, Ayhan 
and Schafer developed an empirical method based on data fitting of the 
experimental and numerical tests of cold-formed steel members that fail in local 
and distortional buckling modes and linked the application of this method to 
ASCE 41 for earthquake analysis. Since the model considers distortional 
buckling behavior, their method may offer a more general application. Despite 
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the accuracy of this approach, applying the method to a more complex structure 
is tedious, as the development of a model may require extensive effort. 

This general approach can be simplified for application to a cabinet frame 
structure subjected to a specific type of analysis, such as a pushover analysis 
commonly employed in seismic design. In such an analysis, the framing 
members are subjected to double-curvature bending, and in this condition, high 
stress at the ends of the members is possible and may cause elastic local 
buckling of the members. In this paper, the elastic local buckling behavior is 
analyzed using an effective-width method, and the resulting loss in beam 
rotational stiffness is modeled using, a rotational spring introduced at each end 
of a beam member, which, in turn, is modeled using simple Timoshenko beam 
elements commonly found in commercial software. This approach requires less 
modeling effort than that using the combination of rigid beams and rotational 
springs. This approach is proposed for application to electrical switchboard 
cabinets that are subjected to possible elastic local buckling of the framing 
members.   

Elastic Behavior of a Member Subjected to Double-curvature Bending 

A cold-formed member constructed from a plain channel section (see Figure 2.a) 
is considered in this study. In the double-curvature bending condition, the 
member will initially behave in a linear elastic manner (see Figure 2.b). The end 
moments of the beam in this state induce a linear stress distribution throughout 
the web portion of the cross-section, while the flange of the beam is subjected to 
uniform stress (see Figure 3). The compressive stress in the members will 
eventually lead to localized buckling as the end moments increase. The moment 
that causes this behavior is called the “buckling moment” (Mcr). After local 
buckling occurs, the rotational stiffness of the beam ends will decrease (see 
Figure 2b). 
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(a)    (b) 
Figure 2 a) Dimensions of the plain channel section, b) Approximated sketch of 
the end-moment and end-rotation curve of plain channel member subjected to 

double-curvature bending 

Figure 3 Stress distribution in a channel section member subjected to double-
curvature bending 

Description of the Hybrid Timoshenko Beam Model 

The development of the hybrid model entails the selection of either the Euler-
Bernoulli or the Timoshenko beam model, which is commonly found in 
commercial finite element software.  The significant difference between these 
models is the ability of the Timoshenko model to capture the shear deformation 
effect in a short member. Because short members may be used in the 
construction of electrical cabinets, the Timoshenko beam model is selected for 

In-plane 
end-rotation

In-plane   
end-moment

KB1

KB2Mcr
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the hybrid model. The Timoshenko beam model is able to capture the initial 
stiffness of the member subjected to double-curvature bending. However, it does 
not have the capability to capture the local buckling behavior of the member. 
Therefore, a rotational spring is introduced at each end of the member to capture 
the stiffness-reducing effect caused by elastic local buckling of the member (see 
Figure 4a).  The rotational springs and the frame elements are arranged in series 
in direction 3 (in-plane direction), and the property of the springs is typically 
nonlinear (see Figure 4.b). 

(a)     (b) 
Figure 4 (a) Schematic of the hybrid model, (b) Approximate sketch of the 

moment-rotation properties of the rotational springs 

To identify the properties of the nonlinear springs employed in the hybrid 
model, a method that is based on the effective-width prediction of the behavior 
of the beam under double-curvature bending is proposed and investigated. In 
this method, the end-moment and end-rotation curve of a member subjected to 
double-curvature bending is calculated using an effective-width approach. 
Afterward, the properties (stiffness) of the springs can be generated as follows: 
for a series of connected springs, 

TSsB KKK

111 += Equation 1 

where 
KB = stiffness of the member subjected to double-curvature bending 
KS = stiffness of the nonlinear spring 
KTS = stiffness of the Timoshenko frame model 

Thus the required stiffness is given from the following equation 

BTS

BTS
s KK

KK
K

−
= Equation 2 
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This equation is used to find the initial stiffness (Ks1) and the post buckling 
stiffness (Ks2) of the springs shown in Figure 4b. In addition, the intersecting 
point between linear and nonlinear segments of the moment-rotation curve is 
determined by the buckling moment obtained from the effective-width 
prediction of the behavior of the member subjected to double-curvature bending. 
The method to calculate this behavior is explained in the following section. 

Effective-width Prediction of the Behavior of the Plain Channel Beam 
Subjected to Double-curvature Bending 

In the proposed hybrid model, effective-width prediction of the behavior of a 
plain channel member subjected to double-curvature bending is the basis for 
generating the properties of the rotational springs used with the finite element 
model (Timoshenko beam model) of the member. In this prediction, end-rotation 
of the beam is chosen as the dependent variable, given the known value of the 
end-moment. Figure 5 shows the general framework used to calculate the end-
rotation of the beam. The process is started by collecting the geometrical and 
material information of a member. Afterward, the buckling moment of the 
member and the cross-sectional moment-curvature data are calculated. More 
detailed descriptions of these processes are explained in the following 
paragraphs. After the cross section moment-curvature data is obtained, the end 
rotation of the beam is calculated by considering the strain energy of the 
member contributed by bending and shear deformations of the member. 
Inclusion of the torsional and warping strain energy may improve the result. 
However, based on trial calculations, the improvement is insignificant.     
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Figure 5 General framework used to calculate the end-rotation of cold-formed 
member subjected to double-curvature bending 

As shown in Figure 5, the calculation of the end rotation of the member requires 
first the calculation of the buckling moment of the member. The buckling 
moment is calculated based on buckling stress obtained from a plate model (see 
Figure 6) subjected to uniformly distributed forces at the transverse edges. These 
forces represent the compressive forces acting on the flanges of the member.  
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Figure 6 Plate model used to predict the local buckling stress of channel section 
member 

The buckling stress of the plate is then calculated based on the Rayleigh-Ritz 
approach using the assumed shape function shown in Equation 3. 
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where, 
u (x,y)  = the shape function of the plate model 
C1 = arbitrary constant defined the magnitude of the shape function 
a  = length of the plate model 
b  = width of the plate model

Once the buckling stress equation is obtained, it can be used to calculate the 
buckling moment of the member by: 1) formulating a buckling moment equation 
of the member based on the buckling stress equation of the plate model using 
beam theory, and 2) finding the optimum buckling moment from the resulting 
buckling moment expression. 

After the buckling moment and before the end-rotation of the member is 
obtained, the cross sectional moment-curvature curve is calculated. The slope of 
this curve is the beam bending rigidity, EI, which is the product of the modulus 
of elasticity, E, and the second area moment of the section, I (commonly called 
the moment of inertia). In general, the calculation of the beam rigidity can be 
divided into two parts: 1) calculation of beam rigidity prior to local buckling, 
and 2) calculation of beam rigidity after local buckling. Since the modulus of 
elasticity does not change in both parts, the beam rigidity is sensitive to the 
change in the sectional second area moment. The sectional second area moment 
prior to local buckling is based on the original geometry of the cross section. 
However, the sectional second area moment after local buckling is based on the 
effective geometry of the cross section. The effective geometry is obtained by 
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reducing the width, b, of the compressed flange using the modified effective 
width, be, given by:  

( ) max
2

22

112 σµ
π

−
= Etk

b c
e

Equation 4 

where 
be     = effective width of the element, 
kc     = numerical factor obtained from the buckling stress equation of the 

plate model, 
E     = Modulus of Elasticity, 
µ      = Poisson’s ratio, 
σmax = maximum elastic stress on the element, and 
t       = thickness of the element. 

The modified equation (see Equation 4) is formulated using the general buckling 
expression under the maximum elastic stress instead of the yield stress of the 
member as proposed in the original equation by Von Karman. This adjustment is 
based on the assumption that only elastic local buckling is possible for the 
framing members of the electrical cabinet due to dynamic loads. Figure 7 on the 
following page shows the flowchart used to calculate the cross sectional 
moment-curvature data. 

After the cross-sectional moment-curvature data is calculated, the end rotation 
of the member can be computed following the general framework shown in 

Figure 5. Once the end-moment and end-rotation of the beam are obtained, the 
properties of the rotational springs used in the hybrid model can be calculated 
using Equation 2. All of these processes can also be applied to a member 
constructed with a plain angle section. However, a slight modification is needed 
for the plate model used to predict the buckling moment of the member. The 
plate model shown in Figure 8, which is subjected to linearly varying distributed 
forces on the transverse edges, is needed. This plate model represents the stress 
distribution on the web/flange of the member subjected to double-curvature 
bending.  

260



Figure 7 Framework to calculate the cross sectional moment-curvature data 

Figure 8 Plate model used to predict the buckling stress of angle section member 

For this plate model, the shape function used to calculate the buckling stress is 
also modified to that shown in the following equation:  
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Note that only the x term of the function is changed. This change is related to the 
boundary conditions applied to the member to impose the unsymmetric bending 
condition. 

Validation of the Results of the Effective-width Prediction and the Hybrid 
Model 

Validation of the Results of the Effective-width Prediction 

The result of the effective-width prediction for a member subjected to double-
curvature bending is validated using the result of a finite element model of the 
member (referred to as the benchmark model). The finite element model of the 
member is developed using shell elements in ABAQUS (ABAQUS, 2012), and 
the nonlinear geometry effect (2nd order) is included in the analysis, such that it 
has the capability to capture the elastic local buckling of the member. The model 
is fixed at both ends and incremental in-plane rotations are applied to those ends 
to impose double-curvature bending on the member. Two beam specimens 
representing short (14-in. (0.36-m)) and long (36-in. (0.91-m)) beams are 
selected to validate the effective-width prediction. The members are constructed 
from the channel section shown in Figure 2a.  

The comparisons between the end-moment and end-rotation of the benchmark 
model and the effective-width prediction for the beam specimens are presented 
in Figure 9 on the following page. The results obtained from the analyses of the 
benchmark model without considering the nonlinear geometry effect (1st order) 
are also included in the plots to show the stiffness-reducing effect due to the 
elastic local buckling behavior. Based on these plots, the effective-width 
framework is able to predict the end-moment and end-rotation of the benchmark 
models under 2nd order analysis. 
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 (a) (b) 
Figure 9 Comparison of the end-moment and end-rotation curve between the 

effective-width prediction and the benchmark model for the two specimens: (a) 
14-in. (0.36-m) length, and (b) 36-in. (0.91-m) length. 

In addition to its accuracy, this effective-width framework also offers a possible 
physical explanation to the growth of distorted region on the beam due to local 
buckling as the end moments/rotations increase. The distorted region is defined 
as the portions of the beam over which the curvature no longer has a linear 
correlation with the moment distribution on the beam. Figure 10 shows the 
bending moment diagram and the distribution of curvature along the beam for a 
given end-moment applied to the 36-in.(0.91-m) beam specimen. Note that the 
bending moment varies linearly along the beam. However, there are some 
portions of the beam for which the curvature is no longer linear as the end 
moment is increased. This region will keep growing as the incremental end-
rotation/end-moment is increased. 

(a)       (b) 
Figure 10 (a) Bending moment diagram and (b) Curvature diagram of the 36-in. 

(0.91-m)-member in several values of end-moment 
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Validation of the Results of the Hybrid Model 

Next, the effective-width prediction results are used to generate the properties of 
the rotational end-springs incorporated in the hybrid Timoshenko beam element 
model. Afterward, this model is analyzed in ABAQUS under double-curvature 
bending condition. The results of this analysis are then validated to the results of 
the benchmark model under a similar loading condition.  Figure 11 shows the 
comparisons of the end-moment and end-rotation between the hybrid models 
and the benchmark models for the 14-in. (0.36 m) and 36-in. (0.91 m) 
specimens. The hybrid models shows very good agreement with the results 
obtained from the benchmark models. This result is expected because the 
properties of the springs are calculated based on an accurate prediction of the 
behavior of the member.  

(a) (b) 
Figure 11 Comparison of the end-moment and the end-rotation curve between 
the benchmark models and the hybrid Timoshenko beam models for the two 

specimens: a) 14-in. (0.36 m) length, and b) 36-in. (0.91 m) length. 

Conclusions and Future Works 

This study proposes a hybrid Timoshenko beam model augmented with a 
nonlinear rotational spring at each end of a beam member to capture elastic local 
buckling behavior in the member. The properties of the rotational springs are 
generated based on the predictions of the behavior of the beam member 
subjected to double-curvature bending using an effective-width approach. Both 
the effective-width prediction and the hybrid model are validated to the high 
fidelity benchmark finite element model of the beam member, and the 
validations confirm the accuracy of the prediction and the hybrid model. Future 
work will involve improvement of the hybrid model to handle beam members 
with a more complex cross section (e.g. lipped channel) and to predict the 
behavior of a cold-formed member under inelastic material condition. 
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Appendix - Notation 

a = length of plate model 
Aw = cross sectional area of the member contributed to shear 

deformation effect 
b = width of plate model 
E = modulus of elasticity 
fs = form factor of the cross sectional area for calculation of end-

rotation due to shear deformation effect. 
G = shear modulus 
h = height of the cross section 
I = moment of inertia 
KB = stiffness of the member 
Kb1, Kb2 = initial and post buckling stiffness of the member 
Ks = stiffness of the rotational spring 
Ks1, Ks2 = initial and post buckling stiffness of the rotational spring 
KTS = stiffness of the Timoshenko beam model 
M(x), m(x) = real and virtual internal bending moment, respectively 
Mcr = buckling moment of the member 
Mi = incremental moment 
Mmax = maximum moment 
NXmax, NXmin, NXY = maximum, minimum and shear distributed forces applied to 

the plate model, respectively 
u(x,y) = shape function of the plate model 
V(x), v(x) = real and virtual internal shear, respectively 
ybar = vertical distance of the centroid of the cross section measured 

from the bottom fiber of the cross section 

εci, εti = compressive and tensile strain at the extreme fiber of the cross 
section subjected to incremental moment i, respectively 

ϕ(x) = distribution of curvature along the member 
σci, σti = compressive and tensile stress at the extreme fiber of the cross 

section subjected to incremental moment i, respectively 
θbend = in-plane member end-rotation contributed by bending  
θshear = in-plane member end-rotation contributed by shear  
θtot = total in-plane member end-rotation contributed by bending and 

shear 
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TESTS OF COLD-FORMED FERRITIC STAINLESS STEEL BEAMS 

Lianghao Li1, Ben Young2 

Abstract 

Ferritic stainless steel is characterized by its low or even no nickel content, which provides a good 

alternative to a more commonly used austenitic stainless steel (with 8.0-10.0% nickel content) in structural 

application. The low nickel content attributes to low initial material cost and more stable price for ferritic 

stainless steel. A series of four-point bending tests was conducted on both square and rectangular hollow 

sections to investigate the flexural performance of cold-formed ferritic stainless steel hollow sections. The 

experimental results obtained from this test program and the available data in the literature on cold-formed 

ferritic stainless steel beams were used to assess the current design rules in the American Specification and 

direct strength method. It is shown that the current design specifications provide conservative predictions for 

the cold-formed ferritic stainless steel beams.  

Introduction 

Ferritic stainless steel, which has low or even no nickel content, is considered to be a good alternative to 

austenitic and duplex stainless steels with a lower initial material cost, which is largely a function of nickel 

content. Although the lower nickel content results in reduced ductility and corrosion resistance compared to 

austenitic stainless steel, but ferritic stainless steel offers higher 0.2% proof stress of 36.3-47.9 ksi (250-330 

MPa) in the annealed condition (CEN 2009). One of the main elements is chromium, which contributes to a 

minimum of 10.5% in ferritic stainless steel (Cashell and Baddoo 2014). The most commonly used ferritic 

grades are EN 1.4003 and EN 1.4016. Ferritic grades EN 1.4509, EN 1.4521 and EN 1.4621 can be obtained 

by adding stabilizing elements such as niobium and titanium. The ferritic grades with stabilizing elements 

offer similar corrosion resistance to austenitic grades EN 1.4301 (304) and 1.4401 (316) (Cashell and 

Baddoo 2014). The current European design specification (CEN 2006) only covers ferritic grades EN 

1.4003, EN 1.4016 and EN 1.4512. Generally, the ferritic stainless steel can provide an attractive, 

competitive and economical alternative for the use of stainless steel. 

1 PhD Student, The University of Hong Kong, <llh0503@hku.hk> 
2 Professor, The University of Hong Kong, <young@hku.hk> 

Wei-Wen Yu International Specialty Conference on Cold-Formed Steel Structures
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Ferritic stainless steel is widely used in the automotive and domestic appliance sectors. However, example of 

structural application of ferritic stainless steel is rare due to lack of knowledge and research. Afshan and 

Gardner (2013) carried out a series of tests on cold-formed ferritic stainless steel hollow sections. Tensile 

and compressive coupon tests, column tests and in-plane bending tests were conducted on both rectangular 

and square hollow sections covering ferritic grades EN 1.4003 and EN 1.4509. It was found that ferritic 

stainless steels share similar structural performance as the other commonly used stainless steel. Bock et al. 

(2015) conducted tests on cold-formed ferritic stainless steel slender sections. Square and rectangular hollow 

sections of ferritic grade EN 1.4003 were tested under pure compression and in-plane bending conditions. 

This paper is aimed to study the flexural behaviour of ferritic stainless steel hollow sections. A series of tests 

on both rectangular and square hollow sections of ferritic grade EN 1.4003 was conducted. The experimental 

data obtained from this study and tests conducted by previous researchers (Afshan and Gardner 2013; Bock 

et al. 2015) were used to compare with the current design methods provided in SEI/ASCE-8 (ASCE 2002) 

for stainless steel and also the direct strength method detailed in AISI Standard (AISI-S100 2012) for cold-

formed carbon steel.  

Experimental Investigation 

Test specimens 

Four-point bending tests were conducted on ferritic stainless steel rectangular and square sections. A total of 

ten specimens, including four rectangular hollow sections and one square hollow section, were tested in this 

study. The rectangular hollow sections were tested about both the major and minor axes. The nominal aspect 

ratio (D/B) of the specimens varied from 0.4 to 2.5, and the nominal thickness varied from 0.08 to 0.16 in. 

(2.0 to 4.0 mm). The specimens were labelled in a way that the nominal dimensions including the overall 

depth of web (D), overall width of flange (B), and thickness (t) of the cross-section as well as the length of 

specimens (L) can be identified. For example, the label 80×60×4L1400R refers to the specimen with 

nominal cross-sectional dimensions depth (D), width (B), thickness (t) equal to 3.15, 2.36 and 0.16 in. (80, 

60 and 4 mm). The symbol “L” refers to the length of the specimen and followed by the nominal length, and 

in this case the specimen length is 4.59 ft (1400 mm). If the test was a repeated one, a symbol of “R” is 

added in the label. The specimen labelling also reveals on which axis the specimen was bent. For example, 

the label 80×60×4L1400 indicates that the specimen was subjected to major axis bending. However, the 

label 60×80×4L1400 indicates minor axis bending of the same section. The measured specimen dimensions 

are shown in Table 1, where D and B are the outer cross-section depth and width, respectively, t is the plate 

thickness, ro and ri are the external and internal corner radii, respectively, and L is the member length. 
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Table 1: Measured dimensions of the beam specimens 

Specimen 

( D B t  ) 
D

in. (mm) 
B

in. (mm) 

t

in. (mm) 

or

in. (mm) 

ir

in. (mm) 
L

ft (mm) 

60×40×4L1200 2.36(59.9) 1.58(40.1) 0.15(3.84) 0.26(6.5) 0.15(3.8) 3.93(1199.3) 

40×60×4L1200 1.58(40.1) 2.36(59.9) 0.15(3.83) 0.26(6.5) 0.15(3.8) 3.93(1199.5) 

60×60×3L1200 2.37(60.2) 2.36(60.0) 0.11(2.71) 0.23(5.8) 0.15(3.8) 3.93(1199.5) 

100×40×2L1400 3.93(99.7) 1.58(40.2) 0.08(1.94) 0.22(5.7) 0.16(4.0) 4.59(1400.5) 

40×100×2L1400 1.58(40.2) 3.93(99.7) 0.08(1.94) 0.22(5.7) 0.16(4.0) 4.60(1401.5) 

80×60×4L1400 3.16(80.3) 2.37(60.1) 0.15(3.73) 0.30(7.6) 0.17(4.3) 3.94(1200.0) 

80×60×4L1400R 3.17(80.4) 2.36(59.9) 0.15(3.73) 0.30(7.6) 0.17(4.3) 3.93(1199.0) 

60×80×4L1400 2.36(60.0) 3.16(80.3) 0.15(3.73) 0.30(7.6) 0.17(4.3) 3.94(1201.0) 

120×80×3L1400 4.72(120.0) 3.15(79.9) 0.11(2.81) 0.25(6.3) 0.16(4.1) 4.59(1400.5) 

80×120×3L1400 3.15(79.9) 4.72(120.0) 0.11(2.81) 0.25(6.3) 0.16(4.1) 4.60(1401.5) 

Table 2: Measured material properties obtained from tensile coupon tests 

Section 

( D B t  ) 

Flat coupon Corner coupon 

0.2 u εf oE 0.2 u εf oE

ksi (MPa) ksi (MPa) (%) ksi (GPa) ksi (MPa) ksi (MPa) (%) ksi (GPa) 

60×40×4 69.5(479) 71.4(492) 9.9 29878(206) 83.1(573) 92.8(640) 13.1 30313(209) 

60×60×3 65.1(449) 67.2(463) 23.8 30458(210) 77.3(533) 83.7(577) 11.9 29008(200) 

80×60×4 65.4(451) 67.3(464) 22.1 30458(210) 86.0(593) 91.8(633) 13.0 30313(209) 

100×40×2 60.9(420) 65.6(452) 28.9 29008(200) 78.9(544) 85.0(586) 11.7 29008(200) 

120×80×3 55.3(381) 64.3(443) 29.7 29008(200) 81.1(559) 86.6(597) 11.5 29443(203) 

Material properties 

Tensile coupon tests were conducted to determine the material properties of the test specimens. The coupon 

specimens were extracted in the longitudinal direction of the beam specimens and also from the same batch 

of specimens as used in the four-point bending tests. Coupons taken from both the flat and corner regions of 

the ferritic stainless steel specimens were tested. The static 0.2% proof stress ( 0.2 ), static ultimate strength 
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(
u ), elongation at fracture (

f ), initial elastic modulus (
oE ) were determined and shown in Table 2 for 

both the flat and corner coupon tests. Necking effect was observed for all tests at the mid-length of coupon 

specimens after reaching ultimate strength. The static 0.2% proof stress (
0.2 ) is treated as the yield stress     

(
yf ) of this material. 

Flat coupon tests 

Flat coupon specimens were prepared in accordance with the American standard ASTM E8M-15 (ASTM 

2015) using a 0.5 in. (12.5 mm) wide coupon and a gauge length of 2.0 in. (50.0 mm). The locations of the 

flat coupon specimens in the cross-sections are shown in Fig. 1. MTS testing machine was used to conduct 

the coupon tests. The coupon specimens were tested under displacement control method. Tensile load was 

applied to the specimens in a constant rate of 0.002 in./mm (0.05 mm/min) from commencement of the test 

to proportional limit in order to obtain sufficient data to determine the initial elastic modulus (Eo), as 

recommended by Huang and Young (2014). Loading rate was changed to 0.031 in./mm (0.8 mm/min) after 

the proportional limit to ultimate strength and further followed by a higher loading rate of 0.079 in./mm (2 

mm/min) to fracture. The coupon tests were paused by 100 seconds near the 0.2% proof stress and ultimate 

strength to obtain the static load by allowing relaxation of plastic stress. 

Corner coupon tests 

Strength enhancement is introduced to the cold-formed stainless steel specimens during the cold-forming 

process. The corner regions of the specimen are subjected to higher degree of cold-forming compared with 

the flat portions. Hence, it is necessary to conduct corner coupon tests. As shown in Fig. 1, corner coupon 

specimens were taken near the welds of the sections and prepared with 0.16 in. (4 mm) width and 1 in. (25 

mm) gauge length. Two holes of 0.28 in. (7 mm) diameter were drilled at a distance of 0.79 in. (20 mm) 

from both ends of the specimens. The coupon specimen was loaded between two pins through the two drilled 

holes to ensure that the loading was applied through the centroid of the specimen. The coupon specimens 

were tested under displacement control method and tensile load was applied to the specimens by a constant 

rate of 0.002 in./mm (0.05 mm/min) from commencement of the test to proportional limit. After that the 

loading rate was changed to 0.031 in./mm (0.8 mm/min) until fracture of the specimens. Similar to the flat 

coupons, the corner coupon tests were paused by 100 seconds near the 0.2% proof stress and ultimate 

strength to obtain the static stress-strain relationship of the ferritic stainless steel material. 
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Figure 1. Locations of tensile flat and corner coupons in the cross-sections 

Test setup and operation 

A total of ten four-point bending tests were conducted to determine the bending moment capacities and 

curvatures of the specimens. The schematic view of the four-point bending test arrangement is shown in Fig. 

2. The beams were simply supported and were simulated by half-round and roller support conditions. Both

major and minor axes bending tests were conducted for rectangular hollow sections. The moment span and 

shear span were carefully designed so that no specimen was failed due to shear failure. The beam specimens 

were either 3.94 ft (1200 mm) or 4.59 ft (1400 mm) in length. For the 3.94 ft (1200 mm) long specimens, the 

moment span and shear span were 1.31 and 0.98 ft (400 and 330 mm), respectively. For the 4.59 ft (1400 

mm) long specimens, the moment span and shear span were 1.64 and 1.25 ft (500 and 380 mm), 

respectively. Load transferring plates of 3.54 in. (90 mm) width were placed between the beam specimen and 

roller/half-rounds to provide uniform distributed loads at the supports and loading points. Stiffening plates of 

3.54 in. (90 mm) width were clamped to the web of the specimens at the supports and loading points in order 

to prevent any possible web crippling. In addition, wooden blocks were inserted at the locations of supports 

and loading points to prevent any possible local bearing failure. Three displacement transducers (LVDTs) 

were placed at the bottom of the two loading points and mid-span of the specimen to record vertical 

displacements. The readings were used to obtain curvatures of the specimens. A servo-controlled hydraulic 

testing machine was used to apply compressive force to the specimen by displacement control method at a 

constant loading rate of 0.039 in./mm (1.0 mm/min). The static load was recorded by pausing the applied 

load for 100 seconds near ultimate load. 
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Figure 2. Schematic setup of bending test 

Test results 

All the specimens failed within the moment span and no shear failure was observed. Out-of-plane bending 

was not observed for all the tests. Experimental ultimate moments (
ExpM ) and the corresponding curvatures 

(
Exp ) of the tested specimens are summarized in Table 3. Experimental ultimate moment (

ExpM ) was 

calculated by multiplying half the ultimate static load to the level arm, which is the length of moment span. 

Curvature was obtained by calculating the radius ( r ) of the curved beam specimen from the readings of the 

three LVDTs located at the two loading points and mid-span of each specimen, such that 1/ r  . The 

weight of the half-round, roller and steel plates were included in the calculation of ultimate moment. The 

static moment-curvature curve for each specimen is plotted in Fig. 3(a). Normalized moment-curvature 

curves were obtained by dividing the experimental moments by plastic moment (
plM ) and dividing the 

experimental curvature by the curvature corresponding to the plastic moment (
pl ), as shown in Fig. 3(b). 
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Table 3: Results of four-point bending tests 

Specimen 

(D×B×t) 

ExpM

kip·ft 

(kNm) 

Exp

×10-4 ft-1 

(×10-4 mm-1) 

Failure 

mode 
R

Exp

yielding

M

M

Exp

inelastic

M

M

Exp

DSM

M

M

60×40×4L1200 5.3(7.2) 0.25(6.41) F >10.481 0.97 1.03 1.49 

40×60×4L1200 3.7(5.0) 0.25(6.38) F >7.351 0.93 0.91 1.31 

60×60×3L1200 5.1(6.9) 0.20(4.99) F 7.96 1.10 1.29 1.42 

100×40×2L1400 5.4(7.3) 0.07(1.83) F 2.67 0.97 0.74 1.37 

40×100×2L1400 2.2(3.0) 0.06(1.44) L+F -- 1.03 1.12 0.94 

80×60×4L1400 10.2(13.9) 0.20(4.99) F >14.041 1.02 1.43 1.47 

80×60×4L1400R 10.3(14.0) 0.19(4.94) F >14.031 1.03 1.42 1.49 

60×80×4L1400 8.0(10.8) 0.17(4.20) F 8.24 1.00 1.20 1.35 

120×80×3L1400 15.2(20.6) 0.05(1.32) F 2.82 1.05 0.80 1.50 

80×120×3L1400 9.6(13.0) 0.04(0.98) F 2.03 1.02 1.17 1.17 

60×60×2L17002 3.1(4.2) 0.04(1.07) -- -- 1.07 1.07 1.05 

70×50×2L17002 3.6(4.9) 0.03(0.87) -- 1.90 1.25 1.06 1.20 

50×70×2L17002 2.6(3.5) 0.05(1.17) -- -- 1.02 1.03 1.02 

80×40×2L17002 4.1(5.6) 0.03(0.80) -- 0.72 1.31 1.07 1.20 

40×80×2L17002 2.1(2.8) 0.06(1.44) -- -- 0.92 0.92 0.95 

100×40×2L17002 4.6(6.3) 0.02(0.63) -- -- 1.06 0.85 0.96 

40×100×2L17002 2.3(3.1) 0.06(1.40) -- -- 1.09 1.09 1.04 

120×80×3L15003 14.7(20.0) -- -- 1.45 1.29 1.09 1.17 

60×40×3L15003 3.9(5.3) -- -- >4.901 1.43 1.16 1.19 

80×80×3L15003 8.3(11.3) -- -- 1.86 1.26 1.09 1.14 

60×60×3L15003 5.8(7.9) -- -- 2.85 1.30 1.11 1.20 

Mean 1.29 1.12 1.17 

COV 0.145 0.096 0.101 

Note: 1 kNm = 0.737 kip·ft, 1 mm = 0.0394 in.
1 Full rotation capacity was not attained and R  based on maximum recorded deformation 
2 Data obtained from Bock et al. (2015) 
3 Data obtained from Afshan and Gardner (2013) 
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(a) Moment-curvature curves 

(b) Normalized moment-curvature curves 
Figure 3. Moment-curvature curves of tested specimens 
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Rotation capacity (R), as shown in Fig. 4, is a commonly used measure of ductility for flexural member. The 

rotation capacity (R) was evaluated according to Eq. 1.  
^

1
pl

pl

R



            (1) 

in which 
^

pl  is the total curvature of the specimen when the moment-curvature curve falls back below the 

plastic moment capacity (
plM ) as obtained from the test results, and 

pl  is the elastic part of the total 

curvature when 
plM  is reached on the ascending branch, defined as 

p

o

l

l

p

M

E I
  , where I is the moment of 

inertia of full section, and Eo is the initial elastic modulus. The theoretical plastic moment capacity (
plM ) 

was calculated by multiplying the plastic section modulus derived from full section with the 0.2% proof 

stress  0.2 obtained from the flat coupon tests. 

Full rotation capacities were not recorded due to excessive deformations in some of the beam tests, which 

resulted in termination of tests. However, ultimate load was reached for all beam tests in this study. For these 

cases, the maximum recorded curvatures were treated as 
^

pl and the corresponding rotation capacities (R) are 

shown in Table 3. 

Figure 4. Locations of 
pl , 

^

pl and definition of rotation capacity on moment-curvature curve of specimen 
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Comparison of Moment Capacities 

General 

The experimental ultimate moments (
ExpM ) obtained from this study together with the test data obtained 

from Afshan and Gardner (2013) and Bock et al. (2015) were used to compare with the nominal moment 

capacities (unfactored design moment capacities). The measured specimen dimensions and the material 

properties were used in calculating the design strengths. The flat coupon material properties were used. 

American Specification 

The SEI/ASCE-8 (ASCE 2002) Specification for the design of cold-formed stainless steel structural 

members provides two alternative procedures for the calculation of flexural capacity. The two procedures are 

based on the concept of initiation of yielding and inelastic reserve. Both the two methods are assessed in this 

study. 

The Procedure I design method in Clause 3.3.1.1 of the Specification is based on the concept of initiation of 

yielding, which assumes linear stress distribution through the cross-section and the maximum stress is the 

yield stress that reaches the extreme fiber of the cross-section. This procedure is similar to the treatment of 

Class 3 and Class 4 sections in European design code (CEN 2006). The effective section modulus should be 

first determined using the effective width method and then multiplied by the yield strength to obtain the 

moment capacity (
yieldingM ). This procedure is expected to provide conservative predictions, especially for 

the stocky sections, due to the fact that plastic design is not taken into consideration. The mean value of the 

experimental-to-design ratio ( /Exp yieldingM M ) is 1.29 and the corresponding COV equals to 0.145.  

The Procedure II design method also in Clause 3.3.1.1 of the Specification involves the concept of inelastic 

reserve, which allows the spread of plasticity through the cross-section. Elastic-plastic stress distribution is 

allowed for the stiffened elements, referred as internal elements in European design code (CEN 2006), with 

the depth of the compressed portion of the web to its thickness within the codified limit. The calculation of 

moment capacity (
inelasticM ) is based on the equilibrium of assumed stress distribution through the depth of 

the effective section by means of effective width concept similar to the Procedure I. The mean value of 

experimental-to-design ratio ( /Exp inelasticM M ) is 1.12 and the corresponding COV  equals to 0.096, which is 

less conservative and less scatter than the first procedure. 

Direct strength method 

The direct strength method (DSM) is detailed in Clause 1.2.2 of Appendix 1 in the North American 

Specification for the design of cold-formed steel structural members (AISI-S100 2012). The direct strength 

method  involves elastic stability of gross section. Compared with the effective width method that requires 
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the determination of the effective width for each element, whereas the direct strength method does not 

require iterative process. The determination of moment capacity requires the calculation of minimum of the 

nominal flexural strength for lateral-torsional buckling (
neM ), local buckling (

nlM ) and distortional 

buckling (
ndM ). In this study, all specimens were doubly-symmetric sections. The specimens did not fail by 

lateral-torsional buckling and distortional buckling. For fully braced beams, the maximum of the nominal 

lateral-torsional buckling strength (
neM ) should be taken as the yield moment (

yM ), as specified in Clause 

1.2.2.1.2 in Appendix 1 of the Commentary on the North American Specification (AISI-S100C 2012). 

Therefore, the nominal flexural strength (
DSMM ) is then calculated by Equation (2): 

  yM  for λl ≤ 0.776 

     y

y

crl

y

crl M
M

M

M

M
4.04.0

15.01









































  for λl > 0.776  (2) 

where /l y crlM M  . It is noteworthy that the yield moment (
y f yM S f ) is the moment capacity 

calculated based on the elastic section modulus (
fS ) of fully unreduced section multiplied by the yield 

strength (
yf ), which is the 0.2% proof stress. The critical elastic local buckling moment (

crlM ) was obtained 

from CUFSM (Schafer and Á dány 2006). The mean value of experimental-to-design ratio ( /Exp DSMM M ) is 

1.17 with the corresponding COV  of 0.101. 

Conclusions 

Experimental investigation of cold-formed ferritic stainless steel beams has been presented in this paper. A 

series of tests was conducted on square and rectangular hollow sections under four-point bending condition. 

Coupon tests were conducted to determine the material properties of the ferritic stainless steel specimens. 

The experimental results obtained from this investigation together with the available data in the literature on 

cold-formed ferritic stainless steel beams were used to assess the current design rules in the American 

Specification (ASCE 2002) and the direct strength method (AISI-S100 2012). The design methods were 

found to be conservative in predicting the moment capacities of the cold-formed ferritic stainless steel 

beams.  

= 
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Appendix. – Notation 

B Overall width of the flange 

COV Coefficient of variation 

278



D Overall depth of the web 

oE Initial Young’s modulus 

yf Yield strength 

  Curvature 

Exp Curvature corresponding to the experimental ultimate moment 

pl Curvature corresponding to the plastic moment (
plM ) on the ascending branch of moment-

curvature curve 
^

pl Curvature corresponding to the plastic moment (
plM ) on the descending branch of moment-

curvature curve 

L Length of specimen 

crlM Critical elastic local buckling moment 

DSMM Nominal moment capacity (Unfactored design moment capacity) predicted by the direct strength 

method 

ExpM Experimental ultimate moment  

inelasticM Nominal moment capacity (Unfactored design moment capacity) predicted by the approach by 

inelastic reserve capacity in American Specification 

ndM Nominal flexural strength for distortional buckling in direct strength method 

neM Nominal flexural strength for lateral-torsional buckling in direct strength method 

nlM Nominal flexural strength for local buckling in direct strength method 

plM Plastic bending moment 

yM Yield moment 

yieldingM Nominal moment capacity (Unfactored design moment capacity) predicted by the approach by 

initiation of yielding in American Specification  

R Rotational capacity 

r Radius of the curved beam specimen between the LVDTs located at the two loading points 

ir Inner radius 

or Outer radius 

t Thickness of specimen 

plW Plastic modulus of cross-section 

f Elongation at fracture 

0.2 0.2% tensile proof stress 

u Ultimate tensile strength 
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Lateral-Torsional Buckling of General Cold-Formed Steel Beams 
 

Robert S. Glauz, P.E.1 
 
Abstract 
 
The design of unbraced cold-formed steel beams must consider lateral-torsional 
buckling due to the low torsional stiffness associated with open cross-sections. 
The American Iron and Steel Institute incorporated design equations for the 
critical elastic lateral-torsional buckling stress in the North American 
Specification for the Design of Cold-Formed Steel Members. These equations are 
based on elastic theory for singly-symmetric and doubly-symmetric sections. 
However, the equation for point-symmetric sections is only a rough 
approximation. Furthermore, there are no provisions for lateral-torsional buckling 
of non-symmetric sections, or sections oriented to non-principal axes. This paper 
investigates and develops a general formulation of the lateral-torsional buckling 
equation to broadly cover all cold-formed steel cross-sections. 
 
Introduction 
 
Point-symmetric Zee sections are commonly used for structural members such as 
purlins, but the support directions do not typically align to the principal axes. The 
critical elastic lateral-torsional buckling stress is therefore more difficult to 
determine. The current AISI Specification provision for lateral-torsional buckling 
of point-symmetric sections is based on lateral-torsional buckling of a doubly-
symmetric shape, with a reduction factor of 0.5 to roughly approximate its 
behavior. Numerical analysis has shown that this reduction factor can actually 
vary from 0.3 to 1.0 depending on section geometry. 
 
It has also become more common in practice to use custom shapes as structural 
beams. This is often driven by application constraints, material optimization, and 
ease of material handling, among other factors. The current AISI Specification 
has no provisions for predicting the lateral-torsional buckling strength of non-
symmetric sections, or beams where the support directions do not align with the 
principal axes. 
 
                                                           
1 President/Owner, RSG Software, Inc., Lee’s Summit, Missouri, USA 

Wei-Wen Yu International Specialty Conference on Cold-Formed Steel Structures 
Baltimore, Maryland, U.S.A, November 9 & 10, 2016
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The lateral-torsional buckling equations used today for symmetrical shapes were 
originally investigated by Vlasov (1961) and Timoshenko (1961), and further 
studied by Peköz (1969). This paper expands on these developments to consider 
the more general case of any cold-formed steel cross-section at any orientation. 
Numerous symbols are used in this investigation which are defined at the end of 
this paper. 
 
Lateral-Torsional Buckling 
 
An unbraced member subject to a sufficient bending moment may exhibit global 
buckling where the compression portion of the member translates laterally and 
rotates. Considering such a member oriented to its principal axes u and v, with 
compression and bending applied to the ends of the member, the differential 
equations of equilibrium are given in Eq. 1, adapted from Vlasov (1961) and 
Peköz (1969). 
 
 �������� + ���� + ���� − ���	�� = 0 (1) 
 �������� + ���� − ���� − ���	�� = 0  
�������� − ��� − 2���	� − 2���	� − �
������ + ���� − 	���� − ��� − 	����� = 0  
 
where the end moments are the product of the axial force P and its biaxial 
eccentricities (Mu = Pev, Mv = Peu), and the following geometric properties of the 
cross-section are defined: 
 

 
� =
��

���
− �� 
� =

��

���
− �� (2) 

 
 �� = � ��� + � ���� �� = � ��� + � ���� (3) 
 
 �� = � ��� �� = � ��� (4) 
 
To solve these differential equations, the displacements u, v, and φ are assigned 
sinusoidal forms, which produce the following set of equations:  
 
 (�� − �)�	 + (��� − ���)�� = 0 (5) 
 ��� − ���� − (��� − ���)�� = 0  
 (�	� − ���)�� − (�	� − ��)�� + ���� − ��
�� − 2���	� − 2���	���	 = 0  
 
where 
 

 �� = ����� ��⁄  �� = ����� ��⁄  �
 =
	

��
�

��� + ����� ��⁄ � (6) 
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The solution to these simultaneous equations is obtained by equating the 
determinant of the coefficients on A1, A2, and A3 to zero: 
 

 � �� − � 0 ��� − ���
0 �� − � −��� + ������ − ��� −��� + ��� ��
 − ����� − 2
���� − 2
����

� = 0 (7) 

 
Expansion of this determinant gives the principal axis form of the flexural-
torsional buckling equation for a member subjected to eccentric axial load: 
 
 (�� − �)(�� − �)���
 − ����� − 2
���� − 2
����� 
 −��� − ������ − ����� − (�� − �)(��� − ���)

� = 0 (8) 
 
The development of a general form for non-principal axes would require a 
redevelopment of the differential equations of equilibrium to account for 
unsymmetric bending stress distributions in all three equations. This raises a 
number of complications which make it a difficult and undesirable approach. 
 
This investigation pursues the problem by adapting the principal axis solution to 
a rotated coordinate system. Figure 1 shows an arbitrary cross-section with 
centroid C and shear center O, oriented to orthogonal centroidal x and y axes 
which represent the directions of the supports. The principal u and v axes are 
oriented at an angle α measured counterclockwise from the x and y axes, 
respectively. 
 
If the axial force P is applied at point E on the y axis, the moment produced about 
the x axis is Mx = Pey. The eccentricities associated with point E relative to the 
principal axes are given by eu and ev as follows: 
 
 �� = � sin � �� = � cos� (9) 
 
The application of a pure moment Mx is achieved by increasing the eccentricity ey 
while decreasing the axial load P. Substituting the expressions in Eq. 9 into Eq. 8, 
and taking the limit as ey approaches infinity and P approaches zero produces the 
following equation in terms of Mx: 
 
 �����
��� − 2
������� cos� − 2
������� sin�  
 −����

� cos� � − ����
� sin� � = 0 (10) 
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This is rearranged into quadratic form as Eq. 11. It is then convenient to assign 
the nomenclature P'y and βy as defined in Eq. 12 to simplify the lateral-torsional 
buckling solution to Eq. 13. 
 

 
�� ���� ���� ���� �

����
��

� + 2�
� cos� + 
� sin���� − �
��� = 0 (11) 

 

 �
� =

����
�� ���� ���� ���� �

 
 = 
� cos� + 
� sin � (12) 

 

 �� = �
��−
 ± �


� + ����
/�
�� (13) 

 
Figure 1. Arbitrary cross-section oriented to x and y support directions 

 
The same approach can be used for developing the lateral-torsional buckling 
moment about the y axis. If point E is placed on the x axis, producing moment 
My = Pex, the following eccentricity relationships exist: 
 
 �� = �� cos� �� = −�� sin� (14) 
 
Substituting the expressions in Eq. 14 into Eq. 8, and taking the limit as ex 
approaches infinity and P approaches zero produces Eq. 15 in terms of My, with 
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the quadratic form shown as Eq. 16. Then assigning the nomenclature for P'x and 
βx as defined in Eq. 17 simplifies the My lateral-torsional buckling solution to 
Eq. 18. 
 
 �����
��� + 2
������ sin� − 2
������ cos�  
 −���

� sin� � − ���
� cos� � = 0 (15) 

 

 
�� ���� ���� ���� �

����
�

� + 2�
� cos� − 
� sin���� − �
��� = 0 (16) 

 

 ��
� =

����
�� ���� ���� ���� �

 
� = 
� cos� − 
� sin� (17) 

 

 � = ��
��−
� ± �
�

� + ����
/��
�� (18) 

 
Axis Transformation 
 
The expressions for P' and β in equations 12 and 17 use principal axis properties 
Iu, Iv, βu, βv, Uu, and Uv. Standard design procedures require section property 
calculations using the x and y axes which correspond to the member orientation. 
Numerical integration for both orientations requires additional effort, so the 
transformation of these properties between coordinate axes is beneficial. 
 
The definitions for P'y and P'x in equations 12 and 17 can be factored as shown in 
Eq. 19. The principal axis moments of inertia must then be stated in terms of x 
and y axes. 
 

 �
� =

���

��
����

�� ���� ���� ���� �
 ��

� =
���

��
����

�� ���� ���� ���� �
 (19) 

 
The location of each point in the cross-section is expressed in principal axis 
coordinates with the following relationships: 
 
 � = � cos� + � sin� � = � cos� − � sin � (20) 
 
Substituting Eq. 20 into the expressions for principal axis moments of inertia 
defined in Eq. 4 produces the following equations, where Ix and Iy are the moments 
of inertia about the x and y axes, and Ixy is the product of inertia. 
 
 �� = �� cos� � + � sin� � − 2�� sin� cos� (21) 
 �� = � cos� � + �� sin� � + 2�� sin � cos� (22) 
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From fundamental mechanics of materials, we recognize the following additional 
relationships derived using double-angle trigonometric identities and Mohr’s 
circle: 

 tan 2� =
�����
�����

 (23) 

 

 ��	, �� =
	

�
!�� + �" ± 	

�
�(�� − �)� + 4���  (24) 

 
 ���� = ��� − ���  (25) 
 
 �� = �� #$%� � + �� %&'� � � = �� #$%� � + �� %&'� � (26) 
 
Substituting the relationships in Eq. 25 and Eq. 26 into Eq. 19 provides the 
definitions for P'y and P'x in terms of x and y section properties. 
 

 �
� = � (1 −

����

����
) ��

� = �� (1 −
����

����
) (27) 

where 

 � =
�����

��
 �� =

�����
��

 (28) 

 
In a similar manner, the definitions for Uu and Uv can be stated in terms of x and 
y axis properties by substituting Eq. 20 into Eq. 3, which reduces to these 
straightforward transformations: 
 
 �� = �� cos� − � sin � �� = � cos� + �� sin� (29) 
where 
 �� = � ��� + � ���� � = � ��� + � ���� (30) 
 
Then utilizing Eq. 20 for the shear center coordinates (xo, yo) in Eq. 2, and 
substituting the results into the expressions for β in Eq. 12 and Eq. 17, provides 
the following relationships: 
 

 
 =
��

���
cos� +

��

���
sin� − �� 
� =

��

���
cos� −

��

���
sin� − �� (31) 

 
Further substitutions using Eq. 29 and the relationships in Eqs. 23 to 26 lead to 
these final forms in terms of x and y section properties: 
 

 
 =
����������
����������

� �
− �� 
� =

����������
����������

� �
− �� (32) 
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Specific Cases 
 
Principal Axes 
If the support directions align with the principal axes, Ixy = 0. This simplifies the 
general solution such that Py and Px may be used in place of P'y and P'x , and the 
properties βy and βx do not require transformation. The solution is reduced to the 
following: 
 

 �� = ��−
 ± �

� + ����
/�� � = ���−
� ± �
�

� + ����
/��� (33) 
 

 
 =
��

���
− �� 
� =

��

���
− �� (34) 

 
Point-Symmetric 
For point-symmetric sections, the shear center coincides with the centroid (i.e., 
xo = 0, yo = 0). Furthermore, the properties Ux and Uy are equal to zero, thus βy 
and βx are also zero. The lateral-torsional buckling equations take the following 
simpler form: 
 
 �� = ±����

��
  � = ±�����
��
 (35) 

 
Symmetric About X Axis 
For any section symmetric about the x axis, including doubly-symmetric sections, 
the properties Ixy, Ux, yo, and βy are all zero. Therefore the lateral-torsional 
buckling equation for bending about the x axis is simply: 
 
 �� = ±�����
  (36) 
 
Symmetric About Y Axis 
For any section symmetric about the y axis, including doubly-symmetric sections, 
the properties Ixy, Uy, xo, and βx are all zero. Therefore the lateral-torsional 
buckling equation for bending about the y axis is simply: 
 
 � = ±������
  (37) 
 
Fully Braced in X Direction 
If a member is fully braced in the x direction, P'y approaches infinity and 1/P'y 
becomes zero. The Mx

2 term in Eq. 11 drops out, thus reducing the solution to 
Eq. 38. There is only one root to the equation, so the sign of βy dictates the sign 
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of the torsional buckling moment. If βy is very small, the member is not subject 
to torsional buckling. 
 
 �� = ����
 2
*  (38) 
 
Fully Braced in Y Direction 
If a member is fully braced in the y direction, P'x approaches infinity and 1/P'x 
becomes zero. The My

2 term in Eq. 16 drops out, thus reducing the solution to 
Eq. 39. There is only one root to the equation, so the sign of βx dictates the sign 
of the torsional buckling moment. If βx is very small, the member is not subject 
to torsional buckling. 
 
 � = ����
 2
�⁄  (39) 
 
Stress Representation 
 
The above lateral-torsional buckling moment equations were developed using 
axial compressive forces. These can be restated using compressive stresses, where 
axial stress σ = P/A. 
 

 �� = ���	
 �−�	 ± ��	� + ����/��	
 � �	 = ����
 �−�� ± ���� + ����/���
 � (40) 

 

 +�
� = +� (1 −

����

����
) +��

� = +�� (1 −
����

����
) (41) 

 +� =
���

(� ��⁄ )�
 +�� =

���

(� ��⁄ )�
 (42) 

 

 +
 =
	

���
�

��� + ����� ��⁄ � (43) 

 
Principal Axes 
 
 �� = ���	�−�	 ± ��	� + ����/��	� �	 = �����−�� ± ���� + ����/���� (44) 

 
Point-Symmetric 
 
 �� = ±����+�

� +
 � = ±����+��
� +
 (45) 
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Symmetric About X Axis 
 
 �� = ±����+�+
 (46) 
 
Symmetric About Y Axis 
 
 � = ±����+��+
 (47) 
 
Fully Braced in X Direction 
 
 �� = ����+
 2
*  (48) 
 
Fully Braced in Y Direction 
 
 � = ����+
 2
�⁄  (49) 
 
Illustrative Example 
 
Given the eave strut section shown in Figure 2 with the section properties 
provided in Table 1, determine the positive and negative lateral-torsional buckling 
moments about the x and y axes for various unbraced lengths. 
 

 
Figure 2. Eave Strut 8x5x3x14ga 
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Table 1: Section Properties for Eave Strut 8x5x3x14ga 

A 1.162 in2 Ixy –1.754 in4 

Ix 12.317 in4 Iy 2.873 in4 

Ux 5.035 in5 Uy 9.637 in5 

rx 3.256 in ry 1.572 in 

xo –2.771 in yo –1.574 in 

Io 26.991 in4 ro 4.820 in 

J 0.001844 in4 Cw 22.89 in6 

 
 
Calculate βy and βx using Eq. 32 
 

 
 =
 !."�!# �.$%�#�(&.'�%)(�	.%!()

�[ 	�.�	%# �.$%�#� �	.%!(#�]
− �−1.574� = 2.059	&' 

 

 
� =
 &.'�%# 	�.�	%#�(!."�!)(�	.%!()

�[ 	�.�	%# �.$%�#� �	.%!(#�]
− �−2.771� = 4.744	&' 

 
Calculate positive Mx for L = 300 in 
 

 +
 =
	

	.	'�((.$�")�
�11300(0.001844) + ��29500(22.89) 300�⁄ � = 3.515	,%& 

 

 +�
� =

���&!""

(�"" 	.!%�⁄ )�
-1 −

(�	.%!()�

(	�.�	%)(�.$%�)
. = 7.299	,%& 

 
 �
 = 1.162�7.299��−2.059 + �2.059� + 4.820�(3.515 7.299⁄ )� = 15.85	�-�� 
 
Calculate positive My for L = 300 in 
 

 +
 =
	

	.	'�((.$�")�
�11300(0.001844) + ��29500(22.89) 300�⁄ � = 3.515	,%& 

 

 +��
� =

���&!""

(�"" �.�!'⁄ )�
-1 −

(�	.%!()�

(	�.�	%)(�.$%�)
. = 31.31	,%& 

 
 �� = 1.162�31.31��−4.744 + �4.744� + 4.820�(3.515 31.31⁄ )� = 9.73	�-�� 
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Calculate negative Mx for L = 480 in 
 

 +
 =
	

	.	'�((.$�")�
�11300(0.001844) + ��29500(22.89) 480�⁄ � = 1.843	,%& 

 

 +�
� =

���&!""

(($" 	.!%�⁄ )�
-1 −

(�	.%!()�

(	�.�	%)(�.$%�)
. = 2.851	,%& 

 
 �
 = 1.162�2.851��−2.059 − �2.059� + 4.820�(1.843 2.851⁄ )� = −21.36	�-�� 
 
Calculate negative My for L = 960 in 
 

 +
 =
	

	.	'�((.$�")�
�11300(0.001844) + ��29500(22.89) 960�⁄ � = 1.040	,%& 

 

 +��
� =

���&!""

(&'" �.�!'⁄ )�
-1 −

(�	.%!()�

(	�.�	%)(�.$%�)
. = 3.058	,%& 

 
 �� = 1.162�3.058��−4.744 − �4.744� + 4.820�(1.040 3.058⁄ )� = −36.45	�-�� 
 
Finite strip analyses for these cases produced the following results, which are 
within 0.5% of the calculated values: Mx = 15.85 k-in, My = 9.71 k-in, 
Mx = –21.34 k-in, My = –36.29 k-in. 
 
Impact on Design 
 
For singly-symmetric and doubly-symmetric sections, the AISI (2016) provisions 
are equivalent to Eqs. 44, 46, and 47. For point-symmetric sections, the AISI 
provisions apply a reduction factor of 0.5 to Eq. 46. However, this reduction factor 
should depend on the section geometry as reflected in Eq. 45. The ratio of Eq. 45 
to Eq. 46 quantifies the reduction factor as �1 − ��� ���⁄ . 
 
The AISI Design Manual (2013) contains several tables and charts for ordinary 
Zee sections. Table 2 below provides a comparison of the elastic buckling stress 
calculations for these sections, where one thickness was chosen to represent each 
size. The 0.5 reduction factor used in the current AISI provisions is very 
conservative for these sections, averaging 27% below the theoretical elastic 
buckling stress. The finite strip method (FSM) provided elastic buckling stresses 
which essentially match the theoretical values. 
 

291



Table 2: Lateral-torsional buckling stress for various Zee shapes 
Section 

(L = 180 in) 
Fcre 
(ksi) 

Fcre AISI 
(ksi) 

Fcre FSM 
(ksi) 

Fcre AISI  
/ Fcre 

Fcre FSM  
/ Fcre 

12ZS3.25x105 21.43 15.24 21.23 0.711 0.991 

12ZS2.75x105 16.52 11.50 16.42 0.696 0.994 

12ZS2.25x105 12.20 8.29 12.14 0.679 0.996 

10ZS3.25x105 22.09 16.15 21.95 0.731 0.994 

10ZS2.75x105 17.22 12.32 17.14 0.716 0.995 

10ZS2.25x105 12.90  9.01 12.86 0.698 0.997 

9ZS2.25x105 13.33  9.46 13.29 0.709 0.997 

8ZS3.25x105 22.96 17.32 22.83 0.755 0.994 

8ZS2.75x105 18.15 13.41 18.08 0.739 0.996 

8ZS2.25x105 13.86  9.99 13.84 0.721 0.999 

7ZS2.25x105 14.53 10.66 14.52 0.734 0.999 

6ZS2.25x105 15.44 11.54 15.45 0.747 1.000 

4ZS2.25x070 15.70 12.16 15.71 0.774 1.000 

3.5ZS1.5x070  9.00  6.86  9.01 0.762 1.001 

   Average 0.727 0.997 

   Std Dev 0.027 0.003 

 
The proportions of these Zee sections are similar, so the level of conservatism 
(22% to 32%) is fairly consistent. However, the product of inertia Ixy is sensitive 
to the web angle of a Zee section. 
 
Figure 3 illustrates how changes to the web angle for the sections in Table 2 
impact the ratio of the AISI buckling stress to the theoretical buckling stress, 
which varies by ±50%. For extreme cases where Ixy

2 approaches IxIy, the 
theoretical buckling stress approaches zero and the AISI provisions become very 
unconservative. 
 
The AISI Specification provides an alternate, simpler equation, which is also 
plotted in Figure 3. For Zee sections with 90° webs, this equation provides 
acceptable, conservative results. For other web angles, the alternate equation is 
either very conservative or very unconservative. 
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Figure 3. Comparison of AISI to theoretical elastic buckling stress for various Zee shapes 
 
For angles and any other sections not oriented to the principal axes, there are no 
AISI provisions for lateral-torsional buckling, although numerical analyses such 
as the finite strip method may be applied as a rational analysis. 
 
Conclusions 
 
A general lateral-torsional buckling equation has been developed which is 
applicable to any cold-formed steel shape. Two factors in this equation were 
defined using principal axis properties of the cross-section, but axis 
transformations developed herein permit calculation of these factors using x and 
y axis section properties which correspond to the member orientation. 
 
Buckling stress predictions were compared to numerical solutions for a variety of 
sections and lengths. The finite strip method provided very good agreement. Cases 
with large slenderness had extremely close results, whereas slight deviations were 
observed as slenderness decreased. 
 
This development fulfills a specific need in the industry to accurately predict 
lateral-torsional buckling strength for point-symmetric and non-symmetric 
shapes. The current AISI provisions for point-symmetric sections were shown to 
be overly conservative for common Zee shapes. For some less common point-
symmetric sections, the AISI provisions could be very unconservative. It is 
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therefore recommended that the AISI provisions be modified to use this elastic 
buckling equation. 
 
Currently AISI has no provisions for lateral-torsional buckling of non-symmetric 
shapes. The inclusion of this general buckling equation will benefit the engineer 
so that more complex rational methods such as finite strip analysis are not 
required. 
 
Notation 
 
A Area of cross-section 
Cw Torsional warping constant 
E Modulus of elasticity 
eu, ev Eccentricity of axial load relative to u and v axes 
ex, ey Eccentricity of axial load relative to x and y axes 
G Shear modulus of elasticity 
J Saint-Venant torsion constant 
Iu, Iv Moment of inertia about principal u and v axes 
Ix, Iy Moment of inertia about x and y axes 
Ixy Product of inertia about x and y axes 
L Beam length 
Mx, My Critical elastic buckling moment about x and y axes 
P Critical elastic buckling axial load 
Pu, Pv Critical axial load for elastic buckling about principal u and v axes 
Px, Py, Pt Critical axial load for elastic buckling about x axis, y axis, and 

torsion 
P'x, P'y Adjusted axial load for elastic buckling about non-principal x and y 

axes 
ro Polar radius of gyration about shear center 
rx, ry Radius of gyration about x and y axes 
Uu, Uv Geometric properties of cross-section as defined in Eq. 3 
Ux, Uy Geometric properties of cross-section as defined in Eq. 30 
u, v Principal coordinate axes of cross-section 
u, v, φ Buckling displacements in the u and v directions, and angle of twist 
u", v", φ" Second derivative of buckling displacements with respect to 

longitudinal axis 
u"", v"" , φ""  Fourth derivative of buckling displacements with respect to 

longitudinal axis 
uo, vo Principal axis coordinates of shear center relative to centroid 
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x, y Coordinate axes of cross-section corresponding to support 
directions 

xo, yo Coordinates of shear center relative to centroid 
α Angle of u principal axis measured counter-clockwise from x axis 
βu, βv Geometric properties of cross-section as defined in Eq. 2 
βx, βy Geometric properties of cross-section as defined in Eq. 32 
σex, σey, σt Critical axial stress for elastic buckling about x axis, y axis, and 

torsion 
σ'ex, σ'ey Adjusted axial stress for elastic buckling about non-principal x and 

y axes 
 
References 
 
American Iron and Steel Institute (2013), Cold-Formed Steel Design Manual, 2013 

Edition, Washington, DC, 2014. 
American Iron and Steel Institute (2016), North American Specification for the Design of 

Cold-Formed Steel Structural Members, 2016 Edition, Washington, DC, 2016. 
Peköz, T.B. and Winter, G. (1969), “Torsional Flexural Buckling of Thin-Walled Sections 

under Eccentric Load,” Journal of the Structural Division, ASCE, Vol. 95, No. ST5, 
May 1969. 

Timoshenko, S.P. and Gere, J.M. (1961), Theory of Elastic Stability, 2nd Edition, McGraw-
Hill, New York, NY, 1961. 

Vlasov, V.Z. (1961), Thin-Walled Elastic Beams, National Science Foundation, 
Washington, D.C., 2nd Edition, 1961. 

 
 

295



 



                       
   
 

 
 
 
 

Unconstrained cross-sectional shape optimisation of cold-
formed steel beams and beam-columns 

 

Bin Wang1, Benoit P. Gilbert2, Guillaume L. Bosco3, Hong Guan4  
and Lip H. Teh5 

 

Abstract 
 

This paper is focused on optimising the cross-sectional shapes of simply-
supported, singly-symmetric and open-section cold-formed steel (CFS) beams 
and beam-columns without manufacturing or assembly constraints. A previously 
developed Genetic Algorithm (GA) is used in this study. Fully restrained and 
unrestrained beams against lateral deflection and twist, as well as unrestrained 
beam-columns are optimised, of which the nominal member capacities are 
determined by the Direct Strength Method (DSM). The optimised cross-
sectional shapes are presented and the evolution of the unrestrained cross-
sectional shapes for various combinations of axial load and bending moment is 
analysed and discussed.  
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1 Introduction 
 

Cold-formed steel (CFS) members are widely used in the construction industry 
due to their ease of erection and low weight-to-capacity ratio (Hancock, 2007). 
They can be roll-formed to any desired cross-sectional shapes at room 
temperature. Shape optimisation of CFS profiles is therefore currently gaining 
significant interests. Nevertheless, research on shape optimisation of CFS 
members has been restricted to columns with unconstrained (Gilbert et al., 
2012b, Leng et al., 2011, Liu et al., 2004, Madeira et al., 2015, Moharrami et al., 
2014) and constrained (Franco et al., 2014, Leng et al., 2012, 2013, Leng et al., 
2014, Wang et al., 2016 (Submitted)) problems. Amongst limited effort on shape 
optimisation of CFS beams, the up-to-date research has been primarily 
performed by algorithms that aimed at optimising the dimensions of a given 
cross-section rather than optimising the cross-sectional shape itself, see Adeli 
and Karim (1997), Karim and Adeli (1999), Lee et al. (2005), Magnucki et al. 
(2006), Tran and Li (2006) and Ye et al. (2016) for instance. Shape optimisation 
of thin-walled beams has been performed to a certain extent (Gilbert et al., 
2012a, Sharafi et al., 2014), but only to maximise the second moments of area 
and minimise the cross-sectional area. 
 

This paper aims at optimising the cross-sectional shapes of unconstrained (no 
manufacturing and assembly constraints) CFS beams and beam-columns by 
minimising their cross-sectional area for various combinations of axial 
compressive load and bending moment. Unconstrained optimisation problems 
allow the “absolute” optimised cross-sectional shape to be discovered. This 
outcome will be used for future reference when comparing with the optimised 
cross-sectional shape taking into account manufacturing and assembly 
constraints. The present work thus represents an important step in shape 
optimisation of practical CFS sections. An existing shape optimisation algorithm 
(Gilbert et al., 2012 (a, b)) is used for this purpose. The Direct Strength Method 
(DSM) (Schafer, 2008) is used to calculate the nominal axial compressive and 
bending capacities of the cross-sections. The algorithm is applied to beams that 
are either fully restrained or free from lateral deflection and twist, and 
unrestrained beam-columns. The optimised cross-sectional shapes are presented 
and the evolution of the unrestrained shapes for various combinations of axial 
load and bending moment is analysed and discussed. 
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2 The shape-optimisation algorithm 
 

In this study, the “self-shape” optimisation-based genetic algorithm (GA) for 
CFS members, for which the principles are published in Gilbert et al. (2012a) 
and its applications to singly-symmetric and open cross-sections are presented in 
Gilbert et al. (2012b), is used. The three fundamental buckling modes, i.e. local, 
distortional and global, are incorporated into the algorithm through the use of 
the DSM. The rules to automatically determine the elastic local and distortional 
buckling stresses in compression in an open source CUFSM (Cornell University 
Finite Strip Method) (Schafer and Ádány, 2006), proposed by Gilbert et al. 
(2012b), have been verified for bending in Wang et al. (2016). When compared 
to a manual method (Schafer, 2006), the rules were found to accurately predict 
the elastic local and distortional buckling stresses for bending. More information 
and full details of the algorithm are available elsewhere (Gilbert et al., 2012a, 
Gilbert et al., 2012b, Wang et al., 2016).  
 

3 The optimisation problem 
 

 
Fig. 1: Optimisation problem 

 

The “self-shape” optimisation algorithm is used herein to optimise simply-
supported, free-to-warp, singly-symmetric and open-section beams and beam-
columns. The yield stress fy of the steel is 6.5×104 psi (450 MPa), the Young’s 
modulus E is 2.9×107 psi (200 GPa) and the shear modulus G is 1.2×107 psi (80 
GPa). The wall thickness t is taken as 0.047 inch (1.2 mm). The member is 
subjected to a compressive axial load N* and a uniform bending moment M* 
about its axis of symmetry (x-axis). The optimisation problem is illustrated in 
Fig. 1. 
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In reference to Fig. 1, the member length L is fixed at 59 inch (1.5 m) 
throughout this study. Five main load cases (LC1 to LC5) are considered to 
investigate the optimum cross-sectional shapes of simply-supported beams, 
columns and beam-columns: 

• LC1: Pure bending (N* = 0 and M* = 1844 lbf·ft (2.5 kN·m)) for a fully 
restrained beam, (i.e. Ley = Lez = 0, where Ley and Lez are the effective 
buckling lengths for bending about the y-axis and for twisting about the 
longitudinal z-axis, respectively). 

• LC2: Same moment as LC1 but for an unrestrained beam (i.e. Ley = Lez = 
L = 59 inch (1.5 m)). 

• LC3: Pure axial compression (N* = 16861 lbf (75 kN) and M* = 0) for an 
unrestrained column (i.e. Lex = Ley = Lez = L = 59 inch (1.5 m), where Lex 
is the effective buckling length for bending about the axis of symmetry). 
This case has already been investigated in (Wang et al., 2016 
(Submitted)) and the relevant outcomes are used in this study. 

• LC4: Combined actions for an unrestrained beam-column with dominant 
bending. N* is taken as 1/3 of the axial compressive load in LC3 and M* 

as 2/3 of the bending moment in LC2 (N* = 5620 lbf (25 kN) and M* = 
1232 lbf·ft (1.67 kN·m)). 

• LC5: Combined actions for an unrestrained beam-column with dominant 
axial compression. N* is taken as 2/3 of the axial compressive load in 
LC3 and M* as 1/3 of the bending moment in LC2 (N* = 11241 lbf (50 
kN) and M* = 612 lbf·ft (0.83 kN·m)). 

 

While 10 runs are performed for each of the abovementioned five load cases to 
verify the robustness of the algorithm, two additional load cases (LC6 and LC7), 
only analysed over 4 runs, are performed to better understand the optimised 
cross-sectional shapes:  

• LC6: Combined actions for an unrestrained beam-column with the same 
axial load as LC4 but a lower bending moment M* of 737 lbf·ft (1 
kN·m). 

• LC7: Combined actions for an unrestrained beam-column with the same 
axial load as LC5 but a lower bending moment M* of 369 lbf·ft (0.5 
kN·m). 

 
 
As cold-rolled steel coil can usually be ordered in any width, the approach is to 
mimic a CFS manufacturer who wants to optimise the cross-sectional shape 
against a given design loading combination. The unconstrained problem in the 
GA consists of minimising the cross-sectional area As subject to an inequality 

300



                       
   
 

penalty function on N* and M*. The interaction equation described in Clause 3.5 
of the Australian cold-formed steel design specification AS/NZS 4600 
(Standards Australia, 2005) is used as the penalty function, 
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where φc and φb are the capacity reduction factors, taken as 1.0 in this study. Nc 
and Mb are the nominal member capacities in compression and bending, 
respectively, evaluated in Wang et al. (2016). The fitness function f in the GA is 
then expressed as, 
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where Aref is the reference area of similar value to the optimised cross-sectional 
area. Aref is estimated herein with preliminary runs and is taken as 0.30 inch2 
(190 mm2) for LC1, 0.45 inch2 (292 mm2) for LC3 (Wang et al., 2016 
(Submitted)), and 0.40 inch2 (260 mm2) for other cases. α is a penalty factor 
(Holland, 1975). To avoid ill-conditioning problem, the AL constraint-handling 
method developed by Adeli and Cheng (1994) for the GA is used herein. The 
fitness function f becomes, 
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where γ is the penalty function coefficient, and µ is the real parameter associated 
with the penalty function. Initial values of γ = 2.0 and μ = 0 found in Gilbert et 
al. (2012a) are used. Similar to Gilbert et al. (2012a), the AL penalty increasing 
constant β and convergence rate ρ are set to 1.05 and 1.5, respectively.  
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In this study, 500 cross-sections are analysed per generation and the algorithm 
converges in less than 60 generations (see Section 4.1). Therefore, a maximum 
of 30,000 solutions in total are analysed per run, this is similar to the 40,000 
solutions analysed per run in Leng et al. (2011), Madeira et al. (2015). The 
design space is set to 100 mm × 100 mm. The cross-sections are composed of 
consecutive elements having nominal length of 4 mm. The probabilities of 
cross-over and mutation operators are equal to 80% and 1%, respectively. 
 

4 Results and discussions 
 

4.1 Convergence 
 

Fig. 2 shows the average fitness functions f in Eq. (2) for load cases 1 to 5, with 
α = 10, times Aref /As over 10 runs. Load cases 6 to 7 present similar average 
fitness functions to the ones presented in Fig. 2. The ratio Aref /As, where As is the 
optimised cross-sectional area reported in Section 4.2, enables comparisons of 
the convergence performance among the five load cases. The algorithm always 
converges to an optimised solution for all load cases in about 50 generations. 
The convergence rates of beams and beam-columns are similar to each other.  
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(1) LC3 is given in Wang et al. (2016 (Submitted)). 

 
Fig. 2: Average fitness f times Aref/As over 10 runs 

 

4.2 Average results 
 

Table 1 summarises the average results over 10 runs for load cases 1 to 5 and 4 
runs for load cases 6 to 7. The algorithm consistently satisfies the strength ratio 
criteria and converges to consistent solutions with small CoVs on the cross-
sectional area (maximum of 0.34% for LC4). This confirms the robustness of the 
algorithm. For LC1 and LC2 (pure bending), the average nominal member 
moment capacity Mb is constantly equal to the target bending moment M* = 1844 
lbf·ft (2.5 kN·m) with a maximum CoV of 0.42% for LC2. The average 
optimised cross-sectional area (As = 0.29 inch2 (189.2 mm2)) of the fully 
restrained beams for LC1 is about 20% smaller than the same of the unrestrained 
beams for LC2 (As = 0.37 inch2 (235.2 mm2)). For the beam-columns (LC4 to 
LC7), the interaction equation in Eq. (1) provides an average action-to-capacity 
ratio of 1.00 with a maximum CoV of 0.45% for LC7. 
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Table 1: Average results for all load cases 

Load 
cases 

Cross-sectional 
area 

Nominal 
member 
capacity 

in compression 

Nominal 
member 
moment 
capacity 

Combined 
Capacity 

 ratio 

As 
(inch2) 
(mm2) 

CoV 
(%) 

Nc 
(lbf) 
(kN) 

CoV 
(%) 

Mb 
(lbf·ft) 
(kN·m) 

CoV 
(%) 

N*/Nc 
+ 

M*/Mb 

CoV 
(%) 

LC1(2) 
0.29 

(189.2) 
0.19 - - 

1,844 
(2.50) 

0.39 - - 

LC2(2) 
0.37 

(235.2) 
0.18 - - 

1,844 
(2.50) 

0.42 - - 

LC3(1,2)  
0.45 

(289.1) 
0.31 

16,863 
(75.01) 

0.05 - - - - 

LC4(2) 
0.41 

(264.4) 
0.34 

12,454 
(55.40) 

2.94 
2,242 
(3.04) 

2.47 1.00 0.38 

LC5(2) 
0.44 

(281.8) 
0.33 

15,460 
(68.77) 

2.20 
2,286 
(3.10) 

6.49 1.00 0.36 

LC6(3) 
0.37 

(237.6) 
0.30 

10,337 
(45.98) 

1.25 
1,623 
(2.20) 

1.32 1.00 0.16 

LC7(3) 
0.44 

(266.0) 
0.12 

13,974 
(62.16) 

1.26 
1,940 
(2.63) 

4.70 0.99 0.45 

(1) LC3 is given in (Wang et al., 2016 (Submitted)). 
(2) Average over 10 runs, and (3) Average over 4 runs. 

 

4.3 Cross-sectional shapes 
 

Fig. 3 shows the fittest beam cross-sections under load cases 1 and 2. The 
optimised cross-sectional area As is used to determine how fit a cross-section is. 
As seen in Fig. 3 (a), the fully restrained beams converge to a slender “I” section 
type with a curved web. The parallel flanges are short and without lip stiffeners. 
The curved web enhances the local buckling capacity of the web and maximises 
the second moment of area by moving the material away from the neutral axis. 
The section in Fig. 3 (a) is 4.7 inch (120.3 mm) deep, 0.67 inch (17.1 mm) wide 
and therefore has a depth-to-width ratio of 7.0. The unrestrained beams converge 
to a largely open and stocky “Cee” section type in Fig. 3 (b). When compared to 
the restrained beam, this shape allows significantly larger (i) second moment of 
area about the y-axis thereby enhancing the flexural buckling load about this 
axis and (ii) warping constant which enhances the torsional buckling load. The 
difference in torsional constant between the two sections is about 20 %. The 
section has short lip stiffeners of about 0.71 inch (18 mm), approximately 
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orientated at 45° to the horizontal flange with the depth of 3.8 inch (95.9 mm), 
the width of 2.4 inch (59.6 mm) and therefore the depth-to-width ratio of 1.6. 
This corresponds to a depth-to-width ratio 77% less than the section in Fig. 3 
(a). More optimised cross-sectional shapes are presented in Wang et al. (2016). 
 

  
 (a) As = 0.29 inch2 (b) As = 0.36 inch2 
 (188.55 mm2)  (188.55 mm2)  
 Ms = 1,837 lbf·ft Mb = 1,844 lbf·ft 
 (2.49 kN·m) (2.50 kN·m)  
 M*/Ms = 1.01 M*/Mb = 1.00  

Fig. 3: Fittest beam cross-sections, (a) LC1 and (b) LC2  
 

Fig. 4 presents the fittest column and beam-column cross-sections for LC3 to 
LC5. The cross-section (column) in Fig. 4 (a) is extracted from Wang et al. 
(2016 (Submitted)) and is a closed “Cee” type cross-section. This section has a 
depth of 3.7 inch (93.3 mm), a width of 2.0 inch (50.6 mm) and therefore a 
depth-to-width ratio of 1.8. On the other hand, “Cee” type cross-sectional shapes 
(Fig. 4 (b, c)) are observed for the fittest beam-column sections. When the 
design axial load N* increases and the design bending moment M* decreases 
(from LC4 (Fig. 4 (b)) to LC5 (Fig. 4 (c))), the cross-section tends to close up. 
The cross-sectional shape, with the depth of 4.0 inch (101.1 mm), the width of 
2.0 inch (49.4 mm) and thus the depth-to-width ratio of 2.1 in Fig. 4 (c), is 
therefore stockier than the one in Fig. 4 (b). The fittest cross-sectional area As = 
0.44 inch2 (280.75 mm2) in Fig. 4 (c) is however 6.3% larger than the one shown 
in Fig. 4 (b) where As = 0.41 inch2 (263.10 mm2). More optimised cross-sections 
can be found in Wang et al. (2016). 
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 (1)(a) As = 0.44 inch2 (b) As = 0.41 inch2  (c) As = 0.44 inch2 
 (286.68 mm2) (263.10 mm2) (280.75 mm2) 
 Nc = 16,778 lbf Nc = 12,338 lbf  Nc = 15,743 lbf 
 (74.63 kN) (54.88 kN) (70.03 kN) 
 N*/Nc = 1.01 Mb = 2,235 lbf·ft  Mb = 2,146 lbf·ft 
  (3.03 kN·m)  (2.91 kN·m) 
  N*/Nc+M*/Mb = 1.01 N*/Nc+M*/Mb = 1.00 

(1) LC3 is given in Wang et al. (2016 (Submitted)). 
Fig. 4: Fittest column cross-section (a) LC3, beam-column cross-section (b) LC4 

and (c) LC5 
 

Fig. 5 presents the fittest beam-column cross-sections for LC6 and LC7. The 
fittest cross-sections for LC6 and LC7 have similar cross-sectional shapes to the 
ones presented in Fig. 4 (b) (LC4) and Fig. 4 (c) (LC5), respectively. Therefore, 
decreasing the bending moment, for a constant axial load, did not seem to 
impact the overall cross-sectional shape for these particular cases. 
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 (a) As = 0.37 inch2 (b) As = 0.41 inch2   
 (236.8 mm2) (265.6 mm2)  
 Nc = 10,229 lbf Nc =  13,758 lbf   
 (45.5 kN) (61.2 kN)  
 Mb = 1,645 lbf·ft Mb = 2,014 lbf·ft  
 (2.23 kN.m) (2.73 kN.m) 
 N*/Nc+M*/Mb = 1.00 N*/Nc+M*/Mb = 1.00  

Fig. 5: Fittest column cross-section (a) LC6 and (b) LC7 
 

4.4 Evolution of the optimised cross-section from column to beam 
 

The evolution of the average results (see Section 4.2) and the fittest shape (see 
Section 4.3) for the unrestrained cases is summarised in Fig. 6. As the design 
bending moment M* increases from zero to 1844 lbf·ft (2.5 kN·m) and the 
design axial compression N* decreases from 16861 lbf (75 kN) to zero, the 
average cross-sectional area As decreases by 18.6% from 0.45 inch2 (289.1 mm2) 
to 0.37 inch2 (235.2 mm2) and the fittest cross-sectional shape gradually opens 
up as described in Section 4.3. Specifically, the cross-sectional area only 
decreases by 2.5% between LC3 and LC5 where the design axial load N* 
decreases by 33%. This result implies that the value of the design moment (M* = 
612 lbf·ft (0.83 kN·m)) in LC5 is not large enough to significantly influence the 
cross-sectional shape. However, the reduction in the cross-sectional area 
increases to 6.3% when the design axial load N* is further reduced from 11241 
lbf (50 kN) to 5620 lbf (25 kN) between LC5 and LC4, and to 10.8% between 
LC4 and LC2 when N* is reduced from 5620 lbf (25 kN) to zero. 
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LC3 is given in Wang et al. (2016 (Submitted)). 

 
Fig. 6: Evolution of average cross-sectional areas and shapes for the 

unrestrained load cases 
 

5 Conclusions 
 

This paper aims to optimise the cross-sectional shapes of CFS beams and beam-
columns. Manufacturing and assembly constraints were not included in this 
study. Various load combinations of axial compressive load and bending 
moment were used to perform shape optimisations of simply-supported 1.5 m 
long singly-symmetric and open sections. Fully restrained beams and 
unrestrained beams and beam-columns against lateral deflection and twist were 
considered. The main conclusions can be summarised as follows: 

• The robustness of the algorithm is demonstrated by consistent optimised 
solutions over 10 runs. 

• The algorithm was able to converge to optimised cross-sectional shapes 
of CFS members subject to pure bending and combined axial 
compression and bending. 

• An optimised slim “I” type cross-sectional shape with a curved web was 
typically found for the fully restrained beams, and a stocky and largely 
open “Cee” like cross-sectional shape with lip stiffeners for the 
unrestrained beams. For the unrestrained beam-columns, “Cee” type 
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cross-sectional shapes were also found, with the cross-section tending to 
close up when the axial compressive load was increased and to open up 
when the bending moment was increased. 

• The unconstrained algorithm for shape optimisation of CFS beams or 
beam-columns allows the cross-section to be able to freely converge to 
any cross-sectional shape. This provided a reference cross-sectional 
shape for future comparison with the new shapes optimised with 
manufacturing and assembly constraints.  
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Abstract 

Cold-formed stainless steel sections are becoming more widely used in the residential and commercial 
sectors due to their high corrosion resistance and high strength-to-weight ratio. However, their susceptibility to 
web crippling at points of concentrated loading is well-known to be an important design issue. In addition, web 
openings are also become popular, as they improve ease of installation of services. This paper presents the results 
of an investigation into the effect of web crippling on cold-formed duplex stainless steel lipped channel-sections, 
having such openings, under the interior-one-flange (IOF) loading condition. 742 non-linear elasto-plastic finite 
element analyses are undertaken, with web openings located either centred beneath the bearing plate or offset to 
bearing plate. The effect of the size of the web opening, length of bearing plate and location of the web opening 
is considered. Strength reduction factor equations are proposed, that can be used to take into account such 
openings in design. 

 
Keywords: Cold-formed stainless steel; Lipped channel-section; Web crippling; Finite element analysis; 
Strength reduction factor. 

 
 

1  Introduction 

Cold-formed stainless steel sections are becoming more widely used in residential and commercial 
construction due to their high corrosion resistance and high strength-to-weight ratio. Thin cold-formed stainless 
steel sections, however, are susceptible to web crippling at points of concentrated loading and this is well-known 
to be an important design issue.  In addition, web openings are also becoming popular, as they improve ease of 
installation of services. This paper considers the web crippling performance of the duplex EN 1.4462 stainless 
steel grade. The duplex grade combines the beneficial properties of ferritic and austenitic stainless steels. 

Amongst recent studies on web crippling of cold-formed stainless steel sections, Zhou and Young (2006) 
studied the web crippling of cold-formed stainless steel tubular sections using yield line mechanism analysis. 
They proposed web crippling design equations from results of experiments and finite element (FE) models. In a 
study by Zhou and Young (2007) on stainless steel hollow sections, it was found that the predictions from the 
ASCE Specification and AS/NZS Standard are generally reliable, except for the ITF loading condition. They 
proposed a unified web crippling equation for cold-formed stainless steel hollow sections with a single web. 

Wei-Wen Yu International Specialty Conference on Cold-Formed Steel Structures 
Baltimore, Maryland, U.S.A, November 9 & 10, 2016
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Zhou and Young (2013) considered tubular sections under four loading conditions at elevated temperatures; 
again, unified web crippling equations were proposed. In other research, Bock and Real (2014) investigated 
strength curves for web crippling of cold-formed stainless steel hat sections under different loading conditions, 
according to AISI specification and SEI/ASCE8-02 standard. A new design approach for web crippling was 
proposed, using strength curves from slenderness-based equations.  

For cold-formed carbon steel sections, Uzzaman et al. (2012a,b,c, 2013) considered the web crippling 
strength of cold-formed steel channel sections under the two-flange loading conditions. Validating the finite 
element models with experimental tests, strength reduction factor equations were proposed to consider web 
openings. More recently, Lian et al. (2016a,b) investigated the behaviour of cold-formed steel channel-sections 
with circular web openings in the web under the interior-one-flange (IOF) loading condition (see Fig. 1); the 
cases of both flanges fastened and unfastened to the bearing plates were considered. Strength reduction factor 
equations were proposed from a parametric study, with experimental test results used the validate the FE models. 
The web crippling of stainless steel lipped channel-sections, however,  has not been addressed in the literature. 

This paper considers the web crippling strength of cold-formed stainless steel lipped channel-sections 
with web openings subjected to the interior-one-flange (IOF) loading condition (see Fig. 2) for the duplex EN 
1.4462 grade, as part of the authors’ works on one and two flange loadings (Yousefi et al. 2016a,b,c,d). Using 
the general purpose finite element program ABAQUS (2014), 742 non-linear elasto-plastic finite element 
analyses are undertaken, with web openings located either centred beneath the bearing plate or offset to bearing 
plate. The effect of the size of the web opening, length of bearing plate and location of the web opening is 
considered. Strength reduction factor equations are proposed, that can be used to take into account such openings 
in design. 
 

 
Figure 1: Experimental analysis of cold-formed steel channel sections under IOF loading condition 

 

   
                           (a)                                                                 (b)  
Figure 2: Interior-one-flange (IOF) loading condition; (a) With web openings centred under bearing plate, (b) 
With web openings offset from bearing plate  
 
 
 
 

2  Experimental investigation and finite element modelling  

For cold-formed carbon steel, Lian et al. (2016a,b) recently conducted 43 interior-one-flange (IOF) tests, 
in the laboratory, on lipped channel-sections with circular web openings under web crippling (see Fig. 1). Fig. 3 
shows the definition of the symbols used to describe the dimensions of the cold-formed carbon steel lipped 
channel-sections considered in the test programme. The laboratory tests were used to validate a non-linear 
geometry elasto-plastic finite element model in ABAQUS (2014), which was then used for a parametric study, 
from which design recommendations were proposed in the form of strength reduction factor equations, relating 
the loss of strength due to the web openings to the strength of the web without openings. The size of the circular 
web openings was varied in order to investigate the effect of the web opening size on the web crippling strength. 
Full details of both the laboratory tests and finite element models can be found in Lian et al. (2016a,b). 
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Figure 3: Definition of symbols 

 

The models have been coded such the nominal dimension of the model and the length of the bearing plate 
as well as the ratio of the diameter of the circular web openings to the depth of the flat portion of the webs (a/h) 
can be determined from the coding system. As an example, the label “142-N100-A0.2-FR” means the following. 
The first notation is the nominal depth of the models in millimeters. The notation ''N100'' indicates the length of 
bearing plate in millimeters (i.e. 100 mm). The notation ''A0.2'' indicates the ratio of the diameter of the openings 
to the depth of the flat portion of the webs (a/h) and are one of 0.2, 0.4, 0.6 and 0.8 (i.e. A0.2 means a/h = 0.2; 
A0.4 means a/h = 0.4 etc). Plain lipped channel-sections (i.e. without circular web openings) are denoted by 
''A0''. The flange unfastened and fastened cases are identified as ''FR'' and ''FX'', respectively. Typical stress-
strain curves for the three cold-formed stainless steel materials, were taken from Chen and Young (2006) and 
Arrayago et. al. (2015). Comparative hot-rolled steel stress strain curves can be found in Yousefi et al. (2014) 
and Rezvani et al. (2015). 

Fig. 4 compares the experimental and numerical load-displacement curves for a cold-formed carbon steel 
lipped channel-section, 142×60×13-t1.3-N100-FR, covering the cases both with and without the circular web 
openings. As can be seen, there is good agreement between the failure loads of the test specimens and that of the 
finite element analysis. 

For cold-formed stainless steel lipped channel-sections, the numerical failure loads with and without 
circular web openings were then determined for the three stainless steel grades: duplex grade EN 1.4462; 
austenitic grade 1.4404 and ferritic grade 1.4003. These results were compared with the failure loads calculated 
in accordance with ASCE (2002), NAS (2007) and AS/NZS 4600 (2005) (see Table 1). The failure loads 
predicted from the finite element model are similar to the codified failure loads of the sections. 

 
Table 1: Comparison of numerical results with design strength for the case of flange unfastened to the bearing 
plate without circular web opening 

Specimen Web 
slenderness 

Bearing 
length to 
thickness 
ratio 

Bearing 
length to 
web height 
ratio 

Inside bend 
radius to 
thickness 
ratio 

Failure 
load per 
web      

Web crippling strength per  
web predicted from current 
 design codes 

 
Comparison   

  h/t N/t N/h ri/t PFEA PNAS PASCE PAS/NZS P/PNAS  P/PASCE P/ PAS/NZS 
      (kN) (kN) (kN)      
142-N100 109.67 78.74 0.72 3.78 11.57 10.70 10.73 10.70 1.08 1.08 1.08 

142-N120 110.00 94.49 0.86 3.78 12.28 11.27 11.87 11.27 1.09 1.03 1.09 

142-N150 109.25 117.19 1.07 3.75 12.94 12.24 13.79 12.24 1.06 0.94 1.06 

202-N100 144.41 72.46 0.50 3.62 12.56 12.56 11.76 12.53 1.00 1.07 1.00 

202-N120 144.38 86.96 0.60 3.62 12.81 13.21 12.97 13.18 0.97 0.99 0.97 

202-N150 144.38 108.70 0.75 3.62 13.15 14.10 14.79 15.30 0.93 0.89 0.86 

302-N100 157.57 52.63 0.33 2.63 24.64 25.48 21.83 25.91 0.97 1.13 0.95 

302-N120 157.51 63.16 0.40 2.63 26.01 26.71 23.05 26.61 0.97 1.13 0.98 

302-N150 155.01 77.72 0.50 2.59 27.71 28.61 26.01 29.18 0.97 1.07 0.95 

Mean, Pm         1.00 1.04 0.99 

Coefficient of variation        0.04 0.07 0.07 
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(a) Centred circular web opening for the case of flange unfastened to bearing plate 
 

 
(b) Offset circular web opening for the case of flange fastened to bearing plate 

 

Figure 4:  Comparison of finite element results and experimental test results for 142×60×13-t1.3-N100 (Lian 
et al. 2016a,b)  

 

3  Parametric study for duplex stainless steel grade 

In this study, in order to investigate the effect of circular web openings on the web crippling strength of 
cold-formed stainless steel lipped channel-sections, a total of 742 finite element models of lipped channel-
sections with various dimensions and thicknesses were considered for the three stainless steel grades: duplex 
EN1.4462, austenitic EN1.4404 and ferretic EN1.4003. Table 2 shows the web crippling strengths determined 
from finite element analyses for the duplex grade EN 1.4462. The web crippling strengths for sections with 
circular web openings were divided by that for sections without web openings and considered as the strength 
reduction factor (R). The effects of parameters such as the web opening diameters (a), length of bearing plates 
(N) and location of web openings in the web (x) on web crippling strength is shown in Figs. 5-7 for the C142 
specimen. As can be seen, the reduction in strength increases as the parameter a/h increases. The reduction in 
strength of the flange unfastened case is more than fastened case and the reduction in strength increases as the 
section becomes thinner. Also, it can be seen that the reduction in strength is more sensitive to the horizontal 
distance of the web opening to the bearing plate and the reduction in strength is slightly less for the flange 
fastened case, compared with the flange unfastened case. 
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        (a) Flange unfastened case                                                (b) Flange fastened case 

Figure 5: Variation in reduction factors with a/h ratio for C142 section with centered web opening 

 
        (a) Flange unfastened case                                                (b) Flange fastened case 

Figure 6: Variation in reduction factors with N/h for C142 section with centred web opening 

 
        (a) Flange unfastened case                                                (b) Flange fastened case 

Figure 7: Variation in reduction factors with x/h for C142 section with offset web opening 
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Table 2: Web crippling strengths of duplex stainless steel sections predicted from finite element analysis  

a: a/h for centred circular web opening case 

Specimen Thickness Unfastened FEA load per web, PFEA 
 

    Fastened FEA load per web, PFEA 

 t A(0) A(0.2) A(0.4) A(0.6) A(0.8) A(0) A(0.2) A(0.4) A(0.6) A(0.8) 

  (mm) (kN) (kN) (kN) (kN) (kN) (kN) (kN) (kN) (kN) (kN) 

142-N100-FR 1.27 11.57 11.50 11.45 10.41 9.10 12.76 12.72 12.72 11.66 9.98 

142-N100-FR 4.00 93.12 91.83 86.44 80.68 71.84 112.57 111.80 105.57 95.87 86.45 

142-N100-FR 6.00 174.70 171.91 162.61 147.12 122.67 201.87 199.27 191.73 178.14 171.28 

142-N120-FR 1.27 12.28 12.19 11.83 10.77 9.53 13.49 13.48 13.37 12.07 10.59 

142-N120-FR 4.00 97.41 95.77 90.95 85.47 74.45 120.57 119.45 112.55 103.25 91.75 

142-N120-FR 6.00 173.11 170.45 161.34 143.15 119.29 201.42 199.08 191.99 179.79 160.09 

142-N150-FR 1.28 12.94 12.94 12.26 11.18 10.02 14.37 14.35 13.80 12.52 11.12 

142-N150-FR 4.00 97.86 96.56 92.51 81.59 68.18 128.76 127.50 121.49 112.61 100.54 

142-N150-FR 6.00 162.37 158.99 148.73 131.58 110.03 197.41 195.84 190.05 179.26 162.44 

202-N100-FR 1.39 12.56 12.47 11.96 10.63 - 13.51 13.50 13.49 12.60 - 

202-N100-FR 4.00 93.07 92.40 88.79 80.58 - 108.50 107.91 104.75 93.06 - 

202-N100-FR 6.00 188.63 184.77 173.76 158.15 - 227.47 226.40 217.24 195.81 - 

202-N120-FR 1.39 12.81 12.71 12.09 10.81 - 15.18 15.17 15.14 13.60 - 

202-N120-FR 4.00 97.11 96.36 91.70 83.85 - 116.44 115.64 109.98 98.16 - 

202-N120-FR 6.00 191.80 188.23 177.94 160.81 - 230.69 229.94 221.98 203.79 - 

202-N150-FR 1.39 13.15 13.02 12.27 11.14 - 16.45 16.45 16.05 14.17 - 

202-N150-FR 4.00 102.42 101.16 95.83 89.27 - 128.20 126.06 117.79 106.42 - 

202-N150-FR 6.00 188.24 186.47 179.66 159.06 - 238.28 229.36 222.60 207.03 - 

302-N100-FR 1.98 24.64 24.63 23.83 22.17 - 26.27 26.26 25.67 23.37 - 

302-N100-FR 4.00 93.86 93.80 93.20 85.10 - 104.53 104.29 102.32 94.27 - 

302-N100-FR 6.00 196.88 195.50 187.10 169.77 - 230.30 229.11 203.98 194.41 - 

302-N120-FR 1.98 26.01 25.97 25.30 22.38 - 27.17 27.16 27.12 23.49 - 

302-N120-FR 4.00 97.47 97.47 95.87 86.44 - 111.32 111.12 110.55 97.50 - 

302-N120-FR 6.00 202.58 201.16 193.42 174.59 - 241.24 239.93 233.04 199.24 - 

302-N150-FR 1.99 27.71 27.51 26.10 23.24 - 28.56 28.55 28.54 24.25 - 

302-N150-FR 4.00 103.08 102.77 98.41 89.34 - 120.82 120.58 118.63 101.37 - 

302-N150-FR 6.00 210.15 208.63 199.80 179.71 - 247.08 246.04 240.85 205.67 - 
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b: a/h for offset circular web opening case 

Specimen Thickness Unfastened FEA load per web, PFEA Fastened FEA load per web, PFEA 

 t A(0) A(0.2) A(0.4) A(0.6) A(0) A(0.2) A(0.4) A(0.6) 

  (mm) (kN) (kN) (kN) (kN) (kN) (kN) (kN) (kN) 

142-N100-FR 1.27 11.50 11.46 11.27 10.95 12.73 12.71 12.63 12.53 

142-N100-FR 4.00 93.24 93.15 92.67 91.75 112.63 112.62 112.55 112.49 

142-N100-FR 6.00 166.59 166.08 164.37 160.39 201.87 201.39 199.44 186.56 

142-N120-FR 1.27 12.19 12.11 11.90 11.41 13.45 13.44 13.43 13.38 

142-N120-FR 4.00 97.47 97.33 96.72 95.53 120.57 120.57 120.47 120.24 

142-N120-FR 6.00 166.56 166.09 164.36 159.70 201.42 200.93 198.95 186.40 

142-N150-FR 1.28 12.97 12.87 12.53 11.88 14.39 14.38 14.34 14.27 

142-N150-FR 4.00 97.77 97.39 96.13 93.66 128.76 128.73 128.48 125.80 

142-N150-FR 6.00 158.21 157.58 155.68 152.08 197.41 196.97 195.04 184.86 

202-N100-FR 1.39 12.36 12.07 11.44 10.37 14.27 14.27 14.17 14.03 

202-N100-FR 4.00 93.01 92.74 91.86 90.03 108.50 108.47 108.37 108.25 

202-N100-FR 6.00 184.32 183.61 181.12 175.45 227.47 226.95 224.65 212.61 

202-N120-FR 1.39 12.61 12.35 11.65 10.51 14.34 14.34 14.24 14.06 

202-N120-FR 4.00 97.07 96.78 95.72 93.16 116.44 116.41 116.30 116.13 

202-N120-FR 6.00 185.87 185.13 182.63 176.05 230.69 229.99 227.02 213.26 

202-N150-FR 1.39 12.95 12.67 11.93 10.90 16.45 16.44 16.30 16.05 

202-N150-FR 4.00 102.38 101.94 100.36 95.45 127.48 127.41 127.27 126.92 

202-N150-FR 6.00 187.98 187.16 184.31 176.30 229.87 229.12 225.97 212.56 

302-N100-FR 1.98 22.75 22.66 22.29 21.36 26.27 26.26 26.15 25.72 

302-N100-FR 2.00 93.88 93.48 91.97 88.40 104.53 104.52 104.46 104.31 

302-N100-FR 4.00 194.66 193.59 189.95 178.72 230.30 230.06 228.73 212.81 

302-N120-FR 1.98 24.06 23.91 23.10 21.95 27.17 27.15 26.96 26.57 

302-N120-FR 2.00 97.50 96.93 95.23 90.39 111.36 111.35 111.21 111.02 

302-N120-FR 4.00 197.85 196.83 192.58 176.63 241.24 240.59 237.63 226.42 

302-N150-FR 1.99 25.42 25.08 24.17 22.58 28.56 28.53 28.38 27.19 

302-N150-FR 2.00 103.09 102.44 100.01 93.97 120.82 120.80 120.74 120.02 

302-N150-FR 4.00 202.77 201.35 195.45 184.86 247.08 246.05 241.93 227.42 
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c: x/h for offset circular web opening case 

Specimen Thickness Unfastened FEA load per web, P(FEA) Fastened FEA load per web, PFEA 

 t X(0) X(0.2) X(0.4) X(0.6) X(0) X(0.2) X(0.4) X(0.6) 

  (mm) (kN) (kN) (kN) (kN) (kN) (kN) (kN) (kN) 

142-N100-A0-FR 1.27 11.13 11.13 11.13 11.13 12.12 12.12 12.12 12.12 

142-N100-A0.2-FR 1.27 10.99 10.99 11.00 11.03 12.04 12.05 12.06 12.08 

142-N100-A0.4-FR 1.27 10.50 10.54 10.64 10.79 11.75 11.80 11.87 11.99 

142-N100-A0.6-FR 1.27 9.56 9.80 10.12 10.44 11.09 11.26 11.60 11.88 

142-N100-A0.8-FR 1.27 8.15 8.76 9.21 9.60 --- --- --- --- 

142-N120-A0-FR 1.27 11.88 11.88 11.88 11.88 12.99 12.99 12.99 12.99 

142-N120-A0.2-FR 1.27 11.70 11.71 11.72 11.76 12.91 12.92 12.93 12.96 

142-N120-A0.4-FR 1.27 11.07 11.09 11.26 11.45 12.56 12.56 12.73 12.88 

142-N120-A0.6-FR 1.27 9.85 10.16 10.52 10.86 11.66 11.95 12.40 12.74 

142-N120-A0.8-FR 1.27 8.43 9.05 9.53 9.85 9.55 10.74 11.64 12.38 

142-N150-A0-FR 1.28 12.75 12.75 12.75 12.75 14.42 14.42 14.42 14.42 

142-N150-A0.2-FR 1.28 12.56 12.58 12.60 12.62 13.87 13.90 13.91 14.34 

142-N150-A0.4-FR 1.28 11.64 11.70 11.91 12.31 13.35 13.40 13.62 13.81 

142-N150-A0.6-FR 1.28 10.35 10.68 11.04 11.37 12.26 12.66 13.16 13.58 

142-N150-A0.8-FR 1.28 8.96 9.53 9.98 10.27 10.29 11.36 12.21 12.98 

202-N100-A0-FR 1.39 12.40 12.40 12.40 12.40 13.50 13.50 13.50 13.50 

202-N100-A0.2-FR 1.39 12.10 12.11 12.12 12.14 13.39 13.40 13.41 13.47 

202-N100-A0.4-FR 1.39 10.98 11.06 11.21 11.41 12.26 12.27 12.44 12.67 

202-N100-A0.6-FR 1.39 9.46 9.76 10.08 10.36 11.28 11.53 11.98 12.44 

202-N120-A0-FR 1.39 12.69 12.69 12.69 12.69 15.16 15.16 15.16 15.16 

202-N120-A0.2-FR 1.39 12.35 12.37 12.38 12.39 15.05 15.05 15.07 15.14 

202-N120-A0.4-FR 1.39 11.19 11.41 11.44 11.63 14.30 14.35 14.63 14.90 

202-N120-A0.6-FR 1.39 9.66 9.96 10.26 10.53 13.00 13.38 13.95 14.54 

202-N150-A0-FR 1.45 14.28 14.28 14.28 14.28 16.45 16.45 16.45 16.45 

202-N150-A0.2-FR 1.45 13.87 13.88 13.89 13.94 16.26 16.27 16.30 16.38 

202-N150-A0.4-FR 1.45 12.61 12.71 12.88 13.06 15.28 15.38 15.71 16.04 

202-N150-A0.6-FR 1.45 11.00 11.30 11.60 11.85 13.78 14.23 14.87 15.52 

302-N100-A0-FR 1.98 24.25 24.25 24.25 24.25 25.62 25.62 25.62 25.62 

302-N100-A0.2-FR 1.98 24.00 24.01 24.03 24.09 26.55 26.56 25.60 25.58 

302-N120-A0-FR 1.96 25.23 25.23 25.23 25.23 26.63 26.63 26.63 26.63 

302-N120-A0.2-FR 1.96 24.80 24.83 24.86 24.94 26.51 26.53 26.62 26.59 

302-N120-A0.4-FR 1.96 22.74 22.87 23.29 23.79 24.46 24.66 25.34 25.45 

302-N120-A0.6-FR 1.96 18.80 20.00 21.35 23.24 23.25 23.30 24.50 24.59 

302-N150-A0-FR 1.99 27.55 27.55 27.55 27.55 28.10 28.10 28.10 28.10 

302-N150-A0.2-FR 1.99 26.79 26.83 26.87 27.02 27.93 28.02 28.10 28.41 

302-N150-A0.4-FR 1.99 24.26 24.40 24.87 25.44 26.90 27.25 27.63 27.83 

302-N150-A0.6-FR 1.99 20.84 21.56 22.58 23.74 23.84 24.86 26.59 26.70 
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4  Proposed strength reduction factors 

Table 2  shows the dimensions considered and web crippling strengths of the duplex grade stainless steel 
sections predicted from the finite element analysis. Using bivariate linear regression analysis, four new strength 
reduction factor equations (Rp) for duplex stainless steel EN 1.4462 grade with web openings are proposed. The 
equations are as follows:  

 
For centred web opening: 
For the case where the flange is unfastened to the bearing plate,  

1.11 0.37( ) 0.04( ) 1 (1)p

a N
R

h h
= − − ≤  

For the case where the flange is fastened to the bearing plate, 

1.08 0.33( ) 0.01( ) 1 (2)p

a N
R

h h
= − − ≤  

 
For offset web opening: 
For the case where the flange is unfastened to the bearing plate,  

0.91+0.19( ) 0.11( ) 1 (3)p

a x
R

h h
= + ≤  

For the case where the flange is fastened to the bearing plate, 

0.89 0.24( ) 0.11( ) 1 (4)p

a x
R

h h
= + + ≤  

The limits for the reduction factor equations (3), (4), (5) and (6) are / 157.8h t ≤ , / 120.97N t ≤ , / 1.15,N h ≤

/  0.8a h ≤ , and 090θ = . 

 

5  Comparison of numerical results with proposed reduction factors 

For the duplex stainless steel grade, the values of the strength reduction factor (R) obtained from the 
numerical results are compared with the values of the proposed strength reduction factor (Rp) calculated using 
Eqs. (1)-(4). The results for C142 are shown in Fig. 8. In order to evaluate the accuracy of proposed equations, 
extensive statistical reliability analyses are performed. The results are summarized in Table 3.  

It should be noted, in calculating the reliability index, the resistance factor of φ=0.85  was used, 
corresponding to the reliability index β from the NAS specification. According to the NAS specification, design 
rules are reliable if the reliability index are more than 2.5. As can be seen in Table 3, the proposed reduction 
factors are a good match with the numerical results for the both cases of flanges unfastened and flanges fastened 
to the bearing plates. 

For example, for the centred circular web opening, the mean value of the web crippling reduction factor 
ratios are 1.00 and 1.01 for the cases of flange unfastened and flange fastened to the bearing plate, respectively. 
The corresponding values of COV are 0.03 and 0.03, respectively. Similarly, the reliability index values (β) are 
2.82 and 2.86, respectively. For the offset circular web opening, the mean value of the web crippling reduction 
factor ratios are 1.04 and 1.04 for the cases of flange unfastened and flange fastened to the bearing plate, 
respectively. The corresponding values of COV are 0.04 and 0.05, respectively. Similarly, the reliability index 
values (β) are 2.97 and 2.94, respectively. Therefore, the proposed strength reduction factor equations are able 
to reliably predict the influence of the circular web openings on the web crippling strengths of cold-formed 
stainless steel lipped channel-sections under the interior-one-flange (IOF) loading condition. 
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Figure 8: Comparison of strength reduction factor for centred web opening where flange unfastened to bearing 

plate 

 
Table 3: Statistical analysis of strength reduction factor for duplex stainless steel grade   

Statistical parameters 

Centred circular web opening  
R (FEA) / Rp 

Offset circular web opening 
 R (FEA) / Rp 

Unfastened  
to bearing plate 

Fastened  
to bearing plate 

Unfastened  
to bearing plate 

Fastened  
to bearing plate 

Number of data 90 90 84 81 

Mean, Pm 1.00  1.01   1.04  1.04  

Coefficient of variation, Vp 0.03 0.03   0.04  0.05  

Reliability index, β  2.82 2.86 2.97 2.94 

Resistance factor, φ 0.85 0.85 0.85 0.85 
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   6  Conclusions  

           In this paper, the effect of web openings on the interior-one-flange (IOF) loading condition of cold-formed 
stainless steel lipped channel-sections was investigated for duplex grade EN 1.4462. 742 non-linear elasto-plastic 
finite element analyses were conducted with different sizes of channel-section and opening. From the results of 
the finite element parametric study, four new web crippling strength reduction factor equations were proposed 
for the cases of both flange unfastened and flange fastened to the bearing plates. In order to evaluate the reliability 
of the proposed reduction factor equations, a reliability analysis was undertaken. It was demonstrated that the 
proposed strength reduction factors are generally conservative and agree well with the finite element results. It 
was shown that the proposed strength reduction factors provide a reliable design criteria when calibrated with a 
resistance factor of 0.85 ( 0.85)ϕ = .  
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Abstract 

This paper summarizes recent investigations on the development of Direct 

Strength Method (DSM) for the design of cold-formed steel beams under two-

flange (TF) loading against web crippling failure. Recently, the authors 

proposed a new approach to predict the web crippling failure load of cold-

formed steel beams under External Two Flange (ETF) and Internal Two Flange 

(ITF) loadings using DSM. Firstly, existing experimental test data are 

summarized and then the accuracy of North-American Specification (AISI 

2012) and Eurocode 3 (CEN 2006) provisions is briefly assessed. In order to 

obtain additional information on the web crippling behavior of each test 

specimen, non-linear numerical results are obtained. Since the calibration of the 

DSM-based formula involves the previous calculation of (i) elastic buckling 

load and (ii) plastic load, two procedures are presented. Buckling loads are 

determined using the GBTWEB software, intentionally developed for this 

purpose, while plastic loads are calculated using analytical expressions based on 

yield-line models. By adopting a non-linear regression, the coefficients of DSM-

based formulae are determined using a set of 128 (ETF) and 130 (ITF) test 

results and the corresponding estimates of buckling and plastic loads. The DSM-

based formulas for ETF and ITF web crippling design are successfully proposed 

and the resistance factors (LRFD) obtained are φ=0.81 (ETF) and φ=0.75 (ITF). 

Introduction 

The Direct Strength Method (DSM) is a reliable, consistent and well established 

design approach for cold-formed steel structures, which has been adopted by the 

NAS (AISI 2012). Despite being increasingly used, the method is still limited to 

structural problems involving (i) longitudinal normal stresses (global, distortional 

and local buckling) and (ii) shear stresses (shear buckling). In light of the previous 
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considerations, a DSM-based approach for web crippling should be sought. 

Following the DSM philosophy, the calibration of a formula (design curve) 

requires the use of three sets of data: (i) experimental ultimate loads (Ptest), (ii) 

elastic critical loads associated with the appropriate buckling mode (Pcr) and (iii) 

plastic loads based on idealized failure mechanisms (Py). The calibration of the 

DSM-based formula for the web crippling design of cold-formed steel beams 

subjected Two Flange (TF) loading is based on a non-linear regression model 

applied to the distribution of calculated data points (,χ), where χ stands for the 

web crippling strength reduction factor and  is the slenderness parameter 

associated with the web failure. They depend on Ptest, Py and Pcr, being given by 

 χ = 
Ptest

Py
 λ = √

Py

Pcr
 (1) 

Both Py and Pcr could be obtained from Shell Finite Element (SFE) analyses, using 

elastic buckling analyses (no plasticity) for Pcr and elastic-plastic 1
st
 order analyses 

(no 2
nd

 order effects) for Py. However, the critical load Pcr is determined through 

the use of Generalised Beam Theory – GBT (Natário et al. 2012) and the plastic 

load Py is calculated through formulae derived from classical Yield-Line Theory 

(YLT). Additionally, SFE models were developed to link (“bridge”) qualitatively 

the three data sets: Ptest (experimental), Pcr (GBT) and Py (YLT). The three 

objectives of SFE analyses are: (i) the validation of SFE ultimate loads through 

comparison with Ptest values (test vs. SFE), (ii) the validation of GBT-based Pcr 

values through comparison with SFE critical loads (SFE vs. GBT), and (iii) the 

identification of plastic mechanisms to use for the YLT-based derivation of Py 

formulae (SFE vs. YLT). Therefore, the aim of this paper is to propose new DSM-

based formulas to estimate web crippling failure loads for the case of TF loadings. 

Further details should be found in Natário (2015) and Natário et al. (2016a,b).  

Ultimate Strength - Existing Experimental Results 

A literature survey of the existing experimental studies on beams under TF 

loading conditions was completed and the DSM-based formula was calibrated 

using these experimental results. The database includes 128 (ETF) / 130 (ITF) 

tests and a summary is provided in Table 1. Test data was reported by: 

 Hetrakul and Yu (1978) (Groups (i)-(ii) – Figs. 1-2) 

 Young and Hancock (1999, 2001) (Group (iii) – Fig. 3) 

 Beshara and Schuster (2000) (Group (iv) – Fig. 4) 

 Macdonald et al. (2008, 2011) (Group (v) – Fig. 5) 

 

Tables 1 and 2 shows a brief characterization of the 5 groups of tests and the 

ranges of geometrical and material data. 

326



 

 

ETF  

 ITF  

Fig 1: Group (i) by Hetrakul and Yu (1978) 

 

 

ETF  

ITF  

Fig. 2. Group (ii) by Hetrakul and Yu (1978) 
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Fig. 3. Group (iii) by Young and Hancock (1999, 2001) 

 

 

                            

Fig. 4. Group (iv) by Beshara and Schuster (2000) 

    

Fig. 5. Group (v) by Macdonald et al. (2008, 2011) 

ETF ITF 

ETF ITF 

ETF ITF 
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Table 1: Summary of the ETF test data for calibration of DSM-based formula 

Group # t [mm] hw [mm] bf [mm] rm [mm] 

(i) 28 1.17 – 2.74 129.2 – 305.2 27.8 – 90.5 2.97 – 4.15 

(ii) 30 1.17 – 1.31 117.4 – 304.7 9.8 – 73.4 1.81 – 3.80 

(iii) 16 3.83 – 6.01 58.8 – 269.7 31.9 – 76.8 5.82 – 11.40 

(iv) 
18 1.16 – 1.45 87.1 – 283.1 45.6 – 61.0 7.58 – 14.73 

18 1.16 – 1.45 89.1 – 283.1 44.8 – 60.7 7.58 – 14.73 

(v) 18 0.78 65.2 – 98.2 26.8 – 46.7 1.99 – 5.39 

Table 2: Summary of the ITF test data for calibration of DSM-based formula 

Group # t [mm] hw [mm] bf [mm] rm [mm] 

(i) 28 1.17 – 2.74 128.3 – 304.2 28-0 – 90.1 2.92 – 4.15 

(ii) 30 1.19 – 1.33 117.0 – 305.2 10.1 – 73.8 1.82 – 3.79 

(iii) 18 3.78 – 6.01 59.0 – 270.0 31.9 – 76.6 5.82 – 11.40 

(iv) 
18 1.16 – 1.45 87.1 – 283.1 45.1 – 61.0 7.58 – 14.73 

18 1.16 – 1.45 89.1 – 283.1 44.4 – 60.1 7.58 – 14.73 

(v) 18 0.60 68.8 – 73.8 30.8 – 35.3 1.30 – 3.30 

Ultimate Strength – NAS and EC3 Design Approaches 

Before proposing the new DSM-based approach for the web crippling design of 

cold-formed steel members, it is deemed relevant to assess the applicability and 

accuracy of the existing design approaches. For this purpose, both the EC3 

(CEN 2006) and NAS (AISI 2012) methodologies are considered. Figures 6 and 

7 show comparisons between the nominal web crippling strength prediction (Pn) 

determined with the EC3 (Fig. 6) and NAS (Fig. 7) formulae, and the test failure 

loads (Ptest). These plots provide clear information about the relative accuracy of 

each design method. 
 

Overall, the current EC3 formulae may lead to significant errors, often on the 

unsafe side (data above the 1:1 line). This is particularly notorious for the (i) 

fastened C- and Z-sections tested by Beshara and Schuster (2000) and (ii) 

unfastened C-sections reported by Young and Hancock (1999, 2001), for which 

the errors are extremely large. Conversely, the current NAS formula leads to a 

better agreement, mainly due to the fact that many of these experimental test 

results were included in its calibration. However, its application to a new test 

data set (Group (v)) yields quite poor results. Furthermore, the EC3 approach 
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lacks an appropriate distinction between C- and Z-sections, which have been 

proven to exhibit different web crippling strengths. Finally, despite the clause 

regarding the rotational restraint imposed to the web, the distinction between 

fastened and unfastened flanges is not explicitly addressed in EC3. In view of 

the above assessment, it can be easily concluded that the development of a novel 

DSM-based formula for the design against web crippling failure would be useful. 
 

 
 

 
 (a) (b) 

Fig. 6. Ultimate strength: (a) NAS vs. tests and (b) EC3 vs. tests – values divided by t 

Ultimate Strengths – SFE Analyses 

In the context of the ABAQUS (Simulia 2010) finite element software, an in-depth 

explanation of the advantages of quasi-static analysis was given in Natário et al. 

(2014a,b) and the selection of the different parameters involved in performing 

non-linear SFE analyses was addressed. In this work, SFE models accounting for 

several cross-section types and supporting/fastening conditions were implemented 

(see Figure 7). The full description of the SFE model implemented is presented in 

Natário et al. (2014a,b). Figure 8 summarizes the comparison between the ultimate 

loads obtained from quasi-static SFE analyses (Pn) with test results (Ptest). 

ITF-NAS ITF-EC3 

ETF-NAS ETF-EC3 
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 (a) (b) 

Fig. 7: (a) Failure of I- 6-ETF-1 – Group (i) (Hetrakul and Yu 1978), (b) SFE model  

 
 (a) (b) 

Fig. 8. Ultimate strength (SFE vs. tests): (a) ETF and (b) ITF – values divided by t 

 

Overall, there is a good agreement between the numerical and experimental 

ultimate strength estimates, as well as between the failure modes (plastic 

mechanisms) obtained from SFE analyses and experimental tests (i.e., those 

visible in photos appearing in the source publications). The main differences 

occurred for the specimens belonging to Group (iii), which failed in either web 

crippling (Natário et al. 2014a) or flange crushing (Natário et al. 2014b). It was 

generally observed that web crippling occurs for wider bearing plates, whereas 

flange crushing becomes prevalent when such plates are narrower. In certain 

cases, the experimental ultimate strength was higher for a narrower bearing 

plate, perhaps due to the development of flange crushing collapse. Usually, the 

web crippling strength capacity increases with the bearing plate size. 

ETF ITF 
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Buckling Loads - GBT Analyses 

In this work, the buckling loads are determined by means of the GBTWEB 

freeware (Natário et al. 2016c), based on a GBT formulation previously developed 

by the authors (Natário et al. 2012). The GBT model for the buckling analysis is 

detailed in Natário (2015). In order to validate the GBT results, the SFE models 

developed to carry out the non-linear analyses (previously presented) were adapted 

to perform the corresponding elastic buckling analyses. In general, the GBT and 

SFE buckling analyses yielded similar results, not only in terms of the web 

buckling mode configuration but also concerning the buckling load (Pcr) values, as 

shown in Fig. 9. The exceptions are some specimens belonging to Groups (i) and 

(iv). It is observed that GBT yields consistently lower buckling loads for the built-

up I-section specimens (Group (i)), as had already been observed in the ETF case 

 most likely, these underestimations stem from the oversimplified model adopted. 

Moreover, some very significant discrepancies occur for specimens belonging to 

Group (iv), due to the modelling of the corner: it is arguable that the buckling 

loads of specimens with large corner bend radii (with respect to the web size) will 

be less accurate. Nevertheless, it is possible to conclude that both models are quite 

performing in terms of capturing the influence of other geometrical parameters 

(e.g., thickness, web height and bearing plate width) on the value of Pcr.  

 

Fig. 9. Buckling loads (GBT vs. SFE): (a) ETF, (b) ITF – values divided by t2 

Plastic Loads - YLT Analyses 

Besides Pcr, Py (plastic load) is the other key ingredient of the proposed DSM 

design approach. A rational basis to calculate Py is to view it as the load 

associated with the idealized plastic mechanism, akin to the true failure mode. 

For this purpose, rigid plastic analysis, namely the Yield-Line Theory (YLT), 

must be employed. The selected yield-line mechanism for the derivation of a Py 

formula depends on the observation of experimental (if available) and/or 

ETF ITF 
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numerical (non-linear SFE) results. Both are instrumental to the definition of the 

failure mechanism. The non-linear analyses were particularly important in 

describing the progressive development of the mechanism, from the formation 

of the first yield line until the post-failure regime (e.g. see Fig. 10). 
 

 
Fig. 10: Example of an yield-line mechanism (built-up I-section beams subjected to ETF 

loading conditions – Group (i)) 

 

Naturally, the yield-line method leads to a Py value that is an upper bound of the 

real plastic load – this fact is crucial for the validation of the proposed analytical 

models. The derivation of these Py formulae has been reported in Natário (2015) 

and Natário et al. (2016a,b). The formulae to calculate Py are briefly presented:  

 Group (i): 

Py = 
2

3
fyNm (√4rm

2  +9t2-2rm) Nm = min{L ; Ls+a∙rext+0.5hw} (2) 

 a=2.5 (ETF); a=5.0 (ITF) 

 Group (ii): 

Py
ETF = fy Nm (√4 rm

2  + t2N∗/Nm  -2rm) N∗= 2Nm +
4

√3
(hw  +  2 rm) (3) 

 Nm = Ls  +  2.5 rext  + 0.5hw  

Py
ITF = fyL (√4rm

2 +t2  - 2rm) (4) 

 Group (iii): 

Py = fyNm (√4rm
2 +t2  - 2rm) Nm = min{L ; Ls+a∙rext+b∙hw} (5) 

 a=2.5; b=0.5 (ETF); a=5.0; b=1.5 (ITF) 

 Group (iv): 

Py
ETF for Cs: use Group (ii) formula (3); Py

ETF for Zs: use 

Py
ETF=

2

3
fyNm (√rm

2 +t2N∗/Nm -rm) Nm = Ls + 2.5 rext +hw/3 (6) 

 N∗=4.5Nm+ 5(hw + 2rm) 
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Py
ITF=fyNm (√4rm

2 +1.5t2-2rm) Nm = min{L ; Ls+5rext+3hw} (7) 

 Group (v): 

Py
ETF: use Group (ii) formula (3) 

Py
ITF for fastened/unfastened sections: use Group (iv)/Group (iii) formula (7)/(5) 

 

Unlike the determination of critical loads (Pcr), which was based on the 

consideration of sharp corners, the calculation of plastic loads (Py) always 

considers explicitly the influence of the rounded corners, through the 

incorporation of rext. In fact, previous investigations by the authors have shown 

that rounded corners affect much more the plastic load values obtained from 1
st
 

order SFE analyses than the critical load values obtained from elastic buckling 

SFE analyses. In summary, this section presented yield-line models for the 

different web buckling failure mechanisms observed. Upon investigating the 

different test groups considered in the calibration of design expressions for TF 

web crippling load conditions, from a YLT perspective, it was concluded that 

there are substantial peculiarities in the collapse behavior, which limit the 

accuracy of the proposed yield-line models. In order to simplify the application 

of the DSM methodology, easy yield-line models were proposed, mostly 

grounded on the observation of numerical results (quasi-static analyses). 

Moreover, it should be noted that expression (6) has been simplified from a 

more complex equation presented by Natário (2015) and Natário et al. (2016a), 

which is acceptable for hw/rm ratios higher than 20. 

 

Calibration of DSM-based formulas 

The current DSM design formulas (NAS 2012) for the design of columns, 

beams and beam columns have a general format, which is also considered herein 

for web crippling design,  

 
Pn

Py
 = k1 [1 - k2 (

Pcr

Py
)

k3

] (
Pcr

Py
)

k3

 ,   (8) 

where (i) Pcr is the elastic buckling load, calculated using GBTWEB software, 

(ii) Py is the plastic load, estimated using the YLT formulas previously presented 

and (iii) Pn is the nominal value of the web crippling strength. The calibration of 

the k1, k2 and k3 coefficients was achieved through a non-linear regression, 

fitting the ratio 𝑃𝑡𝑒𝑠𝑡 𝑃𝑦⁄  and the right hand side of Eq. (8), and using the 

computed results of Pcr and Py for the tested specimens contained in Groups (i)-
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(v). The coefficients k1, k2 and k3 were calculated via the minimization of the 

sum of squared differences.  

ETF conditions 

The DSM-based formula to calculate the web crippling strength of section under 

External Tow Flange loading is given by 

 Pn = {

 Py    for  λ   ≤ 0.415                                                       

0.474Py [1 - 0.115 (
Pcr

Py
)

0.728

] (
Pcr

Py
)

0.728

   for  λ > 0.415
 ,   (9) 

and a coefficient of determination R
2
=0.928 was obtained. Fig. 11 shows the 

DSM-based curve and all test data points used for its calibration. According to 

the graphical results, it is possible to confirm that the different Groups included 

in this calibration exhibit a clear trend that is captured by the DSM-based formula. 

There is some dispersion for low web crippling slenderness values (up to 2). Also, 

there are specimens with very high slenderness, particularly those corresponding 

to fastened cases, due to the large value of the yield-to-buckling load ratio.  

 
Fig. 11: Comparison between the proposed DSM-based formula and ETF test data 

 

It was also considered important to evaluate the resistance factor φ associated 

with the proposed DSM formula. The load and resistance factor design (LRFD) 

design methodology adopted in the NAS (2012) adopts the condition, Pn ≥ Pu, 

where Pn stands for the nominal strength capacity and Pu is the factored load. 

The calculated resistance factor =0.81 is located within the range of the 

coefficients that are proposed in the NAS for web crippling design (0.75-0.90). 
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ITF conditions 

In the calibration of the DSM-based formula for the web crippling strength of 

sections under Internal Two Flange (ITF) loading conditions, specimens failing 

by flange crushing (verified from quasi-static SFE analysis) were not 

considered. The expression obtained is 

 Pn = {

 Py    for  λ   ≤ 0.517                                                       

0.732Py [1 - 0.156 (
Pcr

Py
)

0.516

] (
Pcr

Py
)

0.516

   for  λ > 0.517
 ,   (10) 

In the Figure 12, the proposed curve is compared with every experimental test 

result, including both web buckling and flange crushing data. 

 
Figure 12: Comparison between the proposed DSM-based formula and ITF test data 

 

According to these results, there is a non-negligible dispersion of the data points. 

Overall, it may be noticed that the method is overly conservative for a large 

number of test data, where a majority of the test specimens failing by flange 

crushing are included. From a more detailed observation, the points corresponding 

to the built-up I-sections (Group (i)) are systematically below the proposed curve, 

while those concerning Groups (ii), (iv) and (v) are mostly above it. Despite the 

previous considerations, a well-defined trend regarding the relationship between 

the slenderness  and the strength reduction factor  is still clearly visible. These 

results evidence that there is great potential in the adopting the DSM approach to 

estimate the web crippling strength under ITF loading  nevertheless, it is also 

observed that there is a non-negligible spread in the data point distribution, which 

likely stems from the adoption of less consistent YLT models, particularly when 
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applied to specimens where flange crushing is predicted. In fact, there is a number 

of data points for which Ptest (ultimate load obtained from tests) exceeds Py, thus 

leading to >1  this means that, in such cases, the Py value (and plastic 

mechanism) predicted by the YLT model might not fit well the actual collapse 

mechanism. The calculated resistance factor for LFRD design was =0.75, which 

is still within the range proposed in the NAS for web crippling design.  

Conclusion 

This paper presented a new approach to estimate the web crippling failure load of 

cold-formed steel beams under Two Flange (TF) loading using the Direct Strength 

Method (DSM). First, existing experimental data were reviewed and the current 

design formulas available in NAS and EC3 were applied to all test data to assess 

their accuracy. Quasi-static non-linear Shell Finite Element (SFE) analyses were 

performed to obtain additional information on the web crippling behavior of each 

test specimen. Then, the calibration of the DSM-based design curve involved the 

calculation of (i) elastic buckling loads, using the GBTWEB software (specifically 

developed for this purpose), and (ii) plastic loads, using analytical expressions 

based on Yield-Line Theory (YLT) models. Despite the different cross-section 

types, several fastening conditions, and distinct experimental set-ups considered in 

the calibration of the DSM formula, it was possible to find a clear relationship 

between the web crippling slenderness and the strength reduction factor. Some 

scatter exhibited by the results, particularly in the ITF case, was attributed to the 

less accurate prediction of plastic loads given by the developed YLT-based 

formulae. However, an increase in the accuracy of YLT-based formulas would 

entail an increased complexity, which is a feature that should be avoided in design 

practice. Furthermore, it was identified that several beams under ITF loading 

conditions were prone to flange crushing collapse, a phenomenon that should not 

be confused with the typical web buckling, commonly referred to as web 

crippling. Applying the expression calibrated with web buckling test data to the 

flange crushing test data, yielded the conclusion that while the proposed DSM 

formula reached safe estimates for the ultimate strength, the computed values may 

also be overly conservative. Finally, it should be mentioned that any beam is pre-

qualified to be designed using the above DSM-based formula if it satisfies a given 

set of geometrical and material conditions/limits. These limits, given in Natário 

(2015) and Natário et al. (2016a,b), might be extended whenever additional test 

data becomes available. Despite the undeniable potential evidenced in this study, 

the proposal should be validated and enhanced through extension to different 

cross-section types (single hats, multi-web). In light of the promising results of 

this study, the methodology may also be easily extended to One Flange conditions 

(EOF and IOF) in the future, by following similar calibration procedures. 
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Abstract 
 

The Direct Strength Method (DSM) of design for cold-formed sections was 

recently extended in the North American Specification for Cold-Formed Steel 

Structural Members (NAS S100:2012) to include members in shear. The method 

has largely been developed on the basis of work done on lipped channel 

sections. To utilise the method requires the critical shear buckling load of the 

section, which may be determined from a minimum point on the signature curve 

for the section in pure shear. However when longitudinal web stiffeners are 

added to the channel a minimum may not exist, or may occur at half-

wavelengths where the critical buckling mode is localised in the individual 

vertical portions of the web rather than involving the full web as an essentially 

continuous element, as occurs for a plain lipped channel in local shear buckling. 

 

This paper explores the application of the recently-developed generalised 

constrained finite strip method (cFSM) to determine critical shear buckling loads 

for lipped channels with rectangular web stiffeners, from which shear buckling 

coefficients may be back-calculated. The addition of the stiffener leads to new 

distortional modes, deemed web-distortional modes, that play an important role 

in the buckling behaviour of web-stiffened channels at half-wavelengths where 

buckling involves deformations of the web as a continuous element. Using the 

cFSM, combinations of pure local modes and the web-distortional modes are 

considered to produce modal solutions. These modal solutions always give a 

minimum regardless of section and these minima are used to identify critical 

buckling half-wavelengths. The critical shear buckling loads are then taken as 

those at the same half-wavelengths on the corresponding traditional FSM 

signature curves for the sections. The proposed method is appropriate for 

sections with small stiffeners, as are used in practice. 
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Introduction 
 

The Direct Strength Method (DSM) (Schafer and Peköz, 1998), incorporated in 

the North American Design Specification (NAS S100-2012; AISI 2012) and the 

Australian/New Zealand Standard for Cold-Formed Steel Structures (AS/NZS 

4600:2005; Standards Australia 2005), is a method of design for cold-formed 

steel members that predicts the member capacity from the critical elastic 

buckling load and the material and geometric properties of the member. The 

critical elastic buckling load is determined from minima of the section’s 

signature curve, generated by the finite strip method (FSM). The FSM was 

developed by Cheung (1968) and is a specialisation of the finite element method 

that utilises longitudinal regularity of the analysed member to reduce the 

dimension of the problem being analysed. It was first utilised for local buckling 

analysis of thin-walled members by Przemienicki (1973) and was extended to 

other forms of buckling by Plank and Wittrick (1974), in which form it was 

utilised by Hancock (1978) to develop curves of the critical elastic buckling load 

as a function of the buckling half-wavelength; i.e. the signature curve. 

 

Recently, the DSM was extended in the North American Specification to include 

local buckling of members in shear (Pham and Hancock 2012a). For members 

where tension field action (TFA) is considered, the critical elastic shear buckling 

load may be determined by a spline FSM (SFSM) analysis (Pham and Hancock 

2009, 2012b) or an FSM analysis with multiple series terms (Hancock and Pham 

2013). Where TFA is not considered, the critical elastic shear buckling load may 

be determined from the minimum of the signature curve (Hancock and Pham 

2012, Pham, Pham and Hancock 2014). A detailed study of web-stiffened 

channels in shear by Pham, Pham and Hancock (2012) revealed that the 

presence of the stiffeners often lead to signature curves that lack any minimum, 

hence complicating the selection of a critical buckling load for use in the DSM. 

 

This problem of signature curves lacking minima is not unique to members 

under shear.  In the DSM for members under compression and/or bending, two 

minima are usually expected, with that at smaller half-wavelengths 

corresponding to local buckling and the other to distortional buckling. However, 

there are many sections for which the signature curve may not have two minima, 

or may have more than one minimum for local or distortional buckling (Ádány 

2004). Further, the buckling modes at such minima are not necessarily ‘pure’ 

local or distortional buckling. This prompted the development of the constrained 

finite strip method (cFSM) (Ádány and Schafer 2006a, b, 2008), which allows 

the buckling analysis to be restricted to consideration of certain ‘pure’ modes. 

By restricting analyses to consider only a combination of pure local and/or 

distortional modes, minima are regained on the modal solutions produced. 
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This paper applies the recently-developed generalised cFSM (Ádány and 

Schafer 2014a, b), extended to members in shear by Rendall, Hancock and 

Rasmussen (2016), to the analysis of lipped channels with rectangular web 

stiffeners in shear with the aim of determining critical elastic shear buckling 

loads. It briefly covers the current DSM design provisions for shear before 

providing an overview of the workings of the cFSM. The addition of the 

stiffener to the lipped channel gives rise to new distortional modes in the 

framework of the cFSM. The characteristics of these new modes, deemed web-

distortional modes, are briefly elucidated. Modal solutions are produced using 

various combinations of pure local and/or web-distortional modes for a wide 

range of stiffener sizes. From these solutions critical half-wavelengths are 

selected and corresponding critical elastic shear buckling loads are determined. 

By studying the results of the various modal solutions, a coherent model is 

constructed for determination of the critical elastic shear buckling load for 

lipped channels with rectangular web stiffeners. The results of this model and 

the modal solutions are presented in the form of shear buckling coefficients. 

 

Cross-section geometry and shear flow distribution 

 

The geometry of the lipped channel section with a rectangular stiffener that will 

be analysed herein is shown in Fig. 1a. The section has a web depth of 200 mm 

(7.87”), a flange width of 80 mm (3.15”), a lip size of 20 mm (0.79”) and 

uniform thickness of 2 mm (0.08”). The section will be analysed for rectangular 

stiffeners with depths (bs1) up to 190 mm (7.48”) and indents (bs2) up to 50 mm 

(1.97”) all positioned symmetrically about the centre of the web. These 

dimensions are the same as those analysed by Pham, Pham and Hancock (2012). 

 

 
Figure 1: a) Geometry of web-stiffened channels and b) shear flow distribution 

(Pham, Pham and Hancock 2012) 
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For analysis in the FSM, the sections are divided into longitudinal strips. 

Regardless of stiffener size, the lips are split into 2 equal strips each and the 

flanges into 10 equal strips each. The vertical portions of the web that sit flush 

with the ends of the flanges are split into strips of 10 mm (0.39”) width, with 

strips of 5 mm (0.20”) width added just before the stiffener if necessary. Each of 

the three elements of the stiffener are split into either 4 equal strips or strips of 

10 mm (0.39”) width, whichever produces a finer division. The material 

properties are assumed to be isotropic with a Young’s modulus of 200000 MPa 

(29008 kpsi) and a Poisson’s ratio of 0.3. 

 

Each section is subject to a shear flow distribution corresponding to that arising 

from a vertical shear load applied through the shear centre of the section; an 

example is shown in Fig. 1b. Note that such loading cannot exist without a 

moment gradient, which the FSM cannot capture, and so the analysed members 

may be said to be in a state of ‘pure’ shear. The FSM analysis utilised herein 

(for details, see Rendall, Hancock and Rasmussen 2016) is restricted to uniform 

shear stress in each strip, taken as the average of the true shear flow distribution 

over that strip. Hence a refined division of the section into strips, such as that 

utilised herein, provides a sufficient approximation to the true shear flow. 

 

DSM design rules for pure shear 
 

When tension field action is not considered, the nominal shear strength (Vn) of 

beams without holes in the web and without web stiffeners is determined from 

Appendix 1, Section 1.2.2.2.1 of NAS-2012 (AISI 2012) as follows: 

 

For 815.0v : yn VV                          (1) 

For 227.1815.0  v : ycrn VVV 815.0                     (2) 

For 227.1v : crn VV                            (3) 

ywy FAV 6.0                 (4) 

 

where Vy is the yield load of the web (Aw is the area of the web) based on an 

average shear yield stress of 0.6Fy and Vcr is the elastic shear buckling force of 

the whole section, derived by integration of the shear stress distribution at 

buckling over the whole section; λv = √      . Alternatively, Vcr may be 

determined from Eq. (5) if the appropriate shear buckling coefficient (kv) of the 

whole section is known. In Eq. (5), E is Young’s modulus, ν is Poisson’s ratio, 

d1 is the depth of the flat portion of the web and tw is the thickness of the web. 
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When tension field action is included, the nominal shear strength (Vn) of beams 

without holes is given by, 
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It is desired to determine critical elastic shear buckling loads from which shear 

buckling coefficients may be back-calculated. For web-stiffened channels, the 

exact definitions of the web area and the depth of the flat portion of the web 

become unclear. Herein, the depth of the flat portion of the web will be taken as 

the sum of the vertical flats in the web and stiffener, resulting in d1 = b1, while 

the web area will simply be taken as this depth multiplied by the web thickness; 

i.e. Aw = b1tw. Putting both of these definitions into Eq. (5) and rearranging then 

defines the shear buckling coefficient to be, 
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where Vcr,FSM is the critical elastic shear buckling load, determined from the 

FSM at a half-wavelength determined by application of the cFSM. 

 

Overview of the cFSM 
 

The basic concept of the constrained finite strip method is that any general FSM 

displacement field d may be transformed to a constrained deformation space M 

by use of a constraint matrix RM, whose columns are base vectors of the 

constrained space. The original vector and that of the constrained deformation 

space (dM) are related by, 

 

MMdRd  .                (8) 

 

By applying this transformation to the eigenvalue problem of the FSM, modal 

decomposition is achieved in that the resulting eigenmodes are constrained to 

the desired deformation space. The resulting eigenvalue problem is as given in 

Eq. (9). The constraint matrices act to reduce the size of the problem and so their 
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application to the global stiffness matrix (KE) and global stability matrix (KG) 

result in reduced-size matrices, particular to the current modal space. The 

matrices ΛM and ΘM are, respectively, a diagonal matrix of load factors and a 

square matrix whose columns are the corresponding buckling modes in the 

reduced deformation space. 

 

    0ΘKΛK0ΘRKRΛRKR MMG,MME,MMGMMMEM  TT
          (9) 

 

Formulation of the constraint matrices is not covered here (see Ádány and 

Schafer 2014a, b) however, as the pure local and distortional modes are of 

interest in the current work, a brief description of their defining characteristics in 

the cFSM is now given. The pure local modes are defined by having null 

transverse extension, in-plane shear strain and longitudinal normal strain, which 

results in modes that allow only rotations at plate junctions and allow rotations 

and local out-of-plane deflection elsewhere. This definition of the local modes 

does not allow movement of the stiffener as a continuation of the web, as occurs 

in local buckling for sections with small stiffeners (Pham, Pham and Hancock 

2012) hence the distortional modes, which do allow such movement of the 

stiffener, become of interest. The pure distortional modes are defined by null 

transverse extension and in-plane shear strain and by transverse displacements 

such that the cross-section satisfies transverse equilibrium as a frame. 

 

The theoretical formulation of the stiffness and stability matrices is given in 

Rendall, Hancock and Rasmussen (2016). The utilised formulation assumes that 

the ends of the buckling half-wavelength are free to distort, hence the buckle is 

part of a very long length without restraint from end conditions.  

 

Distortional modes of a lipped channel with a rectangular web stiffener 
 

The transverse displacements of the distortional modes of a lipped channel with 

a rectangular stiffener, as determined by the cFSM, are shown in Fig. 2. 

 

 
Figure 2: cFSM distortional modes of a lipped channel with a rectangular web 
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The last two of the modes, i.e. D5 and D6, shown in Fig. 2 respectively 

correspond to the usual anti-symmetric and symmetric distortional modes of a 

plain lipped channel. Since these two modes exist due to the presence of the lips 

as stiffeners on the flanges, they may be deemed flange-distortional modes. The 

addition of the rectangular stiffener in the web of the lipped channel gives rise to 

four additional distortional modes (D1 to D4 in Fig. 2), which may be deemed 

web-distortional modes. These four modes may be further split into two pairs, 

each consisting of one symmetric and one anti-symmetric mode. The first pair 

(D1 and D2) involve notable distortion of the stiffener, while the second pair (D3 

and D4) involve a lesser degree of distortion in the stiffener. The distortion of the 

stiffener in the modes D3 and D4 is not noticeable in Fig. 2, which was produced 

for a stiffener with a depth of 20 mm (0.79”) and indent of 5mm (0.20”), but is 

more prevalent for larger stiffener sizes, although the degree of distortion of the 

stiffener is greater in the modes D1 and D2 regardless of the stiffener size. 

 

Shear buckling coefficients from individual modal solutions 

 

In light of the pairs of new web-distortional modes, a total of three modal 

analyses shall be performed; one considering only the pure local (L) modes as 

defined by the cFSM, one considering the mode pair D1 and D2 and one 

considering the mode pair D3 and D4. As such, three modal solutions shall be 

produced for each section, each with its own distinct minimum. For the 

minimum of each modal solution, the half-wavelength at which it occurs shall 

be taken as a critical half-wavelength. The critical elastic shear buckling load is 

then taken as the result from the FSM signature curve at the same half-

wavelength, from which a shear buckling coefficient is back-calculated using 

Eq. (7). An example of this process, up to determining the critical elastic shear 

buckling loads, is shown in Fig. 3 for a stiffener depth of 70 mm (2.76”) and a 

stiffener indent of 15 mm (0.59”). Note that although the minimum critical loads 

of the distortional modal solutions lie significantly above the FSM solution 

(especially in the case of the mode pair D1 and D2), the minimum may still be 

used an as indicator of the half-wavelength at which the analysed modes may 

play their greatest role in the overall buckling mode. 

 

Following this process, the shear buckling coefficients obtained for each section 

from modal solutions considering only the pure local modes are shown in Fig. 4. 

The coefficient at a stiffener depth of 0 mm (i.e. no stiffener) is 6.478, which is 

slightly lower than the 6.583 given by Pham, Pham and Hancock (2014), due to 

the more refined division of the cross-section; this minimum occurs at a half-

wavelength of 196 mm.  
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Figure 3: Identifying critical elastic shear buckling loads using critical half-

wavelengths from modal cFSM solutions (bs1 = 70 mm, bs2 = 15 mm) 

 

 
Figure 4: Shear buckling coefficients from considering local modes 
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Figure 5: Shear buckling coefficients from considering modes D1 and D2 

 

 
Figure 6: Shear buckling coefficients from considering modes D3 and D4 
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The shear buckling coefficients obtained from the local modal solutions display 

very similar behaviour regardless of the size of the stiffener indent, with the 

exception of the smallest indent, which has a significantly smaller shear 

buckling coefficient as the stiffener depth increases to 80 mm (3.15”). This 

discrepancy is due to stiffeners with such a small indent contributing little to the 

out-of-plane stiffness of the web and so leading to FSM solutions whose critical 

loads are smaller, at the half-wavelengths determined from the modal solutions, 

than those determined for stiffeners with larger indents. The initial drastic 

increase in the shear buckling coefficient as the stiffener depth becomes non-

zero (i.e. as the section gains the stiffener) is due to the definition of the pure 

local modes in that the plate junctions may rotate but not deflect. Hence, in the 

limit as the stiffener depth approaches zero (for a sufficiently large stiffener 

indent), the section may be treated as equivalent to a plain lipped channel with 

the centre of the web simply-supported longitudinally, for which the shear 

buckling coefficient from the FSM solution is 23.304. For the stiffeners with 

indents of 10 mm (0.39”) or greater, the shear buckling coefficients increases in 

a quadratic fashion up to a maximum at a stiffener depth of 60 mm (2.36”), 

before decreasing in a similar manner as the stiffener depth is further increased. 

This behaviour is due to the local modal solution constraining the buckling to 

within individual elements of the web, hence the maximum shear buckling 

coefficient occurs where the maximum size of the individual elements is at their 

smallest; this occurs at a stiffener depth of between 60 and 70 mm (2.36 and 

2.76”). Naturally then, the shear buckling coefficients become quite large, with 

the maximum of 56.923 being achieved for a stiffener of depth 60 mm (2.36”) 

and indent of 20 mm (0.79”), and the corresponding critical half-wavelengths 

from which the coefficients are determined are similar to the maximum depth of 

any of the vertical elements in the web. 

 

The shear buckling coefficients obtained by considering the distortional mode 

pair D1 and D2 are shown in Fig. 5. As with the shear buckling coefficients in 

Fig. 4, those in Fig. 5 display a sudden increase as the stiffener is introduced, a 

general increase as the stiffener depth increases to 60-70 mm (2.36-2.76”) and 

then a general decrease as the stiffener depth is further increased. The trends of 

the increase and decrease are more linear in nature, except for a region near the 

maximum shear buckling coefficient for a given stiffener indent size, which 

becomes more localised around the maximum as the stiffener indent size 

increases. As noted in Pham, Pham and Hancock (2012), the addition of 

stiffeners of any size has a significantly smaller effect on increasing the 

distortional buckling load of the section than it does on increasing the local 

buckling load, hence leading to the shear buckling coefficients in Fig. 5 being 

generally significantly less than those in Fig. 4. The exceptions to this are those 

sections with large stiffener depths and indents, due to an increase in the critical 
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half-wavelength identified using this distortional mode pair. The maximum 

critical half-wavelength identified for a given stiffener indent varies from 320 

mm (12.60”) for the smallest indent to 950 mm (37.40”) for the largest indent. 

For stiffener indents of, say, 15 mm (0.59”) or greater, for which the identified 

half-wavelength is significantly larger than the web depth, the local shear 

buckling behaviour in the web is different than for a plain lipped channel and so 

assessing such sections using these modes may not be entirely appropriate. 

 

The shear buckling coefficients obtained by considering the distortional mode 

pair D3 and D4 are shown in Fig. 6. The shear buckling coefficients obtained are 

significantly lower than those obtained from the two previous models, as the 

minima of the modal solutions considering this distortional mode pair occur at 

greater half-wavelengths. The maximum critical half-wavelength identified for a 

given stiffener indent varies from 490 mm (19.29”) for the smallest indent to 

1880 mm (74.02”) for the largest indent. At such large half-wavelengths, any 

strength due to the stiffener is clearly lost, as evidenced by the coefficients for 

the sections with an indent of 50 mm (1.97”) initially dropping with the 

introduction of the stiffener. Given the erratic variation of the shear buckling 

coefficients in this model, as well as the very large half-wavelengths at which 

minima may be identified, the model based on this distortional mode pair does 

not seem appropriate for identifying shear buckling coefficients. 

 

A model for shear buckling coefficients 

 

From the results presented, a model for determining shear buckling coefficients 

is developed as follows. As the pure local modes clearly characterise the 

buckling within each plate element, they must be included in such a model. The 

distortional mode pair D1 and D2 presents coherent and sensible results for shear 

buckling coefficients, while also occurring at the shortest half-wavelengths of 

the three distortional mode pairs, and so this mode pair will be included. This 

suggests a model based on considering the local modes and the distortional 

mode pair D1 and D2 simultaneously. However, in some instances, considering 

these modes together can lead to the loss of one of the two minima or to a 

minimum whose corresponding critical elastic shear buckling load is greater 

than that obtained by considering either the local modes or the distortional mode 

pair in isolation from the other. As such, the proposed model for determining 

shear buckling coefficients will determine three critical elastic shear buckling 

loads by considering i) the pure local modes only, ii) the distortional mode pair 

D1 and D2 and iii) the pure local modes and the distortional mode pair D1 and D2 

simultaneously. The minimum load obtained will then be taken as the critical 

elastic shear buckling load for the section. The shear buckling coefficients 

obtained by this ‘L – D1 – D2’ model are presented in Table 1.  
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Table 1: Shear buckling coefficients obtained by L – D1 – D2 model 

Depth 

(mm) 

Indent (mm) 

5 10 15 20 30 40 50 

5 8.313 10.260 11.500 12.246 12.740 12.887 12.567 

10 8.987 11.155 12.354 13.052 13.620 13.734 13.416 

20 10.152 12.661 14.110 14.823 15.756 15.827 15.796 

30 11.184 14.178 15.827 16.620 17.901 18.559 18.594 

40 12.008 15.418 17.294 18.513 20.275 20.955 20.829 

50 12.744 16.587 18.738 20.177 22.323 23.147 23.029 

60 13.135 17.285 19.688 21.749 24.429 25.617 25.170 

70 13.118 17.348 20.255 22.500 25.702 28.155 26.922 

80 12.827 17.067 19.907 22.425 25.505 27.548 26.994 

90 12.333 16.478 19.097 21.319 24.192 25.689 25.504 

100 11.675 15.337 17.850 19.772 22.472 23.907 23.346 

110 10.969 14.363 16.666 18.532 20.811 20.152 19.596 

120 10.311 13.317 15.492 17.177 17.729 17.197 16.739 

130 9.716 12.412 14.473 15.797 15.335 14.893 14.509 

140 9.141 11.495 13.389 13.804 13.428 13.057 12.741 

150 8.612 10.588 12.209 12.160 11.879 11.575 11.313 

160 8.175 9.597 10.737 10.791 10.592 10.351 10.140 

170 7.936 8.788 9.318 9.583 9.479 9.309 9.150 

180 7.372 8.064 8.342 8.302 8.446 8.369 8.274 

190 6.732 6.949 7.173 7.062 7.348 7.444 7.413 

 

In Table 1, the colour of each cell indicates which set of cFSM modes produces 

the critical elastic shear buckling load. Red indicates that considering the local 

modes only is critical, yellow indicates that considering the distortional mode 

pair D1 and D2 only is critical and orange indicates that considering both the 

local modes and the distortional modes pair D1 and D2 is critical. For most of the 

stiffeners analysed, the critical elastic shear buckling load comes from 

considering the distortional mode pair D1 and D2 only. However, as the stiffener 

depth and indent both become large, this usually changes to either of the other 

two obtained loads being critical. 

 

There is a further consideration to be made for this model; namely, for sections 

where the FSM solution provides a minimum at short half-wavelengths for local 

buckling, such a minimum will obviously provide the smallest possible shear 

buckling coefficient at such half-wavelengths. If this buckling coefficient is 

considered in addition to the three determined previously, the results of such a 

‘L – D1 – D2 – FSM’ model are given in Table 2.  
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Table 2: Shear buckling coefficients obtained by L – D1 – D2 – FSM model* 

Depth 

(mm) 

Indent (mm) 

5 10 15 20 30 40 50 

5 8.006 10.260 11.500 12.246 12.740 12.887 12.567 

10 8.987 11.155 12.354 13.052 13.620 13.734 13.416 

20 10.152 12.661 14.110 14.823 15.756 15.827 15.796 

30 11.184 14.178 15.827 16.620 17.901 18.559 18.594 

40 12.008 15.418 17.294 18.513 20.275 20.955 20.829 

50 12.744 16.587 18.738 20.177 22.323 23.147 23.029 

60 13.135 17.285 19.688 21.749 24.429 25.617 25.170 

70 13.118 17.348 20.255 22.500 25.702 28.155 26.922 

80 12.827 17.067 19.907 22.425 25.505 27.548 26.994 

90 12.333 16.478 19.097 21.319 24.192 25.689 25.504 

100 11.675 15.337 17.850 19.772 22.472 23.907 23.343 

110 10.969 14.363 16.666 18.532 20.788 20.150 19.595 

120 10.311 13.317 15.492 17.177 17.723 17.193 16.736 

130 9.716 12.412 14.473 15.743 15.327 14.889 14.509 

140 9.141 11.495 13.389 13.754 13.419 13.057 12.741 

150 8.111 10.588 12.087 12.126 11.869 11.574 11.312 

160 7.601 9.597 10.638 10.740 10.577 10.348 10.138 

170 7.100 8.142 9.318 9.492 9.448 9.300 9.145 

180 6.664 7.250 7.867 8.281 8.392 8.340 8.256 

190 6.366 6.463 6.667 6.907 7.262 7.360 7.370 

* Shaded cells are those for which the FSM solution is critical and hence the coefficient 

differs from that in the corresponding cell in Table 1. 
 

The shaded cells in Table 2 indicate the sections for which the minimum from 

the FSM solution is critical; for these particular sections with stiffener indents of 

20 mm (0.79”) or more, the difference is less than 1% between Tables 1 and 2. 

For smaller stiffeners, the difference may be up to 10%. Of the remaining 

sections, the distortional mode pair D1 and D2 gives the critical solution in all 

but two cases; those with an indent of 50 mm (1.97”) and depths of 130 and 140 

mm (5.12 and 5.51”). 

 

Conclusions 
 

This paper has explored application of the cFSM to the identification of shear 

buckling coefficients of lipped channels with rectangular web stiffeners 

experiencing local buckling. The pure local modes as determined by the cFSM 

were elucidated as being insufficient for identifying this mode for sections with 

stiffeners and so lead to a brief exploration of the pure distortional modes of 
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such a section. New web-distortional modes were identified and briefly 

analysed, leading to three separate models for identifying shear buckling 

coefficients. Two of the models presented coherent results and so these were 

merged to produce a combined model for determining shear buckling 

coefficients. This model was then updated to include shear buckling coefficients 

obtained from the minimum of the FSM signature curve, which gives the 

smallest possible shear buckling coefficient when examining short half-

wavelengths. While this shear buckling coefficient was critical for a number of 

the sections, in many cases the difference was on the order of 1%. The 

developed model is appropriate for sections with small stiffener indents. 
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Experimental Investigation of Cold-Formed C-Sections with 
Central Square Holes in Shear 

 
Cao Hung Pham1, Andreas Pelosi2, Thomas Earls2 and Gregory J. Hancock3 

 
Abstract 
 
The North American Specification S100:2012 Edition has recently included 
DSM design rules for unperforated channel sections in shear. However, there are 
no rules presented in this standard for the DSM in shear for sections with holes. 
Recently, a testing program has been performed at the University of Sydney to 
determine the ultimate strength of high strength cold-formed C-sections with a 
thickness of 1.5 mm and central square holes of varying sizes. Three different 
sizes of the square holes were chosen for testing. For thin sections, the DSM 
shear curve was found to be applicable for design of sections with square holes 
up to certain sizes. For larger hole sizes, the DSM shear curve without tension 
field action (TFA) should be utilised as the channels with large reduced web 
area do not mobilise the TFA. This paper presents a further experimental 
investigation on the same cold-formed C-sections but thicker thicknesses of 1.9 
mm and 2.4 mm. The square holes were also cut centrally with three different 
hole sizes. As the sections are thicker, the yield criterion plays a more important 
role. The proposals for different shear yield load are made in DSM equations for 
shear. Recommendations for an extension to the DSM in shear for channel 
sections with square holes are given in the paper. 
 
INTRODUCTION 
 
In steel construction, there are two main groups of structural members, namely 
hot-rolled and cold-formed steels. While hot-rolled steel plays a dominant role 
in structural design of the primary load bearing systems in high-rise or long-span 
construction, cold-formed steel enjoys a wide application in civil engineering. 
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For a number of years, cold-formed steel members have dominated the design 
for not only nonstructural members including ceiling framing, interior fascia 
framing or partition wall studs but also secondary load bearing systems for roof 
and floor such as purlins, girts, and floor decking. Currently, the use and 
development of cold-formed steel construction have been accelerated due to 
high strength-to-weight ratio, ease of fabrication and transportation, and simple 
erection and installation. In addition, load-bearing cold-formed steel has recently 
seen significant growth in low-rise and mid-rise buildings where the whole 
structural framing systems are made of entire cold-formed steel members. In 
order to decrease floor height, cold-formed steel members such as beams and 
columns are commonly manufactured with perforations to allow access for 
building services such as plumbing, electrical and heating systems in the walls 
and ceilings of the buildings. Fig. 1 shows the use of cold-formed beams with 
openings in framing systems. 
 

 

Figure 1. Cold-formed beams with openings in framing systems 
(Courtesy of ClarkDietrich Building Systems) 

 
The presence of holes in the members will cause changes in the stress 
distribution and there will be therefore be a change in the buckling characteristic 
and ultimate strength capacity depending on the size, shape and arrangement of 
holes.  
 
Considering the effect of holes on the elastic buckling of a square plate in shear, 
the reduction of the buckling coefficients has been studied by Kroll (1949). 
Rockey, Anderson and Cheung (1967) used the Finite Element Method (FEM) 
to evaluate the shear buckling resistance of a square plate having a central 
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circular cut-out. They have shown that the shear buckling coefficient, k, reduces 
linearly when the diameter of the cut-out increases. Subsequently, Shanmugam 
and Narayanan (1982) studied the buckling resistance of a square plate with 
central circular and square holes under various loading conditions. Later, 
Narayanan and Avanessian (1984) extended the above studies and presented the 
results of investigations of the elastic buckling behaviour of perforated plates 
under shear loading for symmetric as well as unsymmetric cases. Both square 
and rectangular plates containing holes of various shapes, sizes and locations 
were examined.  
 
For the structural behaviour and strength of perforated elements and members in 
shear, research findings in the 1990s by Shan, LaBoube and Yu (1994, 1996), 
Schuster, Rogers and Celli (1995) and Eiler (1997) on C-sections were 
performed to investigate the effect of web perforations on the reduction of shear 
strength of C-sections. In these studies, the test programs were conducted based 
on three hole geometries (rectangular hole with corner fillets, circular hole, and 
diamond-shaped hole). Based on the results of these findings, a supplement was 
added to the 1996 Edition of the AISI Specification in 1999 (AISI, 1999) and is 
retained in the most recent North American Specification (AISI S100-2012). 
The design methodology was to use the reduction factor qs to multiply with the 
shear strength of the sections without holes calculated according to Section 
C3.2.1 of the NAS S100-2012. Recent work by Keerthan and Mahendran (2014) 
presented both experimental and numerical investigations on lipped channel 
beams with circular holes to determine their shear strengths. They followed the 
same methodology by using reduction factors and proposed improved shear 
design rules for lipped channel beams with circular holes. 
 
The recent development of the Direct Strength Method (DSM) of design of cold-
formed sections without holes in pure shear (Pham and Hancock, 2012a) has 
been extended in the North American Specification for Cold-Formed Steel 
Structural Members (AISI S100-2012). Proposed DSM design rules for sections 
with and without Tension Field Action (TFA) and without holes were calibrated 
against a series of predominantly shear tests of both plain C- and SupaCee 
sections (Pham and Hancock, 2010a, 2012a) performed at the University of 
Sydney. Two features researched are the effect of full-section shear buckling (as 
opposed to web-only shear buckling), and tension field action. The elastic 
buckling load of the full-section in shear is required to be computed. Hancock 
and Pham (2011, 2012) have employed the complex Semi-Analytical Finite 
Strip Method (SAFSM) of Plank and Wittrick (1974) to compute the signature 
curves for channel sections in pure shear. In practice, sections may be restrained 
at their ends by transverse stiffeners leading to the change in shear buckling 
modes and the increase of the buckling loads by the end effects. To provide 
solutions, Pham and Hancock (2009, 2012b) have used the Spline Finite Strip 
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Method (SFSM) developed for shear elastic buckling by Lau and Hancock 
(1986). Another more efficient alternative in computation is the new theory of 
the Semi-Analytical Finite Strip Method (SAFSM) using multiple series terms 
(Hancock and Pham, 2013) developed to study the elastic buckling of channel 
sections with simply supported ends in shear. More recently, Pham (2015) used 
the SFSM to provide solutions to determine the shear buckling loads for lipped 
channel sections with central square holes in the web. 
 
For perforated members, the Direct Strength Method (DSM) of design of cold-
formed sections with holes in compression and/or bending has been recently 
extended by considerable research by Moen and Schafer (2011). The elastic 
buckling axial loads and bending moments including the influence of holes were 
computed using the finite strip approximate method (Moen and Schafer, 2009a, 
b). In recent work, Eccher, Rasmussen and Zandonini  described the application 
of the Isoparametric Spline Finite Strip Method to the linear elastic analysis of 
tri-dimensional perforated folded plate structures (Eccher et al. 2008a, b) and to 
the geometric nonlinear analysis of perforated folded-plate structures (Eccher et 
al. 2009). Later, Yao and Rasmussen (2011a, b) presented the analytical 
developments and numerical investigations of the application of the ISFSM to 
the material inelastic and geometric nonlinear analysis of perforated thin-walled 
steel structures. They also investigated inelastic local buckling behaviour of 
perforated plates and sections under compression (Yao and Rasmussen, 2012). 
The DSM rules with holes for bending and compression have been incorporated 
in the latest North American Specification (AISI S100-2012). 
 
In NAS S100-2012, although the DSM rules for shear have been extended, they 
are limited to sections without holes. In order to extend the DSM rules for shear 
with holes, an experimental program was recently performed by Pham et al. 
(2014) at the University of Sydney. The tests were conducted on typical lipped 
channel sections with relatively thin thickness of 1.5 mm and central square 
holes of varying sizes. Three sizes of square holes of 40 mm, 80 mm and 120 
mm were chosen. For each hole size, the tests were repeated twice to ensure the 
accuracy of the results. Besides, tests on plain C-sections were also conducted as 
a base reference. For thin sections, the DSM shear curve was found to be 
applicable for design of sections with square holes up to certain sizes. For larger 
hole sizes, the DSM shear curve without tension field action (TFA) should be 
utilised as the channels with large reduced web area do not mobilise the TFA. 
The numerical simulations using the Finite Element Method (FEM) ABAQUS 
package were also performed in Pham et al. (2014). The simulations are 
compared with and calibrated against tests. The accurate results from the FEM 
allowed extension of the test data by varying the hole sizes. The test and FEM 
results are compared with the current DSM design rules for shear. 
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As the sections become thicker, the yield criterion plays a more important role 
along with the buckling behaviour. A similar experimental program has been 
recently performed for thicker sections also at the University of Sydney. 
Commercially available plain C-lipped channel sections (C20019, C20024) 
having approximately identical cross section dimensions with channel section 
C20015 tested in Pham et al. (2014) have been chosen. The thicknesses of these 
channel sections are 1.9 mm and 2.4 mm respectively. Three sizes of square 
holes of 40 mm, 80 mm and 120 mm were also selected for investigation. The 
four corners were rounded with a corner radius of 5 mm to avoid highly 
concentrated stress distribution due to sharp corners. 
 
All test results are plotted against the DSM curves for shear. As required in the 
DSM method, while the shear buckling load, Vcr, for the whole channel sections 
with holes is computed using the Spline Finite Strip Method performed in Pham 
(2015), the shear yield load, Vy, for channel section with holes has not been 
investigated. Proposed shear yield load for channel section with square holes is 
given in the DSM equations for shear. Recommendations for an extension to the 
DSM in shear for channel sections with square holes are also given in the paper. 
 
EXPERIMENTS ON CHANNEL SECTIONS WITH SQUARE HOLES IN 
SHEAR 
 
Test Rig Design 
 
The experimental program (Pelosi and Earls, 2015) comprised a total of sixteen 
tests conducted in the J. W. Roderick Laboratory for Materials and Structures at 
the University of Sydney. All tests were performed in the 2000 kN capacity 
DARTEC testing machine, using a servo-controlled hydraulic ram. A diagram of 
the test set-up configuration is shown in Fig. 2. At the loading point at mid-span, 
the DARTEC loading ram, which has a spherical head to ensure that the load is 
applied uniformly on the spreader I beam, moved downwards at a constant 
stroke rate of 1 mm/min during testing. The load was transferred to a T-shaped 
load transfer fabricated from an assembly of 2 steel plates of 20 mm thickness as 
shown in Fig. 2. Two channel sections with central square holes were then 
bolted back to back through the webs by two vertical rows of M12 high tensile 
bolts. The distance between these two vertical rows of bolts is 50 mm. At each 
support, two channel beams were also bolted through the webs using another T-
shaped load transfer by one vertical row of M12 high tensile bolts. For 200 mm 
depth sections, five bolts were used at each support and ten at the loading point. 
A nut was located between the channel web and the T-shaped load transfer in 
each bolt to minimize restraint to the web. This nut can be seen in Sections A-A 
and B-B in Fig. 2. The two T-shaped load transfers at supports rested on the half 
rounds of the DARTEC supports to simulate a set of simple supports. 
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Figure 2. Predominantly shear test configuration for channel sections 

with central square holes 
 
The three T-shaped load transfers at the loading point and supports were 
introduced to prevent bearing failure which could be caused by using 
conventional bearing plates. Also, these T-shaped load transfers eliminated 
possible web crippling in the web and/or torsional loading of the tested 
channels. Further, the beams specimens were also connected by four 25x25x5 
EA (Equal Angle) streel straps on each top and bottom flanges adjacent to the 
loading point and supports as seen in Fig. 2. Self-tapping screws were used to 
attach these straps to the tested specimens. The object of these straps was to 

360



prevent section distortion at loading point and supports. Two LVDTs (Linear 
Variable Displacement Transducers) (LVDTs 2 and 5) were utilized as shown in 
Fig. 2 to measure vertical displacements at loading points. Four other LVDTs 
were also utilized to measure lateral displacements of the webs adjacent to top 
corner of square holes on the support sides. 
 
Specimen Nomenclature, Dimensions and Coupons 
 
Commercially available plain C-lipped channel sections (C20019 and C20024) 
were chosen for investigation. The average measured dimensions are given in 
Fig. 3 and Table 1. In this table, t is the thickness of the section, D is the overall 
depth, B and L are the average overall flange widths and lip sizes respectively. 
Three types of square hole were cut out using water jet cutting machine to 
ensure accuracy. The variable sizes of the square holes are 40 mm, 80 mm and 
120 mm (see Fig. 4). The four corners were rounded with a corner radius of 5 
mm to avoid highly concentrated stress distribution. For each hole size, the tests 
were repeated twice to ensure the accuracy of the results. In each test, two 
identical specimens were tested back to back in pairs. There were therefore a 
total of sixteen tests for this series including those of the cross-reference plain 
C-sections. The test specimens were labelled to express type of channel section, 
hole shape and hole sizes. The label for a plain C- Section with a square hole of 
40 mm “C20019-S40x40” (see Fig. 5a) is defined as: 

(i)    “C200” expresses plain C- Section with the depth of 200 mm,  
(ii)    The final “19” is the actual thickness times 10 in mm. 
(iii) “S” indicates “Square” shape hole. 
(iv) “40x40” is the size of 40 mm of square holes (alternatively “80x80” 

and   “120x120”). 
 

In order to determine the mechanical properties of the high strength steel 
material, twelve coupon specimens for two thicknesses were tested in the J.W. 
Roderick Laboratory for Materials and Structures at the University of Sydney. 
For each thickness, four coupons were taken longitudinally from the web flat of 
channel section member. Similarly, two coupons were taken from the 
compression and tension flanges respectively. The tensile coupon dimensions 
conformed to the Australian Standard AS 1391 (Standards Australia 1991) for 
the tensile testing of metals using 12.5 mm wide coupons with gauge length 25 
mm. All coupon tests were performed using the 300 kN capacity Sintech/MTS 
65/G testing machine operated in a displacement control mode. The mean yield 
stress fy was obtained by using the 0.2 % nominal proof stress. The average 
Young’s modulus of elasticity was calculated according to the tensile coupon 
stress-strain curves. The details of coupon tests are given in Table 2. 
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Figure 3. Cross section geometry        Table 1: Measured specimen dimensions 

 
Figure 4. Lipped channel sections with square holes 

 

Specimen 
t 

mm 
b 

mm 
fy0.2% 

MPa 
E 

MPa 
C20019-1 1.89 12.31 483.03 188,652 
W20019-2 1.89 12.33 484.07 201,652 
W20019-3 1.87 12.33 487.75 187,772 
W20019-4 1.87 12.32 491.49 185,728 
W20019-5 1.88 12.34 483.22 199,415 
T20019-6 1.86 12.31 487.61 201,421 

  Mean 486.20 194,107 
     

C20024-1 2.40 12.37 518.08 204,275 
W20024-2 2.39 12.28 515.38 208,922 
W20024-3 2.40 12.30 522.50 209,574 
W20024-4 2.41 12.26 507.04 206,772 
W20024-5 2.39 12.28 510.69 201,129 
T20024-6 2.39 12.34 508.84 201,146 

  Mean 513.76 205,303 

Table 2: Coupon test results 

Section 
t

mm
D

mm
B

mm
L 

mm 
C20019-1 1.89 202.8 76.89 17.51 
C20019-2 1.89 203.1 76.58 17.11 

C20019-S40x40-1 1.86 203.4 76.21 17.29 
C20019-S40x40-2 1.87 203.9 75.14 18.25 
C20019-S80x80-1 1.89 202.3 75.75 18.22 
C20019-S80x80-2 1.88 203.1 76.03 19.07 

C20019-S120x120-1 1.88 202.5 77.16 19.11 
C20019-S120x120-2 1.89 202.1 77.45 19.15 

     
C20024-1 2.38 203.1 75.56 20.11 
C20024-2 2.38 202.6 75.23 21.05 

C20024-S40x40-1 2.39 201.9 74.33 21.56 
C2024-S40x40-2 2.39 202.3 75.89 21.63 
C20024-S80x80-1 2.38 203.2 76.02 21.88 
C20024-S80x80-2 2.38 201.8 76.34 21.95 

C20024-S120x120-1 2.38 202.5 76.03 21.87 
C20024-S120x120-2 2.37 202.7 75.92 22.04 
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DIRECT STRENGTH METHOD (DSM) OF DESIGN FOR COLD-
FORMED SECTIONS 
 
DSM Design Rules for Pure Shear 

DSM design rules in shear without Tension Field Action 

The nominal shear strength (Vn) of beams without holes in the web and without 
web stiffeners is determined from Appendix 1, Section 1.2.2.2.1 of NAS-2012 
(AISI, 2012) as follows: 

 For 815.0v  : yn VV   (1) 

 For 227.1815.0  v  : ycrn VVV 815.0  (2) 

 For  227.1v : crn VV   (3) 

 ywy FAV 6.0  (4) 
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where

   yV   is the yield load of web based on an average shear yield stress of 

0.6Fy; 

crV   is the elastic shear buckling force of the whole section derived by 

integration of the shear stress distribution at buckling over the 
whole section; cryv VV / ; 

vk  is the shear buckling coefficient of the whole section based on the 

Spline Finite Strip Method (SFSM) (Pham and Hancock, 2009, 
2012b) or the Semi-Analytical Finite Strip Method (SAFSM) 
(Hancock and Pham, 2011, 2012) and Pham, Pham and Hancock, 
2012a, b). 

DSM design rules in shear with Tension Field Action 

The nominal shear strength (Vn) of beams without holes in the web including 
tension field action is determined from Appendix 1, Section 1.2.2.2.1 of NAS-
2012 (AISI, 2012) as follows: 
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Elastic Shear Buckling Analysis of Channel Sections with Square Holes 
 
As required in DSM method, the shear buckling load, Vcr, for the whole channel 
sections with holes is computed using the Spline Finite Strip Method performed 
in Pham (2015). Due to the presence of the holes, the shear stress distribution is 
not uniformly distributed especially around the holes. The pre-buckling analysis 
was performed to compute stresses in the strips prior to conducting buckling 
analysis using these stresses. Fig. 5 shows the relationship between the hole 
sizes (a) of the central square hole and the shear buckling coefficients (kv). In 
this paper, the values of kv in Case B of Pham (2015) are used for analysis as 
Case B represents the experimental program. 
 

 

Figure 5. Relation between hole size (a) and shear buckling coefficient (kv) 
 
COMPARISON OF DIRECT STRENGTH METHOD (DSM) DESIGN 
LOADS FOR SHEAR WITH PREDOMINANTLY SHEAR TESTS OF 
CHANNEL SECTIONS WITH CENTRAL SQUARE HOLES 
 
The test results of lipped channel sections with central square holes for two 
thicknesses of 1.9 mm and 2.4 mm (C20019 and C20024) in this experimental 
program along with those for thickness of 1.5 mm (C20015) conducted by Pham 
et al. (2015) are plotted in Fig. 6 against both DSM design curves for shear 
without Tension Field Action (TFA) (Eqns 1-3) and with TFA (Eqn. 6). The 
TFA curve (Basler, 1961) and the elastic buckling curve (Vcr) are also 
graphically reproduced in Fig. 6. The elastic shear buckling loads (Vcr) including 
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the holes are determined using the Spline Finite Strip Method (SFSM) based on 
Case B in Pham (2015). The yield loads (Vy) are based on the web of an average 
shear yield stress of 0.6fy over the full section even for the sections with holes. 
Fig. 7 shows typical shear failure modes of the C20015-S40x40 test. 
 
As can be seen in Fig. 6, the shear test points of the plain channel sections 
(C20015, C20019 and C20024) with no holes lie close to the DSM shear curve 
with TFA. When the channels are cut with a small square hole sizes of 40 mm 
(d/a = 0.20), both elastic shear buckling loads (Vcr) and shear strengths (VT) 
reduce respectively. The test points are shifted down and horizontally to the 
right. While the test points are on the DSM shear curve with TFA for thin 
channel section of 1.5 mm thickness (C20015), those of 1.9 mm thickness 
(C20019) lie slightly below but still close to the DSM shear curve with TFA. 
For the thicker sections of 2.4 mm, the test points lie below the DSM shear 
curve with TFA with the same cut-outs of 40 mm. When the hole sizes increase 
to 80 mm (d/a = 0.40) then up to 120 mm (d/a = 0.6), the effect of the cut-out 
area in the web is now quite significant for the shear capacity of the channel for 
all thicknesses. It appears that the channels with large reduced web area do not 
mobilise the Tension Field Action. It is also interesting to note in Fig. 6 that the 
thicker sections are (C20019 and C20014), the more significantly the test points 
drop below the DSM shear curve with TFA.  
 

 

Figure 6. Test results vs DSM shear curves  
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Figure 7. Test failure mode shape of C20019-S40x40  

 

 

Figure 8. Load and vertical displacement-C20019 tests with different hole sizes 
 
Fig. 8 shows load vs vertical displacement relationships of C20019 tests with 
different hole sizes. For channel sections with no holes and small hole size of 40 
mm, the loads increase almost linearly relative to the vertical displacements 
prior to the peak loads. The load-displacement curves drops significantly right 
after reaching the peak loads due to buckling phenomenon failure mode. For 
larger hole sizes (d=80 mm and d=120 mm), the load-displacement relationship 
curves go beyond the linear region and become more nonlinear as they approach 
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the peak loads. A significant flat plateau can be observed at the peaks until 
sudden drops due to the fracture phenomenon failure (see Fig.8). Fig. 9 shows 
crack propagation at corners under tensile stresses even though they were 
rounded with a corner radius of 5 mm to avoid highly concentrated stress 
distribution due to sharp corner. 
 

 

Figure 9. Load and vertical displacement-C20019 tests with different hole sizes 
 
As discussed above, it is apparent that, for thick sections, the failure modes 
predominantly in shear are mainly governed by the yield phenomenon especially 
in cases of channel sections with large square holes. The yield  loads (Vy) based 
on the web of an average shear yield stress of 0.6fy over the full section used in 
current DSM shear equations appears to be inadequate in case of channel 
sections with central square holes. The yield loads, Vy, are therefore proposed 
based on net web areas as follows: 
 

 

 

, 0.6  (7) 

 
where d1 = depth of the flat portion of the web measured along web plane; d = 
size of the square holes; tw = thickness of the web. Fig.10 plots all test results of 
lipped channel sections with central square holes against the DSM shear curves 
where the yield loads Vy are replaced by Vy,net. As the yield loads based on net 
web areas decrease when larger hole sizes are cut, the test points are now shifted 
up and horizontally to the left and scattered around the DSM shear curve with 
TFA. As can be seen in Fig. 10, for all thicknesses of 1.5 mm, 1.9 mm and 2.4 
mm, when the hole sizes are small and up to 80 mm (d/a = 0.4), the test points 
lie above the DSM shear curve with TFA. The shear capacities for channel 
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sections with square holes based on DSM equation with Vy,net are relatively 
conservative. When hole sizes are larger up to 120 mm as tested in the 
experimental programs, the test points drop dramatically below the DSM shear 
curve with TFA. The explanation for this fact is that the channel sections with 
fairly large square holes do not mobilise Tension Field Action although the 
proposed Vy,net has been used. A proper model for the yield load, Vy, is therefore 
necessary and is extensively investigated in a comparnion paper in this 
conference for the extension of DSM of design in shear for perforated sections 
with larger holes.  
 

 

Figure 10. Test results vs DSM shear curves with Vy,net  
 
 
CONCLUSIONS 
 
An experimental program on commercially available lipped channel sections of 
two thicknesses of 1.9 mm and 2.4 mm with central square holes subject to 
predominantly shear was carried out. Sixteen tests were conducted based on four 
types of channel sections which include simple lipped channel sections with no 
holes and perforated channel sections with three square hole sizes. For each type 
of channel section, the tests were repeated twice to ensure accuracy. The elastic 
shear buckling loads (Vcr) including the holes are determined using the Spline 
Finite Strip Method (SFSM). The test data from similar testing program recently 
conducted at the University of Sydney on the same channel sections and hole 
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sizes but with thinner thickness of 1.5 mm are also included. All test results 
were then utilised to plot against the new DSM shear curves. For small holes 
and thin sections (1.5 mm and 1.9 mm), the DSM shear curve may be applicable 
for design of sections with square holes up to certain sizes (d/a = 0.2). As the 
sections become thicker (2.4 mm) and the hole sizes are larger (up to d/a = 0.6), 
the yield criterion plays a more important role and leads to significant drops 
below the DSM shear curve. The yield loads based on the net web area, Vy,net 
was subsequently proposed to take into account the effect of square holes. The 
results were shifted up and to the left and scattered around the DSM curve for 
shear with TFA. The extension of the DSM of design for channel sections with 
central square holes is therefore recommended up to certain hole sizes (d/a = 
0.6) by utilising the proposed yield load, Vy,net. More accurate models of yield 
loads (Vy) for a whole range of section thicknesses, hole sizes and shapes are 
needed and extensively investigated in a companion paper in this conference. 
 
ACKNOWLEDGEMENT 
 
Funding provided by the Australian Research Council Discovery Project Grant 
DP110103948 has been used to perform this project.  
 
REFERENCES 
 
AISI. 1999. “Supplement No. 1 to the 1996 Edition of the Specification for the 

Design of Cold-Formed Steel Structural Member” Washington, DC. 
AISI. 2012. “North American Specification for the Design of Cold-Formed Steel 

Structural Members.” 2012 Edition, AISI S100-2012. 
Eccher, G., Rasmussen, K.J.R., and Zandonini, R. 2008a. “Elastic Buckling 

Analysis of Perforated Thin-Walled Structures by the Isoparametric Spline 
Finite Strip Method” Thin-Walled Structures, Vol. 46, pp 165-191. 

Eccher, G., Rasmussen, K.J.R., and Zandonini, R. 2008b. “Linear Elastic 
Isoparametric Spline Finite Strip Analysis of Perforated Thin-Walled 
Structures” Thin-Walled Structures, Vol. 46, pp 242-260. 

Eccher, G., Rasmussen, K.J.R., and Zandonini, R. 2009. “Geometric Nonlinear 
Isoparametric Spline Finite Strip Analysis of Perforated Thin-Walled 
Structures” Thin-Walled Structures, Vol. 47, pp 219-232. 

Eiler, M. R. 1997. “Behavior of Web Elements with Openings Subjected to 
Linearly Varying Shear”, M.S. Thesis, University of Missouri-Rolla. 

Hancock, G.J., and Pham, C.H. 2011. “A signature curve for cold-formed 
channel sections in pure shear”, Research Report, School of Civil 
Engineering, University of Sydney, R919, July. 

Hancock, G.J., and Pham, C.H. 2012. “Direct Strength Method of Design for 
Shear of Cold-formed Channels based on a Shear Signature Curve” 
Proceedings, the 21st International Specialty Conference on Cold-Formed 

369



Steel Structures, Missouri University of Science & Technology, St Louis, 
Missouri, pp. 207-221. 

Hancock, G.J., and Pham, C.H. 2013. “Shear Buckling of Channel sections with 
Simply Supported Ends using the Semi-Analytical Finite Strip Method” 
Thin-Walled Structures, Vol. 71, pp 72-80. 

Keerthan, P., and Mahendran, M. 2014. “Improved Shear Design Rules for 
Lipped Channel Beams with Web Openings” Journal of Constructional Steel 
Research, Vol. 97, pp. 127-142. 

Kroll, W.D. 1949. “Instability in Shear of Simply Supported Square Plates with 
Reinforced Hole”, Journal of Research of the National Bureau of Standards, 
Vol. 43. 

Lau, S.C.W., and Hancock, G.J. 1986. “Buckling of Thin Flat-Walled Structures 
by a Spline Finite Strip Method” Thin-Walled Structures, Vol. 4, pp 269-
294. 

Moen, C.D., and Schafer, B.W. 2009a. “Elastic Buckling of Thin Plates with 
Holes in Compression and Bending” Thin-Walled Structures, Vol. 47, No. 
12, pp 1597-1607. 

Moen, C.D., and Schafer, B.W. 2009b. “Elastic Buckling of Cold-Formed Steel 
Columns and Beams with Holes” Engineering Structures, Vol. 31, No. 12, 
pp. 2812-2824. 

Moen, C.D., and Schafer, B.W. 2011. “Direct Strength Method for Design of 
Cold-Formed Steel Columns with Holes” Journal of Structural Engineering, 
American Society of Civil Engineers, Vol. 137, Issue 5, pp.559-570. 

Narayanan, R., and Der-Avanessian, N.G.V. 1984. “Elastic Buckling of 
Perforated Plates under Shear”, International Journal on Thin-Walled 
Structures, Vol. 2, No. 1. 

Pelosi, A., and Earls, T. 2015. “Investigation of Thick Cold-Formed Channels 
with Rounded Square Perforations under Shear”, Bachelor of Engineering 
Honours Thesis, The University of Sydney, Australia. 

Pham, C. H. 2015. “Buckling Studies of Thin-Walled C-Sections with Square 
Holes in Shear using the Spline Finite Strip Method ”, Proceedings, the 
Eighth International Conference on Advances in Steel Structures, University 
of Lisbon, Lisbon, Portugal. 

Pham, C. H., Chin, Y. H., Boutros, P., and Hancock, G. J. 2014. “The Behaviour 
of Cold-Formed C-Sections with Square Holes in Shear”, Proceedings, the 
22nd International Specialty Conference on Cold-Formed Steel Structures, 
Missouri University of Science & Technology, St Louis, Missouri, pp 311-
327. 

Pham, C.H., and Hancock, G.J. 2009. “Shear Buckling of Thin-Walled Channel 
Sections” Journal of Constructional Steel Research, Vol. 65, No. 3, pp. 578-
585. 

Pham, C.H., and Hancock, G.J. 2010a. “Experimental Investigation of High 
Strength Cold-Formed C-Section in Combined Bending and Shear” Journal 

370



of Structural Engineering, American Society of Civil Engineers, Vol. 136, 
Issue 7, pp. 866-878. 

Pham, C.H., and Hancock, G.J. 2012a. “Direct Strength Design of Cold-Formed 
C-Section for Shear and Combined Actions” Journal of Structural 
Engineering, American Society of Civil Engineers, Vol. 138, Issue 6, pp.759-
768. 

Pham, C.H., and Hancock, G.J. 2012b. “Elastic Buckling of Cold-Formed 
Channel Sections in Shear” Thin-Walled Structures, Vol. 61, pp. 22-26. 

Plank, R.J., and Wittrick, W.H. 1974. "Buckling Under Combined Loading of 
Thin, Flat-Walled Structures by a Complex Finite Strip Method" 
International Journal for Numerical Methods in Engineering, Vol. 8, No. 2, 
pp 323-329. 

Rockey, K.C., Anderson, R.G., and Cheung, Y.K. 1967. “The Behavior of 
Square Shear Webs Having a Circular Hole”, presented at the Symposium on 
Thin-Walled Steel Structures, University College of Swansea. 

Schuster, R. M., Rogers, C. A., and Celli, A. 1995. “Research into Cold-Formed 
Steel Perforated C-Sections in Shear”, Progress Report No. 1, CSSBI/IRAP 
Project, University of Waterloo. 

Shan, M. Y., LaBoube, R. A., and Yu, W. W. 1994. “Behavior of Web Elements 
with Openings Subjected to Bending, Shear and the Combination of Bending 
and Shear”, Final Report, Civil Engineering Study 94-2, University of 
Missouri-Rolla. 

Shan, M. Y., LaBoube, R. A., and Yu, W. W. 1996. “Bending and Shear 
Behavior of Web Elements with Openings”, Journal of Structural 
Engineering, Vol. 122, No. 8, pp. 854-859. 

Shanmugam, N.E., and Narayanan, R. 1982. “Elastic  Buckling of Perforated 
Square Plates for various loading and Edge Conditions”, Proceedings of 
International Conference on F.E.M., No. 103, Shanghai. 

Standards Australia. 1991. “Methods for Tensile Testing of Metals”  AS/NZS 
1391, Standards Australia/ Standards New Zealand. 

Standards Australia. 2005. “AS/NZS 4600:2005, Cold-Formed Steel Structures” 
Standards Australia/ Standards New Zealand. 

Yao, Z., and Rasmussen, K.J.R. 2011a. “Material and Geometric Nonlinear 
Isoparametric Spline Finite Strip Analysis of Perforated Thin-Walled Steel 
Structures - Analytical Developments” Thin-Walled Structures, Vol. 49, pp 
1359-1373. 

Yao, Z., and Rasmussen, K.J.R. 2011b. “Material and Geometric Nonlinear 
Isoparametric Spline Finite Strip Analysis of Perforated Thin-Walled Steel 
Structures - Numerical Investigations” Thin-Walled Structures, Vol. 49, pp 
1374-1391. 

Yao, Z., and Rasmussen, K.J.R. 2012. “Inelastic Local Buckling Behaviour of 
Perforated Plates and Sections under Compression” Thin-Walled Structures, 
Vol. 61, pp 49-70. 

371



 



 

 
 
 

A Direct Strength Method (DSM) of Design for Channel 
Sections in Shear with Square and Circular Web Holes  

 
Song Hong Pham1, Cao Hung Pham 2 and Gregory J Hancock 3 

 
Abstract 
 
The Direct Strength Method (DSM) design rules for cold-formed steel members 
in shear have been incorporated recently into the North American Specification 
(AISI S100-12) and are being implemented in the Australian standard (AS/NZS 
4600:2005). The method, which was calibrated for unperforated members only, 
requires two inputs including the buckling load Vcr and the shear yielding load 
Vy. For members with square web cut-outs, Vcr	can be computed by either the 
Spline Finite Strip Method (SFSM) or the tabulated values based on the shear 
buckling coefficients kv	as studied by CH Pham or the Finite Element Method 
(FEM). However, Vy	has not been accurately formulated including holes. 
 
This paper represents a practical model to obtain Vy for members with central 
openings subjected to predominantly shear. The model ranges from very small 
holes where traditional shear yielding predominates to large holes where 
Vierendeel action dominates. The model is verified with the DSM design 
formulae using the predominantly shear tests recently conducted at the 
University of Sydney and Queensland University of Technology with both 
square and circular web openings and for shear spans with aspect ratios of 1.0. 
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INTRODUCTION 

In flooring systems, high strength steel cold-formed channel section beams are 
commonly used. Joist webs are often perforated as shown in Fig. 1 to provide 
space for service systems which go through the webs to increase the floor 
clearance height and reduce the material cost. The presence of the web holes 
affects both the buckling capacities and strengths of structural members. 
 

 

Fig. 1. Perforated light gauge beams (Bone Structure, 2005) 
 
Members in compression and flexure with evenly spaced web holes have been 
studied in detail by Moen and Schafer (2010, 2011). The common cold-formed 
steel limit states which include local, distortional and flexural- torsional 
buckling for members with holes were addressed and the DSM design rules 
were also standardized in the North American Specification AISI S100-12 
(AISI, 2012). For unperforated members subjected predominantly to shear, 
DSM design rules were also included in the AISI S100-12 based on the research 
by Pham and Hancock (2012a). However, for perforated members in shear, both 
the AISI S100-12 and the Australian Standard AS/NZS 4600:2005 (Standards 
Australia, 2005) still adopt an empirical approach based on the experimental 
research by Shan et al. (1994),  Schuster et al. (1995) and Eiler (1997). The 
method allows the shear strength of a member with holes to be determined as a 
fraction of the strength of the unperforated member via the reduction factor qs 
computed as following:  
 
When 54tc  ,   1qs  (1) 

When 54tc5  ,    54tcqs   (2) 
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where  2.83d2hc   for circular holes  

2d2hc   for non-circular holes 

h is the depth of flat portion of the web measured along the plane of the web, t	is 
the web thickness, d	is the depth of web hole 

 
As a result, it is not necessary to determine the buckling capacity Vcr and the 
shear yielding load Vy for perforated sections. Despite the computational 
convenience, the method was proved to be conservative for lipped channel 
sections with small web openings while unconservative for sections with large 
openings (Keerthan and Mahendran, 2013). In addition, the above reduction 
expressions are only applicable to a certain range of web opening sizes, 
presumably due to the limited number of experiments. 
 

 
Fig. 2. Shear reduction factor comparison between tests and standards 

 
In Fig. 2, the experimental data on cold-formed channel section members with 
aspect ratio (shear span / section depth) of 1.0 conducted by Pham et al.  (2014, 
2016) at the University of Sydney (USYD), Keerthan and Mahendran (2013) at 
Queensland University of Technology (QUT) has been used for comparison. 
The former test program used 200 mm deep channel members with different 
thicknesses including 1.5 mm, 1.9 mm, 2.4 mm and square opening sizes 
ranging from 40 mm to 120 mm. Meanwhile, the latter experimental program 
worked with a wide range of C-section dimensions (the web depths include 120 
mm, 160 mm and 200 mm), various circular opening sizes and included tests on 
low-strength specimens as noted where applicable. These data sets are employed 
throughout the paper to verify the proposed model. In all the tests, full tension 
field action (TFA) is deemed to be reached. Therefore, all the related graphs 
hereafter disregard the DSM curve without TFA. 
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Keerthan and Mahendran (2014) proposed new empirical equations to determine 
the shear reduction factors that rely on the ratio of the circular web opening 
depth (D) to the clear web height (b1) as following: 
 

When 30.0
b

D
0

1

 ,  










1
s b

D
 0.61q  (3) 

When 

70.0
b

D
30.0

1

 ,  









1
s b

D
 1.3161.215q  (4) 

When 

85.0
b

D
70.0

1

 ,  









1
s b

D
 0.6250.732q  (5) 

 
These new design formulae were generated by fitting the test results on 
members with circular openings, thus their application for other perforation 
shapes requires further interpretation. Nonetheless, the above approaches are not 
in line with the DSM design philosophy which has been implemented in the 
design of other resultant actions, i.e. bending, compression (for both perforated 
and unperforated members) and shear (for unperforated members only). 
Therefore, a DSM design approach for perforated members in shear is in 
demand to unify cold-formed steel structural design. 

DSM DESIGN RULES FOR SHEAR FOR UNPERFORATED MEMBERS 

The shear strength (Vn) including TFA of members without web opening is 
specified in the AISI S100-12 by 
 
For 0.776λv   

 yn VV   (6) 

For 0.776λv   
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crV  is elastic shear buckling force of the section, 
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kv is shear buckling coefficient for the whole section assuming an 
average buckling stress in the web which is given in (Pham and 
Hancock, 2009, 2012b) for plain lipped channels based on the Spline 
Finite Strip Method (SFSM), b is the depth of the flat portion of the 
web, t is the thickness of the web, E is Young's modulus, and ν is 
Poisson's ratio. 
	
Vy is the yield shear load of the flat web, Vy	 	0.6fyAw where Aw	is the 
cross sectional area of web element, fy  is the design yield stress. For 
plate girders, there has been a proposal by Chung et al. (2003)  to 
include the contribution of flanges to the shear strength by adding 
effective flange areas to the shear area. However, in the cold-formed 
steel industry, the above expression for Vy has wide acceptance. 
 

Buckling Capacity 

Pham (2015) employed the Spline Finite Strip Method (SFSM) encoded in the 
Isoparametric Spline Finite Strip Method (ISFSM) program developed by 
Eccher (2007) to study the buckling capacity of lipped channel section members 
with central square holes. Three cases (referred to Case A, B and C) 
distinguished by different methods to apply shear loads were examined. In Case 
A, uniform shear stress is applied throughout the web panel edges. In Case B 
and Case C, a shear flow distribution resulting from a shear force parallel with 
the web is applied at the two end sections as occurs in practice. In order to 
maintain equilibrium, longitudinal stresses caused by a bending moment 
(M V.a, where a is the member length) are applied at one end in an opposite 
way to balance with the moment caused by the two coupling shear forces (Case 
B). In Case C, a pair of bending moments with half value (M/2 V.a/2) acting 
at both end sections in the same direction is applied to balance with the 
longitudinal shear stresses caused by the two coupling shear forces. The shear 
buckling coefficients (kv) corresponding to the ratio d/b of the opening size (d) 
to the flat depth of the web (b) are shown in Fig. 3. The difference in kv between 
the three cases is relatively small, presumably because shear predominantly 
governs the buckling behaviour over the bending effects. These values take into 
account the influence of the cross-section as a whole and the simply supported 
boundary conditions. They can be used to calculate the Vcr for use in the DSM. 
This paper utilizes the values of kv based on Case B in which the stress 
distribution matches the one produced by the experiments. 
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Fig. 3. The variation of shear buckling coefficients in three cases 

Shear Strength 

There has not been a successful attempt to develop DSM design formulae for 
perforated cold-formed sections in shear alone although there was a proposal to 
use either the Vy of the unreduced cross-section or Vy,net based on the net section 
at the opening location (Pham et al., 2016). The test data (Pham et al., 2014, 
2016, Keerthan and Mahendran, 2013) are plotted against the DSM design curve 
for shear with tension field action where the yield shear load is taken as the yield 
load of the net section (Vy,net) as shown in Fig. 4 and Fig. 5. The abscissa depicts 

the section slenderness  crnety,cry VVVVλ   while the odinate 

represents the ratio of the predominantly shear test results (Vn,test) to the yield 
shear load (Vy	 	 Vy,net). It is noted that in the second test series, the circular 
opening shape is transformed to the equivalent square by the expression d	 	
0.825D where d is the square size and D is the circle diameter. This conversion 
is clarified in the following sections. For both test programs, the data noticeably 
tends to systematically deviate from the target curve when the openings become 
substantial. For relatively small perforations, the use of Vy,	 net seems to be 
acceptable but it becomes unconservative when applied for members with large 
cut-outs. The coefficients of variation corresponding to the above cases are 
relatively significant, 10.18% and 10.78% respectively. Thus, it is necessary to 
determine Vy	appropriately in order to improve the current design rules.	 
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* S40 denotes square hole with size of 40 mm 

Fig. 4. Predominantly shear tests at USYD on members with square holes 

 
* C30 denotes circular hole with diameter of 30 mm 

Fig. 5. Predominantly shear tests at QUT on members with circular holes 
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STRATEGY FOR A NEW APPROACH 

Motivation 

Fig. 6 displays the load versus the vertical deformation curves for the tests on 
the USYD 1.9 mm thick series with square openings. It is noticeable that the test 
with large hole (C20019-S120) shows ductile behavior characterized by a 
significant flat plateau at the peak range. This behavior, together with the failure 
mode as shown in Fig. 7, implies that a yielding pattern has been formed and 
spread out over the cross- sections at the four corners of the opening, allowing 
substantial plastic deformation to happen before reaching failure mechanism. In 
the other words, plastic hinges have likely occurred locally at the four opening 
corners as well recognized in Vierendeel mechanism (Chung et al., 2001). The 
occurrence and propagation of the cracks at the corners occurred well after the 
yield plateau and are outside the scope of this paper. 

 

Fig. 6. Load – displacement curves for the shear tests on C20019 series 

 

Fig. 7. Failure mode on shear test on C20019-S120 member  
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Fig. 8 shows the experimental results conducted by Keerthan and Mahendran 
(2013) on channel members with circular openings. The same sections with two 
aspect ratios (shear span / web depth) of 1.0 and 1.5 have been tested. It is of 
interest that for specimens with large openings, there is only a small difference 
in the shear strength between members with different aspect ratios even though 
the discrepancy is clearly noticeable for members with smaller holes. The graph 
indicates two possible facts (i) conventional bending moment has become 
influential in the shear capacity of slightly perforated members with an aspect 
ratio of 1.5, (ii) the same failure mechanism as described above might occur for 
experiments on large web opening with the two different aspect ratios. 
 

 

Fig. 8. Test results for C20019 members with different aspect ratios and hole 
sizes 

All of the above evidence encourages the implementation of the Vierendeel 
mechanism into the shear resistance of perforated members in shear. 

Vierendeel Mechanism 

 

Fig. 9. Vierendeel mechanism for C-section perforated member 
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The Vierendeel truss has been well-known in structural design where the 
diagonal bars are eliminated, thus enforcing the chords to be stressed in the 
combination of bending, shear and compression. To transfer those actions, the 
joints must be rigid compared with the idealized pin connections in conventional 
trusses. The Vierendeel trusses are widely applicable to bridges and buildings to 
create large openings for their functionality or aesthetics. In the absence of 
instability, a failure mechanism is formed in a Vierendeel truss which is 
characterised by the formation of plastic hinges at corners provided that the 
structure is ductile enough. A substantially perforated cold-formed member can 
be viewed as a Vierendeel truss as demonstrated in Fig. 9 where the shear, in 
lieu of being resisted by the web element as usual, is transferred through the 
opening by local bending at the top and bottom segments of the perforated 
section, i.e. by Vierendeel moment or secondary moment.  
 

 

Fig. 10. Global bending diagram and local Vierendeel action resultant 

Fig. 10 illustrates the secondary and global (primary) bending moment diagrams 
in an ideal Vierendeel truss under a centre point load. Each horizontal element is 
subjected to both local and global actions except at the contra-flexural point at 
the mid- section. 
Once the global actions are negligible, as reasonably applicable for shear tests 
with the aspect ratio of 1.0, the shear carried out over the opening can be 
conveniently determined as: 

d

4M
V pv  (9) 

where:  
Mpv is the plastic bending capacity of the top (or bottom) segment above (or 
below) the opening, including the flanges and lips provided that the hole is 
centrally located. For cold-formed steel sections, the rounded corners are 
considered as squares for simplicity. d is the width of the web opening. 

2b 

b
Local (secondary) bending diagram 

Global (primary) bending diagram 

P 
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The reason to adopt the plastic bending moment capacity, not the first yield 
moment capacity even for thin sections in the above expression is explained and 
justified in the following sections. 
 
A model to determine yield shear load for channel sections  
 
As discussed earlier, the DSM shear design format requires two inputs, the 
buckling capacity Vcr  and the shear load at yielding	 Vy . The Vcr is readily 
available as detailed above. A practical model is required to determine	Vy. It is 
worth noting that	the yield shear load Vy is a theoretical value obtained from the 
equation Vy	 	0.6fyAw. The expression implies the assumption that only the flat 
portion of the web contributes to shear resistance and that the flat web is fully 
effective, i.e. no buckling. It is also likely that the compression flanges of cold-
formed sections are restrained properly in practice by attaching to sheathings or 
flooring boards. Therefore, under those assumptions, critical sections can be 
fully utilized in bending until they reach their plastic bending capacity. That 
makes the use of Eqn. 9 to compute Vy from plastic bending capacity sensible 
and viable. Generally, the shear strength calculated from Eqn. 9 is not the 
ultimate member shear strength except for the case that the member is thick 
enough. The main reason is, to reach the value of plastic bending, structures 
must not be exposed to any instability including both local and global, thus the 
coupled shears resulting from that plastic moment is Vy, not Vn. 
 
Finite element (FE) models have been developed to appropriately simulate the 
predominantly shear tests by Pham et al. (2014).  All the details of the test 
configuration and the FE models can be found in that reference. To investigate 
the variation of Vy corresponding to various opening sizes, the same FE models 
are utilized but the member thickness is changed to 5mm. The substantially 
thick member is aimed to eliminate any chance of instability, thus producing the 
shear strength close to the theoretical yield shear load Vy. 
 
In Fig. 11, the dotted solid curve ( ) represents the shear strength (Vn,Abq) 
obtained from FEA for members with the ratio of square opening size to the flat 
web depth (d/b  ranges from 0.0 to 1.0. As seen, for members with small cut-
outs (d/b up to 0.1), the shear strength reduction is negligible. Thereafter, the 
value Vn,Abq starts reducing gradually following a double curvature path. Based 
on this graph, it is hypothesized that the shear load at yielding is unchanged for 
member with small holes (d/b up to 0.1), then it linearly decreases up to the 
ratio of d/b equal to 0.6. The shear behavior of the members with large 
openings (d/b is equal or larger than 0.6) is governed by the shear derived from 
the Vierendeel action, which is determined by Eqn. 9. 
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Fig. 11. FE results and the model for yield shear load 

The new proposed model to determine yield shear load referred as Vy,proposed for 
perforated members is illustrated by the diamond-solid curve ( ) in Fig. 11. 
It is worth noting that in case of d/b	 is equal to 1.0, the shear yielding load 
vanishes when computed based on the net section (Vy,net) but it is still captured 
well by the proposed method due to inclusion of the flanges. The difference 
between Vn,Abq	and	Vy,proposed	at	d/b	 	0.0	 is a direct result	of	 the	use	of	Vy	 	
0.6fyAw	 in the AISI S100-12 which may be slightly unconservative. The new 
proposal does not require a reduction in the shear capacity until d/b	 	0.1 by 
comparison with the net section approach which requires an immediate 
reduction. 

A DSM DESIGN FOR SHEAR FOR CHANNEL SECTIONS 

Members with Square Openings 

The proposed shear yield load (Vy,proposed  is employed in the DSM design 
formulae for shear (Eqn. 6 and 7) to verify the predominantly shear tests 
conducted by Pham et al. (2014 , 2016) on 200 mm deep channel members with 
three thicknesses of 1.5 mm, 1.9 mm and 2.4 mm. The square opening sizes 
include 0 mm (unperforated), 40 mm, 80 mm and 120 mm for each thickness. 
The shear buckling coefficient kv are extracted from reference (Pham, 2015) 
depending on the ratio d/b, then the buckling force Vcr,SFSM is computed by 
Eqn. 8. The subscript ‘SFSM’ is used to note that the shear buckling load is 
derived from the coefficient kv which is obtained by the Spline Finite Strip 
Method as mentioned earlier.  

0

50

100

150

200

250

300

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

S
h

ea
r 

ca
p

ac
it

y 
(k

N
)

d/b

Vn-abq

Vy-proposed

Vnet

Vn,Abq

Vy,proposed

Vy,net

384



 
Fig. 12. Verifying Vy model with USYD tests 

 
The results are shown in Fig. 12 where the normalized experimental outcomes 

Vn,test/Vy,proposed are plotted against the section slenderness  crproposedy, VVλ 

. It is evident that the data follows well the DSM design curve, even when the 
openings are substantial. The associated coefficient of variation (CoV) and the 
average Pm,avg ratio of Vn,test to Vn,DSM are 6.84% and 1.05 respectively. This CoV 
can be compared with that in Fig. 4 of 10.18%. 
 
Members with Circular Openings 

The model for yield shear load  is also verified against the predominantly shear 
tests performed by Keerthan and Mahendran (2013) on channel members with 
the aspect ratio of 1.0. Different section sizes and circular hole diameters were 
included in their tests.  
 
Fig. 13 shows a FE simulation of 5 mm thick channel section members in a 
predominantly shear test with substantial circular opening (d/b	 =	 0.6). The 
failure mechanism happens as analogous as occurred in the test on square hole 
(see Fig. 7). It includes the formation of four plastic hinges, resulting in large, 
visible deflection that constitutes the mechanism. This allows the methodology 
to determine Vy to be applicable for members with circular holes by transforming 
the circles to the squares by the relation d	 	0.825D where d is the square size, 
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D is the circle diameter. Using this transformation, the experimental results are 
plotted against the DSM curve for shear as shown in Fig. 14.  A low strength 
test series (fy	 	271 MPa) and other tests are well captured by the design curve. 
The corresponding CoV and Pm,avg are 5.65% and 1.06 respectively. This CoV 
can be compared with that using Vy,net of 10.78% in Fig. 5. Obviously, it is 
evident that the proposed model to compute Vy	for perforated sections are viable 
for members with aspect ratio of 1.0 and for both circular as well as square 
openings.  
 

 

Fig. 13. FE simulation of shear tests with circular holes 

 

Fig. 14. Verifying Vy model with QUT tests 

C0

C30

C60

C80

C0
C80

C0
C30
C60

C100

C125

C0
C30

C60

C100

C125

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0.0 0.5 1.0 1.5 2.0 2.5 3.0

V
n

,t
es

t/V
y,

p
ro

p
o

se
d



C12019-271MPa

C12015 Series

C16019 Series

C20019 Series

DSM for shear

CoV = 5.65% 
Pm,avg = 1.06 

386



CONCLUSION 

A practical model to compute the yield shear load of sections with square and 
circular holes has been formulated to describe the transition of failure modes 
from traditional web shear to Vierendeel mechanism. That gradual transition 
was supported by the FE simulations of in-plane perforated plates and thick C-
section members in shear. The proposed Vy model is introduced into the current 
DSM design rules for shear to predict well the shear strength of various 
predominantly shear tests with aspect ratio of 1.0 and with circular as well as 
square openings. 
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Introduction 
 

The Steel Deck Institute (SDI) has released the new and long awaited 4th 

Edition of the Diaphragm Design Manual (DDM04).  This new edition complies 

with the requirements of the ANSI/AISI S310-13 North American Standard for 

the Design of Profiled Steel Diaphragm Panels.   At 408 pages, the 4th Edition 

is larger than its predecessor and will be an invaluable resource to structural 

designers because of the background information, design examples, and 

extensive load tables. 

 

The First Edition of the DDM, published in 1981, was authored by Dr. Larry 

Luttrell, P.E., the Technical Advisor to the SDI.  The diaphragm design method 

developed by Dr. Luttrell was based on a rational analytical model of the deck 

panels and the support and side-lap fasteners, which was substantiated by 

extensive testing.  The Second Edition of the DDM, published in 1995, added a 

design method and design tables for floor deck diaphragms.  A Third Edition 

was published in 2004.  The new Fourth Edition is also authored by Dr. Luttrell, 

with the assistance of John Mattingly, P.E.; Walter Schultz, P.E.,  and Dr. 

Thomas Sputo, P.E., S.E.. 
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Manual Format and Coverage 

 

The Diaphragm Design Manual, 4th Edition is divided into a Forward and 

thirteen sections as follows: 

 

Section 1 Introduction 

Section 2 Diaphragm Strength  

Section 3 Diaphragm Stiffness 

Section 4 Connections 

Section 5 Filled Diaphragms 

Section 6 Alternate Fastener Properties 

Section 7 Symbols 

Section 8 References 

Section 9 Fasteners, Warping, and Stiffness Properties 

Section 9A Proprietary Fasteners 

Section 10 Examples 

Section 11 Generic Diaphragm Load Tables 

Section 12 Proprietary Diaphragm Load Tables 

 

This new Fourth Edition improves the earlier 3rd Edition in several ways. 

1. The Manual complies with the analysis and design methods contained 

within the AISI S310 Standard.  The AISI S310 Standard puts the design 

method of the first three editions of the Diaphragm Design Manual into a 

building code enforceable standard.  The resistance and safety factors are the 

same as those in the Third Edition, (DDM03). 

 

2. The Manual contains 26 design examples illustrating the design and 

analysis of steel deck diaphragms, both roof and floor deck.  This is an increase 

over the previous edition which contained 16 examples. 

 

3. New examples include calculation of deflections of non-symmetric 

diaphragms, diaphragms with open areas, and perforated and acoustical deck.  

Additional examples also show the calculation of diaphragm strength and 

stiffness using the AISI S310 provisions. 

 

4. Examples include expanded discussion of the interaction of wind uplift 

with diaphragm strength. 

 

5. Fasteners included in the Manual include generic welds and mechanical 

fasteners in accordance with the strength and flexibility provisions of AISI 

S310, but also include fastener strengths calculated in accordance with the 
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previous DDM provisions, and proprietary screws and power actuated fasteners.  

The use of the previous DDM provisions and proprietary fasteners are permitted 

by AISI S310 as alternate fasteners with performance substantiated by testing. 

 

6. Diaphragm load tables are separated into two sections; calculated using 

the generic AISI S310 weld and screw provisions, and calculated using the 

previous 3rd Edition DDM fastener equations and proprietary fasteners. The 

same resistance and safety factors apply to both methods. 

 

7. The diaphragm buckling strength limit has been updated based on 

further testing and analysis by the AISI Diaphragm Subcommittee. 

 

8. Since the Second Edition, the strength of concrete filled steel deck 

diaphragms has been the sum of the strength of the deck, controlled by the 

fasteners, and the concrete fill.  AISI S310 and DDM04 place an upper limit on 

the contribution of the fasteners to 25% of the total diaphragm strength. 

 

 

Changes to Diaphragm Tables - Roof Deck 
 

Roof Diaphragms with Screws 
 

Changes to bare deck diaphragm strength and stiffness for diaphragms fastened 

using screws can be seen by comparing Figure 5 from DDM03 to Figures 6 and 

7 from DDM04.  These tables tabulate the strength and flexibility of 22 gage 

(0.0295 inch), 1-1/2 inch steel wide rib (WR) roof deck with #12 support screws 

and #10 sidelap screws. 

 

Assuming a 36/5 fastener patters with 3 sidelap screws per span, and a span 

length of 5 feet, we see the differences in Table 1. 

 

The values of K2, K4 and the Moment of Inertia are taken from other tables in 

DDM03 and DDM04.  The values of K4 and the Moment of Inertia changed in 

DDM04 due to slight revisions to the lower bound section properties of wide rib 

deck manufactured by SDI member companies.  The value of G' (diaphragm 

stiffness) is calculated from these values. 

 

Because the AISI S310-13 Standard permits the use of alternate fastener 

strength and flexibility formulations when substantiated by testing, the older 

DDM03 screw strength values can continue to be used, if desired.  The lower 

strength for the generic fasteners are due to the use of the AISI S100 screw 

strength equations which were incorporated into S310. 
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 Figure 5 - 

DDM03 

Figure 6 - 

DDM04 

(Generic) 

Figure 7 - 

DDM04 

(Proprietary) 

Nominal Shear Strength, Snf  670 plf 480 plf 670 plf 

Nominal Shear Strength, Snb 2050 plf 5580 plf 5580 plf 

K1 0.304 /ft 0.304 /ft 0.304 /ft 

K2 870 kip/in 870 kip/in 870 kip/in 

K4 3.78 3.55 3.55 

Dxx 758 ft 607 ft 607 ft 

Moment of Inertia 0.152 in
4
/ft 0.173 in

4
/ft 0.173 in

4
/ft 

G' 16.16 kip/in 19.54 kip/in 19.54 kip/in 

 

Table 1.  Comparison of Strength and Stiffness of Roof Deck with Screw 

Attachment 

 
 

Roof Diaphragms with Welds 
 

Changes to bare deck diaphragm strength and stiffness fastened with welds can 

be seen by comparing tables from DDM03 (page AV-6) and DDM04 (page 11-

5). These tables tabulate the strength and flexibility of 20 gage (0.00358 inch), 

1-1/2 inch steel wide rib (WR) roof deck with 3/4" arc spot welds at supports 

and 5/8" arc spot welds at sidelaps. 

 

Assuming a 36/5 fastener pattern with 3 sidelap welds per span, and a span 

length of 5 feet, in Table 2 we see the following: 

 

 DDM03 DDM04 

Nominal Shear Strength, Snf  1665 plf 1665 plf 

Nominal Shear Strength, Snb 2890 plf 7465 plf 

K1 0.184 /ft 0.184 /ft 

K2 1056 kip/in 1056 kip/in 

K4 3.78 3.55 

Dxx 567 ft 454 ft 

Moment of Inertia 0.198 in
4
/ft 0.210 in

4
/ft 

G' 26.03 kip/in 31.47 kip/in 

 

Table 2.  Comparison of Strength and Stiffness of Roof Deck with Welds 
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The diaphragm strength for welded diaphragms does not differ from what was 

found in DDM03.  The weld strength equation from DDM03 is the same as what 

is found in AISI S100 and S310 for thin sheets. 

 

 

Changes to Diaphragm Tables - Floor Deck 

 

Floor Diaphragms with Welds 

 

Changes to concrete filled deck diaphragm strength and stiffness fastened with 

welds can be seen by comparing tables from DDM03 (page AV-96) and 

DDM04 (page 11-29 and Figure 8). These tables tabulate the strength and 

flexibility of 20 gage (0.00358 inch), steel floor deck with 2-1/2 inches of 

structural concrete above the deck with 5/8" arc spot welds at supports and 5/8" 

arc spot welds at sidelaps. 

 

Assuming a 36/4 fastener pattern and a span length of 5 feet, in Table 3 we see 

the following: 

 

 Number of sidelap 

welds per span 

DDM03 DDM04 

Nominal Shear Strength, Snf  1 5835 plf 5980 plf 

Nominal Shear Strength, Snf 8 8030 plf 6535 plf 

 

Table 3.  Comparison of Strength of Welded Floor Diaphragm 

 
With one sidelap fastener per span, the diaphragm strength is approximately the 

same because the diaphragm strength is dominated by the contribution of the 

concrete fill.  However, when a large number of sidelap fasteners are added, the 

contribution of the fasteners to the diaphragm strength increases and is limited 

by the AISI S310 limit that the fasteners can contribute no more than 25% of the 

total diaphragm strength. 

 

In Figure 8 (DDM04 page 11-29), for this same 36/4 attachment pattern and 5 

foot span that for 3 or more sidelap fasteners there is no additional diaphragm 

strength due to this 25% fastener limit.  Likewise, for the same 36/4 attachment 

pattern with 4 sidelap fasteners, the diaphragm strength is the same for all deck 

spans up to 6 feet. 
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Example Highlights 

 

New examples added to the Manual increase the usability by illustrating 

commonly used applications which were not covered in DDM03. 

 

 
Figure 1.  Tension and Shear Interaction on Fasteners 

 

 
Figure 2.  Acoustical Deck Diaphragms 
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Figure 3.  Cellular Deck Diaphragms 

 

 

 
 

Figure 4.  Acoustical Cellular Deck Diaphragms 
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Conclusion 

 

The new SDI Diaphragm Design Manual, 4th Edition, represents a step forward 

for designers of buildings that incorporate steel deck diaphragms. 
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Figure 5.  DDM03 - 22 Gage Roof Deck - #12 Support Screw - #10 

Sidelap Screw 
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Figure 6.  DDM04 - 22 Gage Roof Deck - #12 Support Screw - #10 

Sidelap Screw (Generic) 
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Figure 7.  DDM04 - 22 Gage Roof Deck - #12 Support Screw - #10 

Sidelap Screw (Proprietary) 
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Figure 8.  DDM04 - 20 Gage Composite Floor Deck - 5/8 inch Arc Spot 

Weld Support and Sidelap Fasteners 
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Recent Developments in the Australian/New Zealand Standard 
AS/NZS 4600 for Cold-Formed Steel Structures 

 
Gregory J Hancock1 

Abstract 
 
The Australian/New Zealand Standard AS/NZS 4600 is currently under revision 
based in part on the latest edition of the North American Specification AISI 
S100:2012 and partly based on the latest research in Australia and New Zealand.  
The Direct Strength Method (DSM) of design has undergone substantial 
research since the 2005 edition of AS/NZS 4600 and this research is now 
incorporated in the revised edition.  The new areas in the DSM include shear, 
combined bending and shear, combined bending and compression, sections with 
holes and inelastic reserve capacity.   Further, the prequalified sections now 
include most sections with longitudinal web and flange stiffeners based in part 
on Australian research on high strength sections with multiple stiffeners. 
   
New areas in the Australian/New Zealand Standard include extension of Section 
8 Testing to design based on testing, Section 9 Design for Fire, Appendix B 
Methods of Analysis including advanced analysis, and Appendix D Buckling 
moments and stresses for local, distortional and global buckling.    Revisions of 
design rules for net section tension and block shear rupture at bolted connections 
based on Australian research, inclusion of oversize and slotted holes, and 
screwed connections in tension and shear now are also included.  The paper 
includes the research basis of the latest revisions with the supporting references. 
 
The Australian Buildings Code Board (ABCB), which regulates buildings in 
Australia by way of the National Construction Code (NCC 2015), has recently 
changed the loading data for wind, snow and earthquake from 50 year to annual 
probability of occurrence.  This has the effect of increasing the target safety 
indices. The paper describes the recalibration process for test based design 
“using the revised loading data. 
 
 
 
 

 

1 Emeritus Professor and Professorial Research Fellow, School of Civil 
Engineering, The Univ. of Sydney, Sydney NSW 2006, Australia. 
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Baltimore, Maryland, U.S.A, November 9 & 10, 2016
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INTRODUCTION 
 
The Limit States Australian/New Zealand Standard for Cold-Formed Steel 
Structures was originally published in 1996 based party on the American Iron 
and Steel Institute Specification at that time, and partly on Australian research 
on high strength steels to AS 1397 (Standards Australia, 2011).  The higher 
strength G450, G500 and G550 steels result in more severe stability problems 
including new modes such as distortional buckling which was incorporated in 
the 1996 edition.  In 2005, a revision of AS/NZS 4600 (Standards Australia 
2005) occurred which included design for low ductility G550 steel as commonly 
used in steel framed housing.  The more recent editions of the North American 
Specification have included distortional buckling and higher strength low 
ductility steels.  The AISI has published the 2012 Edition (AISI S100:2012) of 
its specification which substantial updates to the DSM which are also being 
incorporated in the revised edition of AS/NZS 4600. 
 

 

Figure 1. Design and Analysis Modules in AS/NZS 4600 

Currently, two basic design methods for cold-formed steel members are 
available in the Australian/New Zealand Standard for Cold-Formed Steel 

Effective Width Method         

Section 2    Elements              

Section 3    Members

Direct Strength Method

Section 7

Appendix B Methods of Analysis 

B2 First order  elastic                            

B3 Second order elastic

B4 Advanced analysis 

Appendix D Elastic buckling

stresses and actions

D1 Members in compression

D2 Members in bending

D3 Members in shear
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Structures (AS/NZS 4600:2005) (Standards Australia, 2005). They are the 
traditional Effective Width Method (EWM) specified in Section 2 Elements and 
Section 3 Members and the newly developed Direct Strength Method of design 
(DSM) as specified in Chapter 7 as shown in Fig. 1.    The EWM has been 
“grand-fathered” in the revised edition on the basis that Committee BD/82 of 
Standards Australia required that all existing design methods are maintained in 
their current form without restriction.  The DSM has undergone extensive 
revision and extension in line with AISI S100:2012 as described later in the 
paper.  A new Appendix B has been added to the Standard to clearly specify B2 
First Order Elastic Analysis, B3 Second Order Elastic Analysis and B4 
Advanced Analysis as described later in the paper.  Australian research on 
advanced analysis methods at the University of Sydney has been used to develop 
the new Appendix B4.  Appendix D, which previously included only buckling 
solutions for distortional buckling, has been extended to include all elastic 
buckling solutions for local, distortional and global buckling of sections with 
and without holes.   
 
The new testing methodology in Section 8 Testing is closely linked to the 
National Construction Code (NCC) of the Australian Buildings Code Board 
(ABCB, 2015).  Two significant changes have been made to Section 8 in the 
new edition.  They are the determination of design values based on prototype 
testing where the average of the test results can now be used, and calibration of a 
strength prediction model based on prototype testing.  It also includes members 
in compression, bending and shear. 
  
A new Section 9 Fire Design has been added to the standard using research at 
Queensland University of Technology, Australia.  The methodology has been 
developed for Australian high strength steels to AS1397 assuming protected 
cold-formed steel building members.  A new informative Appendix G for 
members subject to non-uniform temperature distribution is included. The new 
methodology is described in the paper. 
 
Significant research has been performed recently in Australia at the University 
of Wollongong on net section fracture and block shear rupture.  New equations 
have been developed and included in Section 5 Connections for net section 
fracture and block shear rupture where new shear lag factors have been 
incorporated.  Further, the shear planes in block shear rupture are now based on 
average shear planes rather than gross or net sections at bolted connections. 
 
Additionally, new areas in AS/NZS 4600 based mainly on AISI S100:2012 
include 
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1. Uniformly compressed stiffened elements with non-circular holes 
2. Uniformly compressed elements restrained by intermittent connections 
3. Combined bending and torsional loading 
4. Compression members composed of two sections in contact 
5. New equations for C- and Z-beams with neither flange connected to 

sheeting 
6. Modification factors for bearing of bolted connections with oversize 

and short slotted holes 
7. Screwed connections in shear and tension 
8. Power actuated fasteners (PAFs) 
9. Screwed connections in roof battens 

 
In addition, failure of the screws in shear or tension is now a permitted limit 
state where the capacities of the screws are based on testing. 
 
 
SECTION 7 DIRECT STRENGTH METHOD 
 
Pre-qualified sections 
 
Thin-walled sections are becoming more complex with additional longitudinal 
web stiffeners and return lips as demonstrated in Fig. 2.  For the EWM, the 
calculation of effective widths of the numerous sub-elements leads to severe 
complications with decreased accuracy. In some special cases, no design 
approach is even available for such a section using the EWM. The DSM appears 
to be more beneficial and simpler by using the elastic buckling stresses of the 
whole section.  Consequently, the pre-qualified sections for use in the DSM 
have been extended to include up to 4 intermediate stiffeners in stiffened 
compression elements and webs and 2 in the flanges of edge stiffened elements 
which may include return lips. 
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Figure 2   Channel sections with additional stiffeners 
 
In order to validate the extension of the range of complex sections to larger 
intermediate stiffeners and multiple intermediate stiffeners as occurs in practice 
(see Fig. 2), experimental programs were performed at the University of Sydney 
for bending by Pham and Hancock (2014), and for shear by Pham, Bruneau and 
Hancock (ASCE, 2015).  
 
Sections with Holes 
 
The inclusion of holes in the DSM calculations requires the calculation of the 
elastic buckling loads and stresses for perforated sections.  Equations for this 
purpose are included in Appendix D of AS/NZS 4600 based on research by 
Moen and Schafer (ASCE, 2011) as included in Appendix 1 and the 
Commentary of AISI S100:2012 
 
DSM Design Rules for Shear 
 
The recent development of the Direct Strength Method (DSM) of design of cold-
formed sections in pure shear was included in the 2012 Edition of the North 
American Specification for Cold-Formed Steel Structural Members (AISI S100-
2012) based mainly on Australian research (Pham and Hancock, 2012).    It is 
now included in AS/NZS 4600 as follows: 
 
DSM design rules in shear without Tension Field Action 
 
The nominal shear strength (Vv) of beams without holes in the web and without 
transverse web stiffeners is as follows: 
 
For	 0.815 ∶ 	       (1) 
 
For	0.815 	 1.227 ∶ 	 0.815	    (2) 
 
For	 1.227 ∶ 	      (3) 
 

0.6        (4) 

	                                                                                      (5) 
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where
    

Vy     is the yield load of web based on an average shear yield stress of 
0.6fy; 

Vcr  is the elastic shear buckling force of the whole section derived by 
integration of the shear stress distribution at buckling over the 
whole section; cryv VV / ; 

vk  is the shear buckling coefficient of the whole section based on the 

Semi-Analytical Finite Strip Method (SAFSM) (Hancock and 
Pham, 2013a).  Alternatively, shear buckling coefficients have 
been tabulated in Appendix D for a range of sections including 
Lipped Channel Beams (LCB), LiteSteel Beams (LSB), Hollow 
Flange Beams (HFB) (Keerthan and Mahendran, 2015) 

 
DSM design rules in shear with Tension Field Action 
 
The nominal shear strength (Vv) of beams without holes in the web including 
tension field action is determined using Equation 6 which is based on Appendix 
1, Section 1.2.2.2.1 of NAS-2012 (AISI, 2012) as follows: 
 
 

1 0.15
. .

     (6) 

 
A photograph of a web-stiffened channel under test in shear (Bruneau et al. 
2015) is shown in Fig. 3 and demonstrates the different tension field action with 
different depth intermediate stiffeners. 
 

 
 

Figure 3  Web-stiffened sections under test in shear 
 
DSM Design Rules for Combined Bending and Compression 
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The design axial compression (N*), and the design bending moments 

 *
y

*
x and MM  about the x- and y-axes of the gross section, respectively 

are required to satisfy the following linear interaction equation: 
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M

M

N

N


                                             (7)  

where 

 Nc = nominal member capacity of the member in compression 

  Mx
*,My

* = design bending moment about the x- and y-axes of the 
gross section, respectively including the second order 
moments in accordance with Appendix B3 Second Order 
Elastic Analysis 

 Mbx, Mby = nominal member moment capacity about the x- and y-
axes,   respectively 

In the application of Equation 7 including second order moments, the 
effective lengths are taken as the actual length L or the length between 
brace points.  The two key developments are the use of actual lengths with 
the second order elastic analysis and the use of gross sections rather than 
the effective sections when calculating the line of action of the axial 
forces. 
 
 
SECTION 8 TESTING 
 
Section 8.2 Testing for Assessment or Verification of AS/NZS 4600 has 
undergone significant revision by providing separate Clauses 8.4.1 Prototype 
Testing and 8.4.2 Strength Prediction Model.  The former applies to a design 
value Rd for a specific product or assembly, and the latter applies to the 
calibration of a design equation according to the Australian National 
Construction Code (NCC) (ABCB, 2015).  
 
The design value (Rd) for a specific product or assembly is required to satisfy 
either…. 
 

	 	       (8) 
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	 	       (9) 

 
 
where: 
 

Rmin is the minimum value of the test results and kt-min is the 
sampling factor given in Table 8.2.3(a) of AS/NZS 4600. 
Rave is the average value of the test results and kt-ave is the sampling 
factor as given in Table 8.2.3(b) of AS/NZS 4600. 

 
The values of kt-min  and kt-ave depend upon the coefficient of variation of 
structural characteristics Vsc given by: 
 

	 √       (10) 
 
The coefficient of variation of structural characteristics (Vsc) refers to the 
variability of the total population of the production units. It includes the total 
population variation due to fabrication (Vf) and material (Vm).   By way of 
example, if Vsc is 10% and 5 units are tested, then kt-min is 1.28 and kt-ave is 1.34. 
 
The alternative approach using a strength prediction model for the resistance R 
is given by  
 

	 . . .       (11) 
 
where: 

nominal	design	strength 
factor	to	account	for	variation	in	material	properties 
	factor	to	account	for	variation	in	fabrication 
factor	to	account	for	the	accuracy	of	the	prediction 

 
An assessment of the mean value and the coefficient of variation of (R/Rn) is 
required to derive the capacity factor φ to be used.  In this case, Vsc is given 
by: 
 

	 √ 	       (12) 
 
The coefficient of variation of structural characteristics (Vsc) refers to the 
variability of the total population of the production units. This includes the 
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total population variation due to fabrication (Vf), material (Vm) and variation of 
the prediction (Vt).  The value of Vt is established to reflect the difference 
between the test results and the strength prediction model.  
 

The capacity factor φ is determined to satisfy the verification method BV1 of 
the National Construction Code (ABCB, 2015).  In the 2015 revision of the 
NCC, the loading data has been modified to annual probability of exceedance 
with a consequent increase in the required safety indices.  The safety index in 
the NCC is given by: 
 

ln /√ ln                                                        (13) 

 
where 
 

∅
/ 	                                                                          (14) 

 
1        (15) 

 
1 	        (16) 

 
Qm = mean action 
Qn = nominal design action 
Rm = mean resistance 
Rn = nominal design resistance 
VQ = coefficient of variation with respect to action 
VR = coefficient of variation with respect to resistance 
 
For example, for permanent (dead load) and imposed (live load) actions, the 
safety index β is 3.8 when annual probability data is used.  This may be reduced 
by 0.3 for other than primary structural components which may be applicable to 
cold-formed steel design.  The corresponding β values for wind, earthquake and 
snow actions are 3.2, 3.4, 3.6 and 3.8 at Importance Levels 1, 2, 3 and 4 
respectively.  
 
SECTION 9 FIRE DESIGN 

The protected cold-formed steel structural members are designed to have a 
Period of Structural Adequacy (PSA) equal to or greater than the required 
Fire Resistance Level (FRL). The FRL is the fire resistance period in 
minutes required to be attained in a standard fire test. The PSA is normally 
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determined using the elevated temperature mechanical properties of cold-
formed steels and the temperature-time relationship of cold-formed steel 
structural members in the standard fire test. Since thin-walled cold-formed 
steel structural members have a high exposed surface area to mass ratio, 
temperature development is likely to be rapid and high. Hence they are 
normally located within or protected by fire-resistant barriers when they 
are required to have a FRL.  Section 9 of AS/NZS 4600 applies to such 
protected cold-formed steel structural members.   The PSA can be 
determined by a simple fire test, by calculations by determining the 
limiting temperature of the cold-formed steel structural member and then 
determining the time from the start of the standard fire test to the time at 
which the limiting temperature is reached using the temperature time 
relationships, or by advanced analysis. 
 
The PSA can also be determined using the elevated temperature capacities of 
members at a given time in the standard fire test based on their temperature-
time relationships.  For members subject to uniform or near uniform 
temperature distributions in applications such as beams or columns, ambient 
temperature design capacity rules are used with appropriately reduced 
mechanical properties as described below. For members subject to non-uniform 
temperature distributions, the net eccentricity due to neutral axis shift and 
thermal bowing and their magnification effects are used in calculating the 
resulting bending moment on a wall stud. Appendix G gives guidance on the 
determination of the load bearing capacity of cold-formed steel structural 
members used in floors or load bearing walls under non-uniform temperature 
distribution.  Section 9 and Appendix G are based on research at Queensland 
University of Technology (Gunalan and Mahendran, 2014) 

 
The influence of temperature (T) on the yield stress is defined by a reduction 

factor ,

,
 as follows: 

 
For high strength steels (G450, G500 and G550) to AS 1397, 
 

20≤T<300oC  ,

,
	 0.000179 1.00358  (17) 

 

300≤T<600oC  ,

,
	 0.0028 1.79   (18) 

 

600≤T<800oC  ,

,
	 0.0004 0.35   (19) 
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For low strength steels (G250, G300 and G350) to AS 1397, 
 
 

20≤T<300oC  ,

,
	 0.0005 1.01   (20) 

200≤T<800oC  ,

,
	25 1.16 	 .    (21) 

 
where: 

fy,T = yield stress of steel at T˚C 
fy,20 = yield stress of steel at 20˚C 

 
The influence of temperature (T) on the modulus of elasticity is defined by a 

reduction factor  as follows:  

 
For all steels to AS 1397 
 

20≤T<200oC  	 0.000835 1.0167      (22) 

 

20≤T<300oC  	 0.00135 1.1201      (23) 

where: 
ET = modulus of elasticity of steel at T˚C 
E20 = modulus of elasticity of steel at 20˚C 

 
The influence of temperature (T) on the stress-strain relationship for cold-
formed steel is as follows: 
 

	 	 ,

,
           (24) 

where:    T  is the strain corresponding to a given stress fT at temperature (T),  

ET and fy,T are modulus of elasticity and yield stress at temperature (T)   
respectively, and ηT and β are two parameters. 

 
For high strength steels (G450, G500 and G550) to AS 1397,  
For 20 ≤T<800oC 
β = 0.86 

	 3.05 ∗ 10 0.0005 0.2615 62.653      (25) 
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For low strength steels (G250, G300, G350) AS 1397,  
For 300≤T<800oC 
β = 1.5 

	0.000138 0.085468 19.212       (26) 
 
NET SECTION TENSION AND BLOCK SHEAR RUPTURE 
 
Net Section Tension 
 
A new equation for net section tension has been included in Clause 5.3.3 of 
AS/NZS 4600 based on research at the University of Wollongong (Teh and 
Gilbert 2014).  The new equation better accounts for shear lag in flat sheets and 
has also been balloted in the new edition of AISI S100.  The design tensile 
capacity (Nf) of the connected part is determined as follows: 
 

	 0.9 	 0.1     (27) 

 
where:   ϕ = 0.8 

df = diameter of fastener 
sf = spacing of bolts perpendicular to the line of the force, or width of 
sheet, in the case of one bolt        
An = net area of the connected part 

 
The improved equation is more reliable and therefore allows a higher capacity 
factor of 0.8 to be used for design than previously at 0.55 – 0.65. 
 
Block Shear Rupture 
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Figure 4 Shear and tension failure planes in block shear rupture 

 
A new equation for block shear rupture has been included in Clause 5.7.3 of 
AS/NZS 4600 based on research at the University of Wollongong (Teh and 
Clements, 2012).  The new equation better accounts for shear lag in flat sheets 
as for Equation 27 and also more accurately represents the shear failure planes 
shown in Fig. 4.    The design tensile capacity (Rn) of the connected part is 
determined as follows: 
 

0.6 0.9 0.1            (28) 

 
where  ϕ = 0.8 
 
Aav is the active shear area in block shear rupture defined in Fig. 4, Lgv is the 
distance from the free edge to centerline of bolt furthest from the edge, nr is the 
number of rows of bolts, sf is the spacing of bolts perpendicular to the line of the 
force, Ant is the net area subject to block shear tension, and df is the diameter of 
the fastener.  The capacity factor ϕ is increased from 0.65 to 0.8 due to the better 
reliability of the revised equation. 
 
APPENDIX B METHODS OF ANALYSIS 

The new Appendix B contains provisions for the structural analysis of 
cold-formed steel framing systems comprised of braced frames, unbraced 
frames, portal frames, braced compression members, or combinations 
thereof. The design action effects in a structure and its members and 
connections caused by the design loads are determined by structural 
analysis using one of the methods of— 

 (a) first order elastic analysis, in accordance with Clause B2; 

 (b) second order elastic analysis, in accordance with Clause B3; or 

 (c) advanced analysis, in accordance with Clause B4. 
 
Appendices B2 First Order Elastic Analysis and B3 Second Order Elastic 
Analysis 
 
The first order elastic analysis, also referred to as linear analysis (LA), and 
second order elastic analysis, also referred to a geometric non-linear analysis 
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(GNA), follow the same assumptions and methodology as in the Australian Steel 
Structures Standard AS4100:1998 (Standards Australia, 1998).  The only 
significant difference is in the frame geometric imperfections which have been 
based on Eurocode 3 Part 1.1. 
 
Appendix B4 Advanced Analysis 

Advanced structural analysis, also referred to as geometric and material 
nonlinear analysis with imperfections (GMNIA), of a cold-formed steel 
framing system is required to consider all of the following effects: 

a) Flexural, shear and axial member deformations, and connection 
deformations that contribute to displacements of the structure; 

(b) Second-order effects arising from displacements of the structure 
and its members; 

 (c) Geometric imperfections, comprising: 

 frame imperfections (out-of-plumbness), 

 member imperfections (out-of straightness), and  

 cross-sectional imperfections (distortions of cross-section); 

(d) Stiffness reductions due to axial forces and inelasticity including 
the effect of residual stresses and partial yielding of the cross-
section; 

(e) Stiffness reductions due to cross-section deformations or local 
and distortional deformations; 

(f) Uncertainty in system, member, and connection stiffness and 
strength. 

For the strength and stability limit states, the frame is required to support 
the factored limit states actions multiplied by 1/, where values of  are 
given in Table B4 for prequalified frames. For steel storage racks, ϕ = 0.90 
and for pitched roof portal frames, ϕ = 0.85. Connections are required to 
have adequate strength and ductility to ensure the structure fails within the 
members.  The design capacity (Rd) of connections is determined as per 
Section 5 of AS/NZS 4600 and needs to be shown to equal or exceed the design 
actions to which the connections are subjected as predicted by the advanced 
analysis.  Appendix B4 is based on research by Cardoso et al. (2015). at the 
University of Sydney. 
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CONCLUSIONS 
 
A substantial revision of the Australian/New Zealand Cold-Formed Steel 
Structures Standard AS/NZS 4600 is in progress.  At the time of writing this 
paper, it was at public review stage.  The revised standard is based partly on the 
2012 Edition of the AISI North American Specification AISI S100:2012, and 
partly on recent Australian research.  New areas in the standard include fire 
design in Section 9 and advanced analysis in Appendix B.  Substantial revisions 
have been made to the Direct Strength Method (DSM) to include shear, 
combined bending and compression, sections with holes and inelastic reserve 
capacity, as well as a much wider range of prequalified sections.  Significant 
changes in the connections Section 5 include oversize and short slotted holes, 
screwed connections subject to combined tension and shear, power actuated 
fasteners (PAFs), new rules for net tension rupture and block shear rupture in 
bolted connections, and welding of G550 and G500 sheet steels. 
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Abstract 
The objective of this paper is to document progress on new cold-formed steel 
provisions for the forthcoming edition of ASCE 41, Seismic Evaluation and 
Retrofit of Existing Buildings. The current edition of ASCE 41 (2013) is weak 
with respect to the application of cold-formed steel and provides only limited 
information on cold-formed steel framed buildings, shear walls, members, and 
connections. The emphasis in this paper is on cold-formed steel framed shear 
walls, and the development of modeling parameters that characterize the 
backbone shear-deformation response, and acceptance criteria that provide 
allowable demand-to-capacity ratios (m-factors) for the shear walls based on a 
broad evaluation of existing data. Significant additional work has been developed 
to update ASCE 41; including, developing descriptions of benchmark buildings 
framed from cold-formed steel and how damage and deterioration is observed in 
these buildings. These descriptions are necessary in the evaluation process and 
exist for other building materials in ASCE 41 (2013), but not for cold-formed steel 
framing. In addition, modeling parameters and acceptance criteria are provided 
for individual cold-formed steel members in flexure and steel-to-steel 
connections. The paper provides a description of the collected experimental data 
and the procedures employed for developing modeling parameters and acceptance 
criteria, and provides the developed factors in summary form as currently being 
finalized through the ASCE 41 balloting process. The long-term goal of this effort 
is to further enable performance-based seismic design for buildings framed from 
cold-formed steel.  
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Introduction  
Most building structural engineers are aware of the seismic design provisions in 
ASCE 7 (2010). For cold-formed steel (CFS) framed buildings the equivalent 
lateral force (ELF) procedure of ASCE 7 is most commonly used. The ELF 
method in ASCE 7 requires an estimation of building mass and period that once 
suitably modified by seismic response modification coefficients (e.g. R) results in 
an estimate of the demand base shear and its distribution along the height of the 
building. The lateral force resisting system must be designed against these 
demands, and consideration is also given to overstrength and deflection in the 
design process. Alternative procedures using nonlinear static pushover analysis, 
linear dynamic analysis, and nonlinear dynamic (time history) analysis, are all 
allowed, but are uncommon for CFS framing due to difficulties including a lack 
of required information for completing the modeling accurately.  
 
ASCE 41: Seismic Evaluation and Retrofit of Existing Buildings (2013), provides 
an alternative seismic design procedure that despite its name can be used both for 
existing or new design. ASCE 41 is a performance-based standard and provides 
differing solutions based on the designers objective for their building (or retrofit): 
immediate occupancy, life safety, or collapse prevention. Once the performance 
level is set the demand is determined (e.g. for an immediate occupancy level a 
particular base shear and distribution for use in a linear static procedure is set) and 
the building components are evaluated for that demand. Each component is 
characterized as either deformation-controlled or force-controlled and appropriate 
demand-to-capacity ratios are compared against allowable demand-to-capacity 
ratios known as m-factors. Common m-factors are near 3, but vary considerably. 
Note, m-factors are specific to linear static analysis, similar demand-to-capacity 
ratios for deformation and force are provided for other analysis procedures.  
 
The ASCE 41 m-factors are similar in spirit to the ductility-based portion of the 
R factor used in ASCE 7, but direct comparisons are not possible. ASCE 7 (2010) 
and ASCE 41 (2013) do not result in the same design solutions even for new 
buildings (Harris and Speicher 2015). The closest comparison that can be made 
to the intended structural performance objective of ASCE 7 (2010), i.e. collapse 
prevention against an MCE event, is selection of the collapse prevention objective 
and the BSE-2 hazard in ASCE 41 (Harris and Speicher 2015). Even still, the 
results are highly site specific and one finds that despite resting on the same 
knowledge basis ASCE 7 (2010) and ASCE 41 (2013) result in different designs.  
 
As a standard, ASCE 41 is growing in importance in the United States. For one, 
ASCE 41 provides a codified method that includes multiple performance 
objectives. For organizations or owners that seek performance beyond the 
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collapse prevention levels of ASCE 7, the methods of ASCE 41 provide a path. 
Second, ASCE 41 provides a codified procedure for seismic retrofits. The need 
for seismic retrofits continues to grow, as does the geographic locations where 
such retrofits are being considered. Third, and finally, ASCE 41 provides a 
detailed means to employ nonlinear analysis, specifically nonlinear static 
pushover analysis, in an organized method to improve upon ELF-based (linear 
static) designs and better represent actual structural behavior.  
 
During the process of updating ASCE 41 for the 2013 version a stark lack of 
knowledge in the application of this standard for CFS framing was identified, as 
well as a need to develop a better solution. Expansion of the scope of ASCE 41 to 
cover CFS and CFS framing requires (a) existing CFS construction be fully 
accounted for in a retrofit seismic design, (b) new CFS construction be utilized 
where appropriate in seismic retrofits, and (c) new seismic design is enabled to 
use CFS. This paper addresses the work that was completed to help meet these 
goals in the development of the 2017 version of ASCE 41.  
 
The paper begins with the methodology that ASCE 41 employs to characterize 
the acceptable performance of structural components. This is followed by a 
detailed discussion of the development and application of a database on CFS 
framed shear walls and strap-braced walls to establish acceptance criteria and 
modeling parameters for these critical CFS systems in ASCE 41’s format. 
Additional information on acceptance criteria for CFS members in flexure and 
steel-to-steel connections follows the work on shear walls. Finally, a discussion 
of the development of benchmark buildings and other overall changes for CFS 
and CFS framing needed in ASCE 41 are provided.  
 
Force-deformation (Q-) and demand-to-capacity (m-factor) ratios  
A central premise of the structural analysis that underpins ASCE 41 is the ability 
to define the idealized force-deformation (Q-) response of structural components 
as illustrated in Figure 1. For example, for CFS framing a key primary component 
may be a CFS framed shear wall and the force Q would be the lateral shear on the 
wall and the deformation  the related lateral displacement. The Q- response in 
this example is the backbone of the hysteretic response of the wall. This Q- 
response is idealized to a set of linear segments, as illustrated in Figure 2. ASCE 
41 defines three potential performance levels: immediate occupancy (IO), life 
safety (LS), or collapse prevention (CP). These performance levels are utilized in 
the creation of acceptance criteria, aligned with the performance levels, that are 
defined as a function of key deformation limits as conceptually illustrated in 
Figure 1. Note, primary (P) and secondary (S) components of the structure employ 
different acceptance criteria (deformation limits) as illustrated in Figure 1. 

419



 Figure 1. Acceptance Criteria illustration per ASCE 41 Section 7.6.3 
 
The application of the idealized Q- response and the implementation of the 
acceptance criteria depends on the structural analysis performed. When a 
nonlinear static (pushover) analysis is used to estimate the demands on the 
structure the Q- response is utilized directly in the model and ASCE 41 provides 
the modeling parameters (a – c) as illustrated in Figure 2 along with methods for 
determining initial stiffness and peak strength to define the full response curve. 
Deformations in the model are compared against deformation-based acceptance 
criteria that depend on the performance level. 
 

  Figure 2. Comparison of shear wall backbone and idealized ASCE 41 response 
with deformation points A – E and modeling parameters a-c illustrated 

When linear static analysis is performed for the evaluation then only the elastic 
stiffness is employed and deformations have to be inferred from the developed 
force levels. Thus, force-based demand-to-capacity ratios are employed – this 
implies certain assumptions about the nature of the dynamic displacements, 
conceptually similar to the “equal displacement rule” that the magnitude of 
nonlinear deformations in a nonlinear time history analysis are similar to those in 
a linear dynamic analysis. For linear static analysis the acceptable demand-to-
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capacity ratios are known as m-factors and are defined in terms of the idealized 
deformation points as given in Table 1. Note, acceptance criteria for nonlinear 
static analysis are similar, but without the additional 0.75 pre-factor enforced for 
m-factors due to the additional uncertainty inherent in using a linear static 
procedure to estimate a nonlinear response. ASCE 41 (2013) does not provide the 
Q- response nor the m-factors for CFS or CFS framing. Thus, an essential feature 
of the proposed updates to ASCE 41 is to gather existing data and develop these 
response predictions and acceptance criteria. 

 
Table 1. Definition of m-factors as acceptance criteria (ASCE 41 Section 7.6.3) 

 Primary Secondary 
mIO 0.75 × 0.75 × 0.67 × ∆ ∆  0.75 × 0.67 × ∆ ∆  
mLS 0.75 × 0.75 × ∆ ∆  0.75 × 0.75 × ∆ ∆  
mCP 0.75 × ∆ ∆ , 0.75 × ∆ ∆   0.75 × ∆ ∆  

 
Experimental database of CFS framed shear walls and strap-braced walls 
CFS seismic force-resisting systems are defined in AISI S400 (previously AISI 
S213) and include CFS framed shear walls with wood structural panel (WSP), 
steel sheet (SS), gypsum board (GB), or fiberboard (FB) sheathing, and CFS 
framed strap-braced walls. Note, AISI S400 also includes CFS special-bolted 
moment frames, not discussed here further. AISI S400 provides nominal shear 
capacity and in most cases provisions to predict the displacement up to that 
capacity for these systems. However, AISI S400 does not provide post-peak 
displacements nor the other specifics of the deformation that are necessary for 
developing the Q- and resulting m-factors that ASCE 41 requires. 
 The strength of cold-formed steel shear walls and strap-braced walls has been 
established through testing. The tests were conducted on single story walls 
connected at their base to a foundation, and loaded with in-plane shear at the top. 
Tests are generally performed to ASTM standards: ASTM E564 (2006) for 
monotonic tests and ASTM E2126 (2011) for cyclic tests. ASTM E2126 provides 
several different cyclic testing protocols and early CFS shear wall testing was 
conducted to the Sequential Phase Displacement (SPD) protocol while more 
recent testing (since the late 1990’s) have generally been tested to the CUREE 
loading protocol (Krawinkler et al. 2000). Typical shear wall test setups and 
response at or near peak displacement are provided in Figure 3. 
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   (a) typical one-sided WSP 
specimen in test rig  

(Hikita 2006) 
(b) strap-braced wall after 
testing showing yielding in 

strap (Comeau 2008) 
(c) steel sheet shear wall 
exhibiting shear buckling 

(Balh 2010) Figure 3. Observed response of common cold-formed steel framed shear walls  
 
To develop the proposed ASCE 41 force-deformation response curves and m-
factors the data underlying the walls in the AISI S400 standard and additional data 
in the open literature, over 500 tests, were gathered, including: Al-Kharat and 
Rogers (2005, 2006), Balh and Rogers (2010), Blais (2006), Boudreault (2005), 
Branston (2004), Chang (2004), Comeau (2008), DaBreo (2012), El-Saloussy 
(2010), Elhajj (2005), Hikita (2006), Kochkin and Hill (2006), Liu et al. (2012), 
Lu (2015), Morello (2009), Ong-Tone (2009), Rokas (2006), Serrette et al. (1997), 
Shamin (2012), Velchev (2008), Yu and Chebn (2009), Uy et al. (2007), and Zhao 
and Rogers (2002). The nature of the type of wall tested and the number of 
available monotonic and cyclic tests is summarized in Table 2. 

Table 2. Count of available test data distributed across wall types 
  Loading Protocol Wall Aspect Ratio  
Sheathing Detail Cyclic Monotonic 4 2 1 Total 
WSP CSP 45 52  12   63   22  97 
 DFP 13 13   26   26 
 OSB 40 37  24   53   77 
 Plywood 8    8   8 
STRAP X 41 52  6   17   70  93 
 Dogbone 2 6    8  8 
 +GYP  8 8  16   16 
SS - 84 93 54 97 5 177a 
GYP 1 Ply 8 9  17  17 
 2 Ply 4 4  8  8 
FB - 8 4 2 2 8 12 
Bare -  1  1  1 
 Total 261 279    540 
a. not all SS tests at standard aspect ratios, 21 tests at aspect ratio of 1.3  
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Typical force-deformation response for CFS-framed walls resisting shear are 
provided in Figure 4. Note, that the backbone response of each test is highlighted 
in Figure 4 as this data is foundational to the ASCE 41 idealizations. The variety 
of tested response is large; however, Figure 4 attempts to provide an overview by 
selecting walls on the lower end of strength capacity (noted as light) and on the 
stronger end (noted as heavy) and three major wall types: WSP, SS, and strap-
braced. Despite differing greatly in their mechanics, all the wall types provided in 
Figure 4 exhibit strongly pinched cyclic response. However, they exhibit different 
post-peak response, which will be reflected in the ASCE 41 modeling parameters 
and acceptance criteria for the different wall types. 
 
Q- and m-factors for CFS framed shear walls and strap-braced walls 
To develop the idealized ASCE 41 Q- response and m-factors first the backbone 
response of all the shear wall data must be determined. The cyclic data is averaged 
to provide response in only one direction. Then, the idealized linear segments of 
ASCE 41 are fit to this data. The fit is determined as shown in Figure 2. The initial 
linear stiffness is established at 40% of the peak capacity, and this linear stiffness 
is then extended to 80% of the peak capacity (point B). The second linear segment 
extends from B to the peak shear and displacement at peak shear (point C). The 
third linear segment extends to the post-peak displacement at 90% of peak 
capacity (point D). The final linear segment extends to the end of the stable 
response (point E). 
 
Once the idealized response curve (Figure 2) is established for each test the m-
factors and other acceptance criteria can be developed for each test per Table 1. It 
was determined that the monotonic response gave similar or slightly more 
conservative average m-factors than the cyclic response, e.g. see Table 3, and as 
a result the monotonic data was kept in the evaluation of the acceptance criteria. 
 
Table 3. Impact of loading protocol on m-factors for CFS shear walls with WSP  

 Primary component m-factors by performance level 
 IO LS CP 

WSP Loading protocol Loading protocol Loading protocol 
Sheathing CUREE Mono SDP CUREE Mono SDP CUREE Mono SDP 

CSP 1.4 1.4 1.4 2.1 2.1 2.1 2.7 2.5 2.7 
DFP 1.2 1.2  1.9 1.9  2.5 2.3  
OSB 1.8 1.7 1.2 2.7 2.5 1.7 3.6 3.2 2.0 
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 Figure 4. Hysteretic response recorded in typical cyclic shear wall testing for 
common shear wall types used in cold-formed steel framing. Examples across 

the tested spectrum provided. (Complete hysteretic response for heavy example 
steel sheet sheathed shear wall available in Yu (2007), authors have digitized 

and provided backbone response only). 
 

tOSB = 7/16'', tstud = 0.043'' 
No. 8 x1-1/2'', spacing: 6'' / 12'' 
Grade 33 ksi (Hikita, 2006) 

tOSB = 7/16'', tstud = 0.054'' 
No. 8 x1-1/2'', spacing: 3'' / 12'' 
Grade 50 ksi (Hikita, 2006) 

tstrap = 0.043'', wstrap = 2.75'' 
Grade 33 ksi (Comeau, 2008) tstrap = 0.054'', wstrap = 2.75'' 

Grade 50 ksi (Lu, 2015) 

tstud = 0.043'', tsheathing = 0.018'' 
Grade 33 ksi (Balh, 2010) 

tstud = 0.043'', tsheathing = 0.033'' 
Grade 33 ksi (Yu, 2007) 
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The majority of the shear wall testing has been conducted on single-sided walls, 
i.e. where the sheathing or strap was on one side of the wall only. For example, 
all of the CFS-framed walls with WSP are single-sided. Limited data on double-
sided strap-braced walls, steel sheet sheathed walls, and gypsum board sheathed 
walls all indicate modestly improved m-factors (greater post-peak deformation 
ductility) for double-sided walls over single-sided walls. The proposed ASCE 41 
is silent about this fact given the limited information, but the engineer should be 
aware that doubled-sided walls do appear to have improved performance. 
 
The aspect ratio (wall height / wall width) of tested shear walls is summarized in 
Table 2. In general, wide walls, aspect ratio of 1, perform better (higher m-factors) 
than narrow walls. As a result, the m-factors were separated by aspect ratio where 
warranted by the data. In some cases, for example CFS-framed shear walls with 
OSB, performance with the narrow, aspect ratio of 4, walls was modestly better 
than at an aspect ratio of 2, and the data was left aggregated. 
 
Initial evaluation of the strap-braced walls indicated high variation in the 
determined m-factors. Closer investigation revealed that the Al-Kharat and 
Rogers (2005) results were the source. In these tests the straps were not capacity-
designed and fractured prior to yielding. Subsequently, AISI S213 and today AISI 
S400 explicitly required capacity protection of the straps and all subsequent 
testing resulted in the expected performance. Thus, these 16 tests were removed 
from the 117 tests on strap-braced walls in determining m-factors.  
 
The resulting average m-factors for linear static analysis, and modeling 
parameters and acceptance criteria for nonlinear static analysis are provided in 
Tables 4 and 5 for all shear walls and strap-braced walls. The m-factors, modeling 
parameters, and acceptance criteria are provided to an accuracy of 0.1. This 
precision overstates the accuracy of the provisions, but is necessary for 
maintaining the ordinality in the factors across the performance levels. An 
assessment of variation in the provided m-factors indicates that the coefficient of 
variation (standard deviation/mean) for the m-factors for the WSP shear walls at 
the CP level is between 15 and 30%. 
 
The proposed ASCE 41 provisions include Tables 4 and 5 and guidance on how 
to develop the linear elastic stiffness and strength. In general, AISI S400 is 
referenced for determining the nominal stiffness and strength with additional 
modifications specific to ASCE 41’s reliability basis (e.g., expected strength in 
ASCE 41 vs. available strength in AISI S400). 
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Developing m-factors and Q- Provisions for CFS flexural members 
For flexural members, the work of Ayhan and Schafer (2016) was employed to 
provide closed-form solutions to the backbone curve (Fig. 5) and as a result the 
modeling parameters and acceptance criteria. The provided expressions are 
unique to ASCE 41 and provide a basic building block for evaluating ductility of 
cold-formed steel members as individual components. 
 

Table 4. Proposed Numerical Acceptance Factors for Linear Procedures  
of CFS Light-Frame Components per ASCE 41 

  m-factors 
  Primary Secondary 
Component/Action Limitation IO LS CP LS CP 
CFS Light-Frame Construction  
Shear Wallsa,b 

Height/Width  
Ratio (h/b)      

Structural 1 Plywood ≤ 2 1.2 1.9 2.4 2.8 3.7 
Oriented Strand board (OSB) ≤ 4 1.7 2.5 3.3 4.2 5.6 
Canadian Soft Plywood (CSP) ≤ 2 1.4 2.1 2.7 3.1 4.1 
 “ 4c 1.3 1.9 2.3 2.3 3.1 
Douglas Fir Plywood (DFP) ≤ 2 1.2 1.9 2.4 2.8 3.7 
Steel Sheet Sheathing ≤ 2 1.5 2.2 2.9 5.2 6.9 
 “ 4c 1.1 1.6 1.9 1.9 2.5 
Gypsum Board Panel ≤ 2 2.3 3.5 4.6 8.3 11.1 
Fiberboard Panel ≤ 2 1.1 1.7 2.3 2.8 3.7 
Plaster on metal lath ≤2.0 1.7 3.7 4.4 3.7 5.0 

       
CFS Light-Frame Construction  
Strap-braced Wallsa,b 

Height/Width  
Ratio (h/b) 

     
Flat strap ≤ 2 3.0 4.4 4.9 5.3 7.1 
Dogbone strap ≤ 2 3.8 5.7 6.2 6.2 8.3 
Flat strap with 1 or 2 plys of Gyp ≤ 2 1.2 1.8 2.4 3.8 5.1 

       
CFS Members       

CFS Member in Flexure  
y

. 
2380  

y
. 

2560  
yy

.. 


 42 560750  
y

. 
4560  

y
. 

4750  
CFS Member in Compression  [Reserved] 

       
CFS Connections fastener      

Screws – steel to steel (33 to 97 mil sheet)d #8, #10, #12 2.5 4.0 4.5 15 20 
Screws – wood to steel  [Reserved] 
Bolts – steel to steel  [Reserved] 

a Components are permitted to be classified as secondary components or nonstructural components, 
subject to the limitations of ASCE 41 Section 7.2.3.3. Acceptance criteria need not be considered for 
walls classified as secondary or nonstructural. 
b Components with aspect ratios exceeding maximum listed values are not considered effective in 
resisting seismic forces.  
c Linear interpolation between aspect ratios for determination of m-factors is permitted. 
d Median values are provided, variation across sheet thickness and fastener size can be significant. 
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Table 5. Proposed Numerical Acceptance Factors for Nonlinear Procedures  
of CFS Light-Frame Components per ASCE 41 

  Modeling Parameters Acceptance Criteria 
  /y Residual 

strength ratio /y 
Component/Action Limitation a b c IO LS CP 

CFS Light-Frame Construction  
Shear Wallsa,b 

Height/Width 
Ratio (h/b)      

 
Structural 1 Plywood ≤ 2 2.3 4.0 0.3 3.0 3.7 4.0 
Oriented Strand board (OSB) ≤ 4 3.4 6.5 0.3 4.2 5.6 6.5 
Canadian Soft Plywood (CSP) ≤ 2 2.7 4.5 0.3 3.3 4.1 4.5 
 “ 4c 2.4 3.2 0.6 2.8 3.1 3.2 
Douglas Fir Plywood (DFP) ≤ 2 2.3 4.0 0.3 3.0 3.7 4.0 
Steel Sheet Sheathing ≤ 2 2.9 8.2 0.6 3.8 6.9 8.2 
 “ 4c 1.8 2.5 0.8 2.3 2.6 2.5 
Gypsum Board Panel ≤ 2 5.2 13.8 0.6 6.1 11.1 13.8 
Fiberboard Panel ≤ 2 2.0 3.9 0.4 3.0 3.7 3.9 
Plaster on metal lath ≤2.0   0.2 1.9 4.4 4.0 

        
CFS Light-Frame Const. Strap Braced Wallsa,b 

Height/Width 
Ratio (h/b) 

      
Flat strap ≤ 2 6.9 8.4 0.8 5.9 7.1 8.4 
 “ 4c       
Dogbone strap ≤ 2 9.2 10.1 0.6 7.4 8.3 10.1 
Flat strap w/ 1 or 2 ply Gyp ≤ 2 2.2 5.8 0.9 3.2 5.1 5.8 

        
CFS Members        

CFS Member in Flexure  
yy 


 12

yy 


 14
yM

M 4  
yy

. 


 42 670
y

. 
4750

yy 


 14

CFS Member in Compression  [Reserved] 
        
CFS Connections        

Screws – steel to steel 
 (33 to 97 mil sheet) d 

 5 25 0.9 6 20 25 
Screws – wood to steel  [Reserved] 
Bolts – steel to steel  [Reserved] 

a Components are permitted to be classified as secondary components or nonstructural components, 
subject to the limitations of Section 7.2.3.3. Acceptance criteria need not be considered for walls 
classified as secondary or nonstructural. 
b Components with aspect ratios exceeding maximum listed values are not considered effective in 
resisting seismic forces.  
c Linear interpolation between aspect ratios for determination of m-factors is permitted. 
d Median values are provided, variation across sheet thickness and fastener size can be significant  
Developing m-factors and Q- Provisions for CFS steel-to-steel connections 
Recent connection testing of Moen et al. (2016) provides data that was utilized to 
provide basic guidance on steel-to-steel shear connections varying from 0.033 in. 
(0.84 mm) to 0.097 in. (2.46 mm) thick. Moen et al. (2016) provides Q- response 
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in nearly ready-for-ASCE 41 format. Median modeling parameters and 
acceptance criteria (m-factors) across the different ply thickness and fastener 
types tested were selected to provide basic guidance. Expected strength may be 
established from AISI S100 for this connection.  

 

 Figure 5. Moment-rotation relation for CFS members in bending 
 
Overall changes to ASCE 41 to enable CFS framing 
ASCE 41 utilizes the concept of common building types for assessing damage and 
deterioration necessary for seismic retrofit studies. This goes beyond ASCE 7’s 
definition of seismic force resisting systems and encompasses the entire building 
system. ASCE 41 (2013) does not include any common building types with CFS 
or CFS framing. Therefore, a primary activity in the proposed revisions is the 
definition of common building types for CFS and CFS framing. Guidance on 
common building types of CFS light frame construction for residential 
occupancies, and commercial and industrial occupancies is proposed for addition 
to ASCE 41 Chapter 3 (2017), and an excerpt is provided in Table 6. The provided 
descriptions are based largely upon engineering judgment, experience with typical 
CFS light frame construction built over the past 20 years, and comparisons with 
similar common building types – wood light frame and structural steel braced 
frames. Definition of common building types is critical to allow the use of ASCE 
41’s Tier 1 and Tier 2 seismic retrofit and evaluation procedures. Two sets of 
buildings types – CFS1 and CFS2 have been defined for two major classes of CFS 
seismic force resisting systems (SFRS) shear walls and strap braced walls (see 
Table 6). Additional building types CFS3 and CFS4 are used to reflect the two 
different CFS SFRS within the commercial and industrial occupancy category. 
Finally, language is added to the steel braced frames (S2/S2a in ASCE 41), 
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concrete shear walls (C2 in ASCE 41), and reinforced masonry bearing walls 
(RM1 in ASCE 41) that permits CFS light frame construction to carry gravity 
loads and to transfer seismic loads to the designated seismic resisting system, as 
is often the case in actual buildings. 
 

Table 6. Excerpt from proposed addition to ASCE 41 Table 3-1 for CFS  
Cold-Formed Steel Light Frame Construction, Residential 

CFS1 
   (Shear Wall 

System)  
These buildings are single- or multi-family dwellings, one or more stories high. Building loads are light and the framing 
spans are short. Floor and roof framing consists of cold-formed steel joists or rafters on cold-formed steel studs spaced 
no more than 24 in. apart. The first-floor framing is supported directly on the foundation system or is raised up on 
cripple studs and post-and-beam supports. The foundation is permitted to consist of a variety of elements. Chimneys, 
where present, consist of solid brick masonry, masonry veneer, or cold-formed steel frame with internal metal flues. 
Seismic forces are resisted by wood structural panel or metal deck diaphragms and wood structural panel sheathed 
shear walls or steel sheet sheathed shear walls. Floor and roof sheathing consists of wood structural panels. Interior 
surfaces are sheathed with plaster or gypsum board. 

CFS2 
(Strap Braced 
Wall System) 

These buildings are single- or multiple-family dwellings one or more stories high. Building loads are light and the 
framing spans are short. Floor and roof framing consists of cold-formed steel joists or rafters on cold-formed steel studs 
spaced no more than 24 in. apart. The first-floor framing is supported directly on the foundation system or is raised up 
on cripple studs and post-and-beam supports. The foundation is permitted to consist of a variety of elements. Chimneys, 
where present, consist of solid brick masonry, masonry veneer, or cold-formed steel frame with internal metal flues. 
Seismic forces are resisted by diaphragms with wood structural panels or metal deck and walls with diagonal flat strap 
bracing. Floor and roof sheathing consists of wood structural panels. Interior surfaces are sheathed with plaster or 
gypsum board. 

Also proposed for ASCE 41 (2017) is that commentary guidance on structural 
performance levels and illustrative damage descriptions be added to the existing 
table in Chapter 2 for three of the most common cold-formed steel light frame 
seismic force-resisting systems – shear walls with WSP, or SS, and strap-braced 
walls. An excerpt of the proposed addition for CFS framed shear walls with WSP 
is provided in Table 7. The proposed definitions are based upon engineering 
judgment and observation of CFS light frame test specimens. 
 

Table 7. Excerpt from Proposed addition to ASCE 41 Table C2-4 for CFS  
(Provisions are similar to Wood stud walls see ASCE 41) 

Seismic-Force-
Resisting 
System Type 

Structural Performance Levels 
Collapse  Prevention (S-5) Life  Safety (S-3) Immediate  Occupancy (S-1) 

Cold-formed 
steel light frame 
construction 
with wood 
structural panel 
shear walls 

Primary 
elements Connections loose. Screw hole 

deformation at panels and members. 
Some screws withdrawn. Significant 
yielding and distortion of members. 
Significant damage to panels and/or 
anchors. Loose connections of hold 
downs to studs. 

Moderate loosening of connections 
and minor yielding of members. 
Some damage to panels. 

Distributed minor hairline 
cracking of gypsum and plaster 
veneers applied to shear walls, 
primarily at door and window 
openings. 

 Secondary 
elements Sheathing sheared off. Members 

yielded with significant distortion. 
Many broken windows, major 
sheetrock cracks, inoperable doors. 

Connections loose. Screws 
partially withdrawn. Some yielding 
of members and damage to panels. 
Moderate cracking of sheetrock, 
several broken windows. 

Same as for primary elements. 

 Drift Transient drift sufficient to cause 
extensive nonstructural damage. 
Significant permanent drift. 

Transient drift sufficient to cause 
nonstructural damage. Noticeable 
permanent drift. 

Transient drift that causes minor 
or no nonstructural damage. 
Negligible permanent drift.  

Additional guidance on patterns of defects and deterioration, default yield 
strengths, and benchmark buildings (buildings that, if designed and constructed 
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in accordance with certain recognized standards do not require additional seismic 
evaluation) is proposed for addition to ASCE 41 Chapter 4. These provisions 
provide an abbreviated history of the adoption of CFS systems into building codes 
and standards. The first provisions for CFS SFRS are found in the 1997 UBC, 
Section 2220, for Seismic Zones 3 and 4. These provisions are for wood structural 
panel (WSP) shear walls only. While the 1997 NEHRP Provisions (FEMA 302) 
contained basic requirements for SFRS with CFS shear walls and diagonal strap 
braced walls, the strap braced wall system did not become a recognized SFRS 
with its own seismic design parameters until the 2002 edition of ASCE 7 and the 
2003 editions of both the NEHRP Provisions (FEMA 450) and the IBC. 
Consequently, the 2003 editions have been used as the basis for the benchmark 
building with a strap braced wall system. Light frame construction with shear 
walls of steel sheet sheathing were first recognized in the 2000 edition of the IBC 
and the 2002 edition of ASCE 7. Interestingly, the NEHRP Provisions never 
separately called out SS sheathing from WSP sheathing. Rather, requirements in 
the NEHRP provisions for CFS were focused on WSP solutions. Therefore, the 
NEHRP entries in the existing ASCE 41 table have been limited to CFS framing 
with WSP sheathing. FEMA 356 also focused on shear walls with WSP, therefore 
the same limitation has been added to those entries. However, the IBC entries are 
not limited, since both WSP and SS sheathing were recognized options. 
 
It is proposed that in ASCE 41 (2017) Chapter 5, provisions be added providing 
Tier 2 deficiency-based evaluation procedures that apply to CFS light frame shear 
walls. Additional provisions are added for CFS strap braced walls. Minor 
modifications are also proposed to recognize CFS light frame construction 
solutions in other systems. Finally, new tables are proposed with rankings of 
potential deficiencies for the CFS common building types consistent with existing 
tables for other building types. In Chapter 16, New Tier 1 checklists are proposed 
for the common building types. These checklists, which are dependent on desired 
performance level, provide potentially rapid screening of existing buildings.  
Conclusions 
The current version of ASCE 41: Seismic Evaluation and Retrofit of Existing 
Buildings (2013) provides limited guidance on the use of cold-formed steel and 
cold-formed steel framing. ASCE 41 is unique in that it specifically defines 
multiple performance levels that an engineer and owner may want to achieve, as 
a result it is being utilized in new design as well as in seismic retrofits. Significant 
additions have been proposed to the forthcoming (2017) addition of ASCE 41 for 
cold-formed steel. A large database (over 500 entries) of existing tests on cold-
formed steel framed shear walls and strap-braced walls was gathered so that the 
full backbone response and related acceptance criteria could be developed for 
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these systems in a manner consistent with ASCE 41’s methodology. Related 
efforts on individual cold-formed steel members and steel-to-steel connections 
were also completed. In addition, common cold-formed steel building types, and 
the definition of damage and deterioration in the cold-formed steel components 
of these buildings were defined as needed for ASCE 41’s evaluation procedures. 
Taken together the proposed efforts enable engineers to utilize or account for 
cold-formed steel in retrofit and new designs per the methodologies of ASCE 41. 
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AISI Standards Developed and Updated in 2015 and 2016 

By Helen Chen1, Roger Brockenbrough2, Richard Haws3  

Abstract 

During 2015 and 2016, AISI developed framing standards were 
consolidated and updated, the North American Specification was updated 
and reorganized in format, and two new test standards were published. 
This paper provides an overview of the reorganized standards and major 
changes, and a brief introduction to the newly developed test standards. 

Introduction 

In 2015, AISI cold-formed steel framing standards, AISI S200, S210, S211, 
S212, S213, and S214 (references 1 to 6), were consolidated into one 
standard AISI S240, North American Standard for Cold-Formed Steel Structural 
Framing. This new standard includes design provisions for wall, floor and 
roof systems, lateral force-resisting systems, as well as framing 
components such as trusses and headers.  
The seismic design provisions in AISI S213 and AISI S110 (7) were 
consolidated into AISI S400, North American Standard for Seismic Design of 
Cold-Formed Structural Systems, which includes design provisions for shear 
walls, strap braced walls,  special bolted moment frames, and diaphragms.  
AISI S100, North American Specification for the Design of Cold-Formed Steel 
Structural Members, was updated and reorganized to be parallel in format 
with ANSI/AISC 360, Specification for Structural Steel Buildings (8). This 
reorganization should certainly help more engineers to get familiar with 
cold-formed steel design and provide a better layout for future standard 
development. 

1  Manager, Construction Standards Development, American Iron and Steel Institute, 
Washington, DC. 
2  President, R. L. Brockenbrough & Associates, Pittsburgh, PA. 
3  Commercial Solutions Director, Nucor Buildings Group, Denton, TX. 

Wei-Wen Yu International Specialty Conference on Cold-Formed Steel Structures 
Baltimore, Maryland, U.S.A, November 9 & 10, 2016
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More information on AISI standard reorganizations may be found in a 
recent paper (9), Enabling Cold-Formed Steel System Design Through New 
AISI Standards.  
During 2015 and 2016, the following AISI standards were updated: 

AISI S220-15, North American Standard for Cold-Formed Steel Framing—
Nonstructural Members 
AISI S230-15, Standard for Cold-Formed Steel Framing—Prescriptive Method 
for One- and Two-Family Dwellings 
AISI S310-16, North American Standard for the Design of Profiled Steel 
Diaphragm Panels 

And the following two new test standards were published: 
AISI S915-15, Test Standard for Through-the-Web Punchout Cold-Formed 
Steel Wall Stud Bridging Connectors 
AISI S916-15, Test Standard for Cold-Formed Steel Framing—Nonstructural 
Interior Partition Walls With Gypsum Board  

It should be noted that the newly developed and updated AISI standards 
published in 2015 refer to AISI S100-12 (10), not AISI S100-16, due to the 
sequencing of the documents in the standard development schedule.  
In the following sections, the updated standards will be briefly reviewed 
and the new standards will be introduced.  

1. AISI S240-15, North American Standard for Cold-Formed Steel
Structural Framing

AISI S240-15 was developed based on previously published standards 
AISI S200, S210, S211, S213, and S214, and is for design and installation of 
cold-formed steel framing gravity systems and lateral force-resisting 
systems. The seismic lateral force-resisting systems and diaphragms must 
be designed in accordance with AISI S400 where increased seismic 
performance is required.  
To help users to quickly locate the design provisions in the new standard, 
a section reference between AISI S240 and the previous standards is 
provided. The new standard includes the following chapters: 
Chapter A, General. This chapter outlines the scope: the standard is for 
design and installation of cold-formed steel framing (a) floor and roof 
systems, (b) structural walls, (c) shear walls, strap braced walls and 
diaphragms to resist in-plane lateral loads and (d) trusses for load-carrying 
purposes in buildings. The chapter also includes definitions for terms used 
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in the standard, list of materials applicable for the framing members, 
corrosion protection requirements, framing products and reference 
documents. Some major changes/additions as compared to the previous 
framing standards include: 

(a) The limitation of framing member specified minimum base steel 
thickness to 118 mils (0.1180 inches or 2.997 mm) was eliminated. 

(b) Manufacturing tolerances of flange width and stiffening lip length 
were added for structural members. These tolerances are 
consistent with ASTM C645 and ASTM C955. 

Chapter B, Design. All the design provisions for the cold-formed steel 
framing systems are provided in this chapter. The major additions include: 

(a) For curtain wall systems, the standard permits the use of the 
bracing combination of sheathing attached to one side of the wall 
stud and discrete bracing spaced within 8 ft (2.44 m) for the other 
flange. The curtain wall stud’s nominal strength [resistance] 
should be determined in accordance with AISI S100.  

(b) For cold-formed steel roof or floor diaphragms with maximum 
aspect ratio of 4:1 and covered with non-steel sheathings, the in-
plane nominal shear strength can be determined via tests in 
accordance with ASTM E455, where the test results are calibrated 
in accordance with AISI S100 and the statistic values used in the 
calibration are those provided in AISI S240 Section B5.4.5. 

(c) For cold-formed steel framed shear walls sheathed with steel 
sheet, a new Effective Strip Method is introduced to determine the 
nominal shear strength [resistance]. This method provides an 
alternative approach to determine the shear wall strength, 
especially for those that are outside the limitations of the tested 
systems. This method is also applicable to those shear walls used 
in seismic force-resisting systems. 

Chapter C, Installation. This chapter provides installation requirements for 
structural members and connections in the structural framing systems 
included in Chapter B. 
Chapter D, Quality Control and Quality Assurance. This newly developed 
chapter provides minimum requirements of quality control and quality 
assurance for material control and installation for cold-formed steel light-
frame construction. In this chapter, the quality control program, provided 
by the component manufacturers and installers, is to ensure that the work 
is in accordance with AISI S240 and the construction documents; and the 
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quality assurance program is provided by others, as required by authority 
having jurisdiction, the applicable building code, the owner, or the 
registered design professional.  
Chapter E, Trusses. This chapter contains design, manufacturing quality 
criteria and installation requirements for cold-formed steel trusses, similar 
to those previously included in AISI S214. 
Chapter F, Testing. This chapter lists applicable AISI test standards for 
cold-formed steel framing members, connections, and systems; and points 
to Appendix 2 for truss assembly and component tests. 
Appendix 1, Continuously Braced Design for Distortional Buckling 
Resistance. This appendix can be used to determine the rotational stiffness 
of structural sheathing provided to framing members. 
Appendix 2, Test Methods for Truss Components and Assemblies. The 
truss component structural performance load test and full-scale truss 
confirmatory test methods, previously included in AISI S214, are provided 
in this appendix.  

2. AISI S400-15, North American Standard for Seismic Design of Cold-
Formed Steel Structural Systems

AISI S400 was developed based on the previously published standards 
AISI S213 and AISI S110. This first edition brings cold-formed steel seismic 
design into a single standard, clarifies and adds consistency to the design 
requirements of cold-formed steel seismic force-resisting systems, and 
accommodates the growth of future systems. This standard includes the 
following chapters: 
Chapter A, Scope and Applicability. This standard is applicable for the 
design and construction of seismic force-resisting systems including cold-
formed steel members and connections and other structural components 
and diaphragms used in buildings and other structures. This standard 
should be used in conjunction with AISI S100 [CSA S136], AISI S240, and 
the applicable building code. The standard should be followed except in 
the following cases: 

(a) For the US and Mexico: Seismic Design Category (SDC) is A; or 
SDC is B or C, and the seismic response modification coefficient, R, 
equals 3.  

(b)  For Canada: Seismic force modification factors, RdRo is less than 
1.56, or the design spectral response acceleration S(0.2) is less than 
or equal to 0.12. 

436



 

Chapter A also introduces the modification coefficients, such as Ry and Rt, 
for determining the expected material properties that are needed in 
seismic design.  
Chapter B, General Design Requirements. This chapter outlines the basic 
seismic design requirements: The available strength [factored resistance] of 
the designated seismic force-resisting system shall be greater than or equal 
to the required strength [effects of factored loads] determined from the 
applicable load combinations. To ensure the performance of the 
designated seismic force-resisting system, other structural members and 
connections in the lateral force-resisting system that are not part of the 
designated energy-dissipating mechanism need to be designed for the 
expected strength [probable resistance] of the seismic force-resisting 
system but do not need to exceed the seismic load effects determined in 
accordance with the applicable building code, where the seismic load 
effects include overstrength (Ωo) for the U.S. and Mexico, and seismic 
modification factors (RdRo=1.0) for Canada.  
Detailed design information is provided in Chapter E for seismic force-
resisting systems, and Chapter F for diaphragms. 
Chapter C, Analysis. This chapter prescribes that the structural analysis 
should be done in accordance with the applicable building code and AISI 
S100. The chapter is intended to accommodate future development. 
Chapter D, General Member and Connection Design Requirements. This 
chapter references Chapters E and F for member and connection design, 
and is intended to accommodate future development. 
Chapter E, Seismic Force-Resisting Systems. In this chapter, design 
provisions for the following seismic force-resisting systems are provided, 
which were also included in AISI S213 and S110:  

(a) Cold-formed steel light frame shear walls sheathed with wood 
structural panels 

(b) Cold-formed steel light frame shear walls with steel sheet 
sheathing 

(c) Cold-formed steel light frame strap-braced wall systems 
(d) Cold-formed steel special bolted moment frames 
(e) Cold-formed steel light frame shear walls with wood-based 

structural sheathing on one side and gypsum board panel 
sheathing on the other side (applicable in Canada only) 
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(f) Cold-formed light frame shear wall with gypsum board or 
fiberboard panel sheathing (applicable in the U.S. and Mexico 
only) 

(g) Conventional construction of cold-formed steel light frame strap 
braced wall systems (applicable in Canada only) 

In addition to providing the system limitations in each of the above listed 
systems, nominal strengths [resistances] and available strengths [factored 
resistance] are provided as in the previously published standards. In AISI 
S400, the designated energy-dissipating mechanism for each system is 
clearly identified, and the provisions are provided to determine the 
expected strength [probable resistance] of the designated energy-
dissipating mechanism. The expected strength [probable resistance], 
capped by the seismic load effects including overstrength, is used to 
design other components in the seismic force-resisting system that are not 
part of the energy dissipating mechanism, and those components in the 
lateral force-resisting systems to transfer the seismic force to the seismic 
force-resisting systems.  
Chapter F, Diaphragms. Acting to collect and distribute seismic forces to 
the seismic force-resisting systems, diaphragms should be designed to 
resist the forces specified by the applicable building code. The diaphragm 
stiffness needs to be taken into consideration in determining the required 
strengths of the seismic force-resisting system and the diaphragm itself, as 
the stiffness directly affects the force distribution. The standard currently 
provides the design provisions for cold-formed steel framed diaphragms 
sheathed with wood structural panels. It may be extended to include other 
diaphragm systems in the future.  
Chapter G, Quality Control and Quality Assurance. The cold-formed steel 
light frame seismic force-resisting systems follow the provisions provided 
in AISI S240 Chapter D. For the special bolted moment frames, the QC and 
QA requirements are provided in Section G4.  
Chapter H, Use of Substitute Components and Connections in Seismic 
Force-Resisting Systems. This chapter permits the substitution of 
components or connections in any of the seismic force-resisting systems 
specified in Chapter E as long as they follow the applicable building code 
requirements and are approved by the authority having jurisdiction.  
Appendix 1, Seismic Force Modification Factors and Limitations in 
Canada. This appendix, which is applicable to Canada, contains design 
coefficients, system limitations and design parameters for seismic force-
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resisting systems. These provided values should only be used when 
neither applicable building code nor NBCC contains such values. 

3. AISI S220-15, North American Standard for Cold-Formed Steel
Framing—Nonstructural Members.

With the consolidation of AISI framing standards, this standard was 
revised and updated accordingly. The additions in this edition include: 

(a) Addition of manufacturing tolerances for flange width and 
stiffening lip length of nonstructural members. 

(b) Addition of screw penetration requirements and screw 
penetration performance test procedures (in Appendix 1). 

(c) Reference to AISI newly developed test standards AISI S915 and 
AISI S916. 

4. AISI S230-15, Standard for Cold-Formed Steel Framing—
Prescriptive Method for One- and Two-Family Dwellings.

This standard was updated to bring its provisions into full compliance 
with the 2015 edition of the International Residential Code, ASCE 7-10 and its 
supplements, and the latest referenced documents. Provisions are added 
for larger openings in floors, ceilings, and roofs. To reduce complexity and 
volume of the provisions, following changes were made to the design 
tables: 

(1) Eliminate provisions for 85 MPH wind exposure B wind speed. 
(2) Tabulate solutions for just one material grade per thickness. 
(3) Eliminate multi-span floor joist and ceiling joist tables. 
(4) Eliminate tables for ceiling joists with bearing stiffeners. 

5. AISI S310-16, North American Standard for the Design of Profiled
Steel Diaphragm Panels

The first edition of this standard was published in 2013. A detailed review 
was provided in reference (11). The standard was updated to 
accommodate the reorganization of AISI S100-16. In addition, the safety 
and resistance factors for diaphragms were recalibrated based on an 
expanded database of full-scale diaphragm tests and the calibration 
method presented in AISI S310.   
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6. AISI S100-16, North American Specification for the Design of Cold-
Formed Steel Structural Members

AISI S100-16 was reorganized to be parallel with ANSI/AISC 360 in 
format. The Direct Strength Method was incorporated into the main body 
of the Specification, which enables engineers to design members with 
unconventional cross–sections. To help users get familiar with the new 
content layout, a section numbering comparison between AISI S100-12 and 
AISI S100-16 is provided. The reorganized AISI S100-16 includes the 
following chapters: 
Chapter A, Scope, Applicability, and Definitions. This chapter outlines the 
scope and applicability of the Specification: cold-formed steel structural 
members can be designed using AISI S100-16 through the design 
provisions provided in the specification (excluding those in Chapter K). If 
the composition or configuration is beyond those design provisions, the 
member strength can be determined by tests, by rational engineering 
analysis with confirmatory tests, or by rational engineering analysis with 
the following safety and resistance factors: 

For members, Ω=2.00 (ASD); φ=0.80 (LRFD) or 0.75 (LSD) 
For connections, Ω=3.00 (ASD); φ=0.55 (LRFD) or 0.50 (LSD). 

Chapter B, Design Requirements. This chapter lists the essential design 
requirements: design for strength, structural members, connections, 
stability, structural assemblies and systems, serviceability, ponding, 
fatigue, and corrosion effects. The Specification also points to the 
appropriate chapters or sections for the design provisions. In addition, the 
application limitations for the Effective Width Method and the Direct 
Strength Method are provided, and these limitations are consolidated and 
greatly simplified.  
Chapter C, Design for Stability. This chapter includes design provisions for 
considering structural system stability, and member stability. In this 
edition, the AISC Direct Analysis Method is adopted. Specifically, three 
approaches can be used for structural stability analysis:  

(1) Rigorous second-order elastic analysis (including both P-∆ and P-δ 
effects) considering initial imperfections and adjustment of 
stiffness.  

(2) First-order analysis considering initial imperfections and 
adjustment of stiffness, and both P-∆ and P-δ effects being 
considered using multipliers B1 and B2 (see Specification 
Equations C1.2.1.1-1 and C1.2.1.1-2). This method is limited to 
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structures that support gravity loads primarily through nominally 
vertical columns, walls or frames. 

(3) Effective width method to adjust the P-∆ and P-δ effects by 
applying the effective length factors to members. This method is 
limited to structures that (1) support gravity loads primarily 
through nominally vertical columns, walls or frames; and (2) the 
maximum second-order drift does not exceed 1.5 times the 
maximum first order drift.  

Chapter D, Members in Tension. This chapter includes tension member 
design provisions similar to those in the previous Specification edition. 
Chapter E, Members in Compression. The column member design 
provisions consider the following possible failure modes: yielding and 
global buckling, local buckling interacting with yielding and global 
buckling, and distortional buckling. Both the Effective Width Method 
(EWM) and the Direct Strength Method (DSM) can be used for the design. 
For members with holes, comprehensive design provisions are provided 
with the DSM approach.  
Chapter F, Members in Flexure. Similar to the column member design, the 
flexural member design also considers yielding and global buckling, local 
buckling interacting with yielding and global buckling, and distortional 
buckling. For flexural members, provisions are provided to determine the 
inelastic reserve capacities when members are subject to local, global or 
distortional buckling. The comprehensive design provisions for flexural 
members with holes are also provided with the DSM approach. 
Chapter G, Members in Shear and Web Crippling. This chapter includes 
design provisions for determining the shear strengths of members with or 
without holes, shear strengths of members with or without web stiffeners, 
and web crippling strengths.  
Chapter H, Members Under Combined Forces. This chapter includes the 
following interaction checks for members subjected to combined forces: 

(1) Combined tensile axial load and bending; and combined 
compressive axial load and bending 

(2) Combined bending and shear 
(3) Combined bending and web crippling 
(4) Combined bending and torsional loading 

In this edition, the interaction equations for ASD, LRFD and LSD are 
unified wherever possible. 
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Chapter I, Assemblies and Systems. This chapter contains the design 
provisions included in Chapter D of the previous Specification editions. 
The following changes and additions are provided in this edition: 

(1) For floor, roof or wall steel diaphragm construction, three AISI 
standards are referenced for different applications. For 
diaphragms and wall diaphragms constructed with profiled steel 
panels and decks, AISI S310 should be applied, and the safety and 
resistance factors for this type of diaphragm systems have been 
moved to AISI S310. AISI S240 should be used for diaphragms 
constructed with wood structural panels, shear walls covered with 
flat steel sheets, wood structural panels, gypsum boards or 
fiberboard panels, or strap braced cold-formed steel stud walls. 
AISI S400 should be followed for additional seismic design 
requirements.  

(2) For cold-formed steel light frame construction and special bolted 
moment frame systems, the new AISI S240 and AISI S400 
standards are referenced. 

(3) For metal roof and wall systems, the compressive and flexural 
strengths of members covered with metal roof and wall panels can 
be determined analytically through the DSM approach where the 
buckling forces or moments should be determined including 
lateral, rotational, and composite stiffness provided by the metal 
deck or sheathing; bridging and bracing; and span continuity. The 
added provisions would enable engineers to design systems that 
may be outside the limitations of the empirical equations.  

(4) For steel rack system design, ANSI MH16.1 (12) is referenced. 
Chapter J, Connections and Joints. This chapter contains all the design 
provisions included in Chapter E of the previous Specification editions. 
The tension rupture provisions for a single bolt, or a single row having 
multiple bolts perpendicular to the force, are revised. The revised 
provisions contain a single shear lag reduction factor for all flat sheet 
bolted connections not having staggered hole patterns. In addition, the 
following design information is provided for cold-formed steel connecting 
other materials:  

(1) Pull-out strength in shear for power-actuated fasteners connecting 
CFS track to concrete is added to Specification Section J7.2. 
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(2) Design references for cold-formed steel connecting to hot-rolled 
steel, aluminum, concrete, masonry, wood, and plywood are 
added to Commentary Section J7.  

These design provisions and references are deemed proper for 
determining connection strengths when the strength is controlled by the 
other materials. 
Chapter K, Strength for Special Cases. This chapter includes the complete 
list of AISI test standards, and the provisions to determine the structural 
performance (strengths) via tests, or via rational engineering analysis with 
confirmatory tests. In this edition, the Statistical Data for the 
Determination of Resistance Factor have been consolidated and greatly 
simplified. For diaphragm formed by profiled steel panels, the tests should 
be in accordance with AISI S310. 
Chapter L, Design for Serviceability. This chapter includes the provisions 
for determining the moment of inertias used in serviceability calculations. 
The flange curling checks are included in this chapter. A rational approach 
is introduced in the Commentary when DSM is used.  
Chapter M, Design for Fatigue. This chapter contains the fatigue design 
provisions similar to those in the previous Specification edition.  
Appendix 1, Effective Width of Elements. This appendix contains all the 
provisions for determining the effective widths under different edge 
conditions and stress distributions, which were included in Chapter B of 
the previous Specification edition.  
Appendix 2, Elastic Buckling Analysis of Members. This appendix 
provides information and references needed to determine the member 
buckling stresses or stress resultants with either numerical or analytical 
approach. These buckling stresses or resultants are used throughout 
Chapters C to H.  
Appendix A, Provisions Applicable to the United States and Mexico. This 
appendix includes the provisions that are applicable to the Unites States 
and Mexico only. In this edition, country specific provisions are 
consolidated or eliminated wherever possible. 
Appendix B, Provisions Applicable to Canada. This appendix includes the 
provisions that are applicable to Canada only. 
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7. AISI S915-15, Test Standard for Through-the-Web Punchout Cold-
Formed Steel Wall Stud Bridging Connectors.

This test method is to provide test setup and methodology to determine 
the strength and stiffness of through-the-web punchout bracing (as shown 
in figure 1). This type of bracing is used in light frame construction to 
provide wall studs lateral and/or torsional restraints. 

8. AISI S916-15, Test Standard for Cold-Formed Steel Framing—
Nonstructural Interior Partition Walls With Gypsum Board.

This is a performance test standard for determining the strength and 
stiffness of nonstructural interior partition wall assemblies subjected to 
uniform static nominal pressure loads up to 15 pounds per square foot 
(0.72 kPa). The assembly is framed with cold-formed steel nonstructural 
members, and sheathed on one or both sides with gypsum board panel 
products.  

9. Future Developments and Technology Transfer.
To continue the advancement of cold-formed steel design and 
construction, two standard development initiatives are proposed. For cold-
formed steel framing design, the AISI Committee on Framing Standards 
will focus on improving the framing standards to enhance the design for 
mid-rise construction. For general cold-formed steel design, the 
Committee on Specifications is working towards developing analysis-
based design, an approach intended to realistically model a structural 
system such that the design criteria (failure modes), will be taken into 
direct consideration through structural analysis. Such analysis would 
consider connection deformation, cross-section deformations, interactions 
of members and attachments, as well as system effects. The analysis-based 
design would provide engineers the flexibility to model/design a 
structural system from a preliminary to a comprehensive design.  
To help the design community better understand AISI developed 
standards, the AISI Education Committee continues developing and 
updating technical design guides and design manuals. AISI D110, Cold-
Formed Steel Framing Design Guide (13), which was updated based on AISI 
S240-15 and AISI S100-12 and published in April 2016, provides valuable 
design information, and practical framing design examples. AISI D100, 
Cold-Formed Steel Design Manual (14), will be updated based on the new 
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edition of AISI standards. Most of the AISI standards can be downloaded 
for free from our website www.aisistandards.org. 
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Figure 1 – Examples of Bridging Connector Assemblies 
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Abstract 
This paper presents a research project aimed at advancing BIM for cold-formed 

steel (CFS) structures. The creation of the CFS family for Autodesk Revit is a 

handy solution for the lack of CFS members and information inside the Autodesk 

Revit libraries. Revit is one of the industry’s standard software for producing 

building information models. To overcome the disadvantages of not having CFS 

members in Revit, this research project focused on two phases to reach 

completion. Phase one consisted of developing a BIM library of industrial standard 

CFS members such as studs, tracks, and channels. Parameters were added to the 

members so that more information would be provided with them. These 

parameters include, but are not limited to, all the characteristics of CFS such as its 

gross, effective, and torsional properties. Phase two of the project consisted of 

using the developed CFS library to create light framed building models in Revit. 

This paper presents the results of creating and using this CFS library to produce 

CFS structures in combination with industry standard software. 
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Introduction 

 

This paper presents a research project aimed with the primary purpose of 

advancing building information modeling (BIM) for cold-formed steel (CFS) 

structures by developing a series of open BIM models that AISI committees, 

researchers, manufacturers, engineers, and other interested parties may use for 

exploration and demonstration of CFS solutions. Autodesk Revit (Autodesk I. , 

2015) is one of the industry’s standard software for producing building information 

models. Our recently completed research project is a two-phase designed practical 

solution that overcomes the disadvantages of not having a CFS family in Autodesk 

Revit. We teamed up with IKERD Consulting’s two project coordinators, Eloisa 

Amaya and Trevor Koller in order to successfully complete the project. This 

research report accounts the results of creating and utilizing the CFS library and 

producing CFS structures in combination with industry standard software. 

 

Building Information Modeling 

BIM is the use of 3d systems to create a visual representation of a structure to assist 

in its construction and utilization. It is the logical development of CAD drawings, 

a relatively new technology that is  becoming mainstream at a rapid rate 

(Wikipedia, 2016). The whole building is built as a three-dimensional computer 

model, and all the plans and other two-dimensional views are generated directly 

from the model so as to ensure spatial consistency. Although BIM has its roots in 

the mid-1980s, only recently has it risen in popularity within the Architectural, 

Engineering and Construction (AEC) industries. Due to this significant rise in 

popularity, the AEC industry has created a demand for well-trained individuals 

capable of implementing BIM technology in the work place. BIM is considered as 

a digital software system and an open standards-based collaborative business 

process targeting life-cycle facility management which serves as a common, 

centralized repository/portal for all life-cycle building related information, from its 

conception straight through its deconstruction (Words & Images, 2009). 

 

Since the BIM software architecture is based on parametric modeling, the 

geometric consistency and integrity of the building model is maintained in spite 

of any changes or modifications that have been made to it. With all this being said, 

the true crux of the improvements of BIM over traditional methods of 

representation is not in the model, it is in the information held in the model. It is 

the access to this data that leads to the true benefits of using BIM and because of 

this ability to incorporate sufficient information into the models. This remained 

one of the main focuses on the project. Understanding the concept of these 

parametric objects is to understand what a building information model is and how 
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it differs from traditional 2D design. Traditionally designed drawings had to be 

coordinated to assure that different building systems do not clash and can actually 

be constructed in the allowed space. Accordingly, most clashes are identified when 

the contractor receives the design drawings and everyone is on-site and working. 

With clashes being detected so late, delay is caused and decisions needed to be 

made very quickly in order to provide a solution. With the use of clash detection 

inside BIM, it enables potential problems to be identified early in the design phase 

and resolved before construction begins. A parametric object consists of a series 

of geometric definitions and their associated data and rules. By the same token, 

these geometric definitions are integrated non-redundantly and do not allow for 

inconsistencies between the model and its associated data set. In layman’s terms, 

this means that any changes made directly to the model will result in an equal 

change to the data set associated with the model. 

 

Existing issues in BIM families of CFS 
 

The purpose of this project was never to recreate something that already existed, 

but rather to address the weakness of any pre-existing Revit families and convert 

them into strengths for this project. That being said, there exists similar Revit 

families and libraries that are based off of light gauge steel in the software’s library 

that have a low level of details. However, there are no official cold-formed steel 

families found in the Revit’s library and because of this lack of a CFS family, there 

was a need to have one created. This newly created CFS library focused not just 

on the 3D modeling but also the lack of information in the pre-existing families in 

Revit. By comparison to the light gauge steel families in Revit, this newly created 

CFS family offers more parameters that encompass more information such as, but 

are not limited to, all the characteristics of CFS sections such as the gross, effective, 

and torsional properties. The family also offers more variety compared to the pre-

existing light gauge steel family, meaning that every member created comes in 

two flavors; structural columns and beams with and without holes. Figure 1 is a 

direct image captured from Revit 2015 depicting the parameters from the light 

gauge steel family. 
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Figure 1: Light gauge family parameters 

 

Developing CFS families in Revit 
 

This section will walk through the necessary steps used to create the CFS library 

with a certain level of details. The SSMA catalog (SSMA, 2015) was used as the 

reference for the geometry of CFS sections in this research. The first step in 

creating the family began with creating and laying out the model lines for the 

members and these were done by using the light gauge steel family as a template 

based on which type of member was being created (i.e. studs, tracks, zees, 

channels, etc.). Parameters were created for the information we sought to input 

into the models. The parameters were created and assigned their proper types and 

disciplines. After this step was completed, the Revit family file was saved in a 

convenient location. The next step in mass producing hundreds of similar Revit 

models with different dimensions such as a 162S125-33 versus an 800S125-68, 

was gathering all the information we deemed necessary and putting it into a type 

catalog. This was done by creating a text file using the Notepad software, then 

inputting the first line of text in the order the information would be read (left to 

right). The first line would include the name of the parameters as seen in Revit 

followed by two pound signs (#), followed by the type of parameter, and then 
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another set of number signs and finally the units of measurement. For example: 

Design Thickness##length##inches, Corner Radius##length##inches 

After listing all the parameters for the members and ensuring that only parameters 

that have been created in the Revit family file were listed (otherwise they would 

be ignored by the Revit software), on the very next line of the text file is where the 

name of the member and its parameters would be listed with a comma in-between 

each parameter value. After all the parameter values had been entered into the text 

file, the file was then saved with the exact same name as the Revit family file and 

saved in the same location. Finally, the last step was verifying the newly cataloged 

family would open correctly. This was done by loading a new Revit project or 

family file and loading the new family from the Insert tab. After navigating to the 

location of the file, Revit opened up a new section that encompassed all of the 

different sizes of that particular family such as studs or tracks, as illustrated in 

Figure 2. 

 

 

 

Figure 2: S beam with holes family member list CFS family with holes 
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After creating the CFS family without holes, they were then edited so that the 

option of modeling with members that have holes would be available. These 

models have a higher level of details than the pre-existing light gauge steel family. 

The holes were added by following the steps described below. After successfully 

loading and opening a member in the CFS family, go to an elevation view that 

shows the best inside view of the member and create a void extrusion using the 

line and start-end-radius arc tool. The holes were created following the most 

common sized holes in cold-formed steel members in the industry. These 

dimensions happen to be 4 in. (10.16 cm) long with a radius of ¾ on. (1.905 cm) 

for members smaller than 3 ½ in. (8.89 cm) wide and for members larger than this, 

the radius is 1 ½ in. (3.81 cm). After drawing the holes but before finishing the 

extrusion and exiting the editing mode, parameters were created to control the 

hole’s radius, hole length, and the distance from the top of the hole to the top of 

the CFS member. A formula was used to calculate the hole length {4-(2×(design 

thickness + hole radius))}, which gave an approximate length of 4 in. (10.16 cm) 

for the member. After creating these parameters, the editing mode was exited for 

the void extrusion and a vertical reference plane was created between the middle 

of the member (running the full length of the member). A parameter was created 

for the reference plane and a side of the CFS member {(width of member/2) + or 

– hole radius} (depending on which side of the member was chosen). The closest 

side of the hole to the reference plane was then locked onto the reference plane so 

that the location of the hole could be changed, or in this case centered. At this 

point, two horizontal reference plane was created that ran the width of the 

member. The first horizontal plane was locked onto the center of the original hole 

created and the second reference plane was locked a distance of “x” away from the 

first plane. This was done to allow user control of the distance from the top of the 

member to the center of the first hole. A similar thing was done to the preceding 

holes that were arrayed from the original hole. Once again, this was done to allow 

user control of the distances between the holes. After doing this, go to an elevation 

that shows the side of the member. This is where another reference plane was 

added that was locked onto the furthest protruding end of the void extrusion, and 

the other end was locked onto the side of the member. A parameter was added to 

the length of the locked side to the locked reference plane and was set as the 

thickness for the member, so that the hole’s depth would not extend beyond the 

member’s. Figures 3 and 4 were captured directly from Revit to illustrate all of the 

parameters that went into making and configuring/controlling the holes for this 

portion of the project. 
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Figure 3: Foundation parameters for the holes 

 
 

 
Figure 4: Parameters used to relocate holes 

 

 

Finally, as mentioned earlier the original hole should have been arrayed a distance 

“.y” (based off of the user input) to control the hole to hole spacing. After the hole 

was arrayed, a parameter should be created on the number of holes wanted. This 

parameter was set to a formula based off of the length of the member divided by 

the hole spacing. This allows the user to model any length of member and have a 

series of consistent spaced holes throughout the entirety of the member. After 

doing all of this, the file was then saved and then tested in Revit were multiple CFS 

hole members were created and had their lengths edited to verify that everything 

worked as hoped for. Figure 5 is an illustration of the completed family along with 

all the parameters that encompass them. 
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Figure 5: Developed CFS families 
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Figure 6: Gross, effective, torsional, and hole parameters  
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Application of CFS families in building BIMs 
 

The creation of a building model using the newly created cold-formed steel family 

was the first step of the second phase. This was an essential step in the finishing 

of this project because it was necessary to verify that the new family could be used 

with industry standard software. It was already determined that the CFS families 

could be used in Revit, so that creating a building model by placing members 

manually by a user was possible and tested. 

 

Essentially, a user would load in the CFS members that they wanted to use by going 

to the “Structure” tab and choosing the beam or column option and selecting 

”Load family”, after creating a new Revit project file. From there, the user would 

select all member sizes that they would like to model with, then begin placing the 

beams and columns wherever they would like. This is just one method of modeling 

a building using the CFS family that was also recorded for tutorial purposes, with 

the final result being illustrated in Figure 7 below. 

 

 
Figure 7: Simple single-story CFS structure modeled manually 

 

Another method used with this project that was also recorded for tutorial purposes, 

features a Revit add-in known as Metal Wood Framer (MWF) (Solutions, 2015). 

This add-in is considered to be among the industry top software and a standard. 

This is why it was imperative to verify that the CFS members would be compatible 

with the software. After following a few of the tutorial videos provided by 

StrucSoft, it was determined that the CFS members were indeed compatible with 

the add-in and were able to produce building models with the members in a very 

short time span. Figure 7 illustrates a building that was modeled with the use of the 

CFS family and MWF. 
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Figure 8: Two floor CFS structure modeled with MWF 

Discussion 

 

Advancing building information modeling for cold-formed steel epitomizes the 

primary goal for this project. There are several questions that have already been 

answered in this paper such as, what is BIM, was there a need for this project, and 

even what steps were taken to complete the phases of the project. However, even 

with these set of questions answered, there is still a lot more work and thought 

that went into this project for example, the level of development for modeling the 

cold-formed steel members, contacting industry leaders, and creating tutorial 

videos on how to use the CFS members with and without any add-ins. 

The Level of Development and Level of Detail (LOD) specification is a reference 

that allows specialists in the architecture, engineering, and construction industry 

to specify and articulate with a very high degree of clarity on content and 

reliability of BIMs at various stages in the design and construction process 

(BIMForum, 2015). Level of Detail is essentially how much detail is included in 

the model whereas Level of Development is the degree to which an element’s 

geometry and attached information has been thought through. Currently, there are 

no detailed standards for the design phases. Many companies and architects have 

created in-house standards, but as you can imagine, they differ from one company 

to the next. With that being said, LOD is essentially on its way to being the 

standard for describing the level of detail design phase in the industry. This then 

creates a basis for which other companies and firms can communicate on the 

design process without misunderstandings and lack of consistency. This project 

incorporates some of the principles of LOD 200, LOD 300, and even LOD 350, 

which may actually even be considered LOD 400 under certain circumstances. 
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The CFS families range from just standard solid members such as studs, tracks, 

and channels, to these members having as much detail in them such as their 

torsional and gross properties, not to mention the variation of members with and 

without holes. Below is an excerpt from the LOD Specification guide to give a 

clear idea of how LOD works. 

 

 
Figure 7: Fundamentals behind LOD (Autodesk, 2015) 

 

 
Figure 8: LOD examples (BimForum, 2015) 

 

 

 

458



Conclusion 
 

All things considered, this is a great step forward towards advancing BIM in cold-

formed steel. This project produced many positive results that range from creating 

a working cold-formed steel family library to reaching out and communicating 

with some of the industry’s leading software hands to verify that the families are 

compatible. By the same token, just because we believe this project to be a success 

does not mean that the project cannot be furthered and made better. There is always 

more work that can be done, for instance reaching out to other industry hands and 

trying to make the family more fluid and potentially compatible with future 

software is just one possibility. Also, just because the family works doesn’t 

necessarily mean that it cannot be adjusted so it works better with other industry 

standards. As mentioned in the discussion, there was a certain level of development 

that went into this project, which means that there was a certain level of thought 

that was implemented into the CFS families. I say this to point out that research 

may never truly be finished and that more thoughts and detail can be conceived 

and implemented into the families to better them. 
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Experimental investigation into steel storage rack beam-to-
upright bolted connections 

Liusi Dai1, Xianzhong Zhao2 and Chong Ren3 

Abstract 

For unbraced steel storage racks, the down-aisle stability depends largely on the 

performance of beam-to-upright connections and column bases. Boltless 

connections are generally used in order to make rack structures easy to assemble 

and feasible to adjust the storey height. Recently, storage racks are designed to 

carry large amounts of goods and they are therefore raise a considerable height, 

which makes the improvement of the structural stability to be sufficiently 

important. Under the circumstances, tab-connected beam-to-upright connections 

with bolts are gradually used in steel storage racks. Compared with boltless 

connections, the stiffness, strength and ductility of the bolted connections are 

improved to some extent. This paper presents an experimental investigation into 

the moment-rotation characteristic of steel storage rack beam-to-upright bolted 

connections under monotonic loads. Seven groups of specimens were tested with 

different constructional details and three identical specimens were repeated for 

each group. Moreover, the single cantilever test method was employed to study 

the rotational behaviour of connections. Effects of various parameters, such as 

upright thickness, beam height and tab numbers on connection behaviour are 

discussed and presented in this paper. The experiments show that the failure 

modes of bolted beam-to-upright connections depend on the relative thickness 

between the upright and beam-end-connector, as well as the relative height 

between the beam and beam-end-connector. Furthermore, the results obtained 

from the present study highlight that the behaviour of connections, such as 

Wei-Wen Yu International Specialty Conference on Cold-Formed Steel Structures 
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stiffness and ultimate moment capacity, are considerably influenced by the 

specific constructional details. 

Introduction 

One of the significant application of cold-formed steel is steel storage racks 

(Hancock, 2003), which has been widely used in fields of warehousing. In practice, 

various rack structures, such as pallet, drive-in/drive-through, cantilever and high-

rise racks are used. Uprights, beams, beam-to-upright connections and column 

bases are the main components of rack structures. In pallet racks (see Figure 1), 

beams are welded to beam end connectors and uprights are perforated along the 

length which allows the beam to be connected at variable heights. In order to allow 

each pallet always accessible to racks, steel storage racks are usually unbraced in 

down-aisle directions. Therefore, the down-aisle stability of rack structures 

depends largely on the performance of beam-to-upright connections and column 

bases (Bernuzzi et al. 2000).  

 

The mechanical semi-rigid beam-to-upright connections are generally employed 

in steel storage racks for their convenience in assembly and adjustment. Boltless 

beam-to-upright connections were categorised into four classes based on the 

connector features by Markazi et al. (1997). Due to the complex nature and 

variable geometrical details, connection design largely relies on experimental 

tests. Two test methods, i.e. cantilever tests and portal tests, are recommended in 

AS 4048 (2012) and RMI (2012). Considering the portal test determines the 

average stiffness of the connections (Abdel-Jaber et al. 2006), only cantilever test 

method is proposed in EN 15512 (2009). Substantial experimental investigation 

into the behaviour of boltless beam-to-upright connections were conducted by 

Markazi et al. (1997), Bernuzzi and Castiglioni (2001), Aguirre (2005), Bajoria 

and Talikoti (2006) and Zhao et al. (2014). The researchers have studied the 

stiffness, the moment capacity and the hysteretic characterisation of connections 

in steel storage racks. 
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However, with the advance of modern logistic industry, storage racks are expected 

to carry increasingly more goods. For this reason, they are required to increase the 

height, which results in the necessity of the improvement in the structural stability. 

Under these circumstances, tab-connected beam-to-upright connections with bolts 

are gradually used in steel storage racks to improve the connection behaviour. Few 

studies on bolted connections used in rack structures were presented. Gilbert and 

Rasmussen (2010) performed portal tests on bolted connections applied in drive-

in storage racks. The results showed that compared with tab connections, bolted 

connections have higher moment capacity and stiffness. Figure 1 illustrates the 

typical bolted connections widely used in China. Instead of boltless tab 

connections, a single bolt is applied to replace the safety device and designed to 

resist the accidental uplift loads. Whereas the bolt and tabs simultaneously 

participate in resisting the moment applied to the connection, which makes it 

complicated for engineers to predict the stiffness and strength of this type of 

connection. Due to limited research, the stiffness and strength of bolted 

connections are calculated by the same empirical equations used for boltless 

connections, which have been obviously underestimated. Therefore, studies on 

the behaviour of this type of connections employed in rack structures are highly 

concerned in order to establish a simplified design method of connections. 

 

     
Figure 1. Pallet racks and typical beam-to-upright bolted connections 

 

In this paper, an experimental investigation into the behaviour of steel storage rack 

beam-to-upright bolted connections is provided. The cantilever test method was 
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adopted with special boundary conditions and refined measuring methods. A total 

of twenty-one individual tests, consisting of seven groups of three identical tests 

each, were conducted. This paper reports the static behaviour of beam-to-upright 

connections obtained from the tests, which includes the failure mode, the stiffness 

and the moment capacity. On the basis of the results, the influence of parameters, 

i.e. the thickness of the upright, the beam height and the tab number, on flexural 

behaviour of connections are studied. 

Experimental Programme 

As listed in Table 1, totally twenty-one individual specimens were tested, which 

are divided into seven groups. Each group includes three nominally identical 

specimens. Figure 2 shows the geometric details of uprights, beams and beam-

end-connectors, respectively. Beams with the height of 105mm, 120mm and 

145mm were considered, while two types of beam-end-connectors with various 

tab numbers were employed. The specimens were labelled to specify the 

connection details. Taking “2.3C2-B105-3T” as an example, “2.3C2” indicates 

column type C2 with the thickness of 2.3mm, “B105” represents the beam height 

of 105mm and “3T” refers to the tab number of three. In addition, the character 

“NB” corresponds to the specimen without bolts. 

Table 1 Specimens 

Specimen 
Loading 

Protocol 

Number of 

specimens 
Variation 

2.3C2-B105-3T Monotonic 3 

Beam height 2.3C2-B120-3T Monotonic 3 

2.3C2-B145-3T Monotonic 3 

1.8C2-B120-3T Monotonic 3 
Column thickness 

2.8C2-B120-3T Monotonic 3 

2.3C2-B120-2T Monotonic 3 Tab number 

2.3C2-B120-3T-NB Monotonic 3 
With or without 

bolts 
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     C2: 100*90          B105/120/145          2T                    3T 

t=1.8mm, 2.3mm, 2.8mm      t=1.5mm          t=3.0mm                t=3.0mm 

    (a) Upright       (b) Beams             (c) Beam-end-connectors 

Figure 2 Dimensions of specimens 

Figure 3 shows test setups employed in cantilever tests and the arrangement of 

displacement transducers. A 760mm long upright was fixed on cantilever support 

beams at each end and the beam was connected to the upright at its mid-span. The 

positive load was applied 400mm from the face of the upright by a 20kN 

displacement-controlled electric actuator. The actuator was fixed on the 

frictionless slider mechanism which made it move freely in horizontal directions. 

The locations of ten LVDTs were presented in Figure 3, as well as the equations 

for calculating the applied moment (M) and the rotation of connection (φ). LVDT9 

monitors the horizontal displacement of the actuator, which is applied to modify 

the applied moment. LVDT1~LVDT4 measured the horizontal displacement of the 

beam end to determine the rotation of the beam axis at beam end (φb1). The 

rotation of column axis (φc) was derived from the readings of LVDT5 and LVDT6. 

LVDT7 and LVDT8 were mounted along the beam to calculate the rotation of beam 

axis (φb2). It should be noted that in many cases, with the load increasing the beam 

buckled at the end near the upright which resulted in the tilting of the stick used 

to fix the LVDT1~LVDT4. Afterwards the readings of LVDT1~LVDT4 were 

inaccurate and the rotation of connection was properly derived from the LVDT7 

and LVDT8. In order to obtain the full-range force-displacement curves, 

displacement-controlled loading method was adopted based on the vertical 

displacement at the loading point. The specimen was tested at a slow loading rate 
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of 0.5mm/min at the beginning and increased to 1~2mm/min after the peak load. 

The specimen was loaded incrementally until the load decreased by 50% or the 

loading cannot continue for the significant deformation of the specimen. 

 

Figure 3 Test setups and displacement transducers locations 

 (Di represent the readings of LVDTi, d = the loading arm, hij = the distance 

between LVDTi and LVDTj) 

Test results 

Experimental tests were carried out on twenty-one specimens, including different 

connection types, column thickness, beam heights and tab numbers. Figure 5 

shows the moment-rotation curves of each specimen. Ductile failure mode was 

observed in most specimens, except the specimens “2.3C2-B120-2T3.0” and 

“2.3C2-B120-3T3.0-NB” experiencing broadly brittle failure. Taking specimen 

“2.3C2-B120-3T3.0” as an example to specify the typical moment-rotation 

characterisation of the bolted connection (see Figure 5). At first, the connection 

behave elastically. And then with the increased displacement, the moment-

rotation curve entered into the non-linear phase, indicating that the stiffness 

decreased progressively due to the nonlinear deformations in various components, 
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i.e. tab bending, buckling in certain areas of connector and upright, and the bolt 

slippage. The maximum load was reported for the beam buckling at the end near 

the upright. Afterwards owing to the load redistribution in the connection area, a 

significant plateau was observed. Finally, the weld cracked resulting in a dramatic 

decrease in the applied load.  

 

Three types of failure modes and their combinations were observed in monotonic 

tests of bolted beam-to-upright connections (see Figure 4): 

- (T) tab crack; 

- (BE) beam end failure (beam buckling and weld crack); 

- (C) upright buckling; 

- Combination of failure modes above. 

   
                (a) T+BE               (b) T+C 

     
                   (c) C                  (d) T 

Figure 4 Failure modes 
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In monotonic tests, the common failure mode is the combination of tab crack (T) 

and beam end failure (BE). Tab crack was observed in most specimens. However, 

as for the specimen “1.8C2-B120-3T”, only buckling of the upright was observed 

because the strength of the upright was lower than that of the tabs. Moreover, due 

to the significant stiffening effects of the beam to the beam-end-connector, the 

specimen with beam height 145mm (2.3C2-B120-3T) failed at the upright other 

than the beam end. Particularly, connections with two tabs behaved similarly as 

boltless connections for the bolt located near the neutral axis of the section.  

 

Table 2 shows the summary of monotonic tests results, including the stiffness, the 

ultimate moment capacity and the failure mode. The mean value of connection 

stiffness and moment capacity are also presented and employed to discuss the 

effects of various parameters, such as the upright thickness, the beam height and 

the number of tabs, on the connection behaviour. The stiffness is the gradient of 

the line from the origin to the half peak load point on the moment-rotation curves. 

The moment capacity is the maximum recorded applied moment. 

 

 
(a) 2.3C2-B120-3T 
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(b) 2.3C2-B120-3T-NB 

 
(c) 2.3C2-B105-3T 

 
(d) 2.3C2-B145-3T 
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(e) 1.8C2-B120-3T 

 
(f) 2.8C2-B120-3T 

 
(g) 2.3C2-B120-2T 

Figure 5 Moment-rotation curves 
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Table 2. Summary of monotonic tests results 

Specimen 
Test 

number 

Stiffness 

(kN.m/rad) 
mean 

Moment 

capacity 

(kN.m) 

mean 
Failure 

mode 

2.3C2-B105-

3T 

H(1) 89.4 

79.3  

3.62 

3.58  

T+BE 

H(2) 76.0  3.61 T+BE 

H(3) 72.4 3.51 T+BE 

2.3C2-B120-

3T-NB 

H(1) 64.8 

72.9 

2.95 

2.78 

T 

H(2) 86.5 2.81 T 

H(3) 67.4 2.58 T 

2.3C2-B120-

3T 

H(1) 83.3 

92.8  

3.99 

4.00  

T+BE 

H(2) 104.5 3.98 T+BE 

H(3) 90.7 4.02 T+BE 

2.3C2-B145-

3T 

H(1) 139.7 

133.8  

4.84 

4.97  

T+C 

H(2) 121.2 5.08 T+C 

H(3) 140.6 4.98 T+C 

1.8C2-B120-

3T 

H(1) 96.5 

101.2 

3.33 

3.37  

C 

H(2) 102.6 3.36 C 

H(3) 104.5 3.43 C 

2.8C2-B120-

3T 

H(1) 87.2 

98.7 

4.40  

4.17  

T+BE 

H(2) 99.7 4.13 T+BE 

H(3) 109.2 3.98 T+BE 

2.3C2-B120-

2T 

H(1) 37.8 

37.67  

2.11 

1.94  

T 

H(2) 37.4 1.77 T 

H(3) 37.8 1.95 T 

Notes: H(1), H(2) and H(3) refer to the number of identical tests. 

Discussion of test results 

Comparison between connections with and without bolts 
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The comparison between the specimens “2.3C2-B120-3T” and “2.3C2-B120-3T-

NB” demonstrates the effect of bolts on the behaviour of steel storage beam-to-

upright connections. It can be seen from Table 2 (the first two groups), compared 

with boltless connections with the same upright thickness of 2.3mm, beam height 

120mm and tab number of 3, the connections with bolts considerably enhance the 

rotational stiffness and the ultimate moment capacity by 9% and 29%, respectively. 

Boltless connections fail abruptly for tab crack or tearing of the upright. Whereas 

for bolted connections the moment resistance is provided by the bolt in shear and 

by the upright in compression after the tab crack. Therefore, the bolted 

connections generally behave better in ductility. 

 

Effects of the beam height 

 

As illustrated in Table 2, the beam height has a considerable influence on the 

flexural behaviour of the bolted connections. If we compare the specimens with 

the same upright “2.3C2” and beam-end-connector “3T”, the connection stiffness 

and the ultimate moment capacity are found to be continuously increased with the 

beam height increased from 105mm to 120mm to 145mm. 

 

Effects of the upright thickness 

 

The influence of the upright thickness on the flexural behaviour of the bolted 

connections can be analysed from the comparisons between “1.8C2-B120-3T”, 

“2.3C2-B120-3T” and “2.8C2-B120-3T”. As shown in Table 2, with increasing 

the upright thickness from 1.8mm to 2.8mm, the ultimate moment capacity of the 

bolted connections was increased by 23.7% as the transition from upright 

buckling to beam end failure. However, the connection stiffness slightly 

fluctuated with the increase of the upright thickness. 

 

Effects of the tab numbers 
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Tab numbers relating to the depth of the beam-end-connector significantly 

influences the behaviour of bolted connections. Compared with the specimen 

“2.3C2-B120-2T”, the stiffness and the ultimate moment capacity of the specimen 

“2.3C2-B120-3T” was dramatically increased by 150% and 106% separately, as 

shown in Table 2.  

Summary and conclusions 

This paper has presented the experimental investigation into the flexural 

behaviour of steel storage rack beam-to-upright connections with bolts. The 

results of twenty-one individual experimental tests have been provided, including 

the moment-rotation curves, the stiffness, the ultimate moment capacity and the 

failure modes. Comparisons between connections with and without bolts have 

also been carried out in this paper. The influences of crucial parameters, such as 

the beam height, the thickness of the upright and the tab numbers, on the 

connection behaviour have been highlighted. Some important conclusions drawn 

from the present study are summarised: 

 

1. The failure modes of steel storage rack beam-to-upright connections are 

classified into three basic types: tab crack (T), beam end failure (BE) and 

upright buckling (C). The combination of these failure modes are generally 

observed in tests. The failure modes of bolted connections are determined 

by relative thickness between the upright and the beam-end-connector, as 

well as the relative height between the beam and the beam-end-connector. 

 

2. Compared with boltless connections, the beam-to-upright bolted 

connections have a considerably higher value of the stiffness and the 

moment capacity. In order to increase the structural stability, the bolted 

connections are considered to be an alternative beam-to-upright connection 

in steel storage racks. 

 

3. The beam height and tab number have a significant impact on the stiffness 
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of bolted connections, while the influence of the upright thickness on the 

connection stiffness is limited. The ultimate moment capacity of connections 

are increased with increasing the beam height, the upright thickness and/or 

the tab numbers. Therefore, one of the critical issues in rack structures design 

is to choose an appropriate beam-to-upright connection.   
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Industrial Cold-Formed Steel Rack Column Base Fixity 
and Strength 

Francesc Roure1, Teoman Peköz2, M Rosa Somalo 1, Jordi Bonada 1, M 
Magdalena Pastor 1,  Miquel Casafont 1, James Crews3 

Abstract 

This paper summarizes the testing done at the Universitat Politècnica de 
Catalunya, Barcelona, Spain and the possible use of the results in design for 
column base stiffness and strength. The test setup and procedure are adopted 
in the European rack design standards. 

Introduction 

The fixity of the column bases is an important parameter in the design of 
industrial cold-formed steel pallet racks. The strength and stiffness of the 
column base depends on the details of connection and the magnitude of the 
axial load in the column. The design of industrial storage racks is carried out 
according to the ANSI MH16.1: 2012 [1] in the United States and EN 15512 
document [2] in Europe. Neither of these documents provides 
comprehensive provisions for the calculation of the stiffness and strength of 
the column base connection. The details of column base plate connection in 
the United States and Europe are significantly different. In the United States 
the base plate is welded directly to the column and the base plate is in 
general anchored to the underlying floor. In Europe the columns are in 
general bolted to the base plates through various details. The subject of base 
plate testing and design is well covered for an Australian type of base plate 
which is similar to a European one in Gilbert and Rasmussen [3]. 
Baldassino, et al [4]. 

Attempts have been made to reach a comprehensive analytical (finite 
element) representation of the stiffness and strength of all types of column 
bases by the authors, Gilbert and Rasmussen [3]. Baldassino, et al [4]. Due 
to the variety of baseplate geometries, complexity of the behavior and the 
parameters involved, it is preferable to carry out tests to aid in design. 
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Test fixture and procedure 

The present RMI Specification does not have a test procedure for column 
bases. Document EN 15512:2009 has a test procedure that has been used 
and discussed in Gilbert and Rasmussen [3] and Baldassino, et al [4]. Some 
improvements to the test setup and procedures of EN 15512:2009 are 
proposed in these documents. A new version of EN 15512:2009 that will be 
available this year as a prEN 15512:2016 (prenorm) contains some 
improvements to the test setup and procedure of EN 15512:2009 as well as 
an alternate test setup will be given in prEN 15512:2016.  

The alternate test setup and procedure described in Roure, et al. [5] 
developed at the Universitat Politècnica de Catalunya, Barcelona, Spain was 
used in this study. The alternate setup shown in Figs. 1 and 2 consist of a 
segment of the column with a base plate attached to a representative 
concrete block. The moment at the base plate is provided by a lateral force 
on the free end of the column segment. The axial load is kept constant 
during the test and the moment on the base plate is determined including the 
second order effects due to the axial load and the lateral deflection. 

The alternate testing setup was much simpler to align and monitor during 
testing. It also required less number of displacement measuring devices. It 
has been used successfully for more than ten years. In Fig. 1 the cross-
sectional parameters are illustrated and defined. 

The tests were carried out in LERMA (Laboratory of Elasticity and 
Resistance of Materials), Universitat Politècnica de Catalunya, Barcelona, 
Spain. 

Test specimens 

Three different types of base plates shown in Fig. 2 were used. These types 
are typical for industrial cold-formed steel racks. Several identical samples 
of each type of base plate were tested at different axial load levels.  The 
types sections tested are typical of the industrial applications in the United 
States. 

Test results and their evaluation 

The test results are shown in Fig.3. The vertical axis in these plots is the 
moment at the column base plate calculated from the forces, dimensions and 
displacements as follows: 
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sin cos  

The horizontal axis is the rotation 	of the base plate in radians as defined in 
Fig. 1. Each plot shows the results of tests on a certain type specimens under 
different axial loads shown in the legend in lbs.  

The tests were aimed at getting the moment rotation relationship, referred 
here as base stiffness as well as the ultimate value of the moment in the 
column at the base plate level. The notations regarding the test results are 
illustrated in Fig. 4 for two different tests. Mrd is the available flexural 
strength [factored resistance] calculated from flexural strength [resistance, 
ultimate load] by applying a safety factor or resistance factor. In the 
calculations presented here the resistance factor ∅ is taken as 0.5.  

The following two different approaches were used to get Mrd from the 
flexural strength: 

1. Approach 1: Flexural strength is taken as the maximum moment 
observed in the test. 

2. Approach 2: Flexural strength is taken as the base moment at which 
the lateral load cannot be increased. 

In Fig. 4 Type A base plate Test 5000-1 flexural strength based on 
maximum moment and the moment at maximum lateral load are the same 
whereas, in Test 15000-2 they are different as indicated. The differences 
between the results obtained using both approaches are due to the different 
behaviour of the samples in the final failure, which is influenced by various 
factors: the bending of the plate, the slippage of the anchorages, the 
buckling of the column, etc.  

The specimen is considered failed when either one of the two following 
limits are reached: 
- The lateral force decreases and descends to 0. 
- The rotation of the column has reaches 0.12 rad. 

Stiffness, K, is determined from the moment-rotation plot by drawing a 
secant to the curve from the origin to the moment Mrd. These values are 
designated as K1, K2, Mrd1 and Mrd2 depending on the approach used to 
define the ultimate moment. 
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For each test, Mrd and stiffness K are calculated and given in Table 1. All 
the calculated results are shown in Table 1. In this table the first column is 
the (axial load in lbs.) – (the test number). 

To enable comparison, calculations are carried out according to EN 
15512:2009 (which is the same as prEN 15512:2016).  The parameters 
calculated according to the EN and prEN is designated as FEM.  

The tabulated results are plotted in Figs. 5 through 7. Due to the availability 
of time and material, number of tests did not satisfy the requirement for 
multiple tests depending on the variation of the results. It would therefore be 
prudent to use lower bound to the test results for stiffness and strength. 
Equations for lower bound values for K (K1 Llim, and K2 Llim) and Mrd 
(Mrd Llim and Mrd Llim) are given and plotted in Figs. 5 through 7.  

The values of K and Mrd obtained using Approach 1 appears to be 
reasonable in design because the base can still receive more moment beyond 
the Mrd computed from Approach 2, but the ultimate strength depends on 
the type of failure mechanism. The values of  K obtained with Approach 2 
are always higher, and the values of  Mrd lower.  

It is interesting to note that all the column base fixities are well below the 
value of 19,913 in-k/rad that can be obtained from the following equation 
given in the RMI Specification [1]: 

12
 

 
Where b is the width of the column parallel to the flexural axis, d is the 
depth of the column perpendicular to the flexural axis, b is the width and  
which is the modulus of elasticity of floor, assumed to be concrete and equal 
to 
 /10. 
 
As mentioned above, in the calculations resistance factor ∅ was taken as 0.5. 
Comparing the results shown in Figs. 4, 5 and 6 with the results obtained 
according to prEN 15512:2016 (results designated FEM), it seems 
reasonable to increase the value of  ∅ to 0.6. This would make a significant 
difference in Mrd but a much smaller difference in the value of K. 
 
The use of the K and Mrd values in design would involve assuming 
reasonable values of K and Mrd at first and carrying out a frame analysis. 
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Depending on the outcome of the frame analysis, iterations may be 
necessary using the values of K and Mrd obtained from Figs. 4, 5 and 6. 
 
The influence of the base fixity on the column base moment and the 
deflection at the first beam level of a multi-bay pallet cold-rolled steel rack 
can be seen in Fig. 8. This pallet rack was analyzed according to ANSI 
MH16.1: 2012 [1] for the parameters as follows:  
 
 5 levels of beams each 99 inches span and 60 in between levels 

 Beams loaded uniformly with 3.56 k load 

 Beam to column connection rotational fixity factor F= 750 k-in/radian 

 Notional load factor = 1/240 

 Column properties 
o Ag = 0.936 in2 gross area of columns 
o Ix = 1.27 in4 moments of inertia of columns about the axis of 

symmetry 
o rx =1.16 in radii of gyration of columns about the axis of 

symmetry 
o Se = 0.847 in3 section modulus of the columns 

 Beam properties  
o Ag = 0.780 in2 gross area of beams 
o Ix = 1.70 in4 moment of inertia of the beams about the bending 

axis  

It is seen in Fig. 8 that the change in M, moment at the base plate and the 
deflection at the fist beam level is not too sensitive to variations in the base 
fixity K above 4000 k-in/radian.  It appears therefore that determination of 
an exact value of K is not too critical if K is larger than this value. 

Summary and conclusions 

Tests were conducted on column bases with three types of base plates under 
different levels of axial loads. The results show a wide variety of values for 
the ultimate moment and base fixity depending on the type of base plate and 
axial load. Therefore it would be prudent to assume lower bound values to 
the results in design. 
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Type A Base plate 
 
 
 

 
 

Type B Base plate 
 

 
 

 
 

Type C Base plate 
 
 

Table 1 Stiffness and design moments base on test results 
  

Test K FEM K 1
K FEM /  

K 1 Mrd FEM Mrd 1
Mrd FEM 

/ Mrd 1 K 2
K FEM/ 

K2 Mrd 2
Mrd FEM 

/ Mrd 2
5000-1 5848.41 2634.28 2.22 19.22 28.34 0.68 2522.25 2.32 28.25 0.68
5000-2 6179.81 2362.00 2.62 19.15 29.09 0.66 2408.01 2.57 28.56 0.67
5000-3 4568.78 2365.03 1.93 19.12 24.78 0.77 2329.17 1.96 24.40 0.78
10000-1 6754.99 6579.08 1.03 25.95 25.03 1.04 6463.20 1.05 22.50 1.15
10000-2 6293.40 5580.17 1.13 25.57 27.78 0.92 6081.42 1.03 22.77 1.12
10000-3 6249.18 5100.82 1.23 26.06 28.02 0.93 6539.49 0.96 25.39 1.03
15000-1 6192.36 5854.51 1.06 32.48 32.22 1.01 6611.30 0.94 25.39 1.28
15000-2 6756.52 6736.32 1.00 31.98 28.67 1.12 7389.83 0.91 24.63 1.30
15000-3 6972.00 7157.16 0.97 32.42 31.65 1.02 6429.23 1.08 21.43 1.51

Test K FEM K 1
K FEM /  

K 1 Mrd FEM Mrd 1
Mrd FEM 
/ Mrd 1 K 2

K FEM/ 
K2 Mrd 2

Mrd FEM 
/ Mrd 2

5000-1 897.63 808.30 1.11 14.15 13.52 1.05 925.24 0.97 10.93 1.30
5000-2 2540.30 2228.57 1.14 14.14 14.26 0.99 2576.08 0.99 12.10 1.17
5000-3 2056.10 1724.00 1.19 14.13 14.99 0.94 1960.50 1.05 13.06 1.08
7500 3043.05 2519.30 1.21 17.49 17.95 0.97 3481.14 0.87 14.15 1.24

10000-1 2597.73 2173.45 1.20 19.89 20.79 0.96 2795.90 0.93 15.72 1.27
10000-2 2204.45 1963.37 1.12 19.62 19.35 1.01 2542.46 0.87 14.76 1.33
12500-1 2347.22 2125.98 1.10 21.04 20.08 1.05 2670.28 0.88 15.66 1.34
12500-2 3170.58 2831.22 1.12 20.80 20.28 1.03 4999.64 0.63 14.30 1.45
15000-1 2835.87 2750.43 1.03 23.13 21.55 1.07 3071.87 0.92 18.87 1.23
15000-1 2683.30 2644.91 1.01 23.27 21.54 1.08 3938.83 0.68 14.99 1.55
20000-1 4756.34 4670.02 1.02 24.70 22.68 1.09 6426.20 0.74 15.35 1.61
20000-2 3352.63 3625.77 0.92 24.24 21.38 1.13 6466.08 0.52 13.40 1.81

Test K FEM K 1
K FEM /  

K 1 Mrd FEM Mrd 1
Mrd FEM 
/ Mrd 1 K 2

K FEM/ 
K2 Mrd 2

Mrd FEM 
/ Mrd 2

5000-1 1089.76 1074.54 1.01 4.44 3.58 1.24 1140.66 0.96 2.68 1.66
5000-2 1564.03 1468.96 1.06 4.54 4.13 1.10 1589.50 0.98 3.01 1.51
7500-1 3172.75 3949.80 0.80 8.53 6.02 1.42 4090.34 0.78 5.14 1.66

10000-1 3885.03 4370.92 0.89 10.20 7.16 1.42 4728.46 0.82 6.09 1.68
10000-2 4792.14 5248.22 0.91 10.02 8.02 1.25 5395.87 0.89 6.39 1.57
12500-1 4457.69 4262.73 1.05 12.22 10.36 1.18 4192.05 1.06 8.58 1.42
15000-1 4345.86 4877.32 0.89 17.66 11.65 1.52 5663.22 0.77 8.58 2.06
15000-1 5393.41 5235.37 1.03 17.67 12.94 1.37 5656.35 0.95 11.94 1.48
20000-1 4672.11 5178.97 0.90 20.20 14.58 1.39 5435.07 0.86 12.43 1.63
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Fig. 2 Test setup

 

             Type A                                             Type B                             Type C 

Fig. 2 Test specimen types 
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Type A Specimens 

 

Type B Specimens 

 

Type C Specimens 

Fig. 3 Test results  
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Type A Test 5000-1 

 

Type A Test 15000-2 

Fig. 4 Mrd and K from test results  
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Fig. 5 Results for tests on Base plate Type A 
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Fig. 6 Results for tests on Base plate Type B 
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Fig. 7 Results for tests on Base plate Type C 
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Fig. 8 Numeric Example 
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Design of Industrial Cold-Formed Steel Rack Upright 
Frames for Loads in Cross-Aisle Direction  

Francesc Roure1, Teoman Peköz2, M Rosa Somalo 1, Jordi Bonada 1, M 
Magdalena Pastor 1,  Miquel Casafont 1 

Abstract 

This paper summarizes research on the cross-aisle stiffness and strength of 
industrial cold-formed steel rack upright frames for loads in cross-aisle 
direction. Tests were carried out at the Universitat Politècnica de Catalunya, 
Barcelona, Spain on joints as well as entire upright frames. A possible rather 
simple analysis procedure is developed and described. 

Introduction 

In general, industrial cold-formed steel pallet racks consist of upright frames 
and pallet beams. Upright frames consist of columns, column base plates 
and bracing members. In the United States, typically, base plates and braces 
are welded to the columns.  

The stiffness of the upright frame is important for design in the cross aisle 
direction, namely in the plane of the upright frames. The stiffness in the 
cross aisle is important in determining the earthquake performance of racks. 
At the moment some design are made using a rigid frame analysis which as 
will be shown results in a very significantly larger stiffness than if the 
semirigid nature of the joints is considered. Semirigid nature of the joints 
results from the distortions of the column at the connections to the braces. 

Rotational flexibility at the joints does not have as significant effect as the 
stiffness in the axial direction of the braces. The stiffness and strength of the 
joints between the braces and columns were studied experimentally and 
analytically and reported in Roure, F., et al [1]. 
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To develop a simple and more accurate approach to the design of upright 
frames as rigid frames tests were carried out at LERMA (Laboratory of 
Elasticity and Resistance of Materials), Universitat Politècnica de 
Catalunya, Barcelona, Spain. 

The tested upright frame configuration as well as the section geometries and 
photographs are shown in Fig. 1. The frames had two different column 
thicknesses of 0.07 inch (Type A Columns) and 0.105 inch (Type B 
Columns) inch. Same brace was used for both types of frames. Each frame 
was also subjected to two types of loading, one that will cause tension in the 
diagonal and the other compression. Tests were done on three identical 
frames for each type of upright frames and loading. Thus there were 12 tests 
in total.  Though the tests were done on rather low height upright frames, it 
is expected the developed methodology will be applicable to higher upright 
frames. 

Tests on the joints between columns and braces 

Special test fixtures and procedure were developed for getting a spring 
coefficient for the restraining of the braces in the axial direction as described 
in detail in Roure, et al. [1]. Test fixtures, views of failed specimens and a 
sample of finite element modelling result are shown in Figs. 2 through 4. As 
shown in Fig. 2 test were carried out on joints with braces at right angles 
and at 45 degrees to the columns. The finite element modeling has shown to 
be feasible for connections between other types of columns and braces. 

The stiffness for the joints are given in Table 1 obtained from tests where 
the braces are in tension and compression. The stiffness is the slope of the 
regression line obtained from the initial linear part of the experimental 
curves, up to a value that varies between 0.3 and 0.6 of the ultimate force at 
the joint. Table 1 also has “adjusted brace area” to be used in frame analysis 
as described below. The regression lines are shown in Fig. 4 for joints of 
between Type A columns and braces.  

Frame Tests 

The frames tested are illustrated in Fig. 1. The frames were tested in a 
horizontal position as shown in Figs. 6 and 8. Bases were fixed and typical 
base plates were used. Out of plane displacement of the frames was 
restrained. Loads were applied at the joints shown in the figures. The loads 
were applied in two directions, in a direction that causes tension and in a 
direction that causes compression in the diagonal braces. The tests were 
carried out in triplicate for each direction and for each column geometry. 
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Frame Test results and their evaluation 

Deflections observed and calculated at the points of application are plotted 
in Figs. 5, 7, 9 and 10. Deflections were calculated using MASTAN2 [2] ] 
frame analysis program. In MASTAN2 (which will be referred to as 
MASTAN), the semirigid nature of the joints were idealized by reducing the 
area of the horizontal and diagonal braces in the element adjacent braces to 
the columns in such a way that the axial stiffness of the braces are reduced 
to the stiffness values observed in joint tests. These areas are listed in Table 
1 as “adjusted brace area”.  Stiffness is different depending on the thickness 
of the column and whether the brace is in compression or tension. The 
elements whose areas are modified 1.9 inches and 2.687 inches long for 
horizontal and diagonal braces, respectively.  

The lateral deflections at the point of loading calculated using MASTAN 
and observed in the tests are plotted in Figs. 5, 7, 9 and 10. In these figures 
the deflected shapes of the frames are also shown. Photographs of the tested 
specimens are shown in Figs. 6 and 8. It can be seen in Figs. 5, 7, 9 and 10 
that assuming the joints to be rigid (MASTAN rigid) results in in very 
significantly smaller deflections than deflections assuming semirigid joints 
(MASTAN semirigid). MASTAN semirigid analysis results were obtained 
using the stiffness values based on Table 1 as described above.  

In general the observed and calculated deflections (MASTAN semirigid) are 
seen to agree reasonably well. Since the MASTAN analyses uses linear 
axial stiffness, the agreement in the early stages of loading, for instance up 
to lateral loads of 1.5 kips to 2 kips range, appear to be satisfactory,. The 
largest discrepancy between the observed and calculated values obtained 
using the stiffnesses shown in Table 1 appears to be for frames with Type A 
columns loaded such that the diagonals are in tension. In Fig. 5 two more 
cases are shown with stiffnesses obtained at a lower load level. These are 
designated “K at 1.5” and “K at 1”. These predictions are based on axial 
joint stiffnesses for all the members obtained from regression analysis fit to 
the deflections in the joint tests at axial load levels from zero to 1.5 kip and 
1.0 kips, respectively. It is seen that these latter k values give calculated 
deflection values in better agreement with the tests results.  

It is possible to improve the accuracy of the predictions by selecting the 
stiffness values obtained from joint tests on each member according to the 
forces in the members. This would lead to an iterative approach which 
would be more tedious than the simple approach aimed at in this study for 
design applications.  Developing general criteria for specifying joint 
stiffness in the axial direction of the braces to be used in frame analysis 
based on tests is in progress. 
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Summary and conclusions 

Tests and analytical studies were carried out on upright frames to study the 
effect of axial stiffness of the braces affected by local distortions at the 
joints. The comparison of the calculated and observed results indicates the 
feasibility of the procedure developed.  

Ignoring the effect of the local distortions on the axial stiffness of the braces 
gives grossly erroneous results. Studies conducted but not reported here 
have shown that the effect of the semirigidty for moment fixity at the joints 
is smaller.  

The approach developed is expected to be applicable to upright frames 
higher than those tested. 
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Table 1 Joint test results 

 

 
 

(*)   Elements with adjusted brace areas shown below 
(**) Upper limit for the force for the regression line, the lower limit is 0 k 
 
 

 
 
 

 
 

 
              

  

Column 

(thickness) Angle

Test          

(force in 

diagonal) stiffness stiffness

adjusted 

diagonal 

brace area 

(*)

adjusted 

horizontal 

brace area  

(*)

Upper limit 

for regression 

line (**)

degrees (kN/mm) k/in in2 in2 k

A 90 tension 5.75 32.8333 0.00299 0.00211 1.50

(1.78 mm) 90 compression 3.44 19.6429 0.00179 0.00127 1.75

45 tension 7.65 43.6826 0.00398 0.00281 2.25

45 compression 5.67 32.3765 0.00295 0.00209 3.00

B 90 tension 14.77 84.3389 0.00768 0.00543 3.00

(2.67 mm) 90 compression 8.97 51.2200 0.00467 0.00330 3.25

45 tension 20.31 115.9731 0.01056 0.00747 3.25

45 compression 14.79 84.4531 0.00769 0.00544 4.75
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Upright frame 
 

   
                                             Column section          Brace section 

 

 
 
                                            Joint details 
 

Fig. 1 Test specimen details 
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Fig. 2 Test set-ups 
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Fig. 3 Test fixtures, views of failed specimens ant finite element modelling  
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Fig. 4 Connection test results and finite element correlations for frames with 
Type A columns  

 FEM simulations are indicated by the arrows 
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Experiments on column base stiffness of long-span cold-formed 

steel portal frames composed of double channels 
 
 

H.B. Blum1 and K.J.R. Rasmussen2 
 
 

Abstract 
 
Cold-formed steel haunched portal frames are popular structures in industrial and 
housing applications. They are mostly used as sheds, garages, and shelters, and 
are common in rural areas. Cold-formed steel portal frames with spans of up to 
30m (100 ft) are now being constructed in Australia. As these large structures are 
fairly new to the market, there is limited data on their feasibility and design 
recommendations. An experimental program was carried out on a series of portal 
frame systems composed of back-to-back channels for the columns, rafters, and 
knee braces. The system consisted of three frames connected in parallel with 
purlins to simulate a free standing structure, with an approximate span of 14 m 
(46 ft), column height of 5.3 m (17 ft), and apex height of 7 m (23 ft). Several 
configurations were tested including variations in the knee connection, sleeve 
stiffeners in the columns and rafters, and loading of either vertical or combined 
horizontal and vertical loads. Deflections were recorded at various locations to 
measure global and local movements of the structural members, as well as column 
base reactions and base rotations. It was determined that the column bases are 
semi-rigid and further column base connection tests were completed to quantify 
column base connection stiffness for bending about the column major and minor 
axes, as well as twist. Results of the column base connection stiffness are 
presented as well as the implications for frame design. 
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Introduction 
 
Cold-formed steel haunched portal frames are prevalent structures in housing and 
industrial uses, especially in rural regions in Australia. There is a demand for the 
construction of larger spans; however there is a lack of test data on their 
performance. Previous experimental studies have been conducted on medium 
span double channel portal frames (Lim & Nethercot 2002, Stratan et al. 2006, 
Zhang 2014, Wrzesien et al. 2012) consisting of either a single frame or bay. The 
experimental work discussed herein aims to expand the data available to larger 
spans and multiple bays. 
 
A series of full scale experiments on long-span cold-formed steel portal frames 
has been conducted by the authors. Further details of the experimental program 
can be found elsewhere (Blum & Rasmussen 2016a,b,c). It was found during the 
experimental program that column base connections produced semi-rigid 
behavior. Previous studies have been conducted on cold-formed steel portal frame 
base fixity (Robertson 1991, Kwon et al. 2004) for other types of base 
connections. Therefore individual column base connection tests were completed 
to quantify the rotational stiffness for bending about the column major and minor 
axes, as well as the column base restraint to torsion. 
 
Full Scale Experiments 
Layout and load application 
 
An experimental program was carried out on a series of haunched portal frame 
systems composed of back-to-back channels bolted through the webs for the 
columns, rafters, and knee braces. Members were connected together with double 
L brackets bolted through the webs. The test frame had a centerline span of 13.6 m 
(44.6 ft) and a height of 6.6 m (21.7 ft), the rafters were inclined at an angle of 
10° from the horizontal, and there was a 50° angle between the column and knee 
brace. The experimental setup consisted of three frames connected in parallel with 
purlins between the rafters to create a free standing 2 bay structure with a bay 
spacing of 3.6 m (11.8 ft); however load was applied only to the center frame, 
with the outer frames serving as supports providing lateral restraints to the center 
frame representative of industry practice. Cross-bracing was connected on both 
sides of one bay. The setup is shown in Figure 1. 
 
A total of nine frames were tested: eight with unbraced columns and one with 
braced columns. Half of the unbraced column tests were with vertical loads only 
and half were tested with horizontal and vertical loads. Several configurations of 
frames were tested, including variations in the knee connections and the addition 
of sleeve stiffeners. Vertical load was applied through a hydraulic jack, which was 
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connected to a load spreading system consisting of a series of HSS, rods, and bars, 
to distribute the load from the jack to eight points along the rafter, thus simulating 
a uniformly distributed vertical load. A horizontal jack was connected to a trolley, 
to which the main vertical jack was mounted, and was controlled by a transducer 
at the apex which measured frame sway. The horizontal jack moved equally with 
the frame sway, therefore maintaining the main jack in a vertical position. In the 
four tests subject to horizontal and vertical loads, the horizontal loads representing 
wind loads were simulated by hanging a 5 kN (1.12 kip) concrete block off the 
side of the frame. A thick plate was bolted to the north column eaves brackets. 
The concrete block was connected to this plate through a cable and pulley system. 
The block was slowly lowered first, and then vertical loads were applied until 
failure under constant horizontal load. 
 
 

 

Figure 1: Experimental frame setup 

 
The column base connection consisted of two 5 mm (0.20 in) thick L plates with 
washers bolted to the column flanges. The L plates were connected to the strong 
floor through finger clamps, and the connection is shown in Figure 2. In practice, 
the L cleat and washer would be connected to hold-down bolts encased in a 
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concrete foundation. The focus of this paper is on the semi-rigidity of this column 
base connection. 
 
 

 

Figure 2: Column base connection (a) L brackets and (b) U bracket 

 
Instrumentation 
 
Transducers were placed at various locations on the frame to measure global 
movements in three directions, twist, and local deformations. The instrumentation 
includes transducers at column mid-height, column at the knee connection, knee 
and knee connection brackets, eave connection, and apex connection. Further 
details can be found elsewhere [Blum & Rasmussen 2016c]. From experiment 3 
onwards, four transducers were placed at the base of each column flange to 
measure column base rotation about the column major axis. The transducers were 
located in the middle between the bolt-holes in the base L plate, approximately 8 
cm (3.15 in) up from the base. This transducer setup is shown in Figure 3. 
 
For experiments 1-4, column base reactions were measured through strain gauges 
near the base. The strain gauges were located approximately 15 cm (5.9 in) up 
from the base of the column, on both inner and outer surfaces of all flanges, 20 
mm (0.79 in) from the corner. The placement was to ensure that local effects from 
the column to base plate connection bolts did not affect the results. For 
experiments 5-9, fixed-end bearings were constructed to form load cells to 
measure column base reactions of axial force and bending moments about the 
column major and minor axes.  
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The resulting data from the column base transducers and strain gauges or column 
base load cells allowed the calculation of column base major axis moment-
rotation curves during the full scale experiments.  
 

 

Figure 3: Instrumentation on column base connection 

 
Moment-rotation results for full scale experiments 
 
A plot of moment vs rotation at the column base is presented in Figure 4 for 
experiments 5 and 6. Experiment 5 had gravity loads only applied, while 
experiment 6 had a 5 kN (1.12 kip) wind load applied followed by gravity load 
until failure. The wind load produced a base moment of approximately 4 kNm 
(35.4 kip-in) in the north column and 3 kNm (26.6 kip-in) in the south column. 
The results for both of these experiments are characteristic of the other 
experiments. More details can be found elsewhere (Blum & Rasmussen 2016c). 
The moment-rotation curves have an initial linear region up to approximately 1 or 
1.5 kNm (8.85 or 13.3 kip-in), followed by a non-linear region, and lastly a linear 
region beginning between 3 and 4 kNm. The jumpiness in the plot for the north 
column of experiment 6 is due to the manual release of the concrete block used to 
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simulate wind loading. The column base stiffness of the initial linear region is 
given in Table 1 for experiments 3 to 9.  

 

Figure 4: Column base moment vs rotation for bending about column major axis 
for experiments 5 and 6 

 
Base Connection Tests 
 
Separate column base rotation tests have been completed to quantify the base 
stiffness for bending about the column major axis and minor axis. Various base 
plate connections have been tested to determine their effect on column base 
stiffness, including 5 mm (0.20 in), 6 mm (0.24 in), and 8 mm (0.31 in) L-plates 
and a 5 mm U-plate. The U-plate was created by welding a plate of mild steel in 
between 2 L-plates to form one section, as shown in Figure 2(b). 
 
Two columns were cut to 1.6 m (63 in) lengths and both columns were tested with 
the various base plates. Load was applied approximately 1270 mm (50 in) from 
the column base through a jack. Transducers approximately 80 mm (3.1 in) above 
the column bases were used to measure column base rotations. The columns were 
loaded and unloaded for two cycles. Data from the second loading cycle was 
utilized to avoid the influence of any possible initial settlement of the connections 
during the first loading cycle. Setups for base rotation tests for bending about the 
column major and minor axes are shown in Figure 5. 
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Column major axis, Mx 
 
The column was loaded up to a moment of 6 kNm (53.1 kip-in) to correspond to 
the full scale experiments. Four transducers, located on the column base L-plates 
bolted to the channel flanges, were used to measure the column base rotation, and 
are shown in Figure 5(a). Results of the column base moment vs. rotation for the 
2nd loading cycle are shown in Figure 6 for the various base plate connections for 
both column specimens. 
 

 

Figure 5: Column base rotation tests for bending about column (a) major axis 
and (b) minor axis 
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Figure 6: Column base moment vs rotation for bending about column major axis 

 
The moment rotation curves are characterized by an initial non-linear region 
followed by a linear region starting approximately at an applied moment of 1 kNm 
(8.85 kip-in) for the 5 mm thick plates and 2 kNm (17.7 kip-in) for the 6 and 8 
mm thick plates. A linear regression was fitted through the linear region of each 
moment-rotation curve. The resulting moment-rotation stiffness values are 
presented in Table 2.  
 
Column minor axis, My 
 
The column was loaded until it rotated around 1.2 degrees, as this matched 
rotations from the major axis bending test, and to prevent plastic deformations 
from occurring if additional load was applied. Load was applied from the jack to 
the column through 2 steel arms into the web-flange junctions, as shown in Figure 
7(a). This arrangement distributed the load into the center of the built-up cross-
section. Two transducers with L-bracket extensions were used to measure 
deflections at the web-flange junction, as shown in Figure 7(b), to avoid 
measuring local deflections of the channel section plate elements. Results of the 
column base moment vs. rotation for the 2nd loading cycle are shown in Figure 8 
for the various base plate connections for both column specimens. 
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Figure 7: Setup for column base rotation for bending about column minor axis 
(a) load application arms and (b) transducer extensions 

 

 

Figure 8: Column base moment vs rotation for bending about column minor axis 

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
Rotation (deg)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

M
om

en
t (

kN
m

)

col 3 - 5 mm L
col 3 - 6 mm L
col 3 - 8 mm L
col 3 - 5 mm U
col 5 - 5 mm L
col 5 - 6 mm L
col 5 - 8 mm L
col 5 - 5 mm U

517



 
The moment rotation curves are characterized by an initial non-linear region 
followed by a linear region starting approximately at an applied moment of 0.5 
kNm (4.43 kip-in). A linear regression was fitted through the linear regions of 
each moment-rotation curve. The resulting moment-rotation stiffness values are 
presented in Table 3.  
 
 
Column base torsion test 
 
 

 

Figure 9: Setup for column base torsion test 

One column was cut at the base to a 500 mm (19.7 in) length to fit inside the 
testing machine. The top end of the specimen was welded to a thick plate and was 
fixed inside the top grip of the machine. The base end of the column was bolted 
to a bottom thick plate through the column base L brackets. The bottom plate was 
twisted up to a moment of 2 kNm (17.7 kip-in) both clockwise and counter 
clockwise; as the results are identical the results from only one direction is plotted. 
Various base plate connections were tested including 5 mm and 6 mm L plates 
and a 5 mm U plate. Four transducers were placed 80 mm (3.1 in) above the 
column bases on the L brackets connected to the column flanges, as shown in 
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Figure 9. The transducers were attached to the rotating bottom thick plate, and 
therefore measured the relative rotation of the column at 80 mm up from the base 
to that of the base.  
 
A twisting moment applied to a section is resisted by the uniform and nonuniform 
torsion components. Of these, the uniform torque is proportional to the thickness 
to a power of three and is considered to be an order of magnitude smaller than the 
warping torque for the section considered. Furthermore, as the column was bolted 
to two thick L plates, the connection was assumed to be fully clamped against 
twist rotations at the base. Hence, no warping displacements occurred and uniform 
torsion could be assumed to be zero at the column base. For these two reasons 
combined, the twist measured by the transducers was considered to be a result of 
nonuniform torsion only.  
 
Warping displacements are proportional to the rate of change of twist of the 
section. Twist was measured at only two locations: at the base and 80 mm above 
the base. Without additional points only a linear relationship can be assumed, so 
therefore the rate of change of twist was calculated as twist divided by the height 
of the transducers. The twisting moment versus rate of twist of the section is 
plotted in Figure 10. The slope of this plot represents the warping restraint of the 
column base connection.  
 

 

Figure 10: Column base twist moment vs rate of twist 
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As shown in Figure 10, the 6 mm thick L plates provide a less stiff connection 
than the 5 mm thick L plates. Unlike the base rotation tests for bending about the 
column major axis, thicker L plates do not make the connection more rigid in 
torsion as it does not depend on the bending of the L plate. Holes were drilled in 
the columns to fit the 5 mm L plates, thus the 6 mm L plates did not line up exactly 
with the bolt holes on the column flanges and were forced into position. While 
this has a negligible effect on the base rotation tests, it could provide an 
explanation for the less stiff connection that the 6 mm L brackets provide. 
 
Results – Spring Stiffness 
 
The column base stiffness for column major axis bending in the full scale 
experiments is given in Table 1 for both north and south columns for experiments 
3 through 9. “Wind” loading indicates that the experiment had a constant wind 
load of 5 kN (1.12 kip) applied followed by gravity loads until frame failure, while 
“gravity” loading indicates that only gravity loading was applied. The base 
stiffness was estimated from the slope of the moment vs rotation plots for the 
initial linear region up to a moment of 1.5 kNm (13.3 kip-in). Finite element 
analyses have shown that using the initial column base stiffness yields good 
agreement between models and the experiments (Blum & Rasmussen 2016d).  

Table 1: Column base stiffness for column major axis bending in full scale 
experiments 

Experiment Loading Column 
Column base stiffness 

kNm / deg kip-in / deg 

3 Wind 
N 7.27 64.3 
S 5.44 48.1 

4 Wind 
N 4.34 38.4 
S 3.47 30.7 

5 Gravity 
N 4.48 39.7 
S 4.98 44.1 

6 Wind 
N 5.56 49.2 
S 3.89 34.4 

7 Gravity 
N 3.29 29.1 
S 3.68 32.6 

8 Wind 
N 4.99 44.2 
S 4.92 43.5 

9 Gravity 
N 5.01 44.3 
S 6.25 55.3 

Average   4.83 42.7 
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As shown in Figure 1, the frames in the full scale experiments supported a load 
spreading system, which weighed 4 kN (0.90 kip). This was attached to the frame 
prior to the start of the experiment. Therefore, there was already a reaction in the 
column bases prior to the recording of experimental data. Additionally, there was 
some minor shifting of the frames during construction, whereby any initial 
settlement of the connection already occurred prior to testing. For the small scale 
base rotation tests, loading began with no other loads already on the column. A 
finite element model was created in MASTAN2 (McGuire et al. 2000) with a 
semi-rigid column base for bending about the column major axis with a stiffness 
equal to the average as calculated from full scale experiments. It was determined 
that the load spreading system of 4 kN (0.90 kip) produced a moment reaction in 
the column base of approximately 1 kNm (8.85 kip-in). This also corresponds to 
the start of the linear region for the base rotation tests for the 5 mm thick plates. 
Therefore the base stiffness was calculated from the slope of the moment-rotation 
curves starting from 1 kNm for the 5 mm thick plates, and 2 kNm (17.7 kip-in) 
for the 6 and 8 mm thick plates, which was the start of the linear region for the 
thicker connections. The resulting base stiffness for bending about the column 
major axis is shown in Table 2. There is good agreement between the averages 
for the 5L connection between the full scale experiments and the smaller base 
connection tests.  

Table 2: Column base stiffness for column major axis bending 

Base 
Connection 

Stiffness, kNm/deg (kip-in/deg) % inc. from 
5L conn. Col 3 Col 5 Average 

5L 5.15 4.59 4.87 (43.1) – 
5U 6.25 6.15 6.25 (55.3) 28.3 
6L 6.39 7.24 6.82 (60.4) 40.0 
8L 8.24 7.13 7.69 (68.1) 57.9 

 
 
As shown in Table 2, the thicker L-plates had an increased base stiffness of 40% 
and 58% for the 6 mm and 8 mm plates, respectively, and the 5 mm U-plate had 
an increase of 28% compared to the 5 mm L-plates. Therefore, the column base 
stiffness could be improved by using thicker L-plates or a U-plate. 
 
The column base stiffness for bending about the column minor axis is presented 
in Table 3 for the various connections. As stated previously, the linear region 
began at approximately an applied moment of 0.5 kNm (4.43 kip-in). Overall, the 
column base connections were stiffer for column 5 than for column 3. When 
comparing the average column base stiffness for the various base plates there is a 
small increase in stiffness for thicker L-plates of 6% and 10% for the 6 mm and 
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8 mm thick plates, respectively, however the largest increase of 18% is due to the 
use of the 5 mm U-plate. This is a result of the U-plate being stiffer as it is a single 
section, as opposed to two separate L-plates which act independently. 

Table 3: Column base stiffness for column minor axis bending 

Base 
Connection 

Stiffness, kNm/deg (kip-in/deg) % inc. from 
5L conn. Col 3 Col 5 Average 

5L 0.921 1.21 1.07 (9.47) – 
5U 1.04 1.48 1.26 (11.2) 18.3 
6L 0.998 1.26 1.13 (10.0) 5.96 
8L 1.05 1.30 1.18 (10.4) 10.3 

 
 
Effects on frame ultimate load 
 
Finite element studies have shown that base stiffness has a significantly larger 
impact on frame ultimate vertical load when wind loads are included, instead of 
applied vertical loads only (Blum & Rasmussen 2016d). In the experimental 
program, experiments 3 and 4 were nominally identical. However, the ultimate 
vertical load for experiment 3 was 19.5 kN (4.38 kip) while that of experiment 4 
was 13.3 kN (2.99 kip). This is mostly attributable to the variation in base stiffness 
of the columns for bending about the column major axis, as shown in Table 1. A 
parametric study of the effect of column base stiffness on frame ultimate vertical 
load through a validated finite element analysis was conducted (Blum & 
Rasmussen 2016d) and shows the effect of column base stiffness on frame 
ultimate vertical load for vertical loads only and combined wind and vertical 
loads. It was found that the decrease in frame ultimate vertical load from the 
maximum base stiffness to minimum base stiffness as measured in experiments 
was 2.2% for applied vertical loads only, and 14.8% for applied wind and vertical 
loads. Therefore the value of the column base stiffness is crucial for accurate 
ultimate load predictions when wind loading is considered. 
 
 
Design Considerations 
 
As column base stiffness has a large impact on frame ultimate vertical load, 
especially when wind loading is considered, it is important to include the semi-
rigidity of connections in the analysis of frames. A linear spring can be defined in 
finite element software such as ABAQUS (ABAQUS 2014) for rotations about 
the global x, y and z-axes, and MASTAN2 (McGuire 2000) for rotations about 
the element local y and z-axes. Therefore the semi-rigidity of the column bases 
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for bending about the column major and minor axes as presented herein can be 
implemented into models. This will help to improve the accuracy of FEM 
predictions.  
 
The torsional spring could be implemented into a finite element program which 
has 7 degrees of freedom per element, where degrees 1-3 are the displacements in 
x, y, and z directions, degrees 4-6 are the rotations about the x, y, and z axes, and 
degree 7 is the warping rotation. The data provided could be used to determine a 
spring stiffness for the warping rotation degree of freedom. However use of this 
approach would depend on the capabilities of the software under consideration. 
 
Conclusions 
 
A series of full scale experiments has been conducted on long-span cold-formed 
steel portal frames for several frame configurations and loading conditions. 
Column base reaction moments and rotations have been recorded for bending 
about the column major axis, and are presented herein. It was shown that there 
exists a variation in column base stiffness for nominally identical connections, 
and that frame ultimate vertical loads are sensitive to the base stiffness when wind 
loading is considered. Separate column base rotation tests of cold-formed steel 
portal frames have been completed to quantify the base stiffness for bending about 
the column major and minor axes, as well as twist. Various base plate connections 
have been tested including 5 mm, 6 mm, and 8 mm thick L-plates and a 5 mm U-
plate. It was found that thicker L-plates at the base have a higher stiffness for 
bending about the column major axis, and the base U-plate has the highest 
stiffness for bending about the column minor axis. Implementation of this data 
into finite element models is discussed. 
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Characterizing the Load Deformation Behavior of 

Steel Deck Diaphragms 
P. O’Brien1, S. Florig2, C. D. Moen3, M. R. Eatherton4

Abstract 

Lateral loads flow through a building’s horizontal roof and floor diaphragms 

before being transferred to the vertical lateral force resisting system (e.g. braced 

frames, moment frames or shear walls). These diaphragms are therefore a critical 

structural component in the resistance of lateral loads. A review of the literature 

shows that a large number of experimental programs have been performed to 

obtain the in-plane load-deformation behavior of steel deck and concrete on steel 

deck diaphragms. The tested diaphragm behavior was found to be dependent on a 

set of factors including loading protocol, fastener type, fastener size and spacing, 

and more. There does not currently exist a single, unifying review of these 

diaphragm tests and their relevant results. A research program is being conducted 

to collect and consolidate the available literature about tested steel deck 

diaphragms and their results.  A database has been created that includes over 450 

tested specimens with more than 130 cyclic tests. In addition, an effort is made to 

characterize diaphragms’ load-deformation response as grouped by sidelap and 

support fastener type. The test programs and results collected into this database 

as well as the characterization of diaphragm behavior are discussed in this paper. 

1.0 Introduction 

There is strong evidence that diaphragms designed to current U.S. building codes 

undergo inelastic deformations during large earthquakes.  Partial collapse of 

precast concrete parking garages during the 1994 Northridge earthquake were tied 

to inelasticity in diaphragm components that led to the failure of non-ductile 

gravity columns (EERI 1996).  Subsequently shake table tests (e.g. Rodriguez et 

1 Graduate Research Assistant, Virginia Tech, pato91@vt.edu 
2 Graduate Research Assistant, Virginia Tech, opensky9@vt.edu 
3 Associate Professor, Virginia Tech, cmoen@vt.edu 
4 Assistant Professor, Virginia Tech, meather@vt.edu 

Wei-Wen Yu International Specialty Conference on Cold-Formed Steel Structures 
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al. 2007) and computational simulations (e.g. Fleischman and Farrow 2001) have 

shown that current code level diaphragm forces can be significantly smaller than 

the elastic forces actually developed during large earthquakes.  While some 

engineers and researchers in North America propose to increase diaphragm forces 

to ensure that diaphragms remain elastic (e.g. DeVall 2003, Nakaki 2000), others 

suggest that in some cases it may be more economical to design the diaphragm as 

the energy-dissipating element (Tremblay and Rogers 2005).  An update to U.S. 

building code has been proposed through the Building Seismic Safety Council - 

Provisions Update Committee (BSSC-PUC) which significantly increases 

diaphragm design demands, but also allows reduced force design via a new force 

reduction factor, Rs, accounting for diaphragm ductility (NEHRP 2015). 

The behavior of real three-dimensional buildings during earthquakes is complex, 

especially if the vertical lateral force resisting system (LFRS) and the horizontal 

LFRS (diaphragms) are both experiencing inelastic deformations.  To understand 

the seismic performance of buildings including the interaction of vertical LFRS 

and horizontal LFRS inelasticities, it is crucial to have a clear understanding and 

characterization of the inelastic behavior of diaphragms.  Although a large number 

of early experimental programs on steel deck diaphragms focused only on 

capturing stiffness and peak strength, more recent research programs also 

captured the post-peak behavior. These research programs on steel deck and 

concrete on steel deck diaphragms studied a large range of variables but no 

consolidated review of post-peak behavior exists. 

A research project known as the Steel Diaphragm Innovation Initiative (SDII), a 

joint industry / NSF funded collaboration between Johns Hopkins University, 

Virginia Tech, and Northeastern University, aims to understand and improve the 

seismic behavior of steel framed buildings with steel deck diaphragms.  As part 

of that effort, this paper has the following objectives: 1) the collection of 

experimental diaphragm research information including test setups, loading 

protocols, and results, into one comprehensive database, and 2) characterizing the 

behavior of the diaphragms including inelastic response and ductility.  The 

database currently comprises 468 specimens obtained from research reports and 

papers.  A subset of 86 specimens for which post peak behavior was available is 

briefly analyzed in this paper and future work to further analyze the dataset is 

discussed. 

2. Diaphragm Database

2.1 Typical Diaphragm Components and Test Setup 

Figure 1 demonstrates some of the structural components that are part of a typical 

steel deck diaphragm. The steel deck panels are corrugated and fastened to the 
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structural frame using perimeter member fasteners and interior member fasteners 

such as arc spot welds, powder actuated fasteners, self-drilling screws and in cases 

of concrete on metal deck diaphragms, headed shear studs.  Sidelap fasteners, such 

as screws, welds, or mechanical crimping (e.g. button punch) connect adjacent 

panels to each other. Similarly, end lap fasteners connect the ends of steel decking 

sheets to each other, often at interior members.  

The most common testing methodology for diaphragms is the American Institute 

of Steel Construction, AISI, cantilever test method (AISI, 2013). This test method 

subjects a cantilevered diaphragm to a specified displacement protocol applied at 

its free end. Note that the length or span of an experimentally tested diaphragm is 

defined as transverse to the applied load, while the depth is defined as parallel to 

the load (see Figure 1).  
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Fasteners

Section A-A
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Sheet of Steel Deck
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Figure 1. Cantilever Test Layout with Fastener Locations 

2.2 Diaphragm Database 

The objective of the diaphragm test database is to consolidate all pertinent data 

related to experimental test specimens to allow comparison between groups of 

specimens across multiple research programs and analyze resulting load-

deformation behavior as a group rather than as individual tests.  Categories of data 

collected includes geometry, materials, monotonic or cyclic loading protocol, 

fastener configuration, and results. Some information was unavailable for some 

specimens or testing programs while other references included complete data. 

Test setup data was deemed relevant if it might have contributed to the load-

deformation behavior of the specimen, and is thus described in the database.  

The geometry of the diaphragm specimens includes the dimensions of the 

diaphragm and the size of perimeter members. Some diaphragm tests utilized 

large framing sections to allow reuse of the testing frame, but may not be 
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representative of steel framed building 

construction.   Geometric properties of 

the steel deck such as profile, 

thickness, length and cover width of 

steel deck panels have been shown to 

have substantial effect on diaphragm 

behavior and were thus documented in 

the database. Luttrell and Winter 

(1965) showed that deck warping at 

panel ends is independent of panel 

length and therefore concluded that 

longer steel deck panels considerably increase diaphragm stiffness with minimal 

effects on diaphragm strength. Increasing cover width resulted in similar results 

with increasing strength, but proved to contribute less drastically to the behavior 

than increasing panel length. Material properties of the steel decking (e.g. yield 

strength and ultimate strength) also have been shown to affect diaphragm behavior 

(Ellifritt and Luttrell 1970) and thus nominal and measured material properties 

were input in the database wherever available. 

Although monotonic loading protocols (e.g. loading rate) may have less influence 

on load-deformation behavior than cyclic loading protocol, time-dependent 

relaxation effects and residual displacements in the diaphragm supports can affect 

results (AISI 2013). Conversely, diaphragm load deformation behavior can be 

heavily dependent on cyclic loading protocols. Cyclic loading protocols 

demonstrate the effects of strength degradation in the inelastic response range, 

observed as smaller load deformation envelopes or backbone curves than their 

monotonically loaded counterparts (Essa 2003). Some cyclic loading protocols 

can have extensive deformations in a single cycle (e.g. see Figure 2). For cyclic 

loading with large displacement steps, an envelope as shown in Figure 2 is more 

appropriate than a backbone curve to characterize the post-peak behavior, since a 

backbone curve only captures the peak data points from each cycle. For cyclic 

curves with closely spaced intermediate displacement cycles, it was deemed 

appropriate to capture the behavior of the diaphragm using backbone curves. 

Quasi-static or dynamic loading protocols and their respective load deformation 

data, when made available in the literature, are reported in the database. 

Perhaps the most important factor in diaphragm behavior is the fastener type, 

spacing, and configuration. Diaphragm construction can include a variety of 

fastener types and patterns. For the early diaphragm test programs, common 

construction practice for steel framed buildings at the time was to button punch 

(BP) or weld sidelaps while welding the deck to the perimeter and interior 

members. As construction technology progressed, it has become increasingly 

Figure 2. Cyclic Envelope

528



common to use self-drilling screws and powder actuated fasteners (PAF) as 

sidelap and structural frame fasteners respectively. (Essa 2003) showed that the 

screwed sidelap and PAF support fasteners demonstrated more ductility than a 

diaphragm with support welds and button punched sidelaps. Deck to frame welds-

with-washers also yielded ductile behavior, but are not yet common in the 

construction industry. Decreasing the spacing of interior supports increases the 

strength of a diaphragm, due to a larger number interior support fasteners reducing 

the probability of the deck buckling (Ellifritt 1970). The key fastener system 

variables logged in the database are location, type, size and spacing. 

2.3 Review of Test Programs Included in the Database 

A total of 468 specimens from 28 references and 11 research programs were 

reviewed, and input in the database as described in Table 1. A total of 329 

specimens subjected to monotonic loading and 137 subjected to cyclic are 

included.  Table 2 summarizes the fastener configurations for specimens included 

in the database.  Populating the database is an ongoing effort and data is still being 

extracted from additional references not yet listed here. 

Table 1. Overview of Research Programs in Experimental Diaphragm Database 

The first published research program on light gage steel diaphragms was 

conducted at Cornell University and included tests on 39 specimens (Nilson 

1960). Nilson concluded that it is economical and sufficient to replicate 

Testing Program Reference 
Number of 

Specimens 

Cornell University Nilson 1960 39 

West Virginia University Ellifritt and Luttrell 1970, Apparao 1966, 

Luttrell 1967, Luttrell 1965, Luttrell 1971 205 

University of Salford Davies and Fisher, 1979 4 

ABK, A Joint Venture ABK 1981 3 

Iowa State University Porter and Greimann 1980, Neilson 1984, 

Easterling 1987 32 

Virginia Tech Hankins et al. 1992, Earls and Murray 1991, 

Pugh and Murray 1991, Bagwell 2007, 61 

University of Montreal, 

McGill University 

Martin 2002, Essa 2003, Yang 2003, 

Tremblay et al., 2004, Tremblay et al., 

2008, Franquet 2009, Masseralli 2009, 

Masseralli et al., 2012 82 

Tongji University Liu et al. 2007 6 

Hilti Corporation Beck 2008, Beck 2013a, Beck 2013b 19 

Tokyo Institute of Tech. Shimizu et al. 2013 15 

TOTAL = 468 
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diaphragm behavior through a cantilevered setup which would become the 

standard for diaphragm testing. Luttrell continued research on light gage steel 

decking at West Virginia University in the 1960’s-70’s, and focused on evaluating 

the effect of deck profile and geometry, material properties, and fastener type, size 

and spacing on a series of over 200 tests (e.g. Ellifritt 1970). Later testing 

investigated the effects of lightweight concrete on shear diaphragms (Luttrell 

1971). Luttrell’s research led to the development of SDI’s Diaphragm Design 

Manual (Luttrell 2015), the most widely utilized design document for steel deck 

diaphragms.  

Table 2. Number of Experimental Tests with Fastener Types 

Deck to Frame Fasteners Sidelap Fasteners 

Welds 87 Welds 56 

Screws 70 Screws 139 

PAF 82 BP 26 

Other/Unavailable 233 Other/Unavailable 251 

A series of public and proprietary research programs from the late 70’s to late 

80’s further examined the influence of composite slab steel deck systems. 

Notably, the first, and one of the few, research programs with cyclic tests on 

composite concrete on steel deck diaphragms were performed at Iowa State 

University (Easterling 1987). Virginia Tech performed a series of industry tests 

on roofing systems and deck profile types in the 1990’s and 2000’s. Programs at 

the University of Montreal and McGill University focused on the inelastic 

performance of steel deck diaphragms subjected to both quasistatic and dynamic 

cyclic loading. Full scale test from Hilti Corporation and Tongji University 

investigated the ductile behavior of PAFs and self-drilling screws.  

3. Discussion of Load-Deformation Behavior by Fastener Type

3.1 Introduction 

Available load-deformation plots from the literature were digitized to allow 

unification of units, comparison between groups of specimens, and further 

analysis.  A subset of 86 specimens for which post-peak data was available are 

presented in the following sections split into groups based on sidelap and support 

fastener type.  All specimens were tested in a cantilever diaphragm configuration 

similar to Figure 1.  Shear stiffness, G’, was obtained by connecting the first data 

point (displacement vs. unit shear load) to the data point at 40% of the ultimate 

test load, Pult.  In the following tables, the value of G’ is multiplied by the aspect 

ratio, a/b, which adjusts for specimen geometry (AISI 2013). Ductility was 

calculated as the ratio of the displacement where the specimen strength degrades 
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to 80% of the ultimate load to the yield displacement of the diaphragm.  In this 

case, the yield displacement is defined as Pult / G’. Also tabulated in the following 

sections are the ultimate unit shear strength, Sult=Pult/b, and ultimate shear angle, 
γult = max displacement / a. 

3.2 Bare Deck Specimens Subjected to Monotonic Loading 

Table 3 presents the results for bare deck diaphragm specimens subjected to 

monotonic loading as grouped by support fastener type / sidelap fastener.  Figure 

3 and Figure 4 show plots of the associated data.  The unit shear strength of the 

diaphragm specimens, Sult, were mostly in the range of 0.396 k/ft (5.78 kN/m) to 

1.88 k/ft (27.5 kN/m).  Two research programs tested higher capacity diaphragms 

including Martin (2002) and Beck (2008, 2013a, 2013b) which included 

specimens with unit shear capacity as large as 6.07 k/ft (88.6 kN/m).  Obviously, 

the strength and stiffness of diaphragms is highly dependent on the fastener 

spacing and deck type.  Due to space restrictions, it was not possible to present all 

specimen information, nor is it the intent of this paper to study strength and 

stiffness which have been previously characterized (Luttrell 2015). 

There is a marked difference in ductility between specimens with mechanical 

fasteners to the support as compared to specimens with welds to the support. 

Figure 3a shows load-deformation behavior of diaphragm specimens with PAF to 

the support.  The average ductility for this group was 4.50 although the variation 

was especially large as demonstrated by the scatter in Figure 3a and a standard 

deviation of 3.46. 

Martin (2002) specimens 32 and 19 were identical except PAF fasteners were at 

6 in. (152 mm) vs. the more typical 12 in. (305 mm) which led to a substantial 

increase in ductility, (7.12 vs. 3.76, respectively).  Martin (2002) specimen 30 was 

identical to specimen 32 but used thinner 0.030 in. (0.76 mm) B type roof deck 

vs. 0.036 in. (0.91 mm) thick and resulted in even larger ductility of 9.68.  Bagwell 

(2007) studied deep deck and cellular deck wherein specimens 10 and 11 were 

7.5 in. deep cellular deck with a steel sheet along bottom.  Although these are not 

typical deck sections, they demonstrate that cellular deck can have extremely 

large ductility (13.6 and 13.8) because they mitigate limit states associated with 

deck deformations in favor of deformations at the support fasteners. 
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Table 3. Bare Deck Specimens Tested Monotonically 

Grouped by Support Fastener Type / Sidelap Fastener Type 

Reference 
Spec. 

# 

G’(a/b) Sult γult Duc-

tility, µ kips/in (kN/mm) kips/ft (kN/m) Rad*1000 

PAF / Screw 

Martin 2002 19 24.2 (4.24) 1.14 (16.7) 14.8 3.76 
Martin 2002 30 99.4 (17.4) 1.60 (23.3) 19.2 9.68 

Martin 2002 32 130 (22.8) 2.36 (34.4) 16.5 7.12 

Essa et al. 2003 5 15.7 (2.76) 0.759 (11.1) 28.7 3.11 

Essa et al. 2003 17 22.9 (4.01) 0.991 (14.5) 25.5 3.22 

Yang 2003 43 15.4 (2.71) 0.915 (13.4) 21.4 3.20 

Yang 2003 44 14.9 (2.61) 0.718 (12.5) 17.7 3.25 
Bagwell 2007 7 12.0 (2.10) 0.492 (7.18) 10.2 2.98 

Bagwell 2007 8 13.5 (2.37) 0.533 (7.77) 6.68 1.56 

Bagwell 2007 9 3.05 (0.533) 0.396 (5.78) 36.9 3.05 
Bagwell 2007 10 35.5 (6.22) 0.495 (7.22) 20.4 13.8 

Bagwell 2007 11 44.7 (7.82) 0.447 (6.53) 15.4 13.6 

Bagwell 2007 17 89.2 (15.6) 2.50 (36.5) 5.24 1.79 
Beck 2008 63 60.7 (10.6) 2.04 (29.8) 25.0 4.39 

Beck 2008 64 67.8 (11.9) 3.06 (44.7) 17 3.20 

Beck 2008 65 85.2 (14.9) 3.95 (57.7) 16.7 2.93 
Beck 2013a 1 70.1 (12.3) 4.05 (59.1) 20.3 3.16 

Beck 2013a 2 70.4 (12.3) 3.81 (55.6) 20.2 3.20 

Beck 2013a 3 54.9 (9.62) 6.07 (88.6) 20.5 2.22 
Beck 2013b 2 61.1 (10.7) 3.45 (50.3) 19.2 2.91 

Beck 2013b 3 51.3 (8.99) 4.05 (59.1) 17.6 2.25 

Average 49.6 (8.69) 2.09 (30.5) 18.8 4.50 
Std. dev. 33.3 (5.83) 1.60 (23.3) 6.81 3.46 

Weld / BP 

Martin 2002 37 24.9 (4.37) 0.858 (12.5) 13.5 2.81 

Essa et al. 2003 1 11.8 (2.07) 0.542 (7.92) 17.6 1.96 
Yang 2003 41 10.5 (1.84) 0.627 (9.15) 20.8 3.03 

Yang 2003 47 5.24 (0.918) 0.496 (7.24) 25.4 2.23 

Yang 2003 49 7.07 (1.24) 0.585 (8.53) 22.6 2.59 

Average 11.9 (2.09) 0.622 (9.07) 20.0 2.52 

Std. dev. 6.92 (1.21) 0.126 (1.84) 4.09 0.384 

Weld / Screw 

Essa et al. 2003 11 19.1 (3.35) 1.23 (17.9) 30.0 2.32 
Essa et al. 2003 15 22.0 (3.85) 1.30 (19.0) 29.0 3.81 

Bagwell 2007 12 10.3 (1.80) 1.41 (10.5) 15.7 1.30 
Bagwell 2007 13 57.4 (10.1) 1.05 (15.3) 6.55 N/A* 

Bagwell 2007 14 32.3 (5.66) 1.88 (27.5) 9.00 1.84 

Average 28.2 (4.94) 1.37 (20.0) 18.1 2.32 

Std. dev. 16.2 (2.84) 0.281 (4.10) 9.84 0.935 

Weld / Weld 

Martin 2002 22 27.0 (4.74) 2.21 (32.2) 14.8 1.79 

Essa et al. 2003 9 13.1 (2.29) 0.811 (11.8) 33.4 2.99 

Essa et al. 2003 10 13.1 (2.29) 0.985 (14.4) 28.1 2.01 

*Post peak-force deformations did not reach 80% of Su 

PAF = Power actuated fastener, BP = Button Punch 
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Specimens with welds to the supports (see Figures 3b, 4a, and 4b) experienced 

limit states such as distortion of the deck sheet ends, fracture at weld connections, 

often occurring in rapid succession, and slip at the sidelaps.  Once failure of the 

deck support attachments occurred, there was often loss of load carrying capacity. 

It is shown, therefore, that ductility is not nearly as sensitive to the type of sidelap 

fastener as it is to support fastener type.  Although there are slight gains in ductility 

with mechanical sidelap fasteners, once failure occurs at support welds, sidelap 

fasteners are often not as relevant. 

       (a) PAF to Support, Screw Sidelap  (b) Weld to Support, BP Sidelap 

Figure 3. Behavior of Monotonically Loaded Bare Deck Specimens 

     (a) Weld to Support, Screw Sidelap  (b) Weld to Support, Weld Sidelap 

Figure 4. Behavior of Monotonically Loaded Bare Deck Specimens 

3.3 Bare Deck Specimens Subjected to Cyclic Loading 

Table 4, Figure 5 and Figure 6 show data from similar specimens as the previous 

section, but subjected to cyclic loading.  The average ductility value for PAF to 

support and weld support reduced by 39% and 23% to 2.75 and 1.83, respectively.  
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Strength degradation associated with cyclic loading causes a reduction in the 

available ductility of the diaphragm system.  However, the trends described above 

are still applicable in that specimens with PAF to the support demonstrate more 

ductility than specimens with welds to the support.  The standard deviation in 

ductility is shown to be smaller for the set of cyclically loaded specimens than the 

monotonically loaded group, although it is possible that is related to which 

specimens were selected to be in the group.  This will be studied further in the 

future. 

     (a) PAF to Support, Screw Sidelap  (b) Weld to Support, BP Sidelap 

Figure 5. Behavior of Cyclically Loaded Bare Deck Specimens 

     (a) Weld to Support, Screw Sidelap  (b) Weld to Support, Weld Sidelap 

Figure 6. Behavior of Cyclically Loaded Bare Deck Specimens 
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Table 4. Bare Deck Specimens Tested Cyclically 

Grouped by Support Fastener Type / Sidelap Fastener Type 

Reference 
Spec. 

# 

G’ (a/b) Sult γ Duc-

tility, µ kips/in (kN/mm) kips/ft (kN/m) Rad*1000 

PAF/Screw 

Martin 2002 28 12.1 (2.11) 0.959 (14.0) 13.4 1.97 
Martin 2002 29 15.3 (2.67) 0.919 (13.4) 6.58 1.30 

Martin 2002 31 65.4 (11.4) 1.81 (26.4) 11.3 4.37 

Martin 2002 33 114 (20.0) 2.40 (35.0) 10.8 5.66 

Martin 2002 34 24.7 (4.33) 1.16 (16.9) 13.1 3.04 

Martin 2002 35 26.5 (4.63) 1.18 (17.2) 5.90 1.59 

Essa et al. 2003 8 16.2 (2.83) 0.850 (12.4) 19.7 2.98 
Essa et al. 2003 18 26.3 (4.60) 1.07 (15.6) 17.7 4.00 

Yang 2003 38 23.1 (4.05) 1.04 (15.1) 13.1 N/A* 

Yang 2003 40 10.6 (1.86) 0.884 (12.9) 15.8 N/A* 
Beck 2008 3 72.3 (12.7) 3.96 (17.8) 18.1 3.20 

Beck 2008 4 44.9 (7.86) 3.43 (50.0) 17.9 2.41 

Beck 2008 5 46.1 (8.07) 3.48 (50.8) 17.8 2.26 
Beck 2008 6 73.4 (12.9) 4.33 (63.2) 17.9 2.76 

Beck 2008 7 59.6 (10.4) 2.08 (30.3) 16.6 3.79 

Beck 2008 8 45.6 (7.99) 1.93 (28.2) 16.9 1.65 
Beck 2013a 1 48.7 (8.54) 4.11 (60.0) 18.9 1.88 

Beck 2013a 2 61.6 (10.8) 3.93 (57.3) 18.5 2.42 

Beck 2013a 3 57.2 (10.0) 5.77 (84.3) 23.0 2.40 
Beck 2013b 2 58.4 (10.2) 3.47 (50.6) 18.5 2.50 

Beck 2013b 3 49.5 (8.67) 4.09 (59.7) 20.4 2.08 

Average 45.3 (7.94) 2.52 (36.7) 15.8 2.75 
Std. dev. 25.1 (4.4) 1.47 (21.4) 4.28 1.06 

Weld/BP 
Martin 2002 20 16.8 2.95 0.674 9.83 8.23 1.51 

Martin 2002 21 15.2 2.66 0.932 13.6 12.9 N/A* 

Martin 2002 36 14.0 2.46 0.672 9.81 8.08 1.46 
Essa et al. 2003 2 12.3 2.15 0.517 7.54 11.0 1.45 

Yang 2003 42 11.2 1.96 0.696 10.2 13.3 2.36 

Yang 2003 48 4.02 0.705 0.449 6.56 23.4 1.25 

Average 12.3 2.15 0.657 9.58 12.8 1.60 

Std. dev. 4.12 0.721 0.153 2.23 5.14 0.389 

Weld/Screw 

Essa et al. 2003 14 18.3 3.21 0.884 12.9 17.5 2.00 
Essa et al. 2003 16 16.0 2.80 1.30 19.0 19.7 1.86 

Weld/Weld 
Martin 2002 23 164 (28.7) 2.35 (34.3) 15.8 2.20 

Martin 2002 24 26.7 (4.67) 2.27 (33.1) 10.3 1.41 

Essa et al. 2003 12 14.0 (2.45) 0.712 (10.4) 21.1 2.62 
Essa et al. 2003 13 11.2 (1.97) 0.888 (13.0) 17.8 2.00 

Average 54.0 (9.45) 1.56 (22.7) 16.2 2.06 

Std. dev. 63.8 (11.2) 0.757 (11.1) 3.91 0.439 

*Post peak-force deformations did not reach 80% of Su 

PAF = Power actuated fastener, BP = Button Punch 
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3.4 Concrete on Steel Deck Specimens 

Only 20 concrete fill on steel deck diaphragm specimens found in the literature 

included post-peak load-deformation behavior (Easterling 1987).  Deck to frame 

fasteners were grouped into two categories: welded and welded with headed shear 

studs.  Table 5 and Figure 7 present some of the results. Easterling (1987) 

identified three limit states of practical significance: 1) diagonal tension cracking 

of the slab, 2) interface failure between deck and concrete (does not apply when 

headed shear studs are present), and 3) edge connector failure.  Specimens 11 

through 24 shown below were reported to experience all three limit states. 

Specimens reported as failing in interface failure (e.g. 11, 14, 17) exhibited some 

of the largest ductilities.  Conversely, specimens reported as experiencing 

diagonal tension cracking exhibited some of the smallest ductilities (e.g. 12, 13, 

16, 18, 19, 24).  Specimens with headed shear studs experienced either diagonal 

tension cracking (specimens 26 and 29) or edge connector failure (specimens 27, 

28, 30), although the difference in terms of ductility was not substantial. 

Table 5. Specimens with Concrete on Metal Deck Tested Cyclically 

Grouped by Support Fastener Type (Easterling 1987) 

Spec. # 
G’ (a/b) Sult γ 

µ 
kips/in (kN/mm) kips/ft (kN/m) Rad*1000 

Welded 

11 1770 310 6.11 89.2 5.53 19.1 

12 1710 300 12.1 176 5.53 3.92 

13 2020 354 16.8 245 5.57 3.23 
14 1840 322 14.1 205 5.66 8.85 

15 1130 198 6.84 99.8 5.56 4.78 

16 920 162 8.01 117 5.69 3.29 
17 1600 279 9.70 141 5.63 11.1 

18 1580 277 10.7 156 5.61 4.03 

19 1820 319 16.5 241 5.61 1.40 
20 1300 228 6.21 90.6 5.58 5.65 

21 870 152 8.16 119 5.61 3.27 

22 1650 290 10.5 153 7.02 13.2 
23 1370 240 7.09 103 6.97 12.3 

24 1330 232 11.2 164 7.03 4.20 

Average 1490 262 10.3 150 5.9 7.02 

Std. dev. 338 59 3.43 50.2 0.58 4.93 

Welds with Headed Shear Studs 
26 1590 279 5.80 84.7 7.01 4.45 

27 1751 307 6.07 88.6 7.00 4.76 

28 1580 277 7.98 116 6.98 3.37 
29 1890 331 9.00 131 7.02 3.13 

30 1530 269 7.69 112 6.98 3.27 

Average 1670 292 7.31 107 7.00 3.80 

Std. dev 131 23.0 1.20 17.6 0.016 0.673 
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   (a) Welds to Support                           (b) Headed Shear Studs 

Figure 7. Behavior of Cyclically Loaded Specimens Having Concrete Fill 

4. Summary, Conclusions and Ongoing Work

As our design methods evolve to better predict diaphragm demands during 

seismic events, it is increasingly important to understand the full load-deformation 

behavior of steel deck diaphragms.  This understanding is also critical for accurate 

assessment of building behavior and associated performance based earthquake 

engineering.  In this paper, a database of past tests on steel deck diaphragms was 

described.  Results from monotonic and cyclic tests on steel deck diaphragms and 

concrete filled steel deck diaphragms were plotted in groups based on support 

fastener type and sidelap fasteners type.  Ductility was calculated for each 

specimen and compared between groups.  The average ductility of monotonically 

loaded bare deck specimens with PAF and welds to the support was 4.50 and 2.39, 

respectively.  Cyclically loaded bare deck specimens exhibited average ductility 

of 2.75 and 1.83 for PAF and welds to the support, respectively.  Concrete on 

metal deck specimens produced ductility of 7.02 and 3.80 for welds to the support 

and headed shear studs, respectively.  This demonstrates that steel deck and 

concrete on metal deck diaphragms can exhibit substantial post-peak inelastic 

load carrying capacity.  This could be a very important factor as to why steel-

framed buildings with these types of diaphragms survive large earthquakes 

without the types of collapses observed in precast concrete diaphragms.   

The database and preliminary analysis of ductility is an important first step toward 

characterizing steel deck and concrete on metal deck diaphragm inelastic 

behavior.  Ongoing work includes examining the diaphragm parameters and limit 

states that affect ductility and the variability in ductility.  Load-deformation 

behavior will be characterized including backbone and pinching behavior. 

Overstrength will be examined by comparing strength with capacities calculated 

using the SDI Design Manual (Luttrell 2015).  Finally, appropriate diaphragm 
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force reduction factors, Rs, consistent with recently proposed design procedures 

(NEHRP 2015) will be proposed. 
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Reduced Order Models for Profiled Steel Diaphragm Panels 

G. Bian1, S. Torabian2, B.W.Schafer3 

Abstract 

The objective of this paper is to provide progress on development and validation 
of reduced order models for the in plane strength and stiffness of profiled steel 
panels appropriate for use in structural models of an entire building. Profiled 
steel panels, i.e, metal deck, often serve as a key distribution element in building 
lateral force resisting systems. Acting largely as an in-plane shear diaphragm, 
metal deck as employed in walls, roofs, and floors plays a key role in creating 
and driving three-dimensional building response. As structural modeling evolves 
from two-dimensional frameworks to fully three-dimensional buildings, accurate 
and computationally efficient models of profiled steel panels are needed. Three-
dimensional building response is increasingly required by ever-evolving 
structural standards, particularly in seismic design, and structural efficiency 
demands that the benefits of three-dimensional response be leveraged in design. 
Equivalent orthotropic plate models provide a potential reduced order model for 
profiled steel panels that is investigated in this paper. A recent proposal for the 
rigidities in such a model are assessed against shell finite element models of 
profiled steel panels. In addition, the impact of discrete connections and discrete 
panels, as occurs in an actual roof system, are assessed when applying these 
reduced order models. Extension of equivalent orthotropic plate models to 
elastic buckling and strength, in addition to stiffness, both represent work in 
progress, but initial results are provided. Examples show that equivalent 
orthotropic plate models must be used with care to yield useful results. This 
effort is an initial step in developing efficient whole building models that 
accurately incorporate the behavior of profiled steel panels as diaphragms.  
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Introduction 
 
Profiled steel panels, i.e., metal deck, are roll-formed from thin steel sheet and 
can result in simple corrugated shapes or relatively complex longitudinal 
profiles with additional transverse features such as embossments. These panels 
serve as the walls and roof in many metal buildings, see Figure 1, and form an 
integral component of common floor systems in a wide variety of buildings. 
Under lateral loads the panels play a particularly important role as a distribution 
element, one in which the in-plane shear behavior of the panel is paramount. A 
typical profiled steel panel roof is illustrated in Figure 1. When distributing 
lateral load this system acts as a diaphragm, with all elements in the system 
contributing: panel, panel inter-connections, joists, joist-to-panel connections, 
primary framing, and framing-to-panel connections. 
 

 
Figure 1. Typical metal building with bare profiled steel panel diaphragms 

 

Traditionally, the lateral (e.g., seismic) behavior of buildings has been 
engineered by examining the two-dimensional (2D) behavior of the lateral force 
resisting systems in the primary frames of a building. Increasingly, this is 
becoming inadequate as (a) experimental evidence mounts that response is 
largely three-dimensional (3D), (b) efficiencies demand the full 3D response be 
understood, (c) more complex building geometries are being pursued, and (d) 
advances in idealizing loads creates more precise 3D demands to be considered. 
In addition, due to advancements in Building Information Modeling it is now 
more common to have 3D building models. As a result, it is highly desirable for 
the engineer to develop 3D structural models; however, while such models can 
now be more readily created and their need is real, with all details included such 
models can be prohibitively costly to run, particularly given the myriad of load 
cases. Thus, we seek the advancement of accurate reduced order models that can 
be employed in 3D structural models, for modeling diaphragms with profiled 
steel panels. The focus of this paper is on the reduced order modeling of the 
panel itself with additional examination of the panel connections. Future work 
intends to extend the effort to the complete system of Figure 1. 
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In-plane elastic behavior of profiled steel panels 
 
The in-plane behavior of profiled steel panels is critical for its action as a 
diaphragm. Even in the linear elastic range the mechanics involved in the in-
plane deformations are interesting. Consider a trapezoidal corrugated panel 
under in-plane actions as illustrated in Figure 2, (a) perpendicular to the 
corrugations significant bending occurs and the panel is quite weak with little 
Poisson effect, (b) parallel to the corrugations the deformations are largely axial 
with some Poisson effect, (c) under in-plane shear edge (warping) conditions of 
the panel become important and bending of the corrugations occur. 
 

 
 

(a) axial action parallel to the corrugations 

  
(b) axial action perpendicular to the corrugation 

 
 

(c) in-plane shear 
 Figure 2. In-plane loading and FE predicted elastic deformations for profiled steel panel 

 
Engineering models of a profiled steel panel typically cannot include the details 
of the corrugation and instead must resort to an equivalent flat plate. Due to the 
strongly different stiffness parallel and perpendicular to the corrugations a 
natural choice is an equivalent orthotropic flat plate as detailed in the following 
section. 
  

A11 ε�=1	
A11

ε y=1	

A22

A22

A33

γ��=1	
A33

A33

A33
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Equivalent orthotropic flat plate for corrugated steel panel 
 
The notion of employing an equivalent orthotropic flat plate to simulate a 
corrugated plate has long been used in engineering. Typically, out-of-plane 
bending behavior is of primary interest as opposed to in-plane behavior and 
early work such as Easley and Mcfarland (1969) investigated equivalent flexural 
rigidities. More recently Samanta and Mukhopadhyay (1999) re-examined the 
problem and developed closed-form expressions for the orthotropic plate 
rigidities for both out-of-plane (flexure) and in-plane (extension and shear). This 
was followed by Xia et al. (2012), who expanded on the earlier work including 
correcting some assumptions, and derived a set of plate rigidities for equivalent 
orthotropic plates to model the elastic stiffness of a corrugated plate. 
 

 
(a) profiled steel panel (b) equivalent orthotropic plate 

Figure 3. Coordinates and basic dimensions  
 

Central to the work of Xia et al. (2012) and studied here is the conversion of a 
corrugated plate such as Figure 3(a) into that of an equivalent orthotropic flat 
plate Figure 3(b). The rigidities that define the equivalent flat plate connect 
forces and moments on the equivalent plate to strains and curvatures, via: 
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where the overbars in Eq. (1) indicate they are for the equivalent plate not the 
original corrugated plate. In addition, membrane-bending coupling has been 
ignored. Xia et al (2012) completed a series of energy solutions that exercise 
unit strains on the corrugated plate and developed the plate rigidities directly 
based on the geometry and traditional beam mechanics for the in-plane terms 
and Kirchoff plate theory for the flexural terms. The developed expressions are 
provided in Table 1 along with additional relevant plate rigidities. 

 
Table 1: Plate Rigidities 

 uniform flat plate direct definition 

Rigidity isotropica 
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a. uniform plate, thickness t, material properties E and ν, note G=E/2(1+ν). 
b. uniform orthotropic plate, thickness te, properties E1,E2,v12,v21,G12, note ν12E2=ν21E1 
c. E, ν, G, t properties of original corrugated plate, c and l properties of section per Figure 2,     
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An equivalent isotropic flat plate can only match two rigidities of the actual 
plate, and is therefore of limited use. Interestingly, an equivalent orthotropic flat 
plate, with uniform thickness, cannot match all of the 8 directly defined 
rigidities from Xi et al. (2012) either. While multi-purpose finite element 
software such as ABAQUS (2012) allows the plate rigidities of Eq. 1 to be 
defined directly most commercial structural engineering software does not, and 
at best allows the orthotropic engineering constants: E1, E2, ν12, ν21, G12 and an 
equivalent thickness, te, to be defined. Therefore, in addition to the Xia et al. 
(2012) expressions, the engineering constants that provide best agreement are 
also useful. The selection is not unique and depends on what quantities the 
engineer/analyst desires to match. For diaphragms the in-plane quantities are of 
the greatest prominence, therefore one set of solutions is to match the Xia et al. 
2012 in-plane rigidities to an explicitly defined flat plate with orthotropic 
material one as follows:  
 
 E2 = E  decided a priori (2) 

 

E1
E2

= Xia A11
Xia A22

→ E1 = Xia A11
Xia A22

E2
 (3)

 

 ν12E2 =ν21E1→ν21 =ν12E2 / E1  to maintain 12=21 terms (4) 
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E1   (5) 

 
ν12
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= Xia A12 → te = Xia A12
1−ν12ν21
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G12te = Xia A66 →G12 = Xia A66 / te

  (8) 
Note the Xia et al. 2012 expressions include the integrals I1 and I2 defined in the 
footnote to Table 1. For geometries common to steel panels, explicit form of 
these integrals are: 
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where x0 =
r1h
2l

+ h2

2l sinα ,
 c, h, α, r1, r2, and l, are defined in Figure 3.  
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Validation of equivalent in-plane stiffness for corrugated panels 
 
To validate the in-plane equivalent orthotropic plate rigidities of Xia et al. 
(2012) and address an ambiguity in the edge boundary conditions a series of 
shell finite element models of square (1016 mm × 1016 mm) corrugated plates 
(c=50.8 mm, r=25.4 mm, l=61.3 mm, t=6.35 mm, E=210000N/mm2

, α=45o) 
were developed in ABAQUS using S4R elements. The models were exercised 
with in-plane actions consistent with Figure 2: εx=constant, εy=constant, and 
γxy=constant applied as perimeter displacements. These actions define ux and uy 
for the perimeter, but uz, θx, θy, and θz are undefined and four cases from 
supported-clamped through out-of-plane free as illustrated in Figure 4 are 
considered. The stiffness predicted by Xia et al. (2012) is compared with the 
shell FE model in Table 2.  
 

  
Case 1: Perimeter supported out-of-plane 

(uz=0) and clamped (θx=θy=θz=0) 
Case 2: Perimeter free out-of-plane  

but clamped (θx=θy=θz=0) 

 
 

Case 3: Perimeter supported out-of-plane 
(uz=0) but free to rotate 

Case 4: Perimeter free, only in-plane 
applied DOF applied 

Figure 4. Boundary conditions for corrugated plate with applied in-plane actions 
 

From Table 2 we can observe that under the right boundary conditions the 
expressions of Xia et al. (2012) are in excellent agreement with the full 
corrugated plate shell FE model. The rigidity aligned with the corrugations (A22) 
is not sensitive to the boundary conditions; however, the rigidity perpendicular 
to the corrugations (A11, A12) is sensitive. The source of this sensitivity is the 
eccentricity between the centroid in the transverse direction and the location 
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where transverse displacements are applied, i.e. the bottom of the corrugation as 
illustrated in Figure 5. The Xia et al (2012) solution agrees best with the 
assumption of no out-of-plane support (Case 4), thus the engineer must 
understand that this eccentricity is embedded in the expressions and not account 
for it a second time in their modeling. Interestingly, the in-plane shear rigidity 
expressions (A66) agrees best with cases 1 and 3, where the entire perimeter is 
supported out-of-plane. If this out-of-plane support is removed then the 
eccentricity effect is activated and the shear stiffness reduces; however Xia et al. 
(2012) does not account for this effect in shear. Thus, the engineer must be 
aware that the Xia et al. (2012) expressions may modestly overestimate shear 
stiffness of the panel. 
 

  
Case 1: Perimeter supported out-of-plane 

(uz=0) and clamped (θx=θy=θz=0) 
Case 4: Perimeter free, only in-plane 

applied DOF applied 
Figure 5. Deformation in FE model under transverse strain  

 
Table 2. Comparison between FEM results and equivalent stiffness 

  Corrugated plate shell FE model / Aij  

 Xia et al. 
(2012) / 
Table 1 
(N/mm) 

Case I 
Supported- 
Clamped 

edge 

Case 2 
 

Clamped 
edge 

Case 3 
Supported  

 
edge 

Case 4 
“Free”  

 
edge 

A22  163910 0.99 0.98 0.99 0.98 

A11  4051 1.38 1.11 1.21 0.97 

A12  1215 1.57 1.29 1.19 0.98 

A66  42489 1.00 0.96 1.00 0.92 
Note: if direct rigidities cannot be modeled Eq. (2)-(8) provide E1=161 MPa, E2=203500 
MPa, ν12=0.00024, ν21=0.3, G12=91170 MPa, te=0.286 mm and have been validated to 
match Xia et al (2012) in the model 
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Impact of discrete connection points and panels on diaphragm stiffness 
 
The previous section validates the in-plane equivalent orthotropic model for an 
isolated panel under idealized boundary conditions. Actual diaphragms are 
composed of multiple discrete panels that are connected to one another and to 
joists and perimeter framing. This section examines the impact of these details 
on the realized diaphragm stiffness and the accuracy of the equivalent 
orthotropic plate model. 
 
Recent testing by Tremblay and Rogers (2004) motivated the geometry studied 
here. Specifically, an example diaphragm ~ 6 m x 3m in plan employing the P-
3615 Canam profile as illustrated in Figure 6 is studied. The models in this 
section do not include the stiffness of fasteners connecting panels or connecting 
to the frame, but rather treats these locations as discrete constraint points. Thus, 
the impact of localized forces on the panels is introduced, but the impact of the 
fastener stiffness is isolated from these effects. This provides an upperbound 
approximation of the stiffness and one that focuses entirely on the accuracy of 
the panel modeling. Unlike Figure 2, shear in this model is applied in the same 
manner as in testing with the boundary conditions as illustrated in Figure 6(c). 
 

 

 

(a) Overall panel dimension  (b) Cross-section dimensions (mm) 

 

 

 
(c) boundary conditions and loading (d) typical response for one large panel 

Figure 6. Geometry of studied diaphragm 
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Table 3. Elastic shear stiffness for different panels, connection points, and plate models 
  FE model (1) 

corrugations in 
model 

FE model (2) 
ortho. plate  
Xia et al.  

FE model (3)  
ortho. plate  
E1, E2, etc. 

Panels Perimeter 
conn. 

SFE1 
(N/mm) 

SFE2/SFE1 SFE2/SFE1 

One large 
panel 

Every node 52224 1.0 1.0 

One large 
panel 

304 mm o.c. 16676 0.2 0.2 

Four discrete 
panelsa 

Every node 37119 1.1 1.1 

Four discrete 
panelsa 

304 mm o.c. 14687 0.2 0.2 

a
 modeling of discrete panels also includes three interior connection lines 

 
The results, provided in Table 3, indicate that only under idealized edge 
boundary conditions is the equivalent orthotropic plate model adequate. With 
discrete connection points even though the global deformation is shear the 
extremely weak stiffness in the transverse corrugation direction (A11 rigidity 
direction) creates significant local deformations that greatly decrease the overall 
stiffness. Localized forces (connection points) that are parallel to the corrugation 
(A22 rigidity direction) do not show similar sensitivity, so the sidelap 
connections of the model with four discrete panels are not problematic (locally 
they engage A22 rigidity), rather the perimeter connections that are transverse to 
the corrugations (in the short direction of the model) create the difficulties 
Therefore, engineers must be careful when using equivalent orthotropic plate 
models and recognize that the derived values do not apply directly to panels 
with discrete connections transverse to the corrugations, a significant limitation.  
 
Accuracy of elastic buckling solutions with orthotropic plate models 
 
The elastic buckling response of profiled steel panels is an important 
consideration in their design. For geometric nonlinear analysis of buildings, as is 
often pursued for predicting ultimate response, the elastic buckling of the panels 
is indicative of the potential large deformations the panel may undergo. Elastic 
shear buckling is known to be sensitive to the details of the profile, here we 
investigate to what extent an equivalent orthotropic plate can still capture these 
geometric nonlinearities by investigating the eigenbuckling modes of the panel 
from the previous section (i.e., Figure 6) with explicit FE models of the 
corrugations compared with equivalent orthotropic plate models.  
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Selected elastic shear buckling loads and corresponding mode shapes for the 
three studied models are provided in Table 4 and Figure 7. The elastic buckling 
results indicate that panel shear buckling is the lowest buckling mode, but the 
equivalent orthotropic plate models are inadequate for accurate prediction. The 
model based on the direct rigidities (including Dij) from Xia et al. (2012) is 
slightly better than the model based on the use of general engineering 
parameters (E1, E2, etc.) that were fit to the in-plane rigidities (Aij). However, the 
error is so large that the engineer must use the equivalent plate model with great 
care for nonlinear analysis. It is interesting to note that in the actual profiles (FE 
model 1) the buckling mode is not influenced by local edge conditions until the 
13th mode, fully 1.5 times higher than the lowest (first) mode.  
 

Table 4. First six elastic buckling modes for panel of Figure 6 modeled as 4 separate 
discrete panels connected every 300 mm o.c. at the perimeter and between panels 
 FE model (1) 

corrugations in model 
FE model (2) 
ortho. plate  
Xia et al.  

FE model (3)  
ortho. plate  
E1, E2, etc. 

mode Vcr1 
(kN) 

notes Vcr2  
(kN) 

notes Vcr3  
(kN) 

notes 

1 99 Panel(a) 32 Panel(c) 26 Panel 
3 100 Panel  33 Panel 26 Panel 

13 147 Panel 46 Panel 39 Panel 
15 148 Panel+Edge(b)  50 Panel 41 Panel 
21 152 Edge 73 Panel 58 Panel 

Note: (a), (b), (c), see Figure 7 for corresponding buckling modes. 
 

  
 

(a) mode 1, FE model 1 (b) mode 15, FE model 1 (c) mode 1, FE model 2 
Figure 7 Selected elastic buckling modes in shear from models 
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Impact of panel yielding on diaphragm stiffness and strength 
 
Finite element collapse analyses of four different shell finite element models 
with explicitly modeled profiles were conducted to study the impact of having 
discrete panels with discrete connections on their collapse behavior. We 
employed von Mises yield criteria with isotropic hardening and an elastic 
perfectly plastic stress-strain curve with Fy=345 MPa and E=203,500 MPa. 
Loading is the same as Figure 6. Four cases are studied (a) the panel is modeled 
as a single continuous corrugated panel and the perimeter is fully connected, (b) 
the panel is modeled as 4 discrete panels and the perimeter is fully connected, 
(c) the panel is modeled as a single panel and the perimeter is connected at 304 
mm o.c., and (d) the panel is modeled as 4 discrete panels and the perimeter is 
connected at 304 mm o.c. Basic shear deformation-force results are provided in 
Figure 8 and indicate that in the idealized case the perimeter connection has a 
stronger influence on decreasing the stiffness and strength than the introduction 
of discrete panels. Additional study is needed including comparison to 
equivalent orthotropic plate models, but the shell finite element models are able 
to capture significant variations in the stiffness and strength as a function of 
expected details and results vary by as much as a factor of five indicating the 
importance of practical details above and beyond the basic panel properties. 
 

 
Figure 8 Nonlinear load-displacement curves in shear for studied models 

 
Discussion 
 
The design and behavior of profiled steel panels is complex and includes a 
number of issues not addressed in this work. Interested readers are referred to 
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AISI S310 (2013) for design standards, SDI DDM-04 (2015) for examples and 
additional information related to commonly available panels and connectors.  
 
Reduced order models increase computational efficiency by reducing the 
degrees of freedom. Completed successfully, all important features are 
maintained and no compromise is required. The equivalent orthotropic plate 
reduced order model pursued here can accurately reproduce a variety of 
complex global stiffness behavior under idealized conditions, and with the 
explicit expressions of Xia et al. (2012) are relatively easy to implement. 
However, local features of the model are lost, and when applied in non-idealized 
conditions these features become important to the response and the accuracy of 
the model degrades. The application of equivalent orthotropic plate models must 
be done with care or the results can be overly conservative. 
 
The need to create efficient building structural models is real, and the equivalent 
orthotropic plates studied herein have some potential, but may still represent too 
much computational overhead in some situations. Completely phenomenological 
models with as little as one degree of freedom are also needed and should be 
pursued in a manner consistent with codified design (strength and stiffness and 
post-peak response based on standards).  
 
Conclusions 
 
This paper examines the application of equivalent orthotropic plate models for 
profiled steel panels. Two methods for model implementation are explored: 
direct input of stiffness matrix rigidities, and equivalent thickness and material 
(E1, E2, etc.) properties. Under idealized boundary conditions the in-plane 
stiffness of both implementations of the equivalent orthotropic plate model are 
shown to have excellent agreement with shell finite element models of profiled 
steel panels. Relatively complex Poisson effects and bending effects are 
captured in the equivalent models under idealized conditions. However, under 
realistic conditions: discrete perimeter fastener spacing, or discrete numbers of 
panels the equivalent orthotropic plate model fails to capture the global in-plane 
shear response accurately. Global shear rigidity decreases when discrete 
fastening is introduced, but local rigidities in the equivalent orthotropic plate 
model, particularly transverse to the profiles, causes artificially large flexibility 
and results in stiffness that can be as little as 20% of the actual stiffness. Elastic 
buckling analysis further highlights this problem for equivalent orthotropic plate 
models. Reduced order models for profiled steel panels are needed for whole 
building analysis, equivalent orthotropic plate models provide one possible 
solution, but the analysis herein shows they must be used with care when 
exercised in realistic models of buildings. 
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Abstract 
 
This paper addresses an ongoing experimental and computational effort on the 
buckling and strength of built-up cold-formed steel (CFS) columns. Specifically, 
two 6 in. (152 mm) deep lipped channel sections (i.e. the 600S137-54 and 
600S162-54 using AISI S200-12 nomenclature) are studied here in a back-to-back, 
screw-connected form and were chosen for their local and distortional slenderness 
to study the effect of fastener spacing and layout on local and distortional buckling 
and collapse behavior. Thirty column tests are completed with concentric loading. 
The screw spacing is varied from L to L/6, where L is the column length, with 
and without varying lengths of End Fastener Groups (EFG), which are a 
prescriptive layout of fasteners at the ends of built-up columns that is required by 
AISI S100-12 and is intended to insure end rigidity and increase composite action. 
Results yield two general types of deformation modes: compatible (where the 
connected webs conform to the same buckling shape) and isolated stud buckling. 
Buckling loads and half-wavelengths of deformation are shown to be affected by 
the tighter screw spacings. EFGs increase compatibility of buckling, but prove to 
be an inefficient (costly) method of fastening studs together. Future work includes 
expanding the design methods for built-up CFS columns to explicitly account for 
local and distortional buckling behavior of the built-up section, and to develop 
efficient numerical tools supporting a new design method under development. 
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1. Introduction 
 
Framed Cold-Formed Steel (CFS) structures are composed of lightweight, often 
panelized systems that can be locally strengthened with the use of built-up 
sections. If greater local system rigidity is required or high axial or bending loads 
are expected, built-up members (composed in a typical welded, screw-fastened, 
or bolted traditional, doubly-symmetric back-to-back “I” or toe-to-toe “box” 
sections) can be easily installed in framing and designed as shear wall chord studs, 
headers, jambs, truss-members, or even unsheathed stand-alone columns. Built-
up CFS columns made with two lipped-channel studs, for example, can deliver an 
axial compression capacity of more than twice that of the individual members 
through composite action, which is enabled through the fasteners. The degree of 
connectivity between connected studs and its effect on buckling and post-buckling 
capacities is a primary motivation for the research presented herein. 
 
The current North American cold-formed steel specification (AISI-S100 2012) 
contains limited guidelines on the design of built-up CFS columns, but research 
has partly addressed this issue. Stone and LaBoube (2005) conducted a set of 
column experiments with back-to-back CFS channel sections and found that the 
AISI-S100 (2012) modified slenderness ratio can be conservative and that while 
the bearing end conditions are important for maintaining column strength the code 
prescribed End Fastener Groups (EFG) may not be necessary for framed members. 
Further experiments were conducted on built-up CFS sections with intermediate 
stiffeners by Young and Chen (2008); they concluded that using only the single 
section properties in the Direct Strength Method (DSM) for calculating nominal 
local and distortional capacities of built-up sections provided acceptable, but 
conservative estimates of the strength. Other experimental work on various types 
of built-up CFS column cross-sections using combinations of Zee, track, and 
sigma sections compared tested strengths with results from DSM-based equations 
that were calibrated to account for buckling interactions (Georgieva et al. 2012). 
Similar testing of varying cross-sections and DSM calibration was completed and 
an efficient approach to model web interconnections using scaling factors for the 
web thickness were explored at the University of Hong Kong (Zhang 2014). Built-
up beams of varying cross-sections, screw arrangements, web perforations, and 
intermediate stiffeners were also tested at the University of Hong Kong; numerical 
models were completed and DSM design approaches were proposed (Wang 2015). 
Experiments on local and flexural buckling of battened built-up CFS columns 
were completed by Anbarasu et al. (2015) and Dabao et al. (2015); the former 
assessed the conservatism of two DSM design approaches and the latter concluded 
that strengths from AISI S100 (2007) are non-conservative for columns failing in 
local buckling and conservative for those failing in flexural buckling. 
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Current design codes may inadequately predict the effect of fastener spacing on 
built-up CFS column capacity when multiple deformation modes exist, 
specifically modes other than flexural buckling. The 2005 AS/NZS 4600 Standard 
limits only the maximum fastener spacing along the column length by checking 
that flexural buckling of the individual uprights between fasteners will not occur 
prior to global flexural buckling of the built-up section. In the U.S., AISI-S100 
(2012) Section D1.2 requires the calculation of the axial capacity of built-up 
columns using the modified slenderness ratio approach, as adopted from AISC 
360 (2010) which assumes only flexural buckling in the estimation of strength. It 
cannot predict the effects of fastener spacing, layouts, and stiffness on the 
torsional, flexural-torsional, distortional, or local buckling modes that frequently 
drive failure in sheathed columns (Fratamico et al. 2016). Built-up members 
subject to pure flexural buckling are only prescribed a limiting maximum fastener 
spacing of the lesser of either L/6 or a factor dependent on the tensile strength of 
a single connection. AISI-S100-12 also requires the use of a special End Fastener 
Group (EFG) at the member ends, as a prescriptive design measure when screws 
are selected instead bolts or welds. Thus, its impact on the modified slenderness 
is not treated directly. Section D1.2 specifies that screws in the EFG must be 
longitudinally spaced at 4 diameters apart or less and for a distance equal to 1.5 
times the maximum width of the member. These groups are superimposed on the 
layout of evenly-spaced fasteners required by code.  

The work presented herein follows numerical studies by the first author in which 
the level of composite action was varied in built-up CFS columns employing finite 
element (FE) and finite strip (FS) models undergoing elastic buckling. Nodal 
multi-point constraints and discrete elastic nodal springs were used to model 
fasteners in the FE model, and smeared longitudinal constraints were used in the 
FS model. Example results included an 85% increase in composite action with the 
addition of both smeared and discrete fasteners (Fratamico and Schafer 2014). 
Fratamico et al. (2015) also numerically studied the effects of adding EFGs to 
models and using a parametric layout of spacings and stiffnesses in an FE model 
to explore partially composite action. Recently, a series of 16 tests were also 
performed in which screw-fastened, back-to-back, sheathed and unsheathed built-
up CFS columns were tested to understand prevailing deformation modes beyond 
flexural buckling (Fratamico et al. 2016). This paper presents tests for 
understanding the effect of web fastener layouts and spacing on the local and 
distortional buckling and collapse behavior of back-to-back CFS columns. 
Experimental tests are performed in lieu of numerical modeling at this stage, since 
efficient modeling methods of screw fasteners are currently in progress. Also 
sought are the fastener spacings which can affect formation of local buckling half-
waves in the webs, as well as the degree of compatible deformations (and potential 
higher stiffness or capacities, as a result) among the two studs. 
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2. Built-Up Cold-Formed Steel Column Testing 
 
2.1 Testing Overview 
In this paper, 30 built-up CFS column tests are detailed and their results are 
reported. Two 6 in. (152 mm) deep lipped channel sections are used: the 600S162-
54 and 600S137-54 sections (using AISI-S200-12 nomenclature). The 600S137-
54 section (previously used in beam-column tests in our lab (Torabian et al. (2015)) 
nominally has a 6 in. (152 mm) web, 1.375 in. (34.9 mm) flange, 0.375 in. (9.5 
mm) lip, and a thickness of 0.0566 in. (1.43 mm). These sections were chosen for 
their local and distortional slenderness and are both common in design. The 
selected column height, to potentially allow local and/or distortional buckling is 
3 ft (0.91 m), providing enough length for at least one distortional buckling half 
wavelength of 14.5 in. (36.8 cm) to develop without significant impact from the 
end boundary conditions. The reported buckling half-wavelength is obtained from 
a signature curve analysis of a single section using CUFSM (Schafer and Ádàny 
2006). Local buckling is also expected from the various fastener layouts used in 
the tests, with a half-wavelength of 4.5 in. (11.4 cm). 

The column studied is composed of a back-to-back “I” section as shown in Fig. 1, 
with #10 sized self-drilling hex washer head screws connecting the webs of two 
equivalently-sized channel sections, of both section types mentioned earlier. 
Fastener layouts are designed and installed according to AISI S100-12 (2012) 
sections D1.2 and E4.2, including the end fastener groups (EFG). The parametric 
fastener layouts are described in the following sections. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. (a) The built-up, back-to-back section studied, showing the location of web screws 
and (b) an example of the fastener group layout at the column ends 

 

(a) (b) 
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2.2 Test Matrix and Setup 
A total of 30 tests, shown in Table 1, were completed using the 600S162-54 cross 
section for trials A1a through E1, and the 600S137-54 section for trials F1 through 
H1. The trial ID notation is as follows. The prefix A, for example, corresponds to 
the EFG length at either end of the column, written as a ratio α of the code-based 
length of 9 in. (229 mm) for these studs, which is 1.5 times the maximum width 
of the member: the out-to-out web height of 6 in. (152 mm). A reduced number 
of D-series trials were completed, since there was significant overlap of the long 
EFG lengths with the evenly-spaced fasteners. Trials E1 and H1 contain fasteners 
along the full length. The numerical part of the trial ID is explained in Table 2. 
 

Table 1. Test matrix 
Trial Section: 600S Even Fastener Spacing EFG Length Ratio, α 

ID 162-54 137-54 L/1 L/2 L/3 L/4 L/6 0.0 0.5 1.0 1.5 
A1a X  X     X    
A1b X  X     X    
A1c X  X     X    
A2 X   X    X    
A3 X    X   X    
A4 X     X  X    
A5 X      X X    
B1 X  X      X   
B2 X   X     X   
B3 X    X    X   
B4 X     X   X   
B5 X      X  X   
C1 X  X       X  
C2 X   X      X  
C3 X    X     X  
C4 X     X    X  
C5 X      X   X  
D1 X     X     X 
D2 X      X    X 
E1 X  - - - - - - - - - 
F1  X X     X    
F2  X  X    X    
F3  X   X   X    
F4  X    X  X    
F5  X     X X    
G1  X X       X  
G2  X  X      X  
G3  X   X     X  
G5  X     X   X  
H1  X - - - - - - - - - 
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Testing requires monotonic, concentric compression loading using a 100 kip (445 
kN) MTS universal testing rig with fixed platens that bear directly on tracks, 
which are installed on either end of the columns. Figure 2 shows the MTS rig 
setup. The tests were displacement-controlled with a load rate not exceeding 0.015 
in/min (0.38 mm/min). All other components of the test setup are described and 
shown in the following section. 

 

 
Figure 2. MTS rig setup (elevation)                      Figure 3. Parametric fastener layout 
                                                                                          on column webs; examples for 
                                                                                    A-series (top) and C-series (bottom) 

 L/1           L/2           L/3           L/4           L/6 
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Table 2. Position of evenly-spaced fasteners for all spacings 
Trial (B-series as example) Layout Spacing, a [in.] (cm)* 

B1 L/1 36 (91) 
B2 L/2 18 (46) 
B3 L/3 12 (31) 
B4 L/4   9 (23) 
B5 L/6   6 (15) 

*Note: an offset of 1.5 times the nominal screw diameter φ of 0.375 in. (9.5 mm) from the ends of the 
column must be applied to the top and bottom fastener pairs 
 
A calibrated load cell on the MTS rig (Fig. 2) measures force, and the MTS rig’s 
LVDT measures the applied axial displacements. To track specimen deformations, 
15 position transducers (PTs) are installed. Lateral bi-planar displacements, 
overall rotation, and distortion of the cross-section at mid-height can be tracked 
throughout the test using 11 PTs as shown in Fig. 4. In addition, 1 PT is installed 
on the top and bottom tracks, orthogonal to the web of the studs in order to 
measure local buckling or localized failures at the stud web plate ends that are in 
contact with the tracks. To monitor stud engagement to the track during the tests 
a PT is installed at the top and at the bottom track. LabVIEW software and 
National Instruments hardware are used for data acquisition. The error of 
eccentricity and out-of-plumbness are recorded for each specimen as they are 
loaded into the rig. Measurements were taken in two planar directions at the top, 
middle, and bottom of the specimens to ensure that the centroids coincided with 
the line of action of the applied load. Error values are recorded at the final position, 
and are always less than 0.025 in. (0.64 mm). Note, no PTs were attached to 
specimens A1b and A1c in order to accommodate a portion of the joint work with 
Lama Salomon, et al. (2016) on 4D image-based reconstruction. 
 

 
Figure 4. MTS test rig setup (top-down view at mid-height) 
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2.3 Geometric Imperfections and Material Characterization 
Measurements for specimen dimensions and quantification of geometric 
imperfections were completed using a novel laser scanning method at Johns 
Hopkins University (Zhao et al. 2015). Full-field 3D geometric information is 
obtained as a point cloud of stitched longitudinal scan readings from multiple scan 
angles. Average plate thickness for each specimen was measured by hand using a 
calibrated micrometer, and the results can be used in finite strip analyses and in 
the reconstruction of the 3D geometry for each specimen. Final results are not 
reported here since the scan data is currently being post-processed; however, 
sample output data is shown in Fig. 5, and results are discussed in Zhao and 
Schafer (2016) and in the first author’s forthcoming thesis. 
 

 

 
 
 
 

 
 

 
Figure 5. Imperfection results from scans: (a) cross-section dimensions averaged over full 

length, (b) averaged cross-section angles and radii, and (c) full-field 3D reconstruction 
 
To quantify the basic material properties of the CFS studs and tracks used for the 
test specimens, a series of 10 coupon tests were completed using CNC milled 
longitudinal cuts of the webs (W1 & W2) and flanges (F1 & F2) for the channel 
sections and of the webs (W) and lips (L) of the track section, in accordance with 
ASTM A370-12a (2012). Table 3 shows the results. The average yield stress for 
the 600S137-54 and 600S162-54 sections are 57.3 ksi (394 MPa) and 57.4 ksi 
(396 MPa), respectively; the nominal yield stress is 50 ksi (345 MPa). Young’s 
modulus was not estimated from the linear data in the test results, but rather taken 
as 29,500 ksi (203 GPa) as prescribed in AISI S100-12. 
 
 
 
 
 
 

(a) (b) (c) 
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Table 3. Tensile coupon test results 

Specimen 
Base Metal 
Thickness 

t [in.] (mm) 

Gauge 
Elongation 
ΔLg [%]1 

Yield 
Strength 

Fy,0.2 
[ksi] (MPa)2 

Tensile 
Strength 

Fu 
[ksi] (MPa) 

Strain at 
Tensile 
Strength 
εu [%] 

600S137-W1 0.055 (1.39) 21.6 58.3 (402) 70.3 (485) 15.4 
600S137-W2 0.055 (1.39) 23.5 57.7 (398) 69.8 (481) 17.7 
600S137-F1 0.055 (1.39) 23.3 56.5 (389) 69.9 (482) 18.0 
600S137-F2 0.054 (1.37) 23.7 56.5 (389) 69.7 (481) 17.8 

Mean 0.055 (1.39)  57.3 (394) 69.9 (482)  
C.o.V. 0.006  0.016 0.006  

600S162-W1 0.055 (1.40) 24.4 57.8 (398) 69.7 (480) 17.8 
600S162-W2 0.055 (1.39) 22.2 57.9 (399) 69.7 (481) 17.6 
600S162-F1 0.054 (1.38) 21.7 57.2 (395) 69.5 (479) 16.4 
600S162-F2 0.054 (1.38) 23.0 56.7 (391) 70.1 (483) 18.0 

Mean 0.055 (1.39)  57.4 (396) 69.8 (481)  
C.o.V. 0.008  0.010 0.004  

600T150-W 0.055 (1.39) 22.0 59.6 (411) 71.3 (492) 17.1 
600T150-L 0.055 (1.39) 23.6 58.8 (405) 70.7 (487) 16.8 

1Measured using elongation between the coupon shoulders after fracture 
2The 0.2% offset method was used 
 
3. Experimental Results 
 
Local buckling typically led to the post-peak failure mechanisms, but local-
distortional buckling interaction was observed, particularly in the 600S137-54 
series specimens prior to peak load. As shown in Table 4, only a small variation 
in strength and stiffness is observed across all specimens of the same section type. 
Figure 6 contains the force-axial displacement plots for all columns tested and 
illustrates the consistency in strength across specimens with varying (even) 
fastener spacing and different EFG lengths. The even fastener spacing did not 
increase the local buckling capacity, but rather affected the location of local half-
wavelengths. When possible, these local half-waves tended to occur between the 
fastener pairs on the web, as shown in Figure 7, and non-compatible buckling 
modes (webs buckling away from each other) were common. Increasing the EFG 
length, particularly in trials A1a through E1 with the 600S162-54 section, did not 
result in higher strengths. Previous work of the authors (Fratamico et al. 2016) on 
the global buckling and strength of 6 ft (1.83 m) long built-up CFS columns 
suggests a greater impact of the EFG on composite action; however, when local 
or distortional buckling are the dominant failure mode as in the tests presented 
here the EFG has considerably less of an effect on strength. For example, 
comparing results from trials A2 (no EFG) and D2 (13.5 in. (343 mm) EFG), a 
53% increase in stiffness yet only a 4.0% increase in strength is achieved. 
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Table 4. Test results with buckling and collapse behavior 

Trial 
ID 

Even 
Spacing, a 
[in.] (cm)1 

EFG 
Length, α 
[in.] (cm) 

Stiffness, k 
[kip/in] 

(kN/mm)2 

Elastic 
Buckling 

Mode 

Compatible 
Web 

Buckling 

Tested 
Strength, Pu 
[kips] (kN) 

A1a 36 (91) 0.0 353 (61.8) L No 31.7 (141) 
A1b 36 (91) 0.0 379 (66.4) L No 31.4 (140) 
A1c 36 (91) 0.0 386 (67.5) L No 31.4 (140) 
A2 18 (46) 0.0 305 (53.4) L-D No 32.4 (144) 
A3 12 (30) 0.0 309 (54.0) L-D Yes 31.4 (140) 
A4   9 (23) 0.0 309 (54.0) L-D Yes 32.7 (145) 
A5   6 (15) 0.0 399 (69.9) L Yes 34.4 (153) 
B1 36 (91) 4.5 (11) 319 (55.9) L-D No 30.9 (138) 
B2 18 (46) 4.5 (11) 436 (76.3) L-D Yes 32.6 (145) 
B3 12 (30) 4.5 (11) 382 (66.9) L-D Yes 31.9 (142) 
B4   9 (23) 4.5 (11) 426 (74.6) L-D Yes 31.7 (141) 
B5   6 (15) 4.5 (11) 433 (75.8) L-D Yes 32.7 (146) 
C1 36 (91) 9.0 (23) 366 (64.1) L-D Yes 32.3 (144) 
C2 18 (46) 9.0 (23) 440 (77.0) L-D Yes 32.7 (145) 
C3 12 (30) 9.0 (23) 415 (72.6) L-D Yes 31.8 (141) 
C4   9 (23) 9.0 (23) 437 (76.5) L-D Yes 34.0 (151) 
C5   6 (15) 9.0 (23) 407 (71.3) L-D Yes 33.2 (147) 
D1 36 (91) 13.5 (34) 444 (77.7) L-D Yes 34.2 (152) 
D2 18 (46) 13.5 (34) 468 (82.0) L-D Yes 33.7 (150) 
E1 full length full length 459 (80.3) L-D Yes 34.1 (151) 
F1 36 (91) 0.0 473 (82.8) L-D No 27.7 (123) 
F2 18 (46) 0.0 431 (75.6) L-D No 28.0 (125) 
F3 12 (30) 0.0 344 (60.3) L-D Yes 27.2 (121) 
F4 9 (23) 0.0 344 (60.3) L-D Yes 28.1 (125) 
F5 6 (15) 0.0 347 (60.7) L-D Yes 28.0 (125) 
G1 36 (91) 9.0 (23) 369 (64.6) L-D No 27.5 (122) 
G2 18 (46) 9.0 (23) 341 (59.7) L-D Yes 28.4 (126) 
G3 12 (30) 9.0 (23) 459 (80.3) L-D No 27.9 (124) 
G5 6 (15) 9.0 (23) 376 (65.9) L-D Yes 28.5 (127) 
H1 full length full length 405 (70.9) L-D Yes 30.1 (134) 

1For 36 in. (91 cm) spacing, true distance is smaller by twice the distance of the screw to the edge of 
the column, which is 0.375 in. (9.5 mm) 
2Initial linear stiffness after full engagement of stud ends to tracks 
 
A key effect both sought and observed in the tests was the level of compatible 
buckling, or degree of buckling conformity of both connected webs (and to some 
degree their connected flanges) in the built-up section. Buckling compatibility 
was visually observed and is recorded in Table 4. Compatible deformation modes 
continued from buckling to collapse in all cases. A decrease in the fastener spacing 
was shown to influence the level of compatible buckling, this is most evident in 
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the A-series results. At a spacing of L/3 or less, compatible buckling is triggered, 
although an increase in stiffness or strength in trials A3, A4, and A5 is not 
achieved. Compatible buckling appears to be more influenced by the fastener 
spacing than the EFG length; however, when EFG lengths were long (series C, D, 
and G), the webs were more confined to move together. However, in longer 
columns, this effect of the EFG on compatible deformations may not be observed. 
 

 
Figure 6. Load vs. axial displacement data across fastener spacings, but by section type & EFG 
length, removed early stud-to-track seating stiffness and displacements under 10 kips (44.5kN) 
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Figure 7. Frontal view of an example set of tested columns (of section type: 600S137-54) 

 
The columns with the greatest capacity were the specimens with an extreme, full-
length distribution of fasteners: trials E1 and H1. Compared with their L/1 and no 
EFG cross-section equivalents, E1 and H1 had an increase in strength of 8.6% and 
8.7%, respectively; however, there was no consistent increase in stiffness. 
Specimens E1 and H1 appeared to buckle in a local mode, but then demonstrate a 
more distortional deformation in the collapse regime, having a half-wavelength 
approximately one-third of the column height, as can be observed in the right-
most specimen in Figure 7. To view a video of this column’s behavior, as well as 
videos of other tests, please visit http://tinyurl.com/hhg3fn2 for a full playlist. 
 
Using position transducer (PT) data, local and distortional deformations were 
recorded for specimens that exhibited cross-section distortion at mid-height. 
Figure 8 shows the calculated metrics specific to back-to-back sections, assuming 
web buckling compatibility was achieved. Figure 9 shows the treatment of raw 
PT data for specimen G1, as an example, and displacements are taken from the 
PT data at peak load. The PT names, locations, and orientations are identical to 
those illustrated in Figure 4. 

 
Figure 8. Local (left) and distortional (right) deformations of built-up CFS cross-sections 
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Figure 9. Raw PT data from trial G1 (left) and calculated local and distortional 
cross-sectional deformations at peak load using specific PT data (right) 

 
Table 5. Measured local and distortional deformations at peak load 

Trial 
ID 

Deformation at 
Peak Load 

Compatible Web 
Buckling δL [in] (mm) δD [in] (mm) 

D2 Local-Distortional Yes 0.206 (5.23) 0.640 (16.3) 
G1 Local (Web) No 0.201 (5.11) 0.118 (3.00) 

 
Local and distortional deformations were calculated with the simple expressions 
shown in Figure 9, as negligible major or minor axis translation, or torsional 
rotation of the cross-section at mid-height was recorded or observed for the two 
given trials. In Table 5, specimens D2 and G1 are shown to exhibit a more local-
distortional interaction buckling and local buckling-dominated failure, 
respectively. Local buckling is usually followed by a slight rotation of the flanges 
in the post-peak regime (a non-zero δD in row 2 of Table 5) and distortional 
buckling mode 1 is always accompanied by out-of-plane web deformation (a non-
zero δL in row 1). The second plot of Figure 9 shows an inversion of the local 
buckling direction at peak load, as a plastic hinge develops. For all columns, the 
local failure mechanism observed was of the flip-disk type (Murray 1984). In 
some columns, well into the post-peak regime, a roof mechanism began to form, 
as can be seen in some of the 600S137-54 specimens in Figure 7. 
 
4. Discussion 
 
In this experimental study, the variation of even screw spacing and EFG lengths 
were shown to have a small effect on column strength (a minor exception being 
the impractical detail of tightly spaced fasteners for the full-length, which did 
increase capacity). All of the conducted testing uses flat and level end bearing 
conditions and the stud is further attached to a track. The tests indicate that the 
end bearing condition may be more important than the EFG and even to a great 

δL = δPT2 
δ1 = -δPT10 - δPT6 
δ2 = -δPT13 - δPT9 
δD = δ1 - δ2 
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extent the fastener spacing. In the tests, an almost idealized fixed end condition is 
achieved via the seating of stud ends to the track, connection of stud flanges and 
track lips with screws, and the presence of EFG. These design components 
contribute to the end condition but are also competing to increase stiffness and 
strength in the columns, and they should be studied further in future work, 
particularly as a function of end bearing and for other end conditions on 
compression members such as in CFS truss chords. 
 
Preliminary DSM strength predictions using nominal dimensions, but measured 
yield stress have been completed. If the elastic buckling assumes ideal fully-fixed 
ends and the fastener stiffness is approximated as smeared along the length, the 
results show the same trends as the tests, but are about 10% non-conservative. 
Evaluation using actual dimensions and considering different assumptions for the 
end conditions and fastener modeling are still in progress. 
  
Local buckling drove post-peak behavior and failure in all of the columns except 
full-length fastener specimens E1 and H1. Although the local half-wavelengths 
changed location based on the screw spacings, the fastener layouts did not 
increase the local buckling capacities and column strengths even when compatible 
buckling in the web occurred. Two observations can be made from this: (1) local 
buckling is nearly unavoidable and design should not assume attached fasteners 
provide significant benefits against this mode, and (2) a dense array of web screws 
is not always required, and further work should address limits to screw spacings 
(and whether or not EFG are required) based on built-up column cross-section 
shapes and end conditions. When fewer screws are used, the columns are far easier 
to assemble and less expensive as well. 
 
Comparing the two section types studied herein, the 600S162-54 and the 
600S137-54 sections, the latter has a slightly higher distortional slenderness for 
both pinned and clamped end conditions due to its shorter flange width. Although 
local-distortional buckling controlled in trials F1-H1 with the 600S137-54 section, 
distortional post-peak behavior was observed in the trials with a denser layout of 
web screws and more compatible deformations of the web (namely, G5 and H1). 
Nevertheless, studies on built-up columns that have a distortional slenderness 
higher than their local and global slenderness should be performed to more closely 
correlate fastener layouts to distortional buckling behavior. 
 
More experimental work is required to fully characterize built-up CFS column 
behavior. Tests on back-to-back CFS columns with web perforations and back-
to-back and box section header beams completed in 2005 and 2003, respectively, 
at the Missouri University of Science and Technology catalyzed practical 
experimental research on simple CFS assemblies that is continued in the work 

568



 

herein (LaBoube 2016). The goal is to continue to study as-constructed CFS 
assemblies, namely built-up columns, with both an experimental and numerical 
approach to address inadequacies in current design provisions and suggest more 
robust design approaches which account for all possible failure modes. 
 
5. Conclusions 
 
Understanding the behavior and strength of screw-fastened built-up cold-formed 
steel (CFS) columns is important, as they are used frequently in frames as higher 
capacity columns, shear wall chord studs, among other applications. The tests 
herein show that the stiffness and strength of two studied built-up CFS columns, 
with stiff end bearing conditions, that buckle and fail in either local and/or 
distortional modes are not highly dependent on the layout of fasteners that connect 
the two members. In particular, a costly end fastener grouping consisting of a large 
series of fasteners at the member ends is not shown to appreciably improve the 
local and distortional buckling behavior or capacity of the built-up CFS column. 
Ongoing work will aim to develop better design methods that incorporate more 
accurate estimations of column end conditions and require the explicit modeling 
of web fasteners. Additional work is needed to provide experimental data on 
different built-up cross-section types, fastener details and layouts, and primary 
limit states. Subsequent tests are underway to continue to explore primary 
deformation modes of built-up columns. 
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Resistance of Arc Spot Welds- Update to Provisions 
 

B. Paige Blackburn1 and Thomas Sputo, Ph.D., P.E., S.E.2 
 

Abstract 
 
The AISI S100-12 provisions for arc spot welds have not be reviewed since 1999. 
This study performs a comprehensive analysis of the entire arc spot weld data 
base including data from four new research studies and reconsiders AISI S100-12 
resistance equations with data from 450 specimens. Most AISI S100-12 equations 
were found to be conservative, particularly for sheet tearing failure modes. 
However, the equation for arc spot weld fracture under tensile load was found to 
poorly predict the data base test results. AISI S100-12 provision improvements 
are recommended not only for the resistance equations and factors, but also for 
the effective weld diameter calculation, maximum sheet thickness limitation, and 
design approaches for various sheet configurations. 
 
Introduction 
 
Over the course of seventeen years, four new research studies have significantly 
expanded the data base of laboratory tested arc spot welds since the last AISI 
comprehensive review performed in 1999. This study performed a comprehensive 
analysis of the expanded data base to re-evaluate the arc spot weld design 
provisions provided in AISI S100-12. Re-evaluation of both the arc spot weld 
resistance equations and their associated resistance and safety factors was 
performed.  
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Data was gathered starting from Fung’s 1978 report, “Strength of Arc Spot Weld 
in Sheet Steel Construction” which included 127 shear tests and 128 tension tests 
on arc spot welds and Pekoz and McGuire’s 1979 report, “Welding of Sheet 
Steel”, which tested 126 arc spot weld specimens under shear loading. These early 
reports included simple configurations such as one to two sheet layers. In 1991 
LaBoube and Yu expanded arc spot weld tension tests with 260 specimens in their 
report, “Tensile Strength of Welded Connections” by testing various sheet 
configurations such as side lapped sheets and eccentrically loaded samples to 
simulate perimeter roof welds subject to uplift. These three reports composed the 
1999 data base of which the AISI S100-12 arc spot weld provisions are based.  
 
The first report to publish following the 1999 comprehensive review was 
“Inelastic Response of Arc Spot Weld Deck to Frame Connections for Steel Roof 
Deck Diaphragms”, by Peuler in 2002. Peuler explored the performance of arc 
spot welds under monotonic and seismic shear loading both with and without weld 
washers creating and testing 235 specimens. In 2008 Easterling and Snow 
published their report, “Strength of Arc Spot Welds Made in Single and Multiple 
Steel Sheets” testing 138 shear loaded specimens. Easterling and Snow explored 
the effects of limited welding time and arc spot welds made through up to four 
sheet layers.  Also in 2008, LaBoube and Stirnemann created and tested 79 
specimens subject simultaneously to shear and tensile forces in their report, 
“Behavior of Arc Spot Weld Connections Subjected to Combined Shear and 
Tension Forces”. Rounding out the existing arc spot weld data base are 179 
specimens from Guenfoud’s 2010 report, “Experimental Program on the Shear 
Capacity and Tension Capacity of Arc Spot Weld Connections for Multi-Overlap 
Roof Deck Panels”. Guenfoud considered every sheet configuration practiced in 
today’s steel deck construction including two sheet side laps, and four sheet side 
laps.  
 
From research performed through the 1970s to 2010 the arc spot weld data base 
consists of over 1,200 specimens. Of these specimens this study focused on only 
those made with full welding time, proper weld penetration, without weld 
washers, under monotonic shear or tension loading. Specimens that were made 
with washers, were loaded under cyclic, seismic, or combined forces, or had 
pertinent data missing from their respective reports were not included here. The 
remaining specimens, 450 total, were then categorized by failure mode to assess 
the AISI S100-12 provisions. AISI S100-12 arc spot design Equations E2.2.2.1-
1, E2.2.2.1-2, E2.2.2.1-3, E2.2.2.1-4, E2.2.2.1-5, E2.2.3-1 and E2.2.3-2 were 
assessed in addition to the Section E2.2 sheet thickness limitation of 0.15 inches 
(3.81mm). 
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Analysis and Results Highlights 
 
Effective Weld Diameter 
 
Effective weld diameter, de, is the diameter of the arc spot weld located at the 
plane of failure. Effective weld diameter is used to calculate the weld resistance 
in both shear and tension calculations. Below lists AISI S100-12 Equation 
E2.2.2.1-5 specified for the calculation effective weld diameter, where d, is the 
visual diameter of the weld from the top sheet surface and t, is the combined sheet 
thickness.  
 
E2.2.2.1-5: de = 0.7d – 0.15t ≤ 0.55d     
  
This equation is based on Pekoz’s work in the 1970’s. In a 2016 unpublished 
report by Church and Bogh, “Reevaluation of AISI Effective Diameter Equations 
for Arc Spot Welds” the authors demonstrate that Pekoz’s data aligns with the 
Equation E2.2.2.1-5 and its 0.55d maximum limit, shown by the lines in Figure 1 
below.  
 

 
Figure 1: Pekoz Effective Weld Diameter Data (Church and Bogh, 2016).  

 
Since Pekoz’s work, additional authors such as Easterling and Snow, and 
Guenfoud have also measured effective weld diameter data. This study complied 
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the entire shear data base to produced Figure 2 below. It is observed that several 
data points from Easterling and Snow as well as Guenfoud expanded the thickness 
and weld diameter ranges tested compared to Pekoz and that the 0.55d limit 
(horizontal line) does not apply to this expanded database.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2: Shear Effective Weld Diameter Data.  
 
Considering only the shear data as presented in Figure 2, the diagonal line, 
Equation E2.2.2.1-5 without the maximum limit, appears to represent the data 
well. But, by adding effective weld diameter data from Guenfoud’s tension loaded 
samples it is clear Equation E2.2.2.1-5 under predicts weld diameters through 
thicker sheets as illustrated in Figure 3. 
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Figure 3: Shear and Tension Effect Weld Diameter Data. 
 
This study recommends modifying Equation E2.2.2.1-5 by removing the upper 
limit of 0.55d and adding a lower limit of 0.45d in order to represent the entire arc 
spot weld database presented in Figure 3. This modification of Equation E2.2.2.1-
5 is presented as Equation 1 below. Both Equation E2.2.2.1-5 and Equation 1 were 
used to analyze the performance of shear and tension weld failure equations. 
Equation 1 provided better results in both cases as detailed below. 
 
Equation 1: de = greater of     	0.7d 1.5t     

            0.45d 
 
Shear: Weld Failure 
 
The 450 specimens within the data base were each categorized by failure mode. 
A total of 87 specimens were analyzed using AISI S100-12 Equation E2.2.2.1-1, 
the arc spot weld shear resistance equation. Resistance and safety factors were re-
calibrated for each failure mode using AISI 2012 Section F1.1 procedures. The 
results for weld shear failure are listed in Table 1.  
 
Comparing the effects of Equation E2.2.2.1-5 and Equation 1, both produced 
resistance and design factors that were very close that those currently listed in 
AISI S100-12. This indicates that the 0.55d maximum limit has little to no effect 
of the resistance calculation of welds in shear. The proposed 0.45d lower limit in 
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Equation 1 proves to be more influential in the resistance of welds in tension 
detailed below.  Applying Equation 1, Equation E2.2.2.1-1 reached a measured to 
predicted strength ratio of 1.53 and a coefficient of variation equal to 0.326.  
 

Table 1: E2.2.2.1-1, Weld Shear Failure Analysis Results.  

Design Factor 
Existing 

AISI 
S100-12 

Recalibrated 
with E2.2.2.1-5 

Recalibrated 
with Equation 1 

 (LRFD, o = 3.5) 0.60 0.595 0.591 

Ω (ASD, o = 3.5) 2.55 2.571 2.587 

 (LSD, o = 4.0) 0.50 0.450 0.448 

No. of Samples = 87 
*Note: o, is the target reliability index for the calculation of resistance and safety factors. 

 
Shear: Sheet Failure 
 
The shear resistance of connected steel sheets for an arc spot welded connections 
is calculated by AISI S100-12 Equations E2.2.2.1-2, E2.2.2-1-3 and E2.2.2.1-4. 
These equations predict at what shear load sheet tearing will occur. They are split 
by three different ranges of da/t, which is the ratio of average weld diameter to 
combined sheet thickness. Overall, this study found that these equations are 
satisfactory but their respective resistance and safety factors were conservative 
and can be improved. 
 
A total of 104 specimens were categorized into Equation E2.2.2.1-2 da/t ranges, 
meaning these specimens had smaller weld diameters and thicker combined 
sheets. This equation applied to majority of sheet shear failure specimens. The 
recalibrated resistance and safety factors improved as listed in Table 2 when 
considered with the expanded data base. The measured to predicted strength ratio 
calculated to 1.41 and the coefficient of variation calculated to 0.182 for Equation 
E2.2.2.1-2. 
 

Table 2: E2.2.2.1-2, Sheet Shear Failure Analysis Results. 

Design Factor 
Existing 

AISI S100-12 
Recalibrated 

(LRFD, o = 3.5) 0.70 0.787 
Ω (ASD, o = 3.5) 2.20 1.943 
(LSD, o = 4.0) 0.60 0.629 

No. of Samples = 104 
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AISI S100-12 Equation E2.2.2.1-3 applied to 23 specimens which met the middle 
da/t range. The recalibrated resistance and safety factors significantly improved 
from those currently specified in AISI S100-12 as detailed in Table 3. Analysis of 
Equation E2.2.2.1-3 produced a measured to predicted strength ratio of 1.40 and 
a tight coefficient of variation of 0.122. 
 

Table 3: E2.2.2.1-3, Sheet Shear Failure Analysis Results. 

Design Factor Existing AISI 
S100-12 

Recalibrated 

LRFDo 0.55 0.865 
ΩASDo 2.80 1.770 
LSDo 0.45 0.700 

No. of Samples = 23 
 
No new data was available beyond Pekoz’s 1979 report to analyze AISI S100-12 
Equation E2.2.2.1-4, which was originally derived from the 1979 data. Equation 
E2.2.2.1-4 and its resistance and safety factors were recalibrated anyway with the 
five Pekoz specimens which applied to this high da/t range. Table 4 show that the 
recalibrated factors match well with the existing AISI S100-12 factors. The 
measured to predicted strength ratio was 0.99 and the coefficient of variance was 
0.167 for Equation E2.2.2.1-4 specimens. 
 

Table 4: E2.2.2.1-4, Sheet Shear Failure Analysis Results. 

Design Factor 
Existing AISI 

S100-12 
Recalibrated 

(LRFD, o = 3.5) 0.50 0.467 

Ω (ASD, o = 3.5) 3.05 3.279 

(LSD, o = 4.0) 0.40 0.364 

No. of Samples = 5 
 
Tension: Weld Failure 
 
AISI S100-12 Equation E2.2.3-1 calculates the resistance of arc spot welds under 
tension. This failure mode is more common with arc spot welds made in 
conjunction with weld washers. The weld washers reinforce the surrounding sheet 
thereby reducing chances of sheet tearing and directing failure through the weld. 
Recall this study focuses only on connections made without weld washers. 
Guenfoud was the only author able to produce tension weld failures without weld 
washers. He was able to penetrate through side lapped combined sheet thicknesses 
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up to 0.23 inches (5.84mm) thick using an E6011 electrode. The resistance of the 
thick sheets were able to induce tension weld failures through 16 specimens.  
 
Both Equation E2.2.2.1-5 and Equation 1 were used to assess Equation E2.2.3-1. 
As observed in Table 5, Equation E2.2.2.1-5 produced poor E2.2.3-1 strength 
predictions and a poor coefficient of variance equal to 1.43. Figure 3 highlights 
why. Equation E2.2.2.1-5 (diagonal line) severely under predicts the effective 
weld diameter of welds made through thicker sheets. By applying a lower limit of 
0.45d as in Equation 1, the coefficient of variance sharpens to 0.362.  
 
Even with the increase accuracy of Equation 1 over Equation E2.2.2.1-5, the 
average measured to predicted strength ratio was 0.62. The issue centered on the 
side lapped sheet configuration of these test samples common to practice. Loading 
side lapped sheets can cause stress concentrations at the weld perimeter, creating 
a peeling effect. As proposed by Guenfoud, a reduction coefficient, “r” equal to 
0.50 is recommended for Equation E2.2.3-1. Table 6 illustrates the improvement 
of analysis results when applying Equation 1 and sequentially applying the 
reduction coefficient.  
 

Table 5: E2.2.3-1, Weld Tension Failure Analysis Results.  

Design Factor 
Existing 

AISI 
S100-12 

Recalibrated 
with Equation 
E2.2.2.1-5 and 

r = 0.50

Recalibrated 
with Equation 1 

and r = 0.50 

(LRFD, o = 3.0) 0.60 0.062 0.499 
Ω (ASD, o = 3.0) 2.50 24.677 3.066 
(LSD, o = 3.5) 0.50 0.026 0.368 

No. of Samples = 16 
*Note: o, is the target reliability index for the calculation of resistance and safety factors. AISI S100-
12 specifies two options based on the application. Only results using the less conservative o are 
presented in this paper. 
 

Table 6: Improvement of E2.2.3-1 Performance Using Equation 1 and “r”. 

 
Recalibrated 

with Equation 
E2.2.2.1-5 

Recalibrated 
with Equation 1 

Recalibrated 
with Equation 
1 and r = 0.50 

COV 1.43 0.362 0.362 
Average (Pt/Pn) 4.58 0.620 1.24 
 (LRFD) 0.062 0.249 0.499 

*Note: Pt, is the measured failure load and Pn, is the predicted resistance of E2.2.3-1. COV stands for 
coefficient of variance. 
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Tension Sheet Failure 
 
Tearing resistance of arc spot welded steel sheets subject to tensile loading is 
predicted by AISI S100-12 Equation E2.2.3-2. Three different sheet 
configurations common to practice can be subject to uplift forces and are each 
treated differently in the provisions when applying Equation E2.2.3-2. Resistance 
of interior arc spot welds are calculated from Equation E2.2.3-2 directly while the 
resistance of eccentric and side lap weld configurations are specified to be reduced 
by 50% and 30% respectively from that calculated by Equation E2.2.3-2. 
 
A total 121 interior tension weld specimens analyzed proved Equation E2.2.3-2 
to be an adequate strength estimate resulting in a coefficient of variance equal to 
0.223 and a measured to predicted strength ratio equal to 1.27. The existing 
resistance and safety factors improved when recalibrated as observed in Table 7.   
 

Table 7: E2.2.3-2, Interior Sheet Tension Failure Analysis Results. 

Design Factor 
Existing AISI 

S100-12 
Recalibrated 

(LRFD, o = 3.0) 0.60 0.767 

Ω (ASD, o = 3.0) 2.50 1.994 

(LSD, o = 3.5) 0.50 0.605 
No. of Samples = 121 

 
The eccentric sheet specimens are those that had only one side of the connection 
loaded in tension, resulting in eccentric loading on the arc spot weld, simulating 
a perimeter roof weld. This study found that the currently specified 50% reduction 
(r) worked well and the recalibrated resistance and safety factors improved as 
shown in Table 8. From 40 specimens analyzed, the coefficient of variance was 
0.278 and the measured to predicted strength ratio was 1.27. 
 

Table 8: E2.2.3-2, Eccentric Sheet Tension Failure Analysis Results.  

Design Factor 
Existing 
(r = 0.50) 

Recalibrated 
(r = 0.50) 

(LRFD, o = 3.0) 0.60 0.669 

Ω (ASD, o = 3.0) 2.50 2.287 

(LSD, o = 3.5) 0.50 0.516 

No. of Samples = 40 
 
Side lap sheet configurations represent arc spot welds that are placed to connect 
adjacent sheet diaphragms. A total of 54 side lap specimens were available for 
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analysis, consisting of both two sheet layers and four sheet layer configurations. 
AISI S100-12 specifies a 30% reduction (r equal to 0.70) for side lap samples. 
Alternative to a 30% reduction this study found that by taking the total combined 
sheet thickness as one half, the reduction was unnecessary. This idea stems from 
Laboube and Guenfoud’s reports, who both observed that the failure of side lap 
specimens always occurred a mid-thickness, therefore only the sheet(s) making 
up the top lap where providing sheet tearing resistance.  
 
Table 9 presents results when using half of the total combined sheet thickness and 
Table 10 shows results when using the full thickness. Using a 30% reduction (r 
equal to 0.70) and a full thickness, the resistance and safety factors recalibrate 
poorly compared to those specified in AISI S100-12, demonstrated in Table 10. 
While, using half of the combined sheet thickness, the resistance and safety 
factors improve, so much that a reduction is not necessary as illustrated in Table 
9. When eliminating the reduction and using one half of the total sheet thickness, 
a coefficient of variance equal to 0.287 and a measured to predicted ratio equal to 
1.46 were achieved. 

 
Table 9: E2.2.3-2, Side Lap Sheet Tension Failure Analysis Results Using Half 

Combined Sheet Thickness.  

Design Factor 
Existing  
(r = 0.70) 

Recalibrated  
(r =0.70) 

Recalibrated  
(r = 1.0) 

(LRFD, o = 3.0) 0.60 0.758 0.530 

Ω (ASD, o = 3.0) 2.50 2.018 2.887 

(LSD, o = 3.5) 0.50 0.583 0.408 

No. of Samples = 54 
 
Table 10: E2.2.3-2, Side Lap Sheet Tension Failure Analysis Results Using Full 

Combined Sheet Thickness. 

Design Factor 
Existing 
(r = 0.70) 

Recalibrated 
(r =0.70) 

Recalibrated 
(r =0.50) 

(LRFD, o = 3.0) 0.60 0.406 0.569 

Ω (ASD, o = 3.0) 2.50 3.768 2.689 

(LSD, o = 3.5) 0.50 0.312 0.436 
No. of Samples = 54 
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Maximum Sheet Thickness 
 
AISI S100-12 specifies a maximum combined sheet thickness of 0.15 inches (3.81 
mm) for arc spot welded connections. This limit is derived from the 1999 data 
base, where the thickest connections tested were below 0.15 inches (3.81 mm) 
thick. The expanded data base now includes arc spot welded connections with 
combined sheets up to 0.23 inches (5.84 mm) thick. As a case study, the sixteen 
specimens analyzed for Equation E2.2.3-1 were split into two groups; those above 
0.15 inches (3.81 mm) and those below. The performance of both groups were 
compared to ensure the specimens above the current 0.15 inch (3.81 mm) limit 
performed equally was well as those below.  
 
Six specimens were between 0.092 inches (2.34 mm) to 0.15 inches (3.81 mm) 
thick and ten specimens were between 0.15 inches (3.81 mm) and 0.23 inches 
(5.84 mm) thick. Applying Equation E2.2.3-1, and the recommendation of 
Equation 1 for effective weld diameter and a 50% reduction as detailed above, the 
results of both groups below and above the 0.15 inch (3.81 mm) limit are 
compared in Table 11. Specimens with combined sheets greater than 0.15 inches 
(3.81 mm) performed well and did not impact the results negatively when 
combined with specimens less than 0.15 inches (3.81 mm). The same is true for 
the other failure modes detailed here such as shear and tension sheet failure whose 
resistance and design factors improved despite encompassing analysis of 
specimens exceeding the 0.15 inch (3.81 mm) limit.  
 

Table 11: Combined Sheet Thickness Comparison for Tension Weld Failures 
 t ≤ 0.15" 0.15" <  t < 0.25" Combined t < 0.25" 

Average (Pt/Pn) 0.956 1.407 1.238 
COV 0.212 0.339 0.362 

 (LRFD, o = 3.0) 0.497 0.564 0.499 
 
Conclusions 
 
The arc spot weld data base has significantly increased since the last 
comprehensive assessment performed in 1999 by the research additions of Peuler, 
LaBoube, Snow and Easterling, and Guenfoud. Combining new and old data, the 
applicability of the AISI S100-12 arc spot weld design Equations E2.2.2.1-1, 
E2.2.2.1-2, E2.2.2.1-3, E2.2.2.1-4, E2.2.2.1-5, E2.2.3-1 and E2.2.3-2 were 
reassessed. 
 
The effective weld diameter calculation, Equation E2.2.2.1-5 was found to no 
longer best represent the expanded data base. It is recommended that the upper 

581



limit of 0.55d be removed and a lower limit of 0.45d be added. This modification 
was found to best represent the measured effective weld diameter data base and 
outperformed the original Equation E2.2.2.1-5 when applied to weld fracture 
Equations E2.2.2.1-1 and E2.2.3-1.  
 
The maximum permitted combined sheet thickness of 0.15 inches (3.81 mm) 
specified in AISI S100-12 Section E2.2, no longer is applicable to the expanded 
arc spot weld data base which included specimens with combined thicknesses up 
to 0.23 inches (5.84mm). Thicker specimens up to 0.23 inches (5.84 mm) 
performed well in this study and it is recommended that AISI S100-12 raises the 
maximum permitted combined sheet thickness up to 0.25 inches (6.35 mm). 
 
Shear sheet tearing Equations E2.2.2.1-2, E2.2.2.1-3, E2.2.2.1-4 performed well. 
The expanded data base included several new specimens in this category with the 
exception of Equation E2.2.2.1-4 of which no change is recommended here. The 
resistance and safety factors of Equations E2.2.2.1-2 and E2.2.2.1-3 improved 
with recalibration, and it is recommended that AISI increase these values as 
recommended in Table 12. The shear weld fracture Equation E2.2.2.1-1, 
performed well using the modified effective weld diameter calculation, Equation 
1, and no change to its respective resistance and safety factors are recommended 
here. The recommendations to the shear provisions are summarized following.  
 
Section E2.2 (current): “Arc spot welds shall not be made through steel where the 
thinnest sheet exceeds 0.25 in (0.15 in) in thickness, nor through a combination 
of steel sheets having a total thickness over 0.25 in (0.15 in)”. 
 
Modified E2.2.2.1-5 (Equation 1):   de = the greater of  0.7d – 1.5t 
       0.45d  
 

Table 12: Recommendation for AISI S100 Shear Provisions. 
Arc Spot Weld – Shear (Current S100-12 Italicized) 

Limit 
State 

Equ. da/t 
 

(LRFD)
Ω

(ASD) 
 

(LSD) 

S
he

et
 T

ea
ri

ng
 E2.2.2-2 da/t ≤ 0.815 √(E/Fu) 

0.80 
(0.70) 

1.95 
(2.20) 

0.65 
(0.60) 

E2.2.2-3 
0.815 √(E/Fu) <  

da/t  
< 1.397 √(E/Fu) 

0.85 
(0.55) 

1.75  
(2.80) 

0.70 
(0.45) 

E2.2.2-4 1.397 √(E/Fu) ≤ da/t 
0.45 

(0.50) 
3.25 

(3.05) 
0.35 

(0.40) 
Weld 

Fracture 
E2.2.2-1 All 

0.60 
(0.60) 

2.45 
(2.55) 

0.50 
(0.50) 
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Tension weld fracture proved to be a rare failure mode without the use of weld 
washers. Equation E2.2.3-1 in conjunction with Equation E2.2.2.1-5, performed 
rather poorly for weld tension resistance prediction. This study recommends AISI 
modifies Equation E2.2.2.1-5 to Equation 1 to accurately predict the effective 
weld diameter of thicker specimens and that AISI applies a reduction factor “r” 
equal to 0.50 to account for non-uniform stress distributions in order to accurately 
predict weld tension resistance. 
 
The tension sheet tearing Equation E2.2.3-2, performed well for interior and 
eccentric sheet configurations and their respective resistance and safety factors 
significantly improved. It is recommended that AISI specifies resistant and safety 
factors based on sheet configuration as listed in Table 13. After analysis of side-
lap configurations, it is clear that the design thickness needs to be equal to one 
half of the total combined sheet thickness as this is where sheet failure occurred 
for all side-lap samples. By taking the design thickness as one half, the need for a 
30% reduction as currently specified in AISI S100-12 is no longer necessary. The 
recommendations to the tension provisions are summarized following.  
 

Modified E2.2.3-1: Pn = (r)	 F  

 
Modified E2.2.3-2: Pn = (r)	0.8 F /F td F  
 

Table 13-A: Recommendation for AISI S100 Tension Provisions. 

Arc Spot Weld – Tension (Current S100-12 Italicized) 

Limit 
State 

Equ. 
Sheet 

Configuration 
Design 

Thickness - t 
Reduction 
Factor - r 

Sheet 
Tearing 

E2.2.3-2 

Single or 
Multiple Sheet 

Total sheet(s) 
thickness 

1.0 

Side-lap 
50% of total 

sheet(s) 
thickness (100%) 

1.0 (0.7) 

Edge      
(Eccentric 
Loading) 

Total sheet(s) 
thickness 

0.5 

w/washers  
1.0 

Weld 
Fracture 

E2.2.3-1 All 
Total sheet(s) 

thickness 
0.5 (1.0) 
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Table 13-B: Recommendation for AISI S100 Tension Provisions Continued. 

Arc Spot Weld – Tension (Current S100-12 Italicized) 

 
Panel and Deck 

Applications 
Other Applications 

Equ. 
Sheet 

Configuration 
 

(LRFD) 
Ω 

(ASD) 
 

 (LSD) 
 

(LRFD) 
Ω 

(ASD) 
 

 (LSD) 

E
2.

2.
3-

2 

Single or 
Multiple Sheet 

0.75 
(0.60) 

2.00 
(2.50) 

0.60 
(0.50) 

0.65 
(0.50) 

2.35 
(3.00) 

0.50 
(0.40) 

Side-lap 
0.55 

(0.60) 
2.90 

(2.50) 
0.40 

(0.50) 
0.45 

(0.50) 
3.50 

(3.00) 
0.35 

(0.40) 

Edge      
(Eccentric 
Loading) 

0.65 
(0.60) 

2.30 
(2.50) 

0.50 
(0.50) 

0.55 
(0.50) 

2.75 
(3.00) 

0.45 
(0.40) 

E
2.

2.
3-

1 

All 
0.50 

(0.60) 
3.05 

(2.50) 
0.40 

(0.50) 
0.40 

(0.50) 
3.90 

(3.00) 
0.30 

(0.40) 

 
Further details concerning this study can be found in the full AISI 2016 report, 
“Resistance of Arc Spot Welds – Update to Provisions” authored by Blackburn 
and Sputo. This study was sponsored by the American Iron and Steel Institute and 
the Steel Deck Institute. 
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Appendix. – Notation 
 
o = target reliability index 
COV = coefficient of variance 
d = visual weld diameter, located at the top sheet surface 
de = effective weld diameter, located at the failure plane 
Ω = safety factor calculated for use in ASD 
 = resistance factor calculated for use in either LRFD or LSD 
Pn = predicted resistance of the respective AISI S100-12 strength equation 
Pt = measured resistance, failure load of the tested specimen 
t = total combined sheet thickness 
r = reduction coefficient  
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Abstract 

 

This paper examines the accuracy of design equations specified in the North 

American and European codes for cold-formed steel structures in determining 

the ultimate tilt bearing capacity of single-shear single-row bolted connections 

without washers in flat steel sheets. It points out that the code equations do not 

properly distinguish the tilt bearing failure mode from the conventional bearing 

failure mode, which is typical of double-shear connections and single-shear 

connections with washers. The tilt bearing capacity is affected by the width of 

the connected sheet, and its capacity does not vary linearly with either the sheet 

thickness or the bolt diameter. Based on the test results of 150 specimens 

composed of G2 and G450 sheet steels having various dimensional 

configurations, this paper proposes a design equation that is dimensionally 

consistent and that is considerably more accurate than all the code equations. 

The proposed equation was also verified against single-shear single-row bolted 

connections tested by independent researchers which failed in the tilt bearing 

mode. A resistance factor of 0.75 is recommended for use with the proposed 

equation for determining the ultimate tilt bearing capacity of single shear single-

row bolted connections in cold-reduced steel sheets. 

 

Introduction 

 

The ultimate bearing capacity of a bolted connection is specified in Section 

E3.3.1 of AISI S100-12 (AISI 2012) and Table 7.4 of EN-1993-1-3:2006 (ECS 
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2006). No fundamental distinction is made between double-shear and single-

shear connections, although the AISI specification employs modification factors. 

However, the bearing failure mode typical of the inside sheet of a double-shear 

connection has a distinct mechanism from the tilt bearing failure mode of a 

single-shear connection without washers, as evident in Figure 1. 

 

Figure 1 Different types of bearing failures 

 

The conventional bearing failure shown in Figure 1(a) occurred on the 

downstream side of the bolt hole, while the tilt bearing failure in Figure 1(b) was 

due to the bolt head punching through the sheet on the upstream side during 

tilting. Bolt tilting and curling of the connected sheet occur due to the 

eccentricity of loading in a single-shear connection as illustrated in Figure 2. 

 

Figure 2. Single-shear connection subject to curling and bolt tilting 

 

For a single-shear bolted connection with or without washers, there is another 

failure mode that was associated by some researchers with tilting and bearing. 

The failure mode is depicted in Figure 3, and was experienced by the specimens 

tested by Carril et al. (1994) and Casafont et al. (2006). Such a failure mode was 

called “localised tearing” by Rogers & Hancock (2000). Localised tearing was 

in the past mistaken to be the net section tension fracture mode (LaBoube 1988, 

Rogers & Hancock 2000), and is outside the scope of this paper. 

(a) Conventional 

bearing 

(b) Tilt bearing 
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Figure 3 Localised tearing (extracted from Casafont et al. (2006) 

 

The authors did not detect evidence of tilt bearing failures among the specimens 

tested by Wallace & Schuster (2001). Figure 6(a) of their report shows a bearing 

failure on the downstream side of the bolt hole of a specimen without washers 

despite the presence of curling. Yu & Mosby (1981), who tested single-shear 

bolted connections in thin sheets, did not discuss the tilt bearing failure mode. 

 

Rogers & Hancock (2000) did not define the failure mode that is due to the bolt 

head punching through the connected sheet on the upstream side of the bolt hole. 

The North American and the European guidelines on the testing of sheet steel 

connections (AISI 2008, ECCS 2009) describe five failure modes including the 

so-called “tilting and pull-out failure” mode, but do not mention the tilt bearing 

failure shown in Figure 1(b). 

 

This paper presents the first ever systematic study on the tilt bearing capacities, 

which are due to the bolt head punching through the connected sheet on the 

upstream side of the bolt hole. It details how a nonlinear empirical equation for 

the tilt bearing capacity can be derived methodically without losing dimensional 

consistency. The design equation will be formulated based on the results of 150 

G2 and G450 sheet steel specimens tested in the present work, and verified 

against independent test results of other researchers (Casafont et al. 2006, Yu & 

Sheerah 2008, Hoang et al. 2013) where the single-shear single-row bolted 

connection specimens are known to have failed by tilt bearing. 

 

Interested readers may consult Teh & Uz (2014) for the conventional bearing 

failure mode, Teh & Gilbert (2012) for the net section tension fracture mode, 

Teh & Clements (2012) for the block shear failure mode, and Teh & Uz (2015) 

for the shear-out failure mode.  

 

Equations for bearing capacity of single-shear bolted connection 

 

Section E3.3.1 of AISI S100-12 (AISI 2012) specifies the bearing capacity per 

bolt of a single-shear bolted connection without washers to be 

 

ub FtdCP 75.0
 

 (1) 

 

      P 

589



in which d is the bolt diameter, t is the sheet thickness and Fu is the material 

tensile strength. The bearing factor C depends on the ratio of the bolt diameter d 

to the sheet thickness t, as given in Table E3.3.1-1 of the specification. 

 

The “modification factor” of 0.75 in Equation (1) is supposed to differentiate a 

single-shear connection from a double-shear one (1.33), and accounts for the 

absence of washers (1.00).  

 

The Australasian standard (SA/SNZ 2005) adopts Equation (1). On the other 

hand, the European code (ECS 2006) does not even make a distinction between 

single-shear and double-shear connections, and does not consider the benefit of 

washers. For the specimens tested in the present work, in which the end distance 

was invariably more than 3 times the bolt diameter, the European code specifies 

the bearing strength per bolt to be 

 

utb FtdkP 5.2
 

 (2) 

 

in which the variable kt is equal to unity for sheet thicknesses greater than 1.25 

mm, otherwise it is 

 

mm25.1mm75.0;
5.2

5.18.0



 t

t
kt

 
 (3) 

 

For Equation (3) to be valid (not necessarily accurate), the sheet thickness t must 

be measured in millimetres since the two constants are dimensionless. 

 

The width of the connected sheet is likely to affect the tilt bearing capacity as 

the resistance to curling increases with increasing sheet width, yet this parameter 

is absent in both code equations. In the present work, the tilt bearing capacity 

per bolt of a single-shear single-row bolted connection is expressed as 

 

u
c

n
ab

b FWtdCP tb
 

 (4) 

  

in which Wn is the sheet width that is net of the bolt hole diameter. For single-

row bolted connections having more than one bolt, the net sheet width Wn is 

equal to the total net sheet width divided by the number of bolts. 

 

The ultimate tilt bearing coefficient Ctb and the exponential terms a through c 

would be determined through analyses of the present test results, and verified 

against independent test results of other researchers (Casafont et al. 2006, Yu & 

Sheerah 2008, Hoang et al. 2013). 
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In order to ensure dimensional consistency, the sum of the exponential terms a, 

b and c must be equal to 2. Since the least dominant geometric variable on the 

tilt bearing capacity is the net sheet width Wn, which is absent in the code 

equations, the exponential term c is determined solely as a function of a and b 

 

 bac  2
 

 (5) 

 

Test materials 

 

The G450 and G2 sheet steel materials used in the present laboratory tests, 

which have trade names GALVASPAN
®
 and GALVABOND

®
, respectively, 

were manufactured by Bluescope Steel Australia. G450 sheet steel is a structural 

grade covered by the Australasian standard (SA/SNZ 2005) for which the 

nominal yield stress and tensile strength may be fully utilised in structural 

design calculations. The average yield stresses Fy, tensile strengths Fu and 

elongations at fracture over 15 mm, 25 mm and 50 mm gauge lengths 15, 25 

and 50, and uniform elongation outside the fracture uo of the steel materials as 

obtained from 12.5 mm wide tension coupons are shown in Tables 1 and 2 for 

the G450 and G2 sheet steels, respectively.  

 

Table 1 Average properties for G450 sheet steels 

 
tbase 

(mm) 

Fy 

(MPa) 

Fu 

(MPa) 

Fu / 

Fy 

15 

(%) 

25 

(%) 

50 

(%) 

uo 

(%) 

1.5 mm 1.48 555 590 1.06 21.5 16.3 12.0 6.9 

1.9 mm 1.82 540 585 1.08 26.3 22.3 12.1 8.4 

2.4 mm 2.36 535 580 1.08 31.0 23.8 16.3 8.9 

3.0 mm 2.95 520 555 1.07 30.5 21.4 14.8 8.2 

 

Table 2 Average properties for G2 sheet steels 

 
tbase 

(mm) 

Fy 

(MPa) 

Fu 

(MPa) 

Fu / 

Fy 

15 

(%) 

25 

(%) 

50 

(%) 

uo 

(%) 

1.5 mm 1.45 320 400 1.25 55.2 45.9 37.7 24.5 

2.4 mm 2.35 310 390 1.26 62.4 51.5 40.1 26.8 

 

Specimen configurations and test arrangements 

 

All specimens tested in the present work were single-shear single bolted 

connections, as illustrated in Figure 2. The distance between each bolt and the 

downstream end was at least 50 mm to prevent the shear-out failure mode.  
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For the purpose of determining the relationship between the sheet thickness and 

the tilt bearing capacity, the present work tested fifty seven G450 sheet steel 

specimens having nominal thicknesses of 1.5, 1.9, 2.4 and 3.0 mm. The resulting 

equation would be verified against the test results of Yu & Sheerah (2008) 

involving 0.92 mm Grade 33 and 1.12 mm Grade 50 sheet steels.  

 

In order to ascertain the effect of sheet width, for each thickness of the G450 

sheet steels, the widths were 50, 60, 70, 75, 100 and 120 mm. These values 

represent the range that may be covered by one bolt in cold-formed steel 

constructions. The derived equation would be verified against the test results of 

Yu & Sheerah (2008) involving a ratio W/d close to 16. 

 

Two bolt sizes commonly used for structural connections in G450 sheet steels, 

12 and 16 mm, were used. The proposed equation would be verified against the 

test results of Yu & Sheerah (2008) involving 6.4 mm bolts, and those of 

Casafont et al. (2006) and Hoang et al. (2013) involving 8 mm bolts. 

 

The fifty seven specimens whose results would be used to determine the 

relationships between the tilt bearing capacity and each of the three geometric 

variables had a nominal bolt hole clearance of 2 mm, the absolute maximum 

allowed by the codes (AISI 2012, SA/SNZ 2005). The effect of smaller bolt hole 

clearance would be investigated by testing twenty nine G450 and thirty two G2 

specimens having 1 mm clearance only. 

 

A total of sixty four specimens composed of G2 sheet steel would be tested in 

light of the finding of Teh & Uz (2014) regarding the effect of material ductility 

on the bearing capacity of double-shear connections. The G2 specimens also 

provided an opportunity to investigate the effect of the orientation of bolt head 

and nut on the tilt bearing capacity. The two orientations are shown in Figure 4. 

Figure 4 Two orientations of bolt head and nut:  

(a) Orientation I;  (b) Orientation II  

 

(a) (b) 
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Exponential terms a, b and c 

 

Tables 3 and 4 lists the geometric dimensions and ultimate test loads of G450 

specimens that had a nominal bolt hole clearance of 2 mm, for 12-mm and 16-

mm bolts, respectively. The variable Pt in the tables denotes the ultimate test 

load, while Pp is the tilt bearing capacity predicted by the equations. 

 

Table 3 Test results of G450 specimens having 12-mm bolt with 2-mm hole 

clearance 

Spec 
W 

(mm) 

t 

(mm) 

rth 

 

Pt 

(kN) 

Pt/Pp 

(1) (2) (9) 

ES31 50 1.5 Ref 14.9 0.63 0.57 0.90 

ES51  1.9 1.16 21.0 0.73 0.66 0.97 

ES53a  2.4 1.23 29.5 0.80 0.72 0.98 

ES53b    28.0 0.76 0.68 0.92 

ES33  3.0 1.31 36.6 0.83 0.75 0.93 

ES35 60 1.5 Ref 15.3 0.65 0.58 0.88 

ES55a  1.9 1.18 22.6 0.79 0.71 1.00 

ES55b    21.5 0.75 0.67 0.95 

ES57a  2.4 1.19 31.6 0.86 0.77 1.00 

ES57b    31.3 0.85 0.76 0.99 

ES37a  3.0 1.39 39.3 0.89 0.80 0.96 

ES37b    40.4 0.91 0.82 0.99 

ES39 70 1.5 Ref 17.1 0.73 0.65 0.96 

ES41  3.0 1.38 44.3 1.00 0.90 1.05 

ES47 75 1.5 Ref 17.5 0.74 0.67 0.97 

ES59  1.9 1.16 24.8 0.86 0.78 1.05 

ES61a  2.4 1.22 33.7 0.91 0.82 1.02 

ES61b    33.0 0.89 0.80 0.99 

ES49a  3.0 1.40 47.3 1.07 0.96 1.10 

ES49b    44.3 1.00 0.90 1.03 

ES44 100 1.5 Ref 19.0 0.81 0.73 0.99 

ES63a  1.9 1.08 24.8 0.86 0.78 0.99 

ES63b    25.1 0.87 0.79 1.00 

ES71  2.4 1.13 33.8 0.91 0.82 0.96 

ES70 120 1.9 Ref 24.9 0.87 0.78 0.96 

ES69  2.4 1.10 35.4 0.96 0.86 0.97 

 

The variations of the tilt bearing capacity with the sheet thickness were checked 

against 12 groups of specimens shown in Tables 3 and 4. The normalised 

capacity ratio rth shown in the tables were calculated from  
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tFP

tFP
r

ut

ut

ref

refref
th 

 
 (6) 

 

Table 4 Test results of G450 specimens having 16-mm bolt with 2-mm hole 

clearance 

Spec 
W 

(mm) 

t 

(mm) 

rth 

 

rd 

 

Pt 

(kN) 

Pt/Pp 

(1) (2) (9) 

ES32 50 1.5 Ref 1.17 17.4 0.57 0.50 0.92 

ES52  1.9 1.02 1.03 21.7 0.57 0.51 0.89 

ES54a  2.4 1.16 1.10 32.3 0.66 0.59 0.94 

ES54b     30.9 0.63 0.56 0.90 

ES34  3.0 1.31 1.17 42.9 0.73 0.66 0.96 

ES36 60 1.5 Ref 1.23 18.8 0.61 0.54 0.95 

ES56  1.9 1.03 1.07 23.5 0.61 0.55 0.91 

ES58a  2.4 1.15 1.08 34.8 0.71 0.64 0.96 

ES58b     33.2 0.67 0.61 0.93 

ES38  3.0 1.28 1.13 45.1 0.77 0.69 0.97 

ES40 70 1.5 Ref 1.18 20.2 0.66 0.58 0.99 

ES42  3.0 1.30 1.12 49.4 0.84 0.75 1.03 

ES48a 75 1.5 Ref 1.32 22.9 0.75 0.66 1.11 

ES48b     23.4 0.77 0.67 1.13 

ES60  1.9 0.99 1.13 28.0 0.73 0.66 1.04 

ES62a  2.4 1.07 1.15 38.3 0.78 0.70 1.01 

ES62b     38.2 0.78 0.70 1.00 

ES43  3.0 1.21  48.2 0.82 0.74 0.99 

ES50    1.17 51.9 0.88 0.79 1.06 

ES45 100 1.5 Ref 1.33 25.2 0.82 0.72 1.14 

ES64a  1.9 0.99 1.14 26.9 0.70 0.63 0.94 

ES64b     30.2 0.79 0.71 1.05 

ES65a  2.4 1.08 1.18 40.2 0.82 0.73 1.00 

ES65b     39.4 0.80 0.72 0.98 

ES46a  3.0 1.22 N/A 54.2 0.92 0.83 1.04 

ES46b     53.7 0.91 0.82 1.04 

ES66a 120 1.9 Ref 1.17 28.6 0.75 0.67 0.96 

ES66b     29.6 0.77 0.70 0.99 

ES67a  2.4 1.13 1.21 43.1 0.87 0.79 1.03 

ES67b     42.7 0.87 0.78 1.02 

ES68  3.0 1.19 N/A 54.2 0.92 0.83 0.96 

 

The exponential term a in Equation (4) should satisfy 
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  1
th /  a

refttr
 

 (7) 

 

In order to avoid a decimal exponential term in Equation (4) if feasible, the 

exponential term a is taken to have the following form 

 

j
ia 1

 
 (8) 

 

in which i and j are positive integers.  

 

It was found that using a = 
4
/3 simulated the relationship between the tilt bearing 

capacity and the sheet thickness quite well. 

 

The variable rd in Table 4 denotes the ratio between the ultimate test load of a 

16-mm bolt specimen and that of the corresponding 12-mm bolt specimen. The 

average value of rd is 1.16. Using b = ½ in Equation (4) would give a ratio of 

1.15. The exponential term b is therefore taken to be ½, meaning that the tilt 

bearing capacity varies with the square root of the bolt diameter. 

 

Having determined the exponential terms a and b to be 
4
/3 and ½, respectively, 

the exponential term c was computed from Equation (5) to be 
1
/6. 

 

Ultimate tilt bearing coefficient and verification  

 

Table 5 lists the geometric dimensions and ultimate test loads of the G450 

specimens which had a nominal bolt hole clearance of 1 mm. It was found that 

the tighter hole clearance increased the ultimate tilt bearing capacity by about 

5% only on average, justifying the use of one tilt bearing coefficient Ctb 

common to all bolt holes having clearances up to the maximum of 2 mm 

allowed by the codes (AISI 2012, SA/SNZ 2005). 

 

Tables 6 and 7 list the geometric dimensions and ultimate test loads of G2 

specimens that had nominal bolt hole clearances of 2 mm and 1 mm, 

respectively. By comparing the professional factors in these tables against those 

in Tables 3 through 5 for comparable specimens, it can be concluded that the 

significantly different levels of material ductility between G2 and G450 sheet 

steels, as evident from Tables 1 and 2, did not affect the tilt bearing capacities.  

 

The results shown in Tables 6 and 7 also indicate that the orientations of the bolt 

head and nut did not have significant effect on the tilt bearing capacity, although 

there was some 5% difference on average for the specimens in Table 6.  
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Table 5 Test results of G450 specimens with 1-mm hole clearance 

Spec 
W 

(mm) 

t 

(mm) 

d 

(mm) 

Pt 

(kN) 

Pt/Pp 

(1) (2) (9) 

ES1a 50 1.5 12 16.8 0.71 0.64 1.01 

ES1b    17.0 0.72 0.65 1.01 

ES2a   16 19.1 0.62 0.55 1.01 

ES2b    18.5 0.60 0.53 0.98 

ES3a  3.0 12 39.8 0.90 0.81 1.01 

ES3b    41.5 0.94 0.84 1.05 

ES4a   16 44.3 0.75 0.68 0.99 

ES4b    42.5 0.72 0.65 0.95 

ES5a 60 1.5 12 17.2 0.73 0.66 0.99 

ES5b    19.9 0.84 0.76 1.15 

ES6a   16 21.3 0.70 0.61 1.08 

ES7a  3.0 12 39.8 0.90 0.81 0.97 

ES7b    43.6 0.99 0.89 1.06 

ES8a   16 47.2 0.80 0.72 1.01 

ES8b    47.1 0.80 0.72 1.01 

ES9 70 1.5 12 18.2 0.77 0.69 1.01 

ES10   16 23.5 0.77 0.67 1.15 

ES11  3.0 12 45.2 1.02 0.92 1.07 

ES12   16 51.0 0.87 0.78 1.06 

ES13 75 1.5 12 18.5 0.78 0.71 1.02 

ES14   16 23.8 0.78 0.68 1.14 

ES15  3.0 12 44.8 1.01 0.91 1.04 

ES16   16 54.6 0.93 0.83 1.12 

ES17 100 1.5 12 19.2 0.81 0.73 1.00 

ES18   16 24.6 0.80 0.70 1.12 

ES19  3.0 12 46.1 1.04 0.94 1.02 

ES20   16 57.2 0.97 0.87 1.10 

ES21 120 1.5  24.3 0.79 0.70 1.06 

ES22  3.0  57.4 0.97 0.88 1.06 

 

Having established that variations in bolt hole clearances, material ductility, and 

bolt head/nut orientation do not have meaningful effects on the tilt bearing 

capacity of single-shear single-row bolted connections, the ultimate tilt bearing 

coefficient Ctb in Equation (4) was determined to be 2.65 based on the ultimate 

test loads of 150 specimens listed in Tables 3 through 7 and the exponential 

terms a, b and c computed in the preceding section. Equation (4) becomes 
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unb FWtdP 6
1

3
4

2
1

65.2
 

 (9) 

 

The professional factors of Equation (9) are given in Tables 3 through 8, along 

with those of Equations (1) and (2). 

 

Table 6 Test results of G2 specimens with 2-mm hole clearance 

Spec 
W 

(mm) 

t 

(mm) 

d 

(mm) 
Orientation 

Pt 

(kN) 

Pt/Pp 

(1) (2) (9) 

YK 35 50 1.5 12 I 10.8 0.69 0.62 0.98 

YK 36    II 10.0 0.64 0.57 0.91 

YK 39   16 I 11.2 0.56 0.48 0.90 

YK 40    II 11.2 0.55 0.48 0.90 

YK 43 75  12 I 10.8 0.69 0.62 0.91 

YK 44    II 10.8 0.69 0.62 0.90 

YK 47   16 I 13.2 0.66 0.57 0.97 

YK 48    II 12.7 0.63 0.55 0.93 

YK 51 100  12 I 12.9 0.83 0.74 1.02 

YK 52    II 12.1 0.78 0.70 0.96 

YK 55   16 I 15.8 0.78 0.68 1.09 

YK 56    II 14.9 0.74 0.64 1.02 

YK 59 120  12 I 12.4 0.79 0.71 0.94 

YK 60    II 10.4 0.66 0.60 0.79 

YK 63   16 I 15.0 0.75 0.65 1.00 

YK 64    II 14.0 0.69 0.60 0.93 

YK 3 50 2.4 12 I 18.8 0.76 0.68 0.93 

YK 4    II 18.2 0.73 0.66 0.90 

YK 7   16 I 19.9 0.60 0.54 0.87 

YK 8    II 20.4 0.62 0.56 0.89 

YK 11 75  12 I 22.2 0.90 0.81 1.00 

YK 12    II 22.8 0.92 0.83 1.03 

YK 15   16 I 28.4 0.86 0.78 1.12 

YK 16    II 26.3 0.80 0.72 1.04 

YK 19 100  12 I 23.0 0.93 0.84 0.98 

YK 20    II 23.2 0.94 0.84 0.99 

YK 23   16 I 29.9 0.91 0.82 1.11 

YK 24    II 28.0 0.85 0.76 1.04 

YK 27 120  12 I 23.2 0.94 0.84 0.95 

YK 28    II 23.6 0.95 0.86 0.97 

YK 31   16 I 29.3 0.89 0.80 1.05 

YK 32    II 24.7 0.75 0.67 0.88 
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Table 7 Test results of G2 specimens with 1-mm hole clearance 

Spec 
W 

(mm) 

t 

(mm) 

d 

(mm) 
Orientation 

Pt 

(kN) 

Pt/Pp 

(1) (2) (9) 

YK 33 50 1.5 12 I 10.4 0.66 0.60 0.94 

YK 34    II 10.7 0.69 0.62 0.98 

YK 37   16 I 10.5 0.52 0.45 0.84 

YK 38    II 13.3 0.66 0.57 1.07 

YK 41 75  12 I 13.9 0.89 0.80 1.16 

YK 42    II 12.0 0.77 0.69 1.00 

YK 45   16 I 15.3 0.76 0.66 1.11 

YK 46    II 15.7 0.78 0.68 1.15 

YK 49 100  12 I 14.2 0.91 0.82 1.12 

YK 50    II 14.5 0.93 0.84 1.15 

YK 53   16 I 13.5 0.67 0.58 0.93 

YK 54    II 16.8 0.83 0.72 1.15 

YK 57 120  12 I 13.9 0.89 0.80 1.06 

YK 58    II 13.9 0.89 0.80 1.06 

YK 61   16 I 16.5 0.82 0.71 1.10 

YK 62    II 15.0 0.75 0.65 1.00 

YK 1 50 2.4 12 I 20.3 0.82 0.74 0.99 

YK 2    II 19.9 0.80 0.72 0.97 

YK 5   16 I 20.4 0.62 0.56 0.88 

YK 6    II 19.7 0.60 0.54 0.85 

YK 9 75  12 I 24.9 1.02 0.92 1.13 

YK 10    II 23.7 0.96 0.86 1.07 

YK 13   16 I 27.1 0.82 0.74 1.06 

YK 14    II 28.1 0.85 0.77 1.11 

YK 17 100  12 I 25.1 1.02 0.91 1.07 

YK 18    II 24.5 0.99 0.89 1.04 

YK 21   16 I 30.6 0.93 0.83 1.13 

YK 22    II 29.3 0.89 0.80 1.09 

YK 25 120  12 I 25.3 1.02 0.92 1.04 

YK 26    II 25.4 1.02 0.92 1.04 

YK 29   16 I 30.6 0.93 0.84 1.10 

YK 30    II 30.6 0.93 0.83 1.09 

Equation (9) was checked against the test results of independent researchers 

where the specimens failed by tilt bearing due to the bolt head punching through 

the connected sheet on the upstream side of the bolt hole, and where the nominal 

hole diameter clearance did not exceed 2 mm. Yu & Sheerah (2008) tested 12 

such specimens with a diameter clearance of 1.5 mm. Casafont et al. (2006) 

tested single-shear single-row bolted connections having two bolts each. From 
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the photographs provided in their paper, most of the specimens appear to have 

failed in the localised tearing mode depicted in Figure 3. However, one 

specimen having a clearance of 1 mm, shown in Figs. 31 and 32 of their paper, 

failed in tilt bearing due to the bolt head punching through the connected sheet 

on the upstream side of the bolt hole. Hoang et al. (2013) tested one specimen 

only, with a clearance of 0.5 mm. All these test results are included in Table 8. 

 

Table 8 Results of independent researchers 

Researchers 
W 

(mm) 

t 

(mm) 

d 

(mm) 

Fu 

(MPa) 

Pt 

(kN) 

Pt/Pp 

(1) (2) (9) 

Yu & Sheerah 

(2008) 

101.6 0.92 6.4 375 5.18 1.06 0.96 1.09 

    5.40 1.11 1.00 1.14 

    5.09 1.04 0.94 1.07 

    5.48 1.12 1.01 1.15 

    5.02 1.03 0.93 1.06 

    5.05 1.04 0.93 1.06 

 1.12  485 8.16 1.06 0.95 1.02 

    8.42 1.09 0.98 1.05 

    8.12 1.05 0.95 1.02 

    7.67 0.99 0.89 0.96 

    7.96 1.03 0.93 1.00 

    8.11 1.05 0.94 1.01 

Casafont et al. 

(2006) 
100 1.58 8 390 21.9 0.98 0.88 1.11 

Hoang et al. 

(2013) 
42.5 2.00  365 12.3 0.93 0.84 0.99 

 

It transpired that, for the specimens listed in Table 8, Equations (1) and (9) give 

professional factors that are relatively close to each other.  

 

Resistance factor 

 

The overall professional factor Pt/Pp given by Equation (9) for the 164 

specimens listed in Tables 3 through 8 is 1.01, with a coefficient of variation 

equal to 0.074. In order to achieve the target reliability index 0 of 3.5 in the 

LRFD approach, a resistance factor of 0.73 was computed according to Section 

F1.1 of the North American specification (AISI 2012). It is recommended that a 

resistance factor  equal to 0.75 (rounded to the nearest 0.05) be used in 

conjunction with Equation (9) for determining the ultimate tilt bearing capacity 

of a single-shear single-row bolted connection in flat steel sheets. 
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Concluding remarks 

 

This paper has presented the first ever systematic study on the tilt bearing 

capacities of single-shear single-row bolted connections in flat sheets. The tilt 

bearing failure is due to the bolt head punching through the connected sheet on 

the upstream side of the bolt hole during tilting, while the conventional bearing 

failure takes place on the downstream side. It has been found that the tilt bearing 

capacity is not affected by the variation in material ductility. 

 

The tilt bearing capacity varies nonlinearly with the sheet thickness with an 

exponent equal to 
4
/3, and is proportional to the square root of the bolt diameter.  

 

The proposed design equation for the ultimate tilt bearing capacity of a single-

shear single-row bolted connection in flat steel sheet, which includes the sheet 

width as a parameter, is dimensionally consistent. It is reasonably accurate for 

164 specimens tested by the authors and other researchers, comprising 

specimens having sheet thicknesses ranging from 0.92 mm to 3.0 mm and bolt 

diameters ranging from 6.4 mm to 16 mm with hole clearances ranging from 0.5 

mm to 2.0 mm. The tested ratios of sheet width to bolt diameter ranged from 3 

to 16. The accuracy of the proposed design equation has not been found to be 

significantly affected by the orientations of the bolt head and nut. 

 

It is recommended that a resistance factor of 0.75 be used in conjunction with 

the proposed design equation in the LRFD approach of the North American 

specification for the design of cold-formed steel structures. 
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Abstract 
 

Ductility and inelastic performance are important considerations in aseismic 
design of buildings. The dissipation of energy due to inelastic deformation is 
predominantly required in the connections like beam column joints.It is 
necessary to design these joints as semi rigid for its economic and structural 
benefits.Semi-rigid connections have highly nonlinear behaviour that makes the 
analysis and design of frames difficult and complicated.Steel structures are 
highly regarded for their seismic performance. It is required to understand and 
study the inelastic behavior of steel connections which would help in an 
economical and simpler design. This paper involves the modeling of 
deformational behaviour of a cold formed steel connection in a finite element 
software simulating the real time behavior. The ultimate moment and rotation is 
studied for different semi rigid connections after validation of the model. 
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Introduction 

Aseismic design of buildings is being the most researched area since moment 
resisting steel frames are highly regarded for their seismic performance. This 
regard is based on their ductility and inelastic performance, since inelastic 
deformation is used to dissipate energy during major earthquakes. This 
dissipation of energy is predominantly required in the connections like beam 
column joints. The internal forces and moments produced in these connections 
influence the behaviour of the overall structure. It is required to understand and 
study these internal forces and therefore the inelastic behaviour. Such a study of 
the inelastic behaviour of steel connections would help in an economical and 
simpler design of connections in steel frames.  
To achieve an economical design, usually it is important that the connections 
develop the full strength of the members. Usually connection failure is not as 
ductile as that of steel member failure. Hence it is desirable to avoid connection 
failure before the member failure. Therefore, design of connections is an integral 
and important part of design of steel structures. They are also critical 
components of steel structures, since they have the potential for greater 
variability in behavior and strength, they are more complex to design than 
members, and they are usually the most vulnerable components, failure of which 
may lead to the failure of the whole structure.  
The beam – column connections are classified on the basis of load transfer 
mechanism as follows,Simple or flexible connection. (Transfers Shear), Moment 
resisting or Rigid connection.(Transfers moment) and Semi rigid connection. 
(Transfers Shear and Moment)  
Semi-rigid connections are connections that have a dependable and known 
moment capacity intermediate in degree between the rigidity of rigid 
connections and the flexibility of simple shear connections. They possess an 
insufficient rigidity to hold the original angles between the connected members. 
Semi-rigid connections are designed to resist shear and moments whose values 
are intermediate between the values for simple and fully rigid connections. Semi 
rigid connections do not have sufficient stiffness to maintain the angle between 
the intersecting members. Flexible Moment Connections are also known as 
Semi-Rigid connections. 
 
Literature Review 
 
Bayan Anwer et al (2012) did the Structural Performance of Bolted Moment 
Connections among Single Cold-Formed Channel Sections. This paper presents 
an experimental investigation on bolted moment connections between single 
cold-formed channels connected back-to-back at the joints. A total of ten 
column-base connection tests and beam-column sub frame tests with different 
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connection configurations were conducted to investigate the performance of the 
connections in term of strength and stiffness. 
 
The beam and column members are formed from single cold-formed lipped 
channel sections. The flange width, web and lip depth of the cold-formed section 
are 50,100 and 14 mm, respectively, and the thickness of each section is either 
1.6 or 2 mm. The connection test specimens consisted of column-base and 
beam-column sub frame tests formed by single cold-formed channels C10016 or 
C10020 with a member thickness of 1.6 and 2 mm respectively. For all 
specimens, bolts grade 8.8 of 12 mm diameter were used. A total of eight 
column-base connections were investigated to examine the effect of bolt 
arrangement on structural performance of the connections for two different 
member thicknesses. The test specimens referred as CB02, CB03, CB04, where 
a column member is connected to a typical fabricated steel base plate with two, 
three and four bolts respectively. Another two isolated beam-column connection 
tests were carried out under lateral load to assess the strength and stiffness of the 
connections with different member thickness designated as BC-T1.6 and BC-T2. 
Channel sections were connected back to back at the joint. Fig 1 shows the 
typical setup used. 
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Fig.1 Experimental Test Setup 
Table 1 and fig 2 gives the summary of test results. 
 

Table 1.Summary of Test Results of beam column Test specimens. 
 

Beam Column Test Applied Load Measured Moment of Rotational Stiffness

Reference (kN)(kips) Resistance (kN.m)(kip.ft) (kN.m/rad) 
    

BC-T1.6 7.8(1.75) 3.94(2.90) 54 
    

BC-T2.0 8.7(1.95) 4.2(3.09) 56 
    
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.2 Moment-rotation curves of beam-column connections. 
 
In beam-column connection test specimens, the moment capacity of joint 
compared to the moment capacity of beam section were 0.85 and 0.70 with 
rotational stiffness estimated 54 and 56 kNm/rad for 1.6 and 2 mm thick sections 
respectively. Consequently, simple, practical and effective joints are achieved to 
be used among cold-formed structural framing. 
 
Validation of Analytic Work 
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The finite element method is now widely used and is a well accepted tool for 
accurately simulating complex structural systems, relatively few finite element 
analyses of storage racks have been reported in the literature. In this study, finite 
element model s have been used to determine the stiffness and strength of bolted 
beam column connections under static loading.The advantage of FEM as 
compared with finite difference methods is that complicated geometry, general 
boundary conditions and variable or non-linear material properties can be 
handled relatively easily.Finite Element models were developed using the 
ABAQUS software.  
 
Beam of Channel section of dimensions 100 mm x 50 mm x 2 mm with lip of 14 
mm and Column of Channel section of dimensions 100 mm x 50 mm x 2 mm 
with lip of 14 mm were created in ABAQUS as shown in figure 3 and figure 4. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

Fig. 3 Creation of Beam 
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Fig. 4 Creation of Column 
For the beam, column section, density and Youngs modulus were 7850 kg/m3 
and 2.1 x 105 N/mm2 used with a yield stress of 250 N/mm2. Poisson ratio for 
the assembly was assigned as 0.3. After Assigning the material property for the 
model, the colo ur of the model changes. The parts are then assembled as shown 
in fig 5. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5 Assembly of model 
 
General static loading was given at the CG of the beam channel section at the 
end. For applying load at the end, Reference point was created at the CG point. 
The following figure6 shows the load applied at the end of the beam. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 6 Applying Static load 
 

608



 
Table 2 shows the validation results 

Table 2. Comparison of Experimental and Analytical Results. 
 

Parameters 
Experimental work 

in literature Analytical work % Variation 
    

Moment of 4.2 kNm(3.09 kip.ft) 
4.5kNm(3.31 

kip.ft) 7.1 

Resistance    
    

Deflection 40 mm(1.57 in) 36 mm(1.41 in) 10 
    

 
 
Moment Curvature Study 
 
After the validation, the study has been extended to other semi rigid 
configurations.Length of the beam is chosen as 1000 mm and the length of the 
columns is 3000 mm. The beam & column are modelled three dimensional 
deformable types and base feature is shell. The beam and column size is 100 mm 
x 50 mm x 5 mm. The size of angle section used to connect the beam and 
column is 40 mm x 40 mm x 3.15 mm.For the beam, column and angle section, 
density and Youngs modulus were 7850 kg/m3 and 2.1 x 105 N/mm2 used with a 
yield stress of 250 N/mm2. Poisson ratio for the assembly was assigned as 0.3.  
 
The assembly of model, the individual parts such as beam, column and angle are 
assembled with help of module in the assembly section. The finite element 
model consists of a column fixed in the base and pinned in the top.In the 
assembly section independent instance type is chosen and this is mesh on 
instance another type is mesh on part. The column is fixed at base and pinned at 
top. The beam is connected with the column at one end and the other end is free. 
At the free end, the load is to be applied. 
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JOINT CONFIGURATIONS 
 
The different joint configurations for analytical study are assembled as shown in 
the Table 3 shows the details of the joint configurations. 
 

Table 3 Beam column Joint configurations. 
 

S.No. 
Joint  

Description 
 No.of bolts

No.of Angles 
 

Section 
  

Used 
 

        
       

1 J 1 Bolt only connection  4 0  
       

2 J 2 Web angle connection  8 1  
         

3 J 3 
Top And Seat angle 

12 2 
 

Connection 
    

        
          

4 J 4 
Web Angle Plus top and 

16 3 
 

seat angle connection 
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                                          Fig.7 Joint 1 ( Bolt only Connection ) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                                      Fig.8 Joint 2 ( Web Angle  Connection ) 
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Fig.9 Joint 3 ( Top and Seat Angle  Connection ) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                Fig.10 Joint 4 ( Web Angle Plus Top and Seat Angle  Connection ) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.11 Joint 4 ( Web Angle Plus Top and Seat Angle ConnectionFrontview) 
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General static loading was given at the CG of the beam channel section at the 
end. For applying load at the end, Reference point was created at the CG point. 
Initially a point load of 3 kN was applied at the end.The following figure shows 
the load applied at the end of the beam. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 12 Tie constraint between bolt with beam and column. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 13 Rotation Variation and Deflected Shape. 
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Table 4 Results of Beam column Joint (J1). 
(BOLT ONLY CONNECTION) 
 

Load (kN)(kips) 
Deflection 
(mm)(in)

Moment 
(kN.m)(kip.ft) Rotation(rad) 

0 (0) 0 (0) 0 (0) 0 
0.1 (0.022) 1.41E-01 0.09 (0.066) 1.24E-04 
0.2 (0.044) 2.81E-01 0.18 (0.132) 2.48E-04 
0.35 (0.078) 0.492471 (0.019) 0.315 (0.232) 0.000433223 
0.575 (0.129) 0.80906 (0.031) 0.5175 (0.381) 0.000711724 
0.9125 (0.205) 1.28394 (0.05) 0.82125 (0.605) 0.00112948 
1.41875 (0.318) 1.99627  (0.078) 1.276875 (0.941) 0.0017561 
2.17812 (0.489) 3.06475 (0.12) 1.960308 (1.445) 0.00269604 
3.31719 (0.745) 4.66748 (0.183) 2.985471 (2.201) 0.00410595 
5.02578 (1.129) 7.07158 (0.278) 4.523202 (3.336) 0.00622082 
7.58867 (1.706) 10.7257 (0.422) 6.829803 (5.037) 0.00944662 
11.433 (2.57) 30.271 (1.191) 10.2897 (7.589) 0.115084 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Load Vs Deflection 
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Fig.14 Load Vs Deflection Plot 

Conclusion 
 
Joint J1 attained its maximum moment resistance of 10 kNm at a rotation of 
0.10 radian and it attains 30.27 mm deflection at the 11.4 kN load. 
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Shear behavior of screw connection between cold formed steel

and gypsum sheathing at elevated temperatures
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Abstract

The screw connections between cold-formed steel (CFS) and gypsum sheathing

play an important role in the axial and lateral performance of CFS wall panels.

Previous researches were mainly focus on the shear behavior of such screw

connections at room temperature. This paper carried out a preliminary

experimental investigation on the mechanical performance of screw connections

with single layer gypsum sheathing at elevated temperatures. Limited to the

cavity dimension of the furnace, the single-lap test of CFS coupon

-fastener-sheathing connection was adopted and compared with the previous test

results of sheathing-to-profile screw connections at room temperature. The

failure of screw connections with single layer gypsum sheathing was identified

as the breaking of the sheathing edge at elevated temperatures and a sharp

decrease of the shear strength was observed beyond 150 °C. In addition, the

load-displacement curves of screw connections were well predicted by an

exponential model with the post-peak branch at elevated temperatures.
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Introduction

With the growing construction of mid-rise cold-formed steel (CFS) structures,

the fire performance of such structures receive great concerns. As the major

connection method, the CFS screw connections play an important role in both

axial and lateral performance of CFS wall panels. Some experimental

investigations (Fiorino et al. 2007; poluF  and Dubina 2006; Nithyadharan and

Kalyanaraman 2011; Peterman et al. 2014; Serrette et al. 1997; Ye et al. 2016)

have already been conducted on the shear response of screw connections with

gypsum sheathing or other board materials at ambient temperature. Gypsum

sheathing does not have a preferential material response in a specific direction

(Peterman et al. 2014) and the failure of screw connections with single-layer

gypsum sheathing was mainly identified as breaking or bearing of the loaded

sheathing edge (Fiorino et al. 2007; Peterman et al. 2014; Ye et al. 2016).

Furthermore, the effect of the loading rate, steel thickness, loaded edge distance

and loading protocol were also discussed with explicit conclusions. Some

mathematical models, such as the Foschi model (Foschi 1974), Pivot model

(Dowell et al. 1998) and Pinching 4 model (Peterman et al. 2014), were used to

describe the monotonic or cyclic load-displacement characteristic of connections

at ambient temperature. In addition, a few experiments were conducted on the

mechanical behavior of CFS sheeting-fastener-sheeting connections at elevated

temperatures (Cai and Young 2014; Lu et al. 2011; Yan and Young 2012).

However, investigation on the screw connections with board sheathing materials

at elevated temperatures is still limited, leading to the ignorance of mechanical

contribution of gypsum sheathing in the previous investigation of CFS walls

under fire conditions (Chen et al. 2014; Gunalan 2013).

This paper carried out a preliminary experimental investigation on the

mechanical performance of screw connections with single layer gypsum
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sheathing at elevated temperatures. The test scheme of single-lap

coupon-fastener-sheathing connection was compared with the multi-screw

sheathing-to-profile connection at ambient temperature. The failure mechanics

of screw connections was described and the load-displacement response of

screw connections was predicted by an exponential model at elevated

temperatures.

Test procedure

Fig. 1 presents the test system, including an electronic universal material testing

machine with a loading capacity of 50kN and a cylindrical electric furnace with

the cavity diameter of 85mm and cavity height of 280mm. Limited to the cavity

dimension of the furnace, the single-lap test of CFS coupon-fastener-sheathing

connection was adopted and consisted of single layer 12.5 mm thick gypsum

plasterboard and 1.0 mm thick G550 CFS coupon by 4.2 mm diameter screws,

as shown in Fig. 2. The loaded edge distance of screw connections was 15mm.

In addition, the lipped was designed for the CFS coupon to avoid the

out-of-plane curling of CFS sheets.

Fig. 1 Test system in this paper

At the beginning of experiments, the specimen was mounted into the loading

machine by gripping the upper end of specimen and relaxing the bottom end.

Then, the furnace was heated up to the pre-set temperature and held for 120
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minutes at this constant temperature. Subsequently, the bottom end of specimen

was manual gripped and a monotonic tension load was applied gradually to the

specimen at a constant displacement rate of 0.025mm/s until failure while

maintaining the pre-set temperature. Eight temperature levels were considered in

the present experiments, including the ambient temperature (approximately

20°C), 100°C, 150°C, 200°C, 250°C, 300°C, 350°C and 500°C. Each

temperature series were repeated three times.
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Fig. 2 Details of screw connection with single layer sheathing and loaded edge

distance of 15mm

Test results

For illustration, all of the specimens were labeled according to the following rule:

the first group of characters represent the sheathing material (GPB: gypsum

plasterboard); the second group of characters represent the temperature for the
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experiment (20 (ambient temperature) or 100, 150…500°C), the last group

indicates the number of repeated experiments with the same temperature series.

Table 1 summarizes the test results for each specimens. FmT represents the shear

strength of the specimen at T°C; ΔmT is the recorded displacement corresponding

to FmT at T°C; ΔuT is the recorded displacement corresponding to 0.8FmT on the

post-peak branch of response at T°C; ET represents the absorbed energy of the

screw connection at T°C, which is the area under the load-displacement curve up

to ΔuT. The other parameters in table 1 are described in Fig. 6. In table 1, the

scatter of the test results is significant, except for FmT. Both FmT and ET of the

screw connection decreased with increasing temperatures. However, ΔmT of the

specimens at 100°C became much lower than that of the series at ambient

temperature and 150°C. No reasonable explanation is currently offered for such

phenomenon.

Table 1 Test results of single-lap connection at elevated temperatures

Specimen FmT (N)△mT (mm)△uT (mm) ET (N·mm)K1T(N/mm) K2T(N/mm) F0T (N) K3T(N/mm)

GPB20-1 544 1.16 1.53 0.588 762 632 -1281 -294

GPB20-2 582 0.87 1.34 0.587 1185 959 -1308 -248

GPB20-3 569 0.85 1.35 0.540 879 457 -653 -228

GPB100-1 479 0.73 0.95 0.284 695 287 -411 -432

GPB100-2 489 0.54 0.71 0.223 1005 388 -320 -582

GPB100-3 451 0.58 0.79 0.245 1277 2355 -2929 -436

GPB150-1 314 0.68 1.04 0.226 554 263 -310 -173

GPB150-2 344 0.82 1.14 0.262 508 240 -341 -218

GPB150-3 346 0.67 0.88 0.189 490 166 -168 -343

GPB200-1 207 0.62 0.78 0.152 519 93 167 -259

GPB200-2 205 0.67 1.46 0.240 737 -566 830 -52

GPB200-3 193 0.29 0.78 0.108 324 625 12 -80

GPB250-1 151 0.43 0.56 0.055 420 168 -98 -227

621



GPB250-2 157 0.52 1.12 0.134 442 -267 619 -53

GPB250-3 176 0.77 1.19 0.152 487 959 -1081 -85

GPB300-1 173 0.74 1.20 0.151 372 543 -876 -76

GPB300-2 148 0.51 1.04 0.120 482 277 -199 -56

GPB300-3 162 0.53 0.86 0.100 412 192 -149 -98

GPB350-1 146 0.54 0.96 0.104 345 153 -123 -70

GPB350-2 128 0.48 0.87 0.085 434 229 -150 -66

GPB350-3 147 0.60 1.03 0.114 337 146 -118 -68

GPB500-1 114 0.47 0.57 0.040 257 97 -70 -230

GPB500-2 100 0.33 0.42 0.028 446 373 -242 -230

GPB500-3 100 0.40 0.53 0.034 273 112 -74 -153

After the experiments, the off-test inspection indicated that (1) the color of the

paper facing on the gypsum plasterboard remained stable below 150°C (Fig. 3c)

and gradually changed to light gray (200°C, Fig. 3d), black (250°C, Fig. 3e), and

white (500°C, Fig. 3h) with increasing temperature. In addition, the paper facing

on the gypsum plasterboard maintained integrity below 250°C and significantly

cracked at 300°C (Fig. 3f). Beyond 350°C (Fig. 3g), the paper facing on the

gypsum plasterboard began to fall off. Therefore, the sharp degeneration of the

shear strength of the connection series at 150°C (Table 1) was likely due to the

dehydration of the gypsum, and the effect of the paper facing on the shear

behavior of the connection become insignificant beyond 300°C. In addition, all

the specimens demonstrated the breaking of the loaded sheathing edge at

ambient and elevated temperatures. No titling and pull through of screws were

found in the experiments.
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(a) 20°C (b) 100°C (c) 150°C (d) 200°C

(e) 250°C (f) 300°C (g) 350°C (h) 500°C

Fig. 3 Failure mode of screw connections at elevated temperatures

Comparison with the previous experiment

Ye et al. (2016) carried out the shear experiments of multi-screw

sheathing-to-profile screw connections at ambient temperature. The adopted

loading device was a hydraulic universal testing machine with a loading capacity

of 100kN. Fig. 4 showed the typical test curves of screw connections with the

same component material obtained from the present experiments and previous

experiment (Ye et al. 2016). The results showed that (1) the shear strength from

multi-screw sheathing-to-profile screw connection was 577N and very close to

that from single-lap coupon-fastener-sheathing connection (544~582N in table

1); (2) a significant jitter existed in the load-displacement curve of multi-screw

sheathing-to-profile screw connection, due to the hydraulic loading system;
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while, the load-displacement curve became stable using electronic loading

system; (3) the load-displacement curve of multi-screw sheathing-to-profile

screw connection was much plumper than that from single-lap

coupon-fastener-sheathing connection, leading to a better capacity of energy

absorb and a later appearance of ΔmT . This difference was probably due to the

additional deflection of the sheathing-to-profile screw connection during the

loading, as shown in Fig.5. Besides, the specimens from different test scheme

demonstrated the same failure mode, which was described as the breaking of the

loaded sheathing edge. Moreover, the initial stiffness of load-displacement curve

was not analyzed due to the significant scatter of test results (K1T in table 1).

Based on the above comparison, it could be preliminary indicated that replacing

the multi-screw sheathing-to-profile screw connection with the single-lap

coupon-fastener-sheathing connection might result in conservative test results

and would significantly reduce the processing cycle of specimens, because there

is only one loaded screw on the loaded edge of sheathing material.
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Fig. 4 Load-displacement curve of screw connections at ambient temperature
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Fig. 5 Additional deflection of the sheathing-to-profile screw connection

Load-displacement model of the screw connection

The load-displacement curves of the screw connection at ambient and elevated

temperatures are important input parameters for the elaborate simulation of the

mechanical performance of CFS walls at ambient temperature or in fire

conditions. Eq. (1) is an exponential model with the post-peak branch proposed

by Foschi et al. (1974) to describe the load-displacement curve of nail

connection at ambient temperatures, as shown in Fig. 6. Based on the present

exponential model, the load-displacement response of screw connections at

elevated temperatures are predicted, as shown in table 1. Fig. 7 compared the

load-displacement curves predicted by Eq. (1) to the experimental results. In Fig.

7, the parameters of Eq. (1) (FmT and ΔmT) were obtained from the table 1. It was

shown that the load-displacement curves of screw connections obtained from Eq.

(1) were in good agreement with the experimental results.
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where ΔT is the connection displacement at T°C; FT is the connection shear load

at T°C; F0T, k1T, k2T and k3T are described in Fig. 6.

0

(FmT, ΔmT)

Displacement ΔT (mm)

(0.8FmT, ΔuT)

L
oa

d 
F

T
 (
N

)

F 0
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Fig. 6 An exponential model with the post-peak branch
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Fig. 7 Comparison of the predicted load-displacement curves to the experimental

results

Conclusions

This paper presented a preliminary experimental investigation on the mechanical

performance of screw connections with single layer gypsum sheathing at
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elevated temperatures. The test scheme of single-lap coupon-fastener-sheathing

connection was compared with the multi-screw sheathing-to-profile

connection at ambient temperature and might provide conservative results of the

load-displacement response of screw connections. In addition, The failure of

screw connections with single layer gypsum sheathing was identified as the

breaking of the sheathing edge at elevated temperatures and a sharp decrease of

the shearing strength was observed beyond 150 °C due to the dehydration of

gypsum plasterboard. Moreover, the load-displacement curves of screw

connections was described by an exponential model with sufficient accuracy.

Based on the present investigation, a series of further experiments on screw

connections are scheduled and will be presented later.
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Monotonic and Cyclic Backbone Response of Single Shear Sheathing-to-
Cold-Formed Steel Screw-Fastened Connections 

F. Tao1, R. Cole2, C.D. Moen3  

Abstract 

Monotonic and cyclic backbone load-deformation response models for single 
shear plywood, oriented-strand board, and gypsum board sheathing to cold-
formed steel screw-fastened connections are developed with support from an 
experimental program. Connection strength, stiffness, and the probability of 
screw shear failure are correlated to fastener bearing strength of the two 
connected plies. Cyclic strength and stiffness degradation was negligible. Cyclic 
excursions resulted in increased connection stiffness from the screw bearing 
hardening the ply material and locking in the plies. 

Introduction 

Monotonic and cyclic backbone load-deformation response models are 
developed with experiments in this paper to provide the capability to simulate 
roofing, diaphragm, and exterior and interior wall connections for simulation-
supported design (e.g., FEMA P695) of cold-formed steel framed buildings. 
Screw fasteners serve as the primary connectors in light steel framing (Figure 
1a) and their discrete behavior drives lateral and gravity system response (Figure 
1b). Whole building seismic analysis, i.e., modeling every cold-formed steel 
stud, track, shear wall, floor diaphragm, and fastener (Figure 1c), becomes 
feasible when connection response, including strength and stiffness degradation 
and energy dissipation, is accurately predicted.   

1 Graduate Research Assistant, Virginia Tech, ftao1@vt.edu  
2 Undergraduate Research Assistant, Virginia Tech, robertec@vt.edu 
3 Associate Professor, Virginia Tech, cmoen@vt.edu  

Wei-Wen Yu International Specialty Conference on Cold-Formed Steel Structures 
Baltimore, Maryland, U.S.A, November 9 & 10, 2016
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Figure 1: (a) CFS-NEES two-story ledger-framed building with (b) oriented strand board (OSB) 

sheathed shear walls attached to steel studs using (c) screw-fastened connections 
 
Test data and parameterized load-deformation prediction methods for sheathing-
to-steel screw-fastened connections is scarce.   One of the most extensive 
experimental studies is documented in Okasha (2004), where monotonic and 
cyclic response of OSB and plywood-to-steel single fasteners were evaluated. 
The cyclic response in these tests exhibited an elastic region, then hardening to a 
peak load with minimal strength and loading stiffness degradation unless the 
fastener failed in shear. The cyclic energy dissipation decreased by 50% or more 
when the fastener was positioned closer to the sheathing edge because the wood 
was less restrained and had a tendency to split. 
 
More recent work has focused on documenting cyclic strength and stiffness 
degradation of typical cold-formed steel framing connections (Peterman et al. 
2014, Ayhan and Schafer 2016). Initial stiffness and post-peak response is 
known for different fastener head types (Haus and Moen 2014) and steps have 
been taken to parameterize the monotonic backbone response (Moen et al. 2014, 
Pham and Moen 2015, Moen et al. 2016).  Cyclic strength and stiffness 
degradation at the fastener level can also be considered in whole building 
models with newly coded pinching material models (Ding 2015) that 
accommodate accurate nonlinear dynamic time history analyses (Niari et al. 
2012, Bian et al. 2014, Ngo 2014, Fülöp and Dubina 2006). 
 
This paper derives monotonic and cyclic load-deformation backbone parameter 
models for sheathing-to-steel single-shear cold-formed steel screw-fastened 
connections, where the sheathing is oriented strand board (OSB), Structural 1 
plywood, and paper-laminated gypsum.  Models for steel-to-steel screw-fastened 
connections have been developed (Moen at al. 2016), and this paper extends 
these models to include sheathing, which will then serve as inputs for pushover 
and cyclic seismic simulations of light steel framed subsystems (shear walls, 
diaphragms) and whole building analysis (Padilla 2015), where the connections 
are inputted as nonlinear springs or hysteretic elements. Building serviceability 
calculation and retrofit procedures, for example, those outlined by ASCE 41-13 
(Pekelnicky and Poland 2012), can also be developed from the models, where 
connection stiffness at a specific fastener load is required.     

(a) (b) (c)
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Screw-fastened connection experimental program 

Single shear sheathing-to-steel screw fastened connection response is 
experimentally documented in this section.  Both monotonic and cyclic fastener 
tests were performed which are used to define load-deformation backbone 
response models that are discussed later in this paper. 

Test matrix 

The sheathing-to-steel test matrix is shown in Table 1. The t1 sheathing Ply 1 
and t2 steel Ply 2 thicknesses were varied in the following combinations: O133, 
O233, O243, O254, O268, O297, O397, P133, P233, P243, P254, P268, P297, 
P397, G133, G233, G243, G254, and G354, where 33, 43, 54, 68, and 97 
correspond to nominal ply thicknesses in thousands of an inch (SFIA 2016) 
which converts to design thicknesses of 0.88 mm, 1.15 mm, 1.44 mm, 1.81 mm, 
and 2.57 mm, respectively. The labels O1, P1, and G1 correspond to the thinnest 
sheathing tested, which is 11.6 mm for the OSB, 11.4 mm for the plywood, and 
9.54 mm for the gypsum, respectively. The labels O2, P2, and G2 correspond to 
the medium-thick sheathing tested, which are 14.9 mm for the OSB, 14.7 mm 
for the plywood, and 12.6 mm for the gypsum, respectively. The thickest 
sheathings tested are O3, P3, and G3 corresponding to 17.9 mm for the OSB, 
17.3 mm for the plywood, and 16.1 mm for the gypsum, respectively.  
 
Each OSB and plywood combination was studied for #8, #10, and #12 flat-head 
self-drilling fasteners, and each gypsum combination was studied for a #6 bugle-
head self-drilling fastener. All combinations were subjected to both monotonic 
and cyclic loadings, totaling 186 tests. The test naming convention denotes the 
Ply 1 and Ply 2 thicknesses (t1 and t2), fastener size, test type (M=monotonic, 
C=cyclic), and trial number within a test series. For example, ‘P233-8-C1’ is the 
test combination with a 14.7 mm-thick plywood Ply 1, 33 Ply 2 (t2=33 
thousandths of an inch=0.90 mm), a #8 flat-head fastener, and the first of three 
cyclic loading trials. 
 

Table 1: Sheathing-to-steel fastener test matrix 

 

11.6 17.9 11.4 17.3 9.54 12.6 16.1
#8 #8 #10 #12 #12 #8 #8 #10 #12 #12 #6 #6 #6

33 3 3 3 - - 3 3 3 - - 3 3 -
43 - 3 3 - - - 3 3 - - - 3 -
54 - 3 3 3 - - 3 3 3 3 - 3 3
68 - - 3 3 - - - 3 3 3 - - -
97 - - 3 3 3 - - 3 3 3 - - -

Ply 2 
(steel in 

mils)

Ply 1 (sheathing in mm)
GypsumPlywood

14.7
OSB
14.9
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Test setup 

A single screw is driven from Ply 1 into Ply 2 as shown in Figure 2, where Ply 1 
is always the sheathing and Ply 2 is always the steel.  Aluminum fixtures 
provide a 102mm by 102mm window that supports the plies on 3 sides.  This 
test setup evolved over a few iterations (Corner 2014) and was inspired by 
Okasha (2004). The window was designed to prevent the two connected plies 
from separating as moment develops in the single shear connection.  This 
separation occurs in a standard connection test, i.e., AISI S905-13 (AISI 2013), 
which is inconsistent with typical framing connection behavior where the 
framing members (studs and tracks) have enough flexural stiffness to prevent 
ply separation (Haus and Moen 2014). 
 

 
Figure 2: Single fastener connection (a) test setup; (b) specimen dimensions and construction 

Specimen construction, installation, and fastener details 

Each specimen consists of a sheathing Ply 1 and a steel Ply 2 (Figure 2b).  The 
typical installation procedure was to drive the fastener (#6, #8, #10, or #12) from 
Ply 1 into Ply 2, slide the fastened Ply 1 and Ply 2 specimen onto the bolts in the 
upper and lower aluminum fixtures, and then tighten the 13 mm diameter bolts 
at the top and bottom fixtures. The load cell reading was zeroed before 
tightening the bolts to measure any pretension or precompression force. The 
drilled bolt hole and bolt size are closely matched to prevent ply slip at the 
bolted connections.  
 
All fasteners were provided by Simpson Strong-Tie, and their product numbers, 
head types, lengths, head diameters, major thread diameters, D, and fastener 

19 mm φ spheres, spac-
ing 50 mm from rod end 
for measuring fastener tilt 
angle, 150 mm long rod is 
glued to fastener head

Relative ply 
displacement, δ
(+ when targets 
move away from 
each other)

Connection shear force, F
Crosshead displacement, Δ

19 mm φ red target for measuring 
relative ply displacement (typ.)

drilling tip of 
hex-head screw 

Ply 2, steel

Ply 1, steel

17 mm thick lower aluminum fixture 
with 102 mm x 102 mm window

38 mm thick upper aluminum fixture 
with 102 mm x 102 mm window

(a)

(b)

+F,Δ

89
 m

m
 ±

 δ
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shear strength, Fss, are provided in Table 2. As fastener size increases, there is an 
increase in head diameter, major thread diameter, and fastener shear strength.  
 

Table 2: Fastener details 

 

Test measurements and instrumentation 

Relative movement between the plies was measured with a custom optical non-
contact measurement system designed and validated at Virginia Tech.  Relative 
ply displacement is recorded by following four red sticker targets (two on each 
ply) with a Microsoft Lifecam cinema HD 720p video camera recording at 30 
frames per second.   The area and location of each target is identified in every 
video frame using custom code provided in Tao and Moen (2016) utilizing the 
Matlab Computer Vision System Toolbox (Matlab 2015).   The relative 
displacement between Ply 1 and Ply 2 (δ in Figure 2a) is calculated by taking 
the average target area in pixels for the first 50 data points measured in Matlab 
and using this value and the measured target area (285 mm2) to convert the 
distance between targets into mm from pixels. Measurement accuracy is ±0.10 
mm (Pham and Moen 2015).   
 
The connection force, measured with a 150 kN load cell (accuracy of ± 0.10 
kN), was synchronized to the relative ply displacement δ with common time 
stamps in the video and data acquisition files. The crosshead displacement, Δ 
(Figure 2a), was also recorded using the test machine internal LVDT (accuracy 
of ± 0.10 mm), and Δ is used to implement the monotonic and cyclic loading 
protocols discussed later in this paper. 

Steel material properties 

The steel plies used in this experimental study were provided by ClarkDietrich 
Building Systems out of their Sparrows Points, MD facility. Steel sheet yield 
stress (Fy) and ultimate stress (Fu) were measured for each ply thickness from 
tensile coupons tested in accordance with ASTM E8M (ASTM 2004).  The 
mean (µ) and coefficient of variation (cv) statistics in Table 3 and Table 4 are 
calculated from three tests per ply sheet thickness (specimens of the same 
thickness came from the same sheet).   Table 4 summarizes the material 

Fastener Product # Head Type
Length 
(mm)

Head diameter 
(mm)

Major thread 
diameter, D (mm) F ss  (kN)

Gypsum-to-33-mil steel #6 DWF158PS Bugle 41 8.1 3.45 5.6
Gypsum-to-43, 54-mil steel #6 DWFSD158PS Bugle 41 8.0 3.45 5.6
Wood sheathing-to-steel #8 PPSD11516S0818 Flat 49 8.1 4.14 7.5
Wood sheathing-to-steel #10 PPSD134S1016 Flat 44 8.3 4.67 8.9
Wood sheathing-to-steel #12 PPSD134S1214 Flat 44 11.6 5.41 11.9
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properties of the second batch of steel that was required to complete the tests 
(again coming from ClarkDietrich). 
 
All specimens exhibited a yield plateau followed by strain hardening except for 
the 43 plies from the first batch which gradually yielded and fractured with 
approximately 60% less elongation that the other plies. 
 

Table 3: Steel ply material properties for Delivery 1 

 
 

Table 4: Steel ply material properties for Delivery 2 

 

Sheathing material properties 

Dowel bearing strength tests were conducted in accordance with ASTM D5764 
(ASTM 2013) to obtain the yield stress (Fy) and ultimate stress (Fu), and 
modulus of elasticity (E) of the OSB, plywood, and gypsum. A full-hole setup 
(Figure 3a) was used with 50.8 mm by 76.2 mm sheathing test specimens with a 
9.5 mm diameter hole (Figure 3b). A 9.5 mm diameter, Grade 8 steel alloy 
dowel pin was placed through the hole, and the specimen is loaded uniformly 
from the top (Figure 3) at a constant loading rate of 1 mm/min. The test is 
stopped at the first occurrence of either a 10% drop from the maximum load or a 
crosshead displacement of 10.2 mm.  
 
A straight line was fit to the initial linear region of the load-deformation curve 
(line defined from zero to 20% of peak load). The slope of the fit line is E, and 
the load at which the line, offset by 5% of the pin diameter (9.5 mm)=0.475 mm, 
intersects the load-deformation curve was taken as the yield load, which was 
dividing by the dowel bearing area (9.5 mm multiplied by the sheathing 
thickness) to obtain Fy. The ultimate stress Fu is the maximum load divided by 
the dowel bearing area. A summary of the sheathing material properties and the 
corresponding statistics are summarized in Table 5.  

µ c v µ c v µ c v µ c v
33 3 0.90 0.01 325 0.03 376 0.02 34.1 0.03
43 3 1.11 0.01 590 0.01 615 0.01 7.4 0.07
54 3 1.43 0.00 393 0.01 493 0.00 24.4 0.10
68 3 1.80 0.00 390 0.04 510 0.03 20.3 0.10
97 2 2.56 0.00 379 0.00 505 0.02 21.9 0.07

% elongation 
at fracturePly Sample 

size, n
t (mm) F y  (MPa) F u  (MPa)

µ c v µ c v µ c v µ c v
33 3 0.86 0.01 330 0.02 408 0.02 32.6 0.02
43 3 1.12 0.01 306 0.01 377 0.01 33.3 0.06
54 3 1.44 0.00 381 0.02 512 0.01 26.6 0.01
68 3 1.83 0.00 374 0.05 489 0.02 21.1 0.07
97 3 2.52 0.00 333 0.01 475 0.01 26.4 0.02

% elongation 
at fracturePly Sample 

size, n
t (mm) F y  (MPa) F u  (MPa)
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Figure 3: (a) ASTM D5764 dowel bearing test setup and (b) sheathing specimen  

 
Table 5: Sheathing material properties 

 

Connection specimen loading 

Monotonic tests were conducted under crosshead displacement control at 
Δ=0.025 mm/sec which is consistent with the recommended loading rate in 
Okasha (2004).  The cyclic loading protocol is adapted from FEMA 461 quasi-
static cyclic deformation-controlled testing protocol (FEMA 2007) as shown in 
Fig. 3a which was developed to obtain fragility data and hysteretic response 

76.2

Ø9.5

50.8

25.4

25.4

(b)(a)

µ c v µ c v µ c v µ c v
11.6 mm 10 11.6 0.02 29.6 0.25 33.4 0.18 606 0.15
14.9 mm 5 14.9 0.03 32.9 0.05 40.9 0.17 699 0.07
17.9 mm 5 17.9 0.01 22.7 0.28 33.8 0.17 678 0.15
11.4 mm 5 11.4 0.01 32.6 0.15 41.0 0.26 523 0.10
14.7 mm 6 14.7 0.02 47.9 0.12 56.1 0.12 908 0.21
17.3 mm 5 17.3 0.00 43.8 0.14 51.4 0.14 875 0.18
9.54 mm 5 9.54 0.00 8.40 0.12 10.3 0.06 240 0.12
12.6 mm 5 12.6 0.00 5.10 0.10 6.80 0.04 142 0.12
16.1 mm 5 16.1 0.01 8.80 0.07 10.9 0.04 177 0.27

E (MPa)

OSB

Plywood

Gypsum

Sheathing Sample 
size, n

t (mm) F y  (MPa) F u  (MPa)

635



characteristics of building components for which damage is best predicted by 
imposed de-formations. The protocol comprises steps of increasing amplitude 
with two cycles per step and symmetric displacement amplitudes. Each step 
displacement amplitude is 40% larger than the previous, i.e., Δi=1.4Δi−1 (see 
Figure 4a).  
 
The cyclic loading protocol is anchored at the beginning of the second step (i.e., 
the 3th cycle) with the crosshead displacement Δa assumed to define the end of 
the linear portion of a fastener’s load-deformation response and beginning of the 
fastener damage state (Pham and Moen 2015).  Assuming crosshead and relative 
ply displacements are equivalent, the anchor displacement Δa is calculated as the 
predicted relative ply displacement at 0.40Fc, i.e., Δa=δa=0.4Fc/Ke, where Fc is 
the peak (cap) load and Ke is the elastic stiffness of the monotonic response 
shown in Figure 4b. FEMA 461 suggests 6 deformation cycles before the first 
damage limit state; however, this was not practical for these fastener tests where 
plasticity initiates at low load levels through bearing deformation. 

 
Figure 4: (a) Cyclic fastener loading protocol for test 3333-8; (b) backbone curve notation 

Monotonic and cyclic backbone characterization and trends 

Backbone nomenclature 

The monotonic and cyclic fastener load-deformation responses are characterized 
as backbone curves to facilitate hysteretic modeling including strength and 
stiffness degradation.   The backbone configuration and notation are motivated 
by Ibarra-Medina-Krawinkler model (Ibarra et al. 2005), and each curve is 
composed of five regions – elastic, hardening, peak, post-peak, and residual as 
shown in Figure 4b.   These regions in Figure 4b are defined by load-
displacement points (Fy, δy), (Fc, δc), (Fr, δr), and (0, δf) with related stiffnesses 
(slopes) Ke, Ks, Kc, and Kr. 
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Backbone construction 

Monotonic backbone construction was performed by visually selecting (Fc, δc) 
as the first peak load after hardening, then visually selecting (Fy, δy) to match the 
elastic and hardening leg slopes Ke and Ks.  The point (Fr, δr) is obtained so that 
the post-peak backbone segment from (Fc, δc) to (Fr, δr) is a linear fit (i.e., the 
average) of the tested response, and then δf is calculated to equate areas under 
the load-displacement curve for the tested and backbone response. The 
backbone of the positive cyclic response (+Δ in Figure 2a) was obtained by first 
identifying the response outline using the Matlab Boundary command with the 
‘shrink factor’=1, and then following the same procedures discussed previously 
for the monotonic backbone.  
 
Monotonic and cyclic backbone examples for OSB (Figure 5), Structural 1 
plywood (Figure 6), and gypsum board (Figure 7) highlight the variation in 
response between connection configurations.   The O133-8-3 monotonic 
response in Figure 5a is defined by steel bearing accumulation and hardening in 
front of the fastener in the thin steel Ply 2 (t=0.88 mm) up to peak load with 
minimal bearing deformation in the OSB, and a rapid post-peak strength 
reduction (observed in both monotonic and cyclic responses) as the fastener tilts 
and tears through Ply 2.  The cyclic response in Figure 5b exhibits post-peak 
strength and stiffness degradation as the fastener tears through the steel Ply 2. 
This response contrasts with the monotonic Structural 1 plywood test P254-12-2 
in Figure 6a, where a higher peak capacity (compare Fc=2.5 kN to Fc=6.8 kN) 
results from a thicker steel Ply 2 (t=1.44 mm), however a similar post-peak 
slope and cyclic strength in stiffness degradation (Figure 6b) develops from a 
tilting and screw pullout failure mode consistent with test specimen O133-8-3.   
The gypsum-to-steel G254-6-3 monotonic response in Figure 7 confirms the 
influence of sheathing bearing strength on peak capacity with Fc=0.59 kN 
(resulting in a bearing stress of 4.9 MPa, compare to Fy=5.1 MPa for gypsum 
board in Table 5) which is approximately 90% lower than that of wood-sheathed 
test specimens.  The post-peak cyclic response in Figure 7b exhibits minimal 
strength and stiffness degradation because the screw continues to bear and 
elongate the hole, without tilting, on the compacted gypsum board. 
 
For some of the ply combinations, a shear failure dictated the post-peak 
backbone response, resulting in a sudden load drop to zero after reaching the cap 
(peak) load Fc.  The differences between these two failure limits – fastener 
bearing/pullout and screw shear failure, are considered separately in the 
backbone parameterization presented in the next section. 
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Figure 5: Backbones for fastener configuration O133-8-3: (a) monotonic and (b) cyclic loading 

 

 
Figure 6: Backbones for fastener configuration P254-12-2: (a) monotonic and (b) cyclic loading 

 

 
Figure 7: Backbones for fastener configuration G254-6-3: (a) monotonic and (b) cyclic loading 

 
 

Monotonic and cyclic backbone trends and observations 

Backbone segment parameters are extracted for each of the ply combinations 
and loadings (monotonic, positive cyclic excursion). Table 7 summarizes the 
results, where M represents the monotonic loading, and C represents the positive 
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cyclic loading. The “*” indicates a ply combination that failed in fastener screw 
shear. The three trials for each specimen were averaged to give the statistics in 
Table 7.  
 
Models for the backbone loads (Fy, Fc, Fr) and stiffnesses (Ke, Ks, Kc, and Kr) are 
proposed based on the tested trends and observations. The fastener load model is 
F[y,c,r]=αψβFss ≤Fss and the fastener stiffness model is K[e,s,c,r]=αψβKa where 
ψ=[Fss/(t1Dfu1)][(Fss/t2Dfu2)], Fss is the fastener shear strength (typically 
determined experimentally by manufacturers), Ka=[1/(E1t1)+1/(E2t2)]-1 which is 
the axial stiffness of two square plies calculated as springs in series assuming a 
rigid fastener connection, E1 (taken from Table 5)and E2 (taken as 29,500 ksi) 
are the ply elastic moduli, and α and β in Table 6 are calculated with the Matlab 
function fminsearch minimizing the difference in error between test and model. 
Test-to-predicted statistics are provided in Table 6. Tests that experienced screw 
shear failure are included in the parameterization of Fy, Fc, Ke, and Ks only since 
post-peak response was a drop to zero load. The backbone model framework is 
designed to generally accommodate high strength steel plies (e.g., Rogers and 
Hancock 1999) and sheathing materials (OSB, plywood, gypsum). 
 
Ply bearing strengths t1Dfu1 and t2Dfu2 are key contributors to connection 
strength and stiffness.  Decreasing either of the bearing strengths results in 
decreased connection strength and stiffness which is reflected in the backbone 
models.   For both monotonic and cyclic tests, the typical response has a linear 
region where the connection shear stiffness (Ke) is defined by bearing 
deformation in the plies.  Changing fastener sizes from #8 to #12 increases Ke 
because the bearing stress and associated deformation in each ply decreases. The 
yielding load Fy and peak (cap) load Fc experience minimal cyclic degradation 
as the fasteners repeatedly bear on the plies (Figure 8a), and it is hypothesized 
that the positive cyclic (C+) elastic connection stiffness (Ke) is approximately 
double the monotonic stiffness (Figure 8b) because the fastener bearing area 
hardens the steel and sheathing and the fastener threads lock into the plies 
during the first few excursions. The monotonic and cyclic backbone load and 
stiffness models can be used to calculate δy, δc, δr, and δf in Figure 4b, e.g., 
δy=Fy/Ke. 
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Figure 8: Fastener backbone models: (a) cap (peak) load Fc; and (b) initial stiffness Ke 

 
Table 6: Backbone model parameters and test-to-predicted statistics 

 
 

α β µ c v

monotonic 0.58 -0.42 1.00 0.29
cyclic 0.57 -0.42 1.00 0.24
monotonic 1.09 -0.47 1.00 0.25
cyclic 1.09 -0.48 1.00 0.23
monotonic 0.61 -0.51 1.00 0.28
cyclic 0.68 -0.50 1.00 0.35
monotonic 0.84 -0.50 1.00 0.59
cyclic 0.95 -0.25 1.00 0.38
monotonic 0.035 -0.31 1.00 0.37
cyclic 0.037 -0.31 1.00 0.47
monotonic -0.043 -0.30 1.00 0.51
cyclic -0.039 -0.30 1.00 0.46
monotonic -0.31 -0.95 1.00 1.68
cyclic -0.32 -0.90 1.00 0.99

F r

K e

K s

K c

K r

Backbone 
parameter Loading

Trend parameters Test/Predicted

F y

F c

640



Table 7: Monotonic and cyclic backbone parameter summary and statistics 

 
 

µ c v µ c v µ c v µ c v µ c v µ c v µ c v µ c v µ c v µ c v µ c v
O133-8-M 1.82 0.25 2.15 0.13 0.87 0.18 1.11 0.07 6.24 0.17 18.82 0.11 63.67 0.04 1.67 0.28 0.06 0.34 -0.11 0.18 -0.02 0.26  
O133-8-C+ 1.58 0.07 1.94 0.06 1.35 0.05 0.31 0.17 5.30 0.03 12.35 0.09 17.79 0.14 5.19 0.18 0.07 0.19 -0.09 0.16 -0.27 0.28  
O233-08-M 1.58 0.15 3.01 0.10 1.36 0.79 1.18 0.44 8.20 0.09 16.89 0.28 48.68 0.55 1.54 0.34 0.20 0.24 -0.19 0.08 -1.84 1.40 *
O233-08-C+ 1.22 0.27 2.38 0.09 2.09 0.13 0.21 0.22 6.97 0.40 9.39 0.38 12.56 0.35 5.77 0.10 0.17 0.07 -0.13 0.16 -0.85 0.62 *
O233-10-M 1.72 0.33 2.76 0.11 1.06 0.15 2.06 0.56 10.71 0.13 16.79 0.02 37.60 0.09 0.97 0.39 0.12 0.21 -0.28 0.07 -0.05 0.31  
O233-10-C+ 1.50 0.24 3.17 0.23 2.20 0.21 0.34 0.20 8.96 0.11 13.03 0.13 21.67 0.14 4.41 0.04 0.19 0.26 -0.23 0.20 -0.26 0.05  
O243-08-M 1.92 0.22 3.42 0.08 2.62 0.08 0.95 0.34 8.03 0.28 11.24 0.35 16.77 0.46 2.20 0.27 0.23 0.37 -0.22 0.24 -2.86 1.26 *
O243-08-C+ 2.08 0.06 3.10 0.07 1.92 0.46 0.56 0.13 6.97 0.30 9.16 0.28 19.87 0.45 3.80 0.15 0.18 0.38 -0.72 0.91 -1.16 1.08 *
O243-10-M 1.83 0.28 3.63 0.19 1.82 0.09 0.89 0.32 9.64 0.17 15.45 0.06 30.74 0.09 2.17 0.27 0.21 0.20 -0.32 0.24 -0.13 0.25  
O243-10-C+ 2.00 0.18 3.18 0.11 1.15 0.12 0.36 0.26 5.27 0.37 11.30 0.35 37.27 0.34 5.65 0.07 0.24 0.18 -0.37 0.24 -0.05 0.33  
O254-08-M 2.27 0.15 3.55 0.07 1.96 0.08 1.02 0.09 8.06 0.14 14.19 0.05 28.44 0.09 2.25 0.17 0.18 0.14 -0.26 0.26 -0.14 0.14  
O254-08-C+ 1.75 0.12 2.70 0.13 2.01 0.18 0.47 0.13 9.00 0.04 13.76 0.07 20.20 0.03 3.71 0.05 0.11 0.17 -0.14 0.20 -0.31 0.08  
O254-10-M 1.75 0.35 3.64 0.05 1.66 0.19 0.61 0.32 9.72 0.05 18.08 0.09 59.33 0.07 2.85 0.04 0.21 0.22 -0.25 0.30 -0.04 0.24  
O254-10-C+ 2.17 0.11 3.66 0.08 1.45 0.13 0.47 0.13 8.13 0.18 16.44 0.04 34.87 0.10 4.66 0.15 0.19 0.19 -0.27 0.23 -0.08 0.28  
O254-12-M 3.10 0.09 5.03 0.03 2.18 0.20 1.03 0.09 9.99 0.07 22.11 0.03 73.38 0.06 3.00 0.00 0.21 0.17 -0.23 0.07 -0.04 0.12  
O254-12-C+ 3.08 0.17 3.88 0.12 3.60 0.15 0.53 0.21 7.54 0.22 10.48 0.19 28.97 0.34 5.93 0.06 0.12 0.33 -0.09 0.09 -0.26 0.60  
O268-10-M 2.25 0.18 4.21 0.19 2.39 0.15 0.52 0.12 8.37 0.08 16.20 0.06 30.34 0.28 4.28 0.06 0.25 0.14 -0.24 0.29 -0.21 0.47  
O268-10-C+ 2.00 0.00 3.28 0.07 2.96 0.09 0.32 0.13 8.19 0.02 10.91 0.07 20.59 0.03 6.35 0.12 0.16 0.16 -0.12 0.25 -0.31 0.11  
O268-12-M 2.50 0.00 4.51 0.07 2.54 0.09 0.71 0.00 8.95 0.08 18.49 0.14 44.71 0.02 3.50 0.00 0.24 0.08 -0.21 0.04 -0.10 0.10  
O268-12-C+ 2.17 0.29 4.59 0.07 3.39 0.14 0.27 0.31 9.63 0.04 15.29 0.10 30.57 0.12 8.41 0.17 0.26 0.10 -0.21 0.06 -0.23 0.25  
O297-10-M 2.03 0.12 3.27 0.07 2.49 0.15 0.93 0.21 7.30 0.17 10.84 0.26 13.38 0.35 2.23 0.09 0.20 0.14 -0.32 0.70 -1.85 0.59 *
O297-10-C+ 2.17 0.05 3.89 0.10 3.53 0.08 0.31 0.29 7.49 0.05 8.34 0.01 9.00 0.00 7.42 0.22 0.24 0.15 -0.50 0.42 -5.53 0.23 *
O297-12-M 2.75 0.22 4.69 0.08 3.62 0.14 0.77 0.25 8.30 0.25 11.65 0.10 19.74 0.28 3.58 0.03 0.28 0.34 -0.33 0.11 -4.53 1.33 *
O297-12-C+ 3.33 0.19 5.42 0.11 3.80 0.07 0.50 0.30 7.81 0.24 11.75 0.05 15.17 0.13 6.96 0.12 0.31 0.24 -0.72 0.71 -1.37 0.48 *
O397-12-M 2.08 0.46 4.56 0.29 3.28 0.35 0.77 0.55 11.76 0.11 17.92 0.14 19.19 0.15 3.00 0.24 0.24 0.36 -0.16 0.45 -2.62 0.34 *
O397-12-C+ 3.92 0.13 5.08 0.07 3.72 0.22 0.42 0.28 8.84 0.18 14.24 0.15 15.50 0.11 9.75 0.20 0.14 0.27 -0.28 0.73 -3.07 0.27 *
P133-8-M 1.18 0.11 1.89 0.09 1.17 0.07 0.37 0.11 9.88 0.17 16.17 0.09 30.77 0.26 3.17 0.07 0.07 0.33 -0.13 0.49 -0.10 0.42  
P133-8-C+ 1.30 0.11 2.03 0.13 0.58 0.12 0.45 0.33 7.74 0.14 16.86 0.01 44.14 0.01 3.12 0.27 0.10 0.13 -0.17 0.35 -0.02 0.13  
P233-08-M 1.55 0.09 3.41 0.05 2.17 0.10 0.52 0.32 8.86 0.11 13.69 0.09 21.50 0.19 3.25 0.27 0.22 0.07 -0.27 0.29 -0.34 0.49  
P233-08-C+ 1.58 0.07 2.35 0.06 0.67 0.17 0.47 0.09 4.21 0.27 6.29 0.21 10.73 0.13 3.40 0.04 0.20 0.09 -1.07 0.57 -0.16 0.30 *
P233-10-M 1.33 0.35 3.62 0.18 1.38 0.16 0.78 0.20 10.48 0.09 18.76 0.12 45.08 0.10 1.67 0.14 0.24 0.09 -0.29 0.42 -0.05 0.19  
P233-10-C+ 1.67 0.07 3.83 0.03 2.04 0.02 0.56 0.24 10.45 0.06 17.19 0.05 26.89 0.06 3.10 0.18 0.22 0.07 -0.28 0.28 -0.21 0.06  
P243-08-M 1.30 0.25 2.96 0.10 1.16 0.31 0.82 0.16 7.19 0.42 12.10 0.47 23.16 0.56 1.67 0.37 0.28 0.15 -0.54 0.60 -0.19 0.64 *
P243-08-C+ 2.00 0.10 3.47 0.12 1.15 0.45 0.43 0.20 7.92 0.48 10.45 0.48 20.25 0.11 4.79 0.11 0.25 0.42 -1.91 0.62 -0.14 0.47 *
P243-10-M 2.13 0.24 4.13 0.21 1.23 0.26 1.53 0.29 10.59 0.16 23.05 0.06 52.40 0.04 1.42 0.08 0.22 0.18 -0.25 0.37 -0.04 0.30  
P243-10-C+ 2.00 0.20 4.08 0.02 1.78 0.29 0.47 0.35 8.36 0.07 15.85 0.22 27.30 0.34 4.64 0.26 0.26 0.12 -0.34 0.28 -0.21 0.44  
P254-08-M 2.00 0.20 4.14 0.04 1.19 0.24 0.74 0.14 9.69 0.12 18.98 0.02 28.35 0.15 2.67 0.09 0.24 0.21 -0.32 0.16 -0.15 0.43  
P254-08-C+ 2.00 0.10 3.86 0.03 1.50 0.17 0.34 0.25 6.50 0.29 10.97 0.44 15.75 0.32 6.21 0.23 0.33 0.27 -0.87 0.60 -0.41 0.48 *
P254-10-M 2.67 0.12 3.49 0.15 2.16 0.11 1.29 0.16 11.70 0.11 17.06 0.04 44.74 0.17 2.08 0.06 0.08 0.38 -0.26 0.35 -0.08 0.27  
P254-10-C+ 2.08 0.15 4.38 0.06 1.23 0.09 0.41 0.11 9.11 0.02 18.86 0.08 25.17 0.17 5.10 0.06 0.26 0.18 -0.33 0.17 -0.23 0.39  
P254-12-M 3.40 0.13 6.11 0.09 3.54 0.16 1.27 0.04 12.64 0.07 21.85 0.04 37.69 0.03 2.67 0.09 0.24 0.24 -0.28 0.07 -0.22 0.11  
P254-12-C+ 3.17 0.23 4.93 0.10 1.98 0.01 0.49 0.19 9.87 0.16 23.44 0.07 34.90 0.08 6.39 0.06 0.20 0.35 -0.23 0.26 -0.21 0.45  
P268-10-M 3.08 0.04 5.43 0.05 1.79 0.11 1.03 0.04 9.87 0.11 21.20 0.03 32.80 0.11 3.00 0.00 0.27 0.19 -0.32 0.05 -0.17 0.42  
P268-10-C+ 2.58 0.05 4.51 0.02 2.31 0.06 0.59 0.15 9.92 0.03 15.96 0.00 20.88 0.08 4.44 0.13 0.21 0.05 -0.37 0.14 -0.51 0.25  
P268-12-M 4.50 0.09 6.20 0.03 2.62 0.10 1.92 0.23 13.31 0.07 26.47 0.13 42.28 0.11 2.42 0.13 0.15 0.25 -0.28 0.19 -0.17 0.12  
P268-12-C+ 3.17 0.07 5.50 0.14 3.70 0.11 0.47 0.33 10.87 0.20 17.33 0.12 27.15 0.16 7.29 0.24 0.22 0.10 -0.28 0.57 -0.49 0.46  
P297-10-M 2.67 0.12 4.68 0.08 3.39 0.13 0.85 0.13 7.56 0.12 11.87 0.19 12.84 0.19 3.17 0.13 0.30 0.25 -0.39 0.52 -3.77 0.33 *
P297-10-C+ 3.00 0.14 4.78 0.07 2.42 0.49 0.40 0.09 6.05 0.23 7.15 0.17 8.10 0.16 7.74 0.23 0.33 0.20 -4.20 0.63 -2.54 0.32 *
P297-12-M 3.67 0.31 6.18 0.17 4.89 0.19 1.01 0.34 8.74 0.20 15.04 0.07 17.13 0.10 3.67 0.03 0.32 0.18 -0.21 0.16 -4.10 0.69 *
P297-12-C+ 4.00 0.00 6.46 0.06 5.25 0.17 0.71 0.23 11.16 0.21 13.18 0.12 15.87 0.19 5.95 0.23 0.25 0.25 -1.22 1.09 -3.04 0.56 *
P397-12-M 4.00 0.00 7.67 0.03 5.76 0.16 1.00 0.00 13.76 0.12 20.47 0.11 22.33 0.11 4.00 0.00 0.29 0.08 -0.29 0.17 -3.14 0.23 *
P397-12-C+ 4.33 0.05 7.53 0.02 6.30 0.09 0.51 0.14 11.89 0.06 18.24 0.03 20.00 0.04 8.75 0.18 0.28 0.03 -0.19 0.36 -4.40 0.51 *
G133-6-M 0.61 0.02 0.69 0.01 0.36 0.01 1.55 0.03 6.46 0.17 24.90 0.06 40.73 0.07 0.31 0.03 0.02 0.18 -0.02 0.03 -0.02 0.16  
G133-6-C+ 0.48 0.05 0.60 0.04 0.35 0.13 0.87 0.13 4.25 0.26 21.09 0.07 32.76 0.11 1.08 0.09 0.04 0.20 -0.01 0.11 -0.03 0.27  
G233-6-M 0.41 0.10 0.51 0.04 0.32 0.13 1.29 0.07 8.28 0.14 25.01 0.19 50.20 0.01 0.33 0.08 0.02 0.18 -0.01 0.06 -0.01 0.08  
G233-6-C+ 0.37 0.03 0.46 0.02 0.36 0.07 0.34 0.08 11.02 0.18 21.54 0.17 34.71 0.18 0.84 0.11 0.01 0.19 -0.01 0.28 -0.03 0.26  
G243-6-M 0.43 0.05 0.50 0.04 0.41 0.06 1.34 0.15 10.55 0.41 25.10 0.03 31.36 0.05 0.43 0.19 0.01 0.29 -0.01 0.19 -0.07 0.26  
G243-6-C+ 0.34 0.19 0.52 0.13 0.42 0.09 0.41 0.21 10.41 0.10 18.44 0.11 41.98 0.12 0.82 0.04 0.02 0.11 -0.01 0.23 -0.02 0.19  
G254-6-M 0.42 0.03 0.57 0.03 0.47 0.04 0.97 0.02 9.96 0.29 24.09 0.11 29.50 0.03 0.71 0.05 0.02 0.31 -0.01 0.32 -0.10 0.33  
G254-6-C+ 0.42 0.03 0.53 0.01 0.41 0.09 0.54 0.24 9.27 0.01 26.07 0.02 36.77 0.06 1.18 0.26 0.01 0.09 -0.01 0.25 -0.04 0.27  
G354-6-M 0.87 0.03 1.04 0.03 0.54 0.42 1.23 0.01 8.91 0.23 14.15 0.16 17.40 0.19 0.00 0.02 0.03 0.36 -0.09 0.45 -0.22 0.76 *
G354-6-C+ 0.65 0.06 0.86 0.04 0.27 1.07 0.56 0.16 6.96 0.02 8.68 0.12 11.29 0.07 0.00 0.09 0.03 0.23 -0.50 0.63 -0.56 1.37 *

δ r  (mm) δ f  (mm) K e  (kN/mm) K s  (kN/mm) K c  (kN/mm) K r  (kN/mm)
Test

F y  (kN) F c  (kN) F r  (kN) δ y  (mm) δ c  (mm)
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Probability of fastener screw shear failure 

It was observed that the tested connection post-peak response was dictated by a 
bearing, tilting, and fastener pullout, and sometimes screw shear would occur at 
peak load. This model is useful in high fidelity modeling and system reliability 
studies to determine the probability of fastener connections at a specific set of 
ply and fastener properties (i.e., at a specific ψ ). The probability of screw shear 
failure, Pf , is plotted in Figure 9, with Pf calculated as the number of screw 
shear failures at a certain ψ divided by the total number of fastener connection 
tests with that same ψ . Fastener screw shear failures mostly happen at smaller 
ψ, which consists of strong plies relative to the fastener shear strength. More 
fastener screw shear failures occur for cyclic loadings which is a result of the 
fasteners experiencing fatigue and fracture from cyclic loading. A model for the 
failure probability Pf=αψβ ≤1.0 with parameters summarized in Table 8. 
 
 

 
Figure 9: Probability of screw shear failure Pf increases as ply bearing strengths increase 

 
Table 8:Probability of screw shear failure, Pf , parameters and test-to-predicted statistics 

 
 

α β µ c v

monotonic 51.00 -2.55 1.00 2.81
cyclic 7.75 -1.45 1.00 2.04

P f

Parameter Loading
Trend parameters Test/Predicted
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Conclusions 

This paper makes an important step towards light-steel framed whole building 
seismic analysis with single shear sheathing-to-steel fastener connection 
backbone models and failure probability predictions for fastener screw shear 
failure. The models were derived with data from an extensive experimental 
program considering monotonic and cyclic loadings, where bearing strengths of 
the connected plies were the primary parameters influencing pre-peak 
connection stiffness and strength.   This work also provides updates and 
improvements to the typical screw fastener connection test setup, defines a 
means for generalizing cyclic loading protocols for fasteners, and validates a 
non-contact computer-vision measurement system that conveniently and 
accurately measures relative slip and fastener tilt throughout the load-
deformation response. 
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Abstract  

This paper considers the behaviour of a cold-formed steel truss system that uses 
a novel pinned connector for the joints, to be referred to as the Howick Rivet 
connector (HRC). Use of the HRC allows a pinned concentric joint arrangement 
to be formed, as well as the more usual eccentric joint arrangement used in tests 
described in the literature. However, with the concentric joint arrangement, it is 
necessary to remove part of the lips of the channel-sections being connected, thus 
creating a discontinuity in the lips. This paper assesses the effect of this 
discontinuity. Full-scale truss tests are first described. The trusses have span of 6 
m, depth of 1.8 m and length of diagonals of 2.3 m; both pinned concentric and 
pinned eccentric joint arrangement are tested. It was shown that the mid-span 
deflection of the concentric joint arrangement in the elastic range is 3 times 
smaller and 64% stiffer than that of the eccentric joint arrangement; the overall 
failure loads, due to flexural-torsional buckling of the diagonal members, were 
found to be similar, and were not influenced by removal of part of the lips of the 
channel-sections. To investigate the effect of removing the lips for the concentric 
joint arrangement, a series of truss panel tests were performed for which the 
length of the diagonals were 0.6 m. Failure was found to be localised buckling at 
the discontinuity where the lips were removed.  

1 Introduction 

The authors have recently described a novel pinned connector, to be referred to as 
Howick Rivet Connector (HRC) [1, 2] (see Fig. 1), that can be used as an 
alternative to bolts or self-drilling screws. As can be seen in Fig. 1, the HRC 
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comprises a hollow-tubed rivet with a set of inner and outer swaged collars at each 
end. The HRC has a diameter of 12.70 mm and thickness of 0.95 mm. Compared 
with traditional connections, HRC has no initial slip and so a higher 
proportionality limit; furthermore installation of the HRC requires only a single 
operation, resulting in cost savings in labour. This paper considers the application 
of the HRC to cold-formed steel truss systems. 

 

 

 
Figure 2: Joint arrangement of trusses 

 
 

Details of the cold-formed steel joint arrangement used by the HRC for trusses 
are shown in Fig. 2a. As can be seen, the joint arrangement comprises the HRC, 
web and chord members where the diagonal (web) member nest into the chord 

Figure 1: Photograph of Howick Rivet Connector 

HRC Shank 

Outer 
Swaged 
Collar 

Inner 
Swaged 
Collar 

Chord 

Web 

b. Laboube and his co-
workers [3, 4, 5] 

c. Zaharia and 
Dubina [6] 

a. HRC joint 
arrangement of truss 

Chord 

Web 

HRC Self-drilling 
screws 

Chord 

Web 

Bolts 

648



member; the sections are connected through the flanges by the HRC. For 
comparison, details of the other joint arrangements that have been described in 
the literature for cold-formed steel trusses are shown in Fig. 2b and c; these pertain 
to experimental tests by LaBoube and his co-workers [3, 4, 5] and Zaharia and 
Dubina [6], respectively. 

It can be seen from Fig. 2a, that the joint arrangement used by the HRC for trusses 
differs from the other two joint arrangements. The joint arrangement described by 
LaBoube (see Fig. 2b) used back-to-back channel-sections connected using self-
drilling screws, while that of Zaharia and Dubina [6] (see Fig. 2c) used diagonal 
members sandwiched between the chord member on both sides and connected 
using bolts.  

Moreover, the HRC permits either a concentric or an eccentric joint arrangement 
to be formed, unlike that of the joint arrangements of LaBoube and his co-workers 
and Zaharia and Dubina which only permit eccentric joint arrangements. The 
concentric joint arrangement, however, requires the lip of a web member to be 
removed near to the joint at one end of each web member, as can be seen in Fig. 
3, which will have an effect on the compression capacity of the web diagonal 
member. The eccentric joint arrangements does not require the lip to be removed 
for the web member. The lip of the chord member in both cases is folded inwards 
(see Fig. 3).  

 
Figure 3: Concentric joint arrangement used by the HRC 

 
 

This paper describes full scale tests on the HRC truss arrangement for both 
concentric and eccentric joint arrangements. The truss specimens considered have 
a span of 6 m and a depth of 1.8 m.  
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2 Experimental Investigation 

2.1  Full-scale truss tests 

2.1.1  Details of specimens 

For concentrically jointed truss, due to discontinuity in the lip, the truss assembly 
was designed large enough to ensure that the diagonals would fail through 
flexural-torsional buckling. Such an approach would be expected to eliminate the 
effect of localised buckling of the discontinuity. Hence, the effect of eccentricity 
of the connections on the truss system would be the aim of the study. Details of 
the concentric and eccentric joint arrangements for the truss specimens are shown 
in Fig. 4. As can be seen, the length of each truss was 6 m and the depth was 1.8 
m; the length of the diagonal (Ld) was 2.343 m and 2.288 m for the concentric and 
eccentric joint arrangements, respectively.  

 
a. Concentric joint arrangement 

 

 
b. Eccentric joint arrangement 

Figure 4: Full-scale truss specimen details 
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Six tests were conducted in total, three for the concentrically jointed truss and 
three for the eccentrically jointed truss. For the case of the eccentric joint 
arrangement used for the truss, the distance between the HRCs was 70 mm. All 
the trusses were fabricated with the centre of the holes located at the centre of the 
flange of the chord. Fig. 5 shows the specimen labelling convention for the truss 
specimens. 

  
Figure 5: Truss specimen labeling convention 

 
 

The chord and web members are assembled from a channel section having 
nominal dimensions of 45 mm x 65 mm x 10 mm x 0.95 mm, referring to the web, 
flange, lip and thickness, respectively.  

2.1.2  Material properties 

A set of coupon tests were carried out in order to determine the tensile properties 
of the materials. All tests were implemented according to ISO 6892-1:2009 [7]. 
The nominal yield stress of the channel sections was 550 MPa. For the ply 
material, three coupons were obtained in the longitudinal orientation and tested 
using Instron Universal Testing Machine. Two portal gauges were placed on the 
left and the right sides of the specimens to measure the elongation during the test 
and to ensure no bending moment is generated due to the eccentricity. The 
material properties and average test results are summarized in Table 1. 

Table 1: Material properties of channel-sections (E = 230 GPa) 
Nominal 

Thickness 
(mm) 

Base Metal* 
Thickness 

(mm) 

Gauge 
Width 
(mm) 

Gauge  
Length 
(MPa) 

Yield 
Stress** 
(MPa) 

Tensile 
Stress 
(MPa) 

Elongation 
At Rupture 

(%) 

0.95  0.91 20 140 717 700 1.7 
*Base Metal thickness refers to ply thickness without galvanized (zinc) coating. 
**This is the upper yield stress.  

T – CON – 1 
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Three tensile tests were also conducted for the HRC in the longitudinal direction. 
The HRC hollow tube was plugged at both ends so they could be gripped using 
conical grips. The relative displacement was measured by two portal gauges; one 
on each side. The average test result is shown in Table 2. The base metal thickness 
of ply and HRC was used for calculation of the stresses, which excludes the 
galvanised coating thickness determined according to AS 1397 [8].  

Table 2: Material properties of HRC 
HRC 

Specimen 
 

Base Metal* 
Thickness 

(mm) 

Outside 
Diameter 

(mm) 

Gauge  
Length 
(mm) 

Yield 
Stress 
(MPa) 

Tensile 
Stress 
(MPa) 

Elongation 
At Rupture 

(%) 
12.70x0.95 0.91 12.70 300 480 500 2.8 

*Base Metal thickness refers to ply thickness without galvanized (zinc) coating.  
 
 
2.1.3  Test rig and procedure 

Fig. 6 shows the four-point bending test set-up. Two sets of steel dual-columns at 
¼ and ¾ truss span provided points of attachment for the hydraulic actuators and 
top chord lateral supports (see Fig. 6c).  Steel platforms at each end of the truss 
provided a simple support condition, and also laterally supported the truss at those 
locations (see Fig. 6a). A central platform (see Fig. 6b) was used to provide lateral 
support for the bottom chord, and a point of attachment for a linear variable 
differential transformer (LVDT).  

For all tests, loading point and mid-span deflection measurements were recorded; 
the latter with a LVDT at the midpoint of the bottom chord (see Fig. 6b). Static 
loading was applied using a pair of 30-ton hydraulic actuators. These were 
suspended vertically from the tops of the dual-columns (see Fig. 6c) and operated 
manually using hand-jacks. As each jack was loaded manually, care was taken to 
ensure that the loads were close to equal. The instantaneous load readings from 
the load cells were used to control the magnitude and rate of loading during testing. 

All truss specimens were braced against out-of-plane movement at 3 m by the 
installation of lateral supports installed at the 5 joint locations, i.e. at the supports, 
at the mid-span and at the hydraulic actuators. During testing, the actuator load 
was increased at 0.5 kN intervals, until ultimate failure of the truss specimens 
occurred. Once the load increment was achieved, it was held constant for a 
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minimum of 60 seconds, and load and deflection measurements were taken at the 
end of this period.  

 
Figure 6: Test rig of full-scale truss test  

 

2.1.4  Test results 

Fig. 7 shows the variation of total load against mid-span deflection for the trusses. 
Fig. 8 shows the mode of failure of diagonal members, which is through flexural-
torsional buckling. Neither deformation nor failure of the HRC connection was 
observed in any of the specimens. Table 3 shows the experimental peak loads 
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(PEXP) for the concentric and eccentric joint arrangements. The peak load refers to 
the maximum axial compression load in a single diagonal member before failure.  

 
Figure 7: Total load against mid-span deflection for trusses 

 
 

 
Figure 8: Critical diagonal member failure modes 
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As can be seen from Fig. 7, the elastic stiffness of the truss with the concentric 
joint arrangement was 64% higher than that of the truss with the eccentric joint 
arrangement. While the truss with the concentric joint arrangement failed at a load 
of 11% lower than that of the truss with the eccentric joint arrangement, this can 
be attributed to the different length of diagonal members, with the length of the 
diagonal members (Ld) being 2343 mm and 2288 mm for the truss with the 
concentric and the eccentric joint arrangement, respectively. The mid-span 
deflection of the concentrically jointed arrangement in the elastic range is 3 times 
smaller than that of the eccentrically jointed truss. All truss specimens failed in 
flexural-torsional buckling of the outer diagonal members. 

Table 3: Experimental results from full-scale truss test 
a. Concentric joint arrangement (Ld = 2343 mm) 

No 
Test 

Specimen 
 DSM Result  
Without Lip 

 DSM Result  
With Lip 

Total 
Load 

Mid-span 
Deflec. 

Mean  
Mid-span 
Deflec. 

Load in a 
Single 

Member 

Mean  
Peak 
Load Variation 

PEXP/ 
PDSM-N 

PEXP/ 
PDSM-L 

Mode of 
Failure 

    PDSM-N PDSM-L PTEXP ∆ ∆EXP PEXP PmEXP η       
     kip (kN) kip (kN) (kN) (mm) (mm) (kN) kip (kN) (%)       
1 T-CON-1 

3.01 5.49 
8.30 6.04 

6.07 
5.40 

5.42 
0.38 1.79 0.98 F-T Buckling 

2 T-CON-2 8.43 5.59 5.48 1.14 1.82 1.00 F-T Buckling 
3 T-CON-3 8.27 6.57 5.38 0.76 1.79 0.98 F-T Buckling 

Mean Pm                 1.802 0.988   
Mean Standard Deviation               0.018 0.010   
Coefficient of Variation, Vp               0.010 0.010   

 
b. Eccentric joint arrangement (Ld = 2288 mm) 

No 
Test 

Specimen 
DSM Result 
Without Lip 

DSM Result 
With Lip 

Total 
Load 

Mid-span 
Deflec. 

Mean  
Mid-span 
Deflec. 

Load in a 
Single 

Member 

Mean  
Peak 
Load 

Variation 
PEXP/ 

PDSM-N 
PEXP/ 

PDSM-L 
Mode of 
Failure 

  PDSM-N PDSM-L PTEXP ∆ ∆EXP PEXP PmEXP η    
  (kN) (kN) (kN) (kN) (kN) (kN) (kN) (%)    

1 T-ECC-1 
3.19 5.76 

9.01 22.56 
22.33 

6.02 
6.02 

0.06 1.89 1.05 F-T Buckling 
2 T-ECC-2 9.05 22.56 6.03 0.11 1.89 1.05 F-T Buckling 
3 T-ECC-3 9.00 21.87 6.02 0.06 1.89 1.05 F-T Buckling 

Mean Pm         1.888 1.046  
Mean Standard Deviation        0.002 0.001  
Coefficient of Variation, Vp        0.001 0.001  
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2.2  Truss panel test for truss with concentric joint arrangement 

2.2.1  Details of specimens 

As described previously, in order to fabricate a truss with a concentric joint 
arrangement, it is necessary to remove part of the lip of one of the channel-
sections (see Fig. 3) in the vicinity of the joint. In this Section, tests are described 
to investigate the reduced strength owing to out-of-plane buckling caused by the 
discontinuity of the lip (see Fig. 13). The tests are to be referred to as the truss 
panel tests, and are in a form of triangular truss. Fig. 9 shows details of the truss 
panel tests. The same channel-sections and the HRC were used for truss panel 
specimens.  Fig. 10 shows the labelling convention of the specimens.  

 
Figure 9: Truss panel specimen details 

 
 

  
Figure 10: Truss panel specimen labeling convention 
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In total, four truss panel tests were conducted. In two of the truss panel tests which 
are referred as P-N-1 and P-N-2, only the HRC was used. In the other two truss 
panel tests, a 3 mm bolt was used in addition to the HRC, which are referred as 
P-B-1 and P-B-2.   

2.2.2  Material properties 

Three coupons were obtained in the longitudinal orientation and tested using the 
Instron Universal Testing Machine, as described in Section 2.2.1. The material 
properties and average test results are summarized in Table 4. 

Table 4: Material properties of channel-sections (E = 230 GPa) 
Nominal 

Thickness 
(mm) 

Base Metal* 
Thickness 

(mm) 

Gauge 
Width 
(mm) 

Gauge 
Length 
(MPa) 

Yield 
Stress 
(MPa) 

Tensile 
Stress 
(MPa) 

Elongation 
At Rupture 

(%) 
0.95  0.91 20 141 710 721 1.7 

*Base Metal thickness refers to ply thickness without galvanized (zinc) coating. 
 
 
2.2.3  Test rig and procedure 

Fig. 11 shows the truss panel test specimens mounted in the Instron Universal 
Testing Machine.  

 
Figure 11: Truss panel specimen mounted on Instron Universal Testing Machine 
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The truss panel sat on top of a set of pinned supports. The truss panel centerline 
was aligned with the centerline of the cross head. The three corners of the truss 
panel were braced against out-of-plane movement. The crosshead displacement 
of the Instron was measured using an LVDT. The crosshead moved downwards 
at a constant speed of 3.0 mm/min, as specified in AISI S905 [9]. 

2.2.4  Test results 

The experimental peak loads (PEXP) of the truss panel specimens are shown in 
Table 5. The peak load refers to the maximum load before failure in a single 
diagonal member. Fig. 12 shows graphs of overall load against cross head 
movement. Fig. 13 shows the mode of failure.  

 
Figure 12: Total load against crosshead displacement of truss panel specimens 

 
As can be seen from Fig. 12, there are three stages:  

a. HRC reaches its yield point and begins to deform plastically (see 
Fig. 13a) 

b. HRC squashes and the outer swaged collars shear (see Fig. 13b) 
c. Load now directly transferred in bearing through the top chord to 

the diagonal members; peak load corresponds to diagonal member 
buckling out-of-plane at the discontinuity of lip (see Fig. 13c). 

It can be seen from Fig. 12 and Table 5 that adding the 3 mm bolt at the 
discontinuity had little effect on the overall behaviour of truss panel.  
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      a. Softening of HRC     b.   Squashing of HRC c.  Failure of discontinuity 
Figure 13: Failure modes of truss panel specimens without bolt at discontinuity 

 

Table 5: Experimental results from truss panel tests 

No 
Test 

Specimen 
 DSM Result 
Without Lip 

 DSM Result 
With Lip 

Total 
Peak 
Load 

Peak Load 
in a Single 
Member 

Mean  
Peak 
Load Variation 

PEXP/ 
PDSM-N 

PEXP/ 
PDSM-L 

Mode of 
Failure 

    PDSM-N PDSM-L PTEXP PEXP PmEXP η       
    (kN) (kN) (kN) (kN) (kN) (%)       
1 P-N-1 

13.29 28.95 

25.11 15.33 
14.80 3.53 

1.15 0.53 1SH + LDB 
2 P-N-2 23.40 14.28 1.07 0.49 SH + LDB 
3 P-B-1 25.37 15.49 

14.85 4.25 
1.17 0.53 2SH + DMB  

4 P-B-2 23.30 14.22 1.07 0.49 SH + DMB  
Mean Pm             1.116 0.512   
Mean Standard Deviation           0.050 0.023   
Coefficient of Variation, Vp           0.045 0.045   

1Squshing of HRC + Buckling of lip at discontinuity 
1Squshing of HRC + Buckling of diagonal member 

 
3 Analysis of Results 

3.1  Frame analysis 

The full-scale truss was idealised in SAP2000 [10]. The elastic load deflection 
obtained is also shown in Fig. 7. As can be seen, the elastic gradient predicted by 
the SAP2000 model is similar to the experimental results. Fig. 14 shows the axial 
force diagram of the full-scale truss having the concentric and eccentric joint 
arrangement using SAP2000. As can be seen in Fig 14, the outer diagonal 
members were the critical members and failed in flexural-torsional buckling as 
expected and observed in Fig 8. There was also no deformation or failure observed 
during the experiment in the inner diagonal members consistent with the force 
distribution from the SAP2000 model. 
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a. Concentric joint arrangement 

 

 
b. Eccentric joint arrangement 

Figure 14: Axial force diagram of the full-scale truss specimen using SAP2000 
 
 

3.2  Comparison of results against design standard 

3.2.1 Truss panel 

It was observed from the truss panel tests that the section failed due to 
discontinuity of the lip (see Fig. 13). The failure load is also plotted in Fig. 15. 
The analysis was implemented using Cornell University Finite Strip Method 
(CUFSM) software [11] and Direct Strength Method within AISI [12] and 
AS/NZS 4600 [13] design standards. The experimentally measured elastic 
modulus (E) was input in CUFSM, i.e. 230 GPa. As can be seen in Table 5, the 
failure load is similar to the DSM section capacity when calculated for the channel 
section without the lip. Only removing part of the lip at vicinity of the joint, 
resulted in 50% reduction in compressive strength of the member according to the 
DSM result. Therefore, where the elastic deflection of the system with an 

1 kN 1 kN 

1 kN 1 kN 
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eccentric joint is within the criteria of the relevant Standard, the eccentric joint 
arrangement is recommended for a truss assembly.  

3.2.2 Full-scale truss 

The member capacity of the diagonals was calculated in accordance with the DSM. 
Fig. 15 shows the DSM results and experimental results for the HRC. PEXP/Ps 
refers to ratio of the experimental result to the section capacity of channel sections. 

 
Figure 15: Experimental results for the HRC and Zaharia and Dubina [6] 

 
 

For the full-scale truss, the experimental failure load of the diagonals was 
predicted accurately by the DSM (see Table 3) using an effective length of 0.85Ld 
and experimentally measured elastic modulus of 230 GPa. Even though the peak 
load was similar, the mid-span deflection of the eccentric jointed truss was 3 times 
larger than the concentric jointed truss due to 70 mm eccentricity of the HRCs. 
For reference, Table 6 shows the theoretical buckling capacities of the section 
calculated using Effective Width Method (EWM) [11, 12]. As can be seen, there 
is a good agreement between the experimental and EWM results. 
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Table 6: Full-scale truss results against EWM results [11, 12] 
Dia. Member Effective Flexural-torsional   PEXP/ 

Length, Ld Length Buckling, Pf-t PEXP Pf-t 

mm mm kN kN   

2288 1944.80 6.01 6.02 1.00 

2343 1991.55 5.75 5.42 0.94 

 
 
For comparison, Fig. 15 also shows the case of the experimental tests of Zaharia 
and Dubina [6], which failed through flexural instability of the diagonal member. 
As can be seen, the failure load predicted by the DSM is slightly over conservative, 
because combined actions and the rotational stiffness of the bolt-group have been 
ignored.  

4 Conclusions  

This paper has described the behaviour of a cold-formed steel truss system that 
uses a novel pinned connector for the joints, referred to as the Howick Rivet 
connector (HRC). Full-scale truss tests have been described using both pinned 
concentric and pinned eccentric joint arrangement have been tested. It has been 
shown that the mid-span deflection of the concentric joint arrangement in the 
elastic range is 3 times smaller and 64% stiffer than that of the eccentric joint 
arrangement; the overall failure loads, due to flexural-torsional buckling of the 
diagonal members, were found to be similar, and were not influenced by removal 
of part of the lips of the channel-sections. To investigate the effect of removing 
the lips for the concentric joint arrangement, truss panel tests have been performed 
for which the length of the diagonals were 0.6 m. Failure was found to be localised 
buckling at the discontinuity where the lip was removed. The experimental 
strength of truss panel has been compared with the DSM; and found to be similar 
to the member capacity of the channel section without a lip. It is concluded that 
where the deflection is not a limiting factor, eccentrically jointed truss could be 
used to preclude compromising the member capacity by removing part of the lip 
at vicinity of the joint.  
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Application of the Direct Strength Method to Steel Deck 
 

Randall Keith Dudenbostel, E.I.1; and Thomas Sputo, Ph.D., P.E., S.E.2 
 
Abstract 
 
With the reorganization of the AISI S100 Standard, the Direct Strength Method 
(DSM) takes a position of equal footing with the Equivalent Width Method 
(EWM) for calculating the strength of cold-formed steel cross sections. The 
majority of previous DSM studies focused on C and Z profiles, while little study 
of panel sections, especially steel deck sections, has been performed. A study 
was undertaken to determine and compare the behavior and usable strength of 
existing floor and roof deck sections with both DSM and EWM. The Cornell 
University – Finite Strip Method (CUFSM) software was used for the elastic 
buckling analysis, taking into account the wide, continuous nature of installed 
deck sections. Flexural capacity was analyzed for positive and negative flexure 
to account for gravity loading as well as uplift of the steel deck sections. 
Graphical representations of the relationships for DSM strength to the EWM 
strength ratio vs. material width to thickness ratio were developed and are 
illustrative as to the trends seen. DSM predicts lower flexural strength versus 
EWM for sections with relatively wide and thin compression flanges (larger b/t 
ratios). 
 
Introduction 
 
Research Goals 
 
As the Direct Strength Method (DSM) will be taking equal footing with the 
Effective Width Method (EWM) in the proposed reorganization of the AISI 
S100, the following goal was set:  To analyze a variety of existing floor and roof 
deck sections to observe the behavior and compare the usable flexural strengths 
using both DSM and EWM.  DSM has mostly been previously applied to C and 
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Z profiles so it was necessary to develop a finite strip method (FSM) model that 
would accurately model and account for multi-web deck sections installed in an 
adjacent fashion.  Once a model that would accurately represent installed floor 
and roof deck was developed, potential enhancements to existing deck sections 
were studied that would take advantage of DSM (i.e. DSM predicts higher 
flexural strength than EWM). 
 
Direct Strength Method 
 
“A new design method: Direct Strength, has been created that aims to alleviate 
the current complexity, ease calculation, provide a more robust and flexible 
design procedure, and integrate with available, established, numerical methods” 
(AISI, 2006). 
 
The Direct Strength Method (DSM) is a method of analyzing cold-formed steel 
(wide, light gauge) members.  In DSM, the elastic buckling capacity is 
determined over the entire cross section rather than neglecting less “effective” 
portions of the cross section. 
 
In order to apply DSM, the elastic local, distortional, and global buckling 
capacities are first computed.  Graphical representations of local, distortional, 
and global buckling are illustrated below in Figures 1, 2, and 3 respectively.  
The lateral-torsional buckling, local buckling, and distortional buckling flexural 
strengths are calculated to observe the governing buckling mode per DSM 
equations 1.2.2.1, 1.2.2.2, and 1.2.2.3. (AISI, 2012)  In this study, the Cornell 
University Finite Strip Method was used to find the elastic local, distortional, 
and global buckling capacities. 
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Figure 1 – 1.5B 22GA Deck 33KSI Local Buckling (CUFSM Output) 
 

 
 

Figure 2 – 1.5B 22GA Deck 33KSI Distortional Buckling (CUFSM Output) 
 

667



 
 

Figure 3 – 1.5B 22GA Deck 33KSI Global Buckling (CUFSM Output) 
 
Effective Width Method 
 
The Effective Width Method (EWM) is another method for analyzing cold-
formed steel members.  In the EWM, an effective width of compression 
elements is computed and used as the lightly stressed areas, near the center of an 
element, are neglected.  The regions near junctions or stiffeners are considered 
to be fully effective, as these areas are most effective in resisting the applied 
stress.  Figure 4 shows the actual compression element and the effective width, 
b, of the element when subjected to compressive stress. 
 

 
 

Figure 4 – Flange Under Compressive Stress, Effective Element Width, b 
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Cornell University Finite Strip Method 
 
The Cornell University Finite Strip Method (CUFSM) (Li and Schafer, 2010) is 
a tool that provides cross-section elastic buckling solutions.  This program 
allows the user to define a cross-section based on nodal coordinates, member 
end designations, fixities, etc.  The user can then apply axial and flexure stresses 
and observe the elastic buckling solutions over a variety of specified unbraced 
lengths. 
 
The analysis procedure is “specialized to apply to plate deformations beyond 
conventional beam theory.  The semi-analytical finite strip method is a variant 
of the more common finite element method. A thin-walled cross-section is 
discretized into a series of longitudinal strips, or elements. Based on these strips 
elastic and geometric stiffness matrices can be formulated” (Li and Schafer, 
2010). 
 
Deck Sections 
 
This study compared the behavior of DSM and EWM for both stiffened and 
unstiffened deck sections.  The unstiffened deck sections are 1F and 1.5B.  The 
stiffened deck sections are 1.5B, 2C, and 3C.  The deck sections included in this 
study are shown in Figure 5 below. The stiffened 1.5B Deck section is a non-
standard shape.  As a point of reference, the 2C compression flange stiffener 
was added to the compression flange of the 1.5B Deck section and performed 
the analysis to observe the benefits.  The 1.5B and 2C Deck both include flange 
stiffeners 0.37 inches deep and 1.25 inches wide.  The 3C Deck includes flange 
stiffeners 0.37 inches deep and 1 inch wide.  Each deck section was checked in 
both positive and negative flexure.  Each deck section was checked for yield 
stresses of 33, 40, 50, and 60 KSI at gage thicknesses ranging from 0.0598 
inches (16 gage) to 0.0239 inches (24 gage).  No cold working of forming was 
considered. 
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Figure 5 – Deck Sections Included in Study 
 
Process of Modeling and Analysis 
 
DSM Analysis Procedure 
 
For the DSM analysis, a preprocessor was developed to process input files for 
the elastic buckling analysis done with CUFSM.  CUFSM output (load factors) 
were then applied to the DSM equations to predict strength. 
 
DSM Preprocessor 
 
In order to run CUFSM to obtain the elastic buckling solutions, the user must 
define the cross-section parameters.  CUFSM takes in information such as the 
material properties, nodes, elements, and boundary conditions.  As it can be very 
tedious to calculate nodal locations, assign member end designations, and enter 
other parameters manually, a preprocessor was created to expedite the process. 
 
A preprocessor processes its input data to produce output that is used as input 
for another program.  In this case, a MATLAB code was written to preprocess 
the information required to run CUFSM.  This eased the process of segmenting 
and refining members to obtain more accurate results (i.e. the curved corners at 
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joints could be segmented into many line elements that adequately represent a 
curve). 
 
The preprocessor used in this study produced the input data for the Nodes, 
Members, and Lengths input areas for CUFSM.  Once the information was 
entered, program files for each deck section and each gage thickness were 
retained for convenience for analyzing the deck sections at a variety of 
thicknesses and yield stresses. 
 
DSM Deck Model 
 
Based upon advice from Schafer (personal communication), two sets of models 
were run for each deck section: Curved Corner models (Figure 6) and Straight 
Corner models (Figure 7).  Although the curved corner models provided more 
representative elastic buckling solutions, straight corner models, where no 
curvature appears at the element joints, were modeled to accurately capture the 
buckling classification.  The straight corner models were not used to evaluate 
strength as the models would have been overly penalized in DSM by 
misrepresenting the actual flat length of the compression flange.  The end nodal 
locations of the deck profile were restrained to account for adjacent deck 
sections and represent the wide and continuous nature of installed floor and roof 
deck (Figure 8). 
 
 

 
 

Figure 6 – Curved Corner Model for Determining Elastic Strength 
 

 
 

Figure 7 – Straight Corner Model for Determining Buckling Modes 
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Figure 8 – CUFSM General Input 
 
DSM Deck Analysis 
 
The deck profile models were analyzed at stresses of 33, 40, 50, and 60 KSI for 
positive flexure and likewise at stresses of -33, -40, -50, and -60 KSI for 
negative flexure for a variety of unbraced lengths ranging from 1 inch to 50 feet.  
The CUFSM output supplies load factors (nominal buckling moment to yield 
moment) which are used as input for the strength prediction for the deck profile, 
MnDSM.   
 
EWM Deck Analysis 
 
For EWM, an effective width of compression elements is computed and used as 
the lightly stressed areas, near the center of an element, are neglected.  For each 
deck section, the parallel axis theorem was used in a tabular format to provide 
the effective section properties to obtain the effective nominal flexural strength 
using EWM, MnEWM.  The deck sections bend about their neutral axis for 
positive and negative flexure.  The compression elements of the cross-section 
consist of the compression flange as well as a portion of the web element.  For 
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each deck section at each variety of thickness and stress, the webs were found to 
be fully effective.  Only the compression flange then needed to be computed for 
its effective width before iterating to convergence to obtain the nominal flexural 
capacity of the effective section, MnEWM. 
 
Observations 
 
Comparison of Data 
 
After running the DSM and EWM analyses, comparisons were made on a 
couple of sets of data to observe trends between the various deck sections.  
Charts which show the comparison of DSM versus EWM for each section are 
found in the Appendix at the end of this paper.  What is most insightful are the 
charts which add the width to thickness ration (b/t) of the compression flange 
into the consideration.  The first data comparison plots, Figures 9 and 10, show 
the nominal moment capacity ratio of DSM to EWM, MnDSM / MnEWM, vs. the 
flat width of the compression flange over the thickness, b/t.  The second data 
comparison plots, Figures 11 and 12, show the same relationship but now 
normalizing the nominal moment capacity ratio by the yield stress, (MnDSM / 
MnEWM) / Fy. 
 

 
 

Figure 9 – Unstiffened Deck – MnDSM / MnEWM vs. b/t 
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Figure 10 – Stiffened Deck – MnDSM / MnEWM vs. b/t 
 

 
 

Figure 11 – Unstiffened Deck – (MnDSM / MnEWM) / Fy vs. b/t 
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Figure 12 – Stiffened Deck – (MnDSM / MnEWM) / Fy vs. b/t 
 
Comments on Results 
 
From Figure 9, it is seen that DSM starts to predict lower strengths than EWM 
when b/t ratios exceed 40-70 for unstiffened deck sections.  From Figure 10, for 
the stiffened deck sections, b/t tops out around 55.  DSM is able to take 
advantage of the lower b/t and predicts higher strengths than EWM.  In the 
second data comparison, Figures 11 and 12, with the normalized nominal 
moment capacity ratio, the same decrease in DSM strength is observed around 
the 40-70 b/t range.  DSM performs well for lower b/t ratios.  DSM also 
predicted fully effective sections where the EWM did not. 
 
Recommendation 
 
To take advantage of the slight increase in strength with DSM, consider using 
compression element stiffeners.  By adding stiffeners to compression elements, 
b/t is reduced and as determined in this study, DSM predicts higher strengths 
than EWM for lower b/t ratios. 
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Future Work 
 
The next step is to conduct laboratory testing to verify DSM strength results.  
Once the results are backed up with physical testing, potential enhancements to 
new deck profiles that may take advantage of DSM can be developed. 
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Appendix 
 

 
 

Figure 13 – 1F – MnDSM / MnEWM vs. Thickness 
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Figure 14 – 1.5B – MnDSM / MnEWM vs. Thickness 
 

 
 

Figure 15 – 1.5B (stiffeners) – MnDSM / MnEWM vs. Thickness 
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Figure 16 – 2C – MnDSM / MnEWM vs. Thickness 
 

 
 

Figure 17 – 3C – MnDSM / MnEWM vs. Thickness 
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Finite Element Modeling of Concrete Shrinkage in Composite 

Deck Slabs 

 
Vitaliy V. Degtyarev1 

 

Abstract 

 

This paper presents finite element models of composite deck slabs subjected to 

restrained concrete shrinkage. The models created in ANSYS and validated 

against test data were based on the assumption of the full shear interaction 

between the deck and the concrete and accounted for concrete creep, cracking, 

and nonlinear stress-strain relationship. Concrete shrinkage was modeled by 

temperature changes applied to concrete. The effects of different shrinkage 

profiles, concrete creep, and deck slab properties on the long-term concrete and 

deck strains are presented. Future research work is outlined.  

 

Introduction 
 

It is well known that concrete shrinkage may negatively affect flexural stiffness 

of reinforced concrete and composite members when they are restrained against 

volume change (Bradford 2010, Gilbert 1999, Lamport and Porter 1990, and 

Scanlon and Bischoff 2008). Therefore, the effects of concrete shrinkage on the 

long-term deflection of reinforced concrete and composite members should be 

taken into consideration in the design to obtain reliable estimates of the actual 

deflections. 

 

Relatively little research has been reported on the shrinkage induced stresses 

and deformations of composite deck slabs. Recent experimental studies have 

revealed a non-uniform shrinkage distribution through the slab thickness due to 

the impermeable steel deck at the slab soffit (Al-deen and Ranzi 2015, 

Gholamhoseini 2014, and Gilbert et al. 2012). The non-uniform shrinkage 

profile resulted in reduced concrete tensile stress in the concrete bottom fiber 

and, in uncracked slabs, in an increased shrinkage induced curvature of the 

cross-section when compared with the uniform shrinkage profile observed in 

reinforced concrete members exposed on both sides (Gilbert et al. 2012).   
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Bradford (2010) proposed an analytical model for the description of the service 

load behavior of composite slabs that accounts for the non-uniform shrinkage 

profile and the partial interaction between the deck and the concrete. Gilbert et 

al. (2012) extended an analytical method presented by Gilbert and Ranzi (2010) 

to the time-depended analysis of composite deck slabs with the non-uniform 

shrinkage distribution and the full shear interaction between the deck and the 

concrete. Although the developed analytical models give an engineer a tool to 

account for the effects of shrinkage on the long-term behavior of composite 

slabs, they are based on simplified assumptions, which may or may not apply 

to real composite slabs. The Bradford (2010) model assumes uncracked 

concrete and linear stress-strain relationships at the deck-concrete interface, 

whereas the Gilbert et al. (2012) model assumes elastic instantaneous concrete 

deformations and the full interaction between the deck and the concrete.    

 

Modern standards for the design of composite deck slabs provide no guidance 

on accounting for concrete shrinkage in slab deflection calculations. This may 

be due to the fact that the composite slabs have traditionally been used over 

relatively short spans, where the slab design was not controlled by the 

deflection. In recent years, relatively thin long-spanning composite slabs, 

which design is often controlled by the deflection, have been gaining 

popularity. Therefore, the effects of concrete shrinkage on the composite slab 

stiffness and the behavior shall be extensively studied to allow for the 

development of simple and reliable design provisions.   

 

Experimental studies are obviously the most preferable source of information 

about long-term behavior of engineering structures. They, however, are 

expensive and time consuming. The finite element (FE) analysis may 

supplement the experimental studies and help to reduce the number of tests. It 

may also provide information about stress and strain distributions in the deck 

and the concrete that may not be easily obtained from the experiments.  

 

There is a limited number of published papers related to modeling concrete 

shrinkage in FE analysis. Attiyah et al. (2014) and Ma and Gao (2008) modeled 

concrete shrinkage in ANSYS by converting shrinkage strains into equivalent 

temperature strains. A temperature change resulting in the required temperature 

strain was applied to each concrete node of the model. The temperature change 

was calculated using the coefficient of thermal expansion of concrete.  

 

The objectives of this study were to develop FE models of composite deck 

slabs capable of accounting for the effects of concrete shrinkage on the long-

term strains in the slabs and to perform a preliminary parametric study. The 

effects of the shrinkage strain profile, concrete creep, deck height and 
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thickness, concrete cover, and welded wire fabric on the long-term strains in 

the slabs due to concrete shrinkage were considered in the parametric study. 

The FE models were developed in ANSYS.  

 

Numerical study program 

 

The numerical study described in this paper was performed in three phases. In 

phase one, FE models were developed and validated using available test data. 

In phase two, the effects of different shrinkage profiles on the long-term strains 

in the deck and the concrete were studied. The phase three consisted of a 

parametric study where the effects of deck slab properties on the long-term 

strains in the slabs were investigated.  

 

Finite element model development and validation 

 

Two nonlinear three-dimensional FE models of composite deck slabs formed 

on Fielders KF40 and KF70 trapezoidal profiles tested by Gholamhoseini 

(2014) were developed in this phase. The KF40 and KF70 profiles were 1.57 

in. (40 mm) and 2.76 in. (70 mm) deep, respectively. Both profiles were 0.0295 

in. (0.75 mm) thick. The total slab depth of both profiles was 5.9 in. (150 mm). 

Fig. 1 shows cross sections of the modeled slabs. WWF was not used in the 

tests and in the models. The KF40 and KF70 deck slab models were square in 

plan with side lengths of 29.29 in. (744 mm) and 24.41 in. (620 mm), 

respectively.  

Fig 1. Modeled composite slabs 

 

The concrete was modeled with eight-node 3D reinforced concrete solid 

elements SOLID65, which are capable of plastic deformations, cracking in 

tension, and crushing in compression. The multilinear isotropic hardening 

plasticity (MISO) of concrete in compression was combined with the William-

Warnke failure criterion (William and Warnke, 1975) in tension to model the 

nonlinear material behavior of concrete. The uniaxial stress-strain relationships 

for concrete in compression were obtained using the Desayi and Krishnan 

model (Desayi and Krishnan 1964) not accounting for the descending branch of 

the curve: � � � � �
� , where fc is stress at any strain εc; 

ε0=2f’c/Ec is strain at the concrete compressive strength f’c; and � is concrete 
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initial tangent modulus. The concrete compressive strength, the concrete initial 

tangent modulus, and the concrete ultimate uniaxial tensile strength used in the 

models were 5,004 psi (34.5 MPa), 4293117 psi (29600 MPa), and 508 psi (3.5 

MPa), respectively – the same as those in the tests (Gilbert et al. 2012). The 

shear transfer coefficients of 0.3 and 1.0 were specified for open and closed 

cracks, respectively. The concrete was assumed to have a Poisson’s ratio of 0.2.  

 

Each slab was modeled either accounting for or not accounting for concrete 

creep. The ANSYS primary explicit creep equation for C6=0 was used to 

describe the creep behavior of the SOLID65 elements: �� �
��

��
�� 	�
 �⁄ , 

where �� is change in equivalent strain with respect to time;  is equivalent 

stress;  is temperature; and � to  are constants. The following values of the 

constants were used in the models: �=4.869×10
-5, �=1, �=-0.974, and =0, 

which were determined by equating the explicit creep equation to the creep 

equation given in fib (2010) and taking the actual slab properties and relative 

humidity during testing into consideration. 
 

The steel deck was modeled with 4-node structural shell elements SHELL181. 

The bilinear isotropic hardening material model (BISO) using von Mises 

plasticity was specified for the deck. The deck was assumed to be elastic-

perfectly plastic. An elastic modulus of 29008 ksi (2.00×105 MPa) and a 

Poisson’s ratio of 0.3 were used for the deck. 

 

The deck and the concrete were discretized with quadrilateral and hexahedral 

meshes, respectively (Fig. 2), and had common nodes at the contact surfaces, 

which represented the full shear interaction between the deck and the concrete. 

A line of the concrete nodes at approximately one-fourth of the slab length 

from the slab end was restricted from translations in the directions parallel and 

perpendicular to the deck span (see Fig. 2). Another line of the concrete nodes 

at approximately one-fourth of the slab length from another slab end was 

restricted from translations in the directions perpendicular to the deck span. 

Translations of two concrete nodes at the top of the slab at approximately one-

fourth of the slab length from both ends were restrained in the direction 

perpendicular to the slab plane. 

 

  

Fig. 2. FE models of analyzed slabs: a) KF40 deck slab; b) KF70 deck slab  

a) b) 
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The concrete shrinkage behavior was modeled in the same way as it was done 

by Attiyah et al. (2014) and Ma and Gao (2008). Temperature changes were 

applied to each concrete node. The temperature changes were determined so 

that the resulting temperature strain equals to the free shrinkage strain 

measured on concrete specimens without deck as follows: �� �, where 

��is the free shrinkage strain; � is the coefficient of thermal expansion of 

concrete (6.67×10-6 /°F [12×10-6 /°C]). The non-uniform free shrinkage strain 

profiles experimentally obtained by Gholamhoseini (2014) were used. The 

temperature changes applied to concrete nodes varied through the slab depth. 

The sparse direct equation solver and the automatic load stepping were used in 

the analyses. The L2 norm (square root sum of the squares) of force and 

moment with tolerance values of 0.05 and 0.005, respectively were specified.  

 

Fig. 3 shows distributions of total strains in the slab models due to the concrete 

shrinkage obtained from the FE analyses and from tests (Gholamhoseini 2014).  

The total strains include shrinkage strains and mechanical strains, as well as 

creep strains (where applicable) developed with time due to the restrained 

shrinkage. Fig. 3 shows that the developed FE models predicted the strain 

distributions and the curvatures of the tested slabs reasonably well considering 

the large variability in shrinkage measurements (Gilbert et al. 2012). 

 

 
Fig. 3. Total strain distributions a) KF40 deck slabs and b) KF70 deck slabs 

 

The concrete creep affected the strain distributions and the curvatures of the 

KF40 and KF70 deck slabs differently. In the KF40 deck slabs, the creep 

resulted in larger concrete strains and cross-section curvature, whereas in the 

KF70 deck slabs, the effect of the creep was the opposite. Concrete crack 

distributions in the FE models shown in Fig. 4 explain the difference.  
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Fig. 4. Cracks in FE models a) and b) KF40 deck slabs without and with creep, 

respectively; c) and d) KF70 deck slabs without and with creep, respectively   

 

Both models demonstrated less extensive concrete cracking when the concrete 

creep was taken into consideration, which is explained by concrete stress 

relaxation due to the creep. However, the difference in the crack development 

was relatively small for the KF40 deck slabs and significant for the KF70 deck 

slabs. Due to the more extensive cracking, the flexural stiffness of the KF70 

deck slabs without the creep was reduced when compared with the slabs with 

the creep, which resulted in larger strains and cross-section curvature of the 

KF70 deck slabs without the creep. 

 

Effects of different shrinkage strain profiles 

 

Effects of different shrinkage strain profiles on the long-term strains in the deck 

and the concrete were studied on the KF70 deck slab models. Four different 

shrinkage strain profiles were considered: uniform, triangular, bilinear, and 

parabolic (Fig. 5). The shrinkage strain profiles were exactly the same as those 

considered by Gilbert et al. (2012) in their parametric study. For each strain 

profile, two analyses were performed: with and without taking concrete creep 

into consideration. Fig. 6 shows concrete and deck strains induced by different 

shrinkage strain profiles. The concrete slab portions with the mechanical tensile 

strains larger than 124×10-6 were cracked. The mechanical concrete tensile 

strains larger than 124×10-6 included cracking strains. 

 

a) b) 

c) d) 
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Fig. 5. Shrinkage strain profiles considered in parametric study 

 

The uniform shrinkage profile resulted in the highest mechanical concrete 

compressive and tensile strains when compared with other considered profiles. 

Due to the higher concrete tensile strains and more extensive cracking, the 

curvature of the model with the uniform shrinkage distribution was the highest 

among all considered shrinkage profiles. Accounting for the concrete creep in 

the model with the uniform shrinkage profile resulted in noticeably higher 

mechanical concrete top strains and slightly smaller bottom strains. The 

curvature of the model that accounted for the creep was slightly greater when 

compared with the model that did not account for the creep. The uniform 

shrinkage distribution resulted in the highest deck bottom flange strains and the 

smallest deck top flange strains when compared with the other shrinkage strain 

profiles. The concrete creep resulted in increased deck top flange strains and 

reduced deck bottom flange strains. 

 

The triangular shrinkage strain profile resulted in very small mechanical 

concrete strains. In contrast to the model with the uniform shrinkage 

distribution, the top of the slab was in tension. The slab model curvature for the 

triangular shrinkage strain profile was smaller than that for the uniform 

shrinkage but larger than that for the bilinear and parabolic shrinkage strain 

distributions. The concrete creep resulted in slightly larger mechanical concrete 

strains and slightly smaller curvature. Deck bottom strains were relatively 

small. They slightly increased when the concrete creep was considered in the 

model. 

 

The bilinear and parabolic shrinkage distributions resulted in comparable 

mechanical concrete bottom strains, which were larger than those for the 

triangular but smaller than those for the uniform distributions. 
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Fig. 6. Concrete and deck strains induced by different shrinkage strain profiles 
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With the creep, the slab top was in tension for both shrinkage profiles. The 

curvatures were comparable and slightly smaller than those for the uniform and 

triangular distributions especially when the creep was considered. The concrete 

creep resulted in smaller curvatures, smaller mechanical concrete strains at the 

bottom, larger concrete tensile strains at the top, and higher deck compressive 

strains. The entire deck section was in compression for both distributions when 

the creep was considered and for the parabolic profile without the creep. 
 

The bilinear and parabolic shrinkage strain profiles are the ones that most 

accurately represent the measured shrinkage distributions in composite deck 

slabs. They also result in better predictions of total and mechanical concrete 

strains when compared with the uniform and triangular shrinkage profiles. 

Therefore, any of these two profiles can be used in the numerical studies.  
 

Effects of composite deck slab properties 
 

The effects of the deck height and thickness, concrete topping thickness, and 

the amount of temperature and shrinkage reinforcement on the long-term deck 

and concrete strains due concrete shrinkage were studied. The composite deck 

slab models consisted of either KF40 or KF70 decks, which were either 0.0295 

in. (0.75 mm) or 0.0591 in. (1.5 mm) thick, and normal weight concrete 

topping of either 3.15 in. (80 mm) or 4.33 in. (110 mm) thick. The slab models 

were assumed to contain no temperature and shrinkage reinforcement or to be 

reinforced with SL82 (0.30 in. [7.6 mm] diameter at 7.87 in. [200 mm] on 

center spacing) or SL81 (0.30 in. [7.6 mm] diameter at 3.94 in. [100 mm] on 

center spacing) wire mesh. Twenty four slab models were analyzed. The 

parabolic shrinkage profile with the strains of -700×10-6 and -300×10-6 at the 

slab top and bottom, respectively, were used in the models. These shrinkage 

strains were assumed to be developed after 322 days of drying. The concrete 

creep was accounted for in the FE models.  
 

Figs. 7, 8, and 9 show total concrete strains, mechanical concrete strains, and 

mechanical deck strains in the analyzed slab models. Fig. 8 demonstrates that 

in all analyzed models the concrete cracked at the slab bottom due to the 

restrained shrinkage. The wire mesh provided another restraint for the concrete 

shrinkage, which resulted in an increased concrete tension at the WWF level 

and at the top of the slabs. In all analyzed KF70 deck slab models, the concrete 

cracked at the WWF level due to the restrained shrinkage, which shows that 

WWF may cause concrete cracking. 

 

The effect of the deck height on the mechanical concrete top strains depended 

on the concrete and deck thickness and the WWF amount. The slab top was in 

compression in the 0.0591 in. (1.5 mm) thick deck slabs without WWF. 
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Fig. 7. Total concrete strains in analyzed deck slab models 
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Fig. 8. Mechanical concrete strains in analyzed deck slab models 
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Fig. 9. Mechanical deck strains in analyzed deck slab models 

 

In those slabs, the mechanical concrete compressive strains at the slab top 

reduced when the deck height increased. The top of all other analyzed models 

was in tension. In those models, the mechanical concrete top strains increased 

and decreased for the slabs with the concrete cover of 3.15 in. (80 mm) and 

4.33 in. (110 mm), respectively, when the deck height increased. An increase in 

the deck thickness resulted in reduced mechanical concrete tensile strains at the 

slab top. 

 

An increase in the concrete cover resulted in reduced and increased mechanical 

concrete compressive top strains in the 0.0591 in. (1.5 mm) thick KF40 and 

KF70 deck slab models, respectively. In all other models, which top was in 

tension, the mechanical concrete tensile top strains either did not change or 

slightly increased for the KF40 deck slabs and either did not change or slightly 

decreased for the KF70 deck slabs. The mechanical concrete tensile strains at 

the top of the slab and at the WWF level increased as the WWF area increased. 
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The mechanical concrete strains at the WWF level significantly increased when 

the deck height increased for all considered models. In the KF40 deck slabs, 

the mechanical concrete strains at the WWF level did not exceed the ultimate 

concrete tensile strain, while in the KF70 deck slabs, the concrete cracked at 

the WWF level in all analyzed models. No definitive effect of the deck 

thickness on the mechanical concrete strains at the WWF level was found for 

the KF40 deck slabs. For the analyzed KF70 deck models, the mechanical 

concrete tensile strains at the WWF level decreased when the deck thickness 

increased. The concrete cover above the deck practically did not affect the 

mechanical concrete strains at the WWF level in the KF40 deck slabs with the 

SL82 mesh. In the KF40 deck slabs with the SL81 mesh and in the KF70 deck 

slabs with the SL82 and SL81 meshes, the mechanical concrete tensile strains 

at the WWF level increased when the concrete cover thickness increased. 
 

The mechanical concrete strains at the bottom of the models increased when 

the deck height and thickness increased and decreased when the concrete cover 

and the WWF area increased. The mechanical compressive strains in the deck 

bottom flange increased when the concrete cover and the WWF area are 

increased and reduced when the deck height and thickness increased. 
 

The mechanical compressive strains in the deck top flange increased when the 

deck height increased and reduced when the deck thickness and the WWF area 

increased. When the concrete cover increased, the mechanical compressive 

strains in the deck top flange decreased in the slab models with the 0.0591 in. 

(1.5 mm) thick KF40 and KF70 decks reinforced with the SL81 mesh and 

increased in all other slab models. 
 

The slab curvature increased when the deck thickness increased and reduced 

when the deck height, the concrete topping thickness, and the WWF area 

increased. This indicates that the composite deck slab deflection induced by the 

concrete shrinkage will be larger in the slabs on heavier deck and smaller in the 

slabs with deeper deck and concrete cover, as well as in the slabs with heavier 

WWF. 
 

Conclusions and future work 
 

Nonlinear three-dimensional FE models of composite deck slabs capable of 

accounting for the effects of concrete shrinkage on the long-term strains and 

deformations in the slabs were developed in this study using the commercial 

software ANSYS and validated against published test data. The FE models 

were based on the assumption of the full shear interaction between the deck 

and the concrete and accounted for concrete creep, cracking, and nonlinear 
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stress-strain relationship. The concrete shrinkage was modeled by temperature 

changes applied to concrete.  
 

The effects of different shrinkage profiles, concrete creep, and deck slab 

properties on the long-term concrete and deck strains were investigated. The 

study showed that the bilinear and parabolic shrinkage strain distributions, 

being the most realistic ones, provide a better agreement between concrete 

strains from the tests and the analysis when compared with the uniform and 

triangular distributions. The concrete creep may noticeably affect concrete 

strains and slab curvature induced by the restrained shrinkage. The concrete 

creep on one hand reduces mechanical concrete tensile strains, which 

contribute to less extensive concrete cracking and, therefore, greater flexural 

stiffness of the slab and its smaller curvature. On the other hand, it increases 

total concrete strains, which contribute to larger slab curvature.  
 

The effects of the deck height and thickness, concrete cover thickness, and the 

WWF amount on the long-term concrete and deck strains and the slab 

curvature were studied. In all analyzed slab models, concrete cracked at the 

slab bottom due to the restrained shrinkage. The wire mesh provided another 

restraint for the concrete shrinkage, which resulted in an increased concrete 

tension at the WWF level and at the slab top. The concrete in some analyzed 

slab models cracked at the WWF level due to the restrained shrinkage. It was 

shown that the slab curvature increased when deck thickness increased and 

reduced when the deck height, the concrete cover, and the WWF area 

increased. 
 

The full shear interaction between the deck and the concrete was used in the 

developed FE models. In the reality, the composite deck slabs demonstrate 

partial interaction. Therefore, the effects of the partial interaction on the long-

term concrete and deck strains and the slab curvature induced by the restrained 

concrete shrinkage should be investigated. More extensive parametric studies 

based on wider ranges of deck types, slab thicknesses, and reinforcing 

parameters should be performed to develop recommendations for taking 

concrete shrinkage into consideration in the design of the composite slabs. 

Considering many uncertainties involved in the concrete shrinkage and the 

deck and concrete interaction, a probabilistic approach should be used in the 

design recommendations development. 
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Design of new cold rolled purlins by experimental testing and Direct 
Strength Method  

 
V.B. Nguyen1, B. Cartwright2 and M.A. English3 

 
Abstract 
 
New cold roll formed channel and zed sections for purlins, namely 
UltraBEAMTM2 and UltraZEDTM2, have been developed by Hadley Industries 
plc using a combined approach of experimental testing, finite element modelling 
and optimisation techniques. The new sections have improved strength to weight 
ratio by increasing the section’s strength by using stiffeners in the section webs. 
The European standards, Eurocode 3, use a traditional Effective Width Method 
to determine the strength of a cold formed steel member. However, the design of 
the new sections UltraBEAMTM2 and UltraZEDTM2 using this method is very 
complicated in calculating the effective section properties as these sections 
contain complex folded-in stiffeners. In addition, the incorporation of competing 
buckling modes such as distortional buckling can be difficult to analyse. To 
overcome difficulties of using Eurocode 3 or such a standard with the Effective 
Width Method for the design of these sections, the Direct Strength Method 
(DSM) is adopted for determining the section strengths. Four-point beam 
bending tests were carried out to determine the buckling and ultimate bending 
capacity of the UltraBEAMTM2 and UltraZEDTM2 sections. Results of 
experimental testing and Finite Element Analysis were initially used as 
validation for the design using the DSM. The DSM results in terms of in 
bending moment capacities were then compared with the experimental test 
results for a broader data in which the UltraBEAMTM2 and UltraZEDTM2 
sections had a range of different width-to-thickness ratios. It showed an 
excellent agreement between test and DSM design values. It is concluded that 
the DSM is a powerful tool for the design and optimisation of the new cold roll 
formed channel and zed purlins. 
 
1Lecturer, Department of Engineering, University of Derby, Markeaton Street, 
Derby, DE22 3AW, UK. 
2Product Development Manager, Hadley Industries plc, Smethwick, West 
Midlands, UK. 
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Introduction 
 
Cold-formed purlin sections are usually manufactured into conventional channel 
and zed profiles. These sections consist of plate elements of the web and flanges 
which usually have a large width-to-thickness ratio. Therefore, they are prone to 
local or distortional buckling and this buckling governs the failure modes for 
cold-formed steel members. There have been extensive investigations on 
buckling and ultimate strengths of these conventional sections and practical 
design specifications are also available in codes of practice in different countries 
such as European Standard (EC3, 2006), North American Specification (NAS, 
2007) and Australian/New Zealand Standard (AS/NZS, 2005).  
 
To improve the strength of cold-formed sections that are prone to local / 
distortional buckling, stiffeners have been placed at the web of the sections. 
These stiffeners subdivide the plate elements into smaller sub-elements and 
hence can considerably increase the local buckling of cold-formed sections 
subjected to compressive stresses due to the smaller width-to-thickness ratio of 
the sub-elements. In recent years, there has been a significant number of studies 
on the strength and design of cold-formed sections with web stiffeners 
(Desmond et al. 1978, Papazian et al. 1994, Schafer and Pekoz 1998, Young and 
Chen 2008, Zhang and Young 2012). However, the majority of these studies are 
for columns under compression or hat sections under bending and there have 
been limited investigations on channel and zed sections with web stiffeners 
subjected to bending.  
 
A zed section with longitudinal stiffeners in the web, introduced during cold 
rolled forming, was designed and developed at the University of Strathclyde by 
Rhodes and Zaras (1988) in conjunction with Hadley Industries plc, with the 
aim of improving the performance of a zed type section. The development 
suggested that when the stiffeners were placed about one fifth of the web width 
from each flange, the problem of local buckling in the web was eliminated. The 
channel section with longitudinal stiffeners in the web was developed at Hadley 
Industries plc later in an attempt to incorporate the innovative web stiffener 
configuration used in the new zed, into a channel shape (Castellucci et al. 1997). 
Recent investigations using Finite Element analysis (FEA) and optimisation 
techniques have proved that when the two symmetrical stiffeners on the web 
were placed closely to each flange, maximum buckling and ultimate strengths 
for the section were achieved (Nguyen et al. 2015). Since the sections evolved 
had the basic zed shape, Z, and channel shape, C, with additional enhancements 
which proved improved performance, they were decided that these sections 
should be named the ‘UltraZEDTM2’ and ‘UltraBEAMTM2’ as illustrated in 
Figure 1, respectively from now on in this paper. 
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These new sections have a considerably improved strength to weight ratio 
considerably by using the web stiffener types as shown in Figure 1. Additional 
small stiffeners in zed sections that have large width-to-thickness ratios were 
added to introduce a greater degree of work hardening, which raises the material 
yield strength in these regions, taking increased further advantage of eliminating 
the local buckling. All of the current design codes including the European 
standard Eurocode 3 (EC3) use a traditional Effective Width Method (EWM) to 
determine the strength of a cold formed steel member. However, the design of 
the new sections UltraBEAMTM2 and UltraZEDTM2 using this method is very 
complicated in calculating the effective section properties as these sections 
contain complex folded-in stiffeners. In addition, the incorporation of competing 
buckling modes such as distortional buckling can be difficult.  
 
An alternative to the EWM is the Direct Strength Method (DSM) which is 
currently adopted in the North American Standard (NAS, 2007) and 
Australian/New Zealand standard (AS/NZS, 2005). The DSM uses the elastic 
buckling loads for the gross section considering local, distortional and global 
buckling to determine the strength of a cold-formed steel member. The DSM 
does not need to calculate the effective section properties; instead the elastic 
buckling analysis is calculated with computer aided numerical analysis so it can 
be used for design of cold-formed steel members with complex stiffeners 
(Schafer 2006). On the other hand, the DSM in current specifications is a semi-
empirical approach, which was calibrated to cover only the pre-qualified 
sections specified in NAS (2007), and the UltraBEAMTM2 and UltraZEDTM2 
shapes are not in this list. Therefore, the DSM was adopted in this paper for 
design of the UltraBEAMTM2 and UltraZEDTM2 purlins and was evaluated 
against experimental tests. 
 
In this paper, four-point beam bending tests have been carried out to determine 
the ultimate bending capacity of the UltraBEAMTM2 and UltraZEDTM2 sections 
which have a range of different geometries. Together with beam bending tests, 
tensile tests of the beam material were also conducted to determine the material 
properties. FE simulations of the bending tests of the UltraBEAMTM2 and 
UltraZEDTM2 sections were presented. The DSM in current specifications was 
evaluated for the strength of the UltraBEAMTM2 and UltraZEDTM2 sections 
based on the experimental and FE results.  
 
Experimental test programme 
 
The beam specimens were cold roll formed along the rolling direction on steel 
coils with a nominal Young’s modulus of 205 GPa. Typical cross sections of the 
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test specimens are shown in Figure 1. Measured test section geometries and 
dimensions are given in Table 1 for UltraBEAMTM2 sections and Table 2 for 
UltraZEDTM2 sections. Dimensional measurements were carried out and 
recorded for all test specimens prior to testing. This allows the exact profile 
geometry to be evaluated within the DSM and FE simulations. Measurements 
taken include material thickness, web width (or depth), flange width, and lip 
length. 

 
 
Figure 1 Cross sections and geometries of beam specimens (a) UltraZEDTM2 
145-170 mm deep sections, (b) UltraZEDTM2 200-305 mm deep sections, and 
(c) UltraBEAMTM2 145-305 mm deep sections. The depth of the section is also 
called the web width; Dim C is the hole centre 
 
The beam specimens were labelled, an UltraBEAMTM2 specimen label starts 
with C whilst an UltraZEDTM2 specimen starts with Z. For example, a specimen 
labelled as C-W145T1.2 is described as follows: C: Channel specimen; W: Web, 
145: Nominal web height or beam depth (mm); T: Thickness, 1.2: Nominal plate 
thickness (mm). The forming process of each specimen is cold-rolled forming. 
 
The material properties of the beam specimens were determined from tensile 
tests, adhering to Annex B of BS EN 10002-1:2001. Tensile test results in terms 
of yield stress, tensile strength and elongation are shown in Tables 1 and 2 for 
UltraBEAMTM2 and UltraZEDTM2 steel materials, respectively. Experimental 
tests complying with standard BS EN 1993-1-3:2006 were carried out to 
evaluate the FE and DSM results. A typical test setup for the four-point bending 
test of is shown in Figure 2. 

700



T
ab

le
 1

 M
ea

su
re

d 
te

st
 s

ec
ti

on
 g

eo
m

et
ri

es
 a

nd
 d

im
en

si
on

s 
fo

r 
U

lt
ra

B
E

A
M

T
M

2 
se

ct
io

ns
 

 
C

ha
n

ne
l s

ec
ti

on
s 

F
la

ng
e 

D
im

 A
 

D
im

 D
 

D
im

 B
 

S
ec

on
d 

M
om

en
t 

S
ec

ti
on

 
m

od
ul

us
 

T
en

si
le

 T
es

t M
at

er
ia

l P
ro

pe
rt

ie
s 

S
ec

ti
on

 
R

ef
er

en
ce

 
T

hi
ck

ne
ss

 
m

m
 

D
ep

th
 

m
m

 
R

ad
iu

s 
m

m
 

W
id

th
 

m
m

 
L

ip
 

m
m

 
   

   
   

   
 

m
m

 
   

   
   

   
   

  
m

m
 

   
   

   
   

   
  

m
m

 
M

aj
or

 
ax

is
 

m
m

4 x
10

4  

M
aj

or
 

ax
is

 
m

m
3 x

10
3  

Y
ie

ld
 

S
tr

es
s 

N
/m

m
2  

T
en

si
le

 
S

tr
en

gt
h 

N
/m

m
2  

E
lo

ng
at

io
n 

%
 

C
-W

14
5T

1.
2 

1.
23

 
14

5.
04

 
2.

30
 

63
.0

7 
16

.0
5 

9.
00

 
20

.0
0 

75
.0

0 
12

1.
54

 
16

.7
6 

48
5.

50
 

53
0.

00
 

14
.0

0 

C
-W

14
5T

1.
4 

1.
40

 
14

5.
02

 
2.

10
 

62
.9

8 
16

.0
1 

9.
00

 
20

.0
0 

75
.0

0 
14

1.
10

 
19

.4
6 

48
5.

50
 

53
0.

00
 

14
.0

0 

C
-W

14
5T

2.
0 

1.
99

 
14

5.
01

 
1.

50
 

63
.0

5 
16

.0
1 

9.
00

 
20

.0
0 

75
.0

0 
19

8.
64

 
27

.4
0 

48
5.

10
 

51
5.

00
 

15
.0

0 

C
-W

17
0T

1.
2 

1.
20

 
17

0.
05

 
2.

30
 

63
.0

1 
16

.0
5 

9.
00

 
20

.0
0 

10
0.

00
 

17
6.

09
 

20
.7

2 
60

4.
00

 
68

4.
00

 
12

.5
0 

C
-W

17
0T

1.
5 

1.
50

 
16

9.
80

 
2.

00
 

62
.9

9 
15

.9
4 

9.
00

 
20

.0
0 

10
0.

00
 

21
8.

66
 

25
.7

2 
55

7.
00

 
57

5.
00

 
14

.0
0 

C
-W

17
0T

2.
0 

2.
01

 
17

0.
00

 
1.

50
 

63
.0

4 
15

.9
8 

9.
00

 
20

.0
0 

10
0.

00
 

28
8.

34
 

33
.9

2 
53

5.
00

 
64

0.
00

 
14

.0
0 

C
-W

25
5T

1.
4 

1.
40

 
25

4.
90

 
3.

00
 

75
.0

0 
19

.0
3 

12
.5

0 
30

.0
0 

15
5.

00
 

74
2.

64
 

58
.2

5 
43

1.
70

 
46

6.
50

 
12

.0
0 

C
-W

25
5T

2.
3 

2.
32

 
25

5.
02

 
2.

10
 

75
.0

6 
19

.0
2 

12
.5

0 
30

.0
0 

15
5.

00
 

82
0.

21
 

64
.3

3 
45

0.
20

 
54

5.
00

 
26

.0
0 

C
-W

25
5T

3.
0 

2.
98

 
25

5.
01

 
1.

40
 

74
.9

7 
19

.0
7 

12
.5

0 
30

.0
0 

15
5.

00
 

10
09

.8
9 

79
.2

1 
48

7.
00

 
55

2.
00

 
27

.0
0 

 T
ab

le
 2

 M
ea

su
re

d 
te

st
 s

ec
ti

on
 g

eo
m

et
ri

es
 a

nd
 d

im
en

si
on

s 
fo

r 
U

lt
ra

Z
E

D
T

M
2 

se
ct

io
ns

 
 

Z
ed

 S
ec

ti
on

s 
T

op
 f

la
ng

e 
B

ot
to

m
 f

la
ng

e 
D

im
 A

 
D

im
 D

 
D

im
 B

 
S

ec
on

d 
m

om
en

t 
S

ec
ti

on
 

m
od

ul
us

 
T

en
si

le
 te

st
 m

at
er

ia
l p

ro
pe

rt
ie

s 

S
ec

ti
on

 
R

ef
er

en
ce

 
T

hi
ck

ne
ss

 
m

m
 

D
ep

th
 

m
m

 
R

ad
iu

s 
m

m
 

W
id

th
 

m
m

 
L

ip
 

m
m

 
W

id
th

 
m

m
 

L
ip

 
m

m
 

m
m

 
m

m
 

m
m

 

M
aj

or
 

ax
is

 
m

m
4 x

10
4  

M
aj

or
 

ax
is

 
m

m
3 x

10
3  

Y
ie

ld
 

S
tr

es
s 

N
/m

m
2  

T
en

si
le

 
S

tr
en

gt
h 

N
/m

m
2  

E
lo

ng
at

io
n 

 %
 

Z
-W

14
5T

1.
2 

1.
25

 
14

5.
07

 
2.

70
 

67
.0

0 
15

.0
2 

61
.0

3 
13

.8
9 

10
.0

0 
25

.0
0 

90
.0

0 
12

6.
95

 
17

.1
8 

43
3.

50
 

51
9.

00
 

22
.0

0 

Z
-W

14
5T

1.
5 

1.
55

 
14

5.
01

 
2.

60
 

67
.0

4 
15

.0
3 

61
.0

0 
13

.9
2 

10
.0

0 
25

.0
0 

90
.0

0 
15

7.
43

 
21

.2
9 

46
2.

90
 

56
6.

00
 

21
.0

0 

Z
-W

14
5T

2.
0 

2.
00

 
14

5.
00

 
2.

30
 

66
.9

5 
15

.0
5 

60
.9

6 
13

.9
4 

10
.0

0 
25

.0
0 

90
.0

0 
20

7.
14

 
28

.0
2 

48
3.

00
 

59
1.

00
 

17
.0

0 

Z
-W

20
0T

1.
2 

1.
22

 
19

9.
70

 
5.

40
 

70
.0

3 
14

.9
2 

60
.0

8 
13

.0
5 

15
.0

0 
42

.5
0 

10
0.

00
 

25
7.

32
 

25
.0

6 
59

9.
00

 
60

9.
00

 
12

.0
0 

Z
-W

20
0T

1.
8 

1.
77

 
20

0.
03

 
5.

10
 

70
.0

1 
15

.0
5 

59
.9

7 
13

.0
7 

15
.0

0 
42

.5
0 

10
0.

00
 

38
2.

70
 

37
.2

6 
54

3.
00

 
56

8.
00

 
13

.2
5 

Z
-W

20
0T

2.
5 

2.
42

 
20

0.
06

 
4.

75
 

69
.4

0 
15

.0
4 

60
.0

2 
12

.9
2 

15
.0

0 
42

.5
0 

10
0.

00
 

52
2.

47
 

50
.8

6 
46

0.
20

 
51

2.
00

 
12

.0
0 

Z
-W

25
5T

1.
3 

1.
28

 
25

5.
00

 
5.

35
 

69
.7

0 
14

.9
7 

59
.9

1 
13

.0
0 

13
.0

0 
42

.5
0 

15
5.

00
 

50
0.

84
 

38
.3

8 
47

5.
80

 
58

7.
00

 
20

.5
0 

Z
-W

25
5T

1.
8 

1.
82

 
25

5.
02

 
5.

10
 

70
.0

6 
14

.9
1 

59
.9

6 
13

.0
4 

13
.0

0 
42

.5
0 

15
5.

00
 

68
9.

19
 

52
.5

8 
49

0.
00

 
58

0.
00

 
20

.0
0 

Z
-W

25
5T

2.
5 

2.
47

 
25

4.
80

 
4.

75
 

70
.0

2 
15

.0
2 

60
.0

1 
12

.9
5 

13
.0

0 
42

.5
0 

15
5.

00
 

93
8.

99
 

71
.9

3 
51

3.
00

 
59

0.
00

 
21

.0
0 

701



 
 
Figure 2 Four-point bending test setup, showing UltraZEDTM2 sections and 
strain gauge arrangement (in box) 
 
A calibrated test rig was used for the tests. The rig consists of a 220-kN capacity 
load cell (LCHD-50K model, Omega Engineering Ltd.) and an electric machine 
screw jack. The beams were set up as simply supported beams. Rotating end 
station, as shown in Figure 2, was used to model the pin end condition of the 
beams at supports. Electrical strain gauges (SGD-10/120-LY11, Omega 
Engineering Ltd.) were used to measure the axial strains along the web and 
flanges of the cross section of the beam specimens; the critical buckling load 
was determined from strain gauge readings. Four strain gauges were mounted on 
the specimen mid-span, on the perimeter outside the specimen cross section, at 
the web positions close to the flanges and at the centres of flanges. LVDTs or 
displacement transducers were used for determining the vertical displacements 
from top and bottom of the beam specimens. Each test consists of two opposing 
sections (UltraBEAMTM2 sections had their flanges faced inwards whilst 
UltraZEDTM2 sections had their top flanges faced inwards), allowing application 
of load through or close the shear centre of each section. 
 
The load cell moved vertically down to apply a downward load symmetrically at 
two points at 0.33 x span centre. These loads were applied through the web of 
the section via a bolted connection using cleats, which in turn contacted the load 
cell beams via half round blocks, as shown in Figure 2, connected to cleats that 
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fixed to the beam webs.  The load was spread to the beams via this cleat system. 
Half round blocks were used to ensure that the load applied to cleats was a point 
load. In this testing arrangement, pure in-plane bending of the beams could be 
obtained between the two loading points without the presence of shear and axial 
force. Dedicated cleat components allowed end connection rotation through 
supporting stations, and defined load point application at the centres of the 
beams. 
 
Test spans adhere to the minimum requirements as stated in the standard. This 
distance was selected such that the ultimate load causing failure in the moment 
span is lower than that causing failure in the shear span. For accuracy during 
setting up, the beams were pierced during manufacture to allow fixing with M12 
bolts (representative of those used in practice). The tested / manufactured spans 
are shown in Table 3. lateral restraints made of 45x45 mm angle were fixed by 
self-tapping screws to the top and bottom flanges at every 300-400 mm 
symmetrical to the mid-span and thereafter depending on beam depth and in turn 
the location of load points. 
 
Table 3 Sample spans considered for testing and analysis 

Section depth (mm) 145 170 200 225 255 285 305 

Span (mm) 2295 2691 3087 3483 3879 4275 4275 

Load centre (mm) 765 897 1029 1161 1293 1425 1425 
 
Prior to each test the beam specimen was pre-loaded to remove any clearance in 
the connections, checking the alignment between specimens, connections and 
load cell. The applied load then returned to zero and the LVDTs and strain 
gauge readings were also set to zero. The specimen was loaded via the electric 
screw jack where displacement control was adopted to drive the load cell 
actuator at a constant rate of 2.5 mm/min. The specimen was loaded to failure 
and the test stopped at about 90% of the ultimate load. The data associated with 
load, displacement and strain gauge readings were recorded by the DASYLab 
data acquisition software (DASYLab software, Measurement Computing 
Corporation). Based on these data, load-deflection curves were plotted. To take 
into account the variation in sample and testing conditions, 4 duplicated tests 
were carried out. There were 116 tests in total for both UltraBEAMTM2 and 
UltraZEDTM2 beams. 
 
Direct Strength Method 
 
The Direct Strength Method specified in the North American Specification 
(NAS, 2007) was used in this study to determine the bending moment capacities 
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of the UltraBEAMTM2 and UltraZEDTM2 beams. This method considered elastic 
buckling loads identified from a numerical analysis. In particular, the finite strip 
software CUFSM software (2012) was used to identify the elastic buckling 
values for the beams. The elastic buckling analysis in CUFSM was performed 
for systematically increasing half-wavelengths to obtain the shapes and load 
factors for the buckling modes of the beam. Due to lateral restraints to the top 
and bottom flanges at every distance of 300-400 mm, no lateral-torsional 
buckling occurred to the beams in tests, so the beams were regarded as fully 
braced beams. Hence, the nominal flexural strength (Mne) for lateral-torsional 
buckling was taken as the yield moment (My) for fully braced beams.  The 
current DSM for beams that considered inelastic reserve capacities for local 
buckling and distortional buckling in the North American Specification were 
summarised as follows. 
 
The ultimate flexural strength, Mn, is the minimum of nominal flexural strength 
due to global buckling (Mne), nominal flexural strength for local buckling (Mnl) 
and nominal flexural strength for distortional buckling (Mnd), as shown as  
Mn = min(Mne,Mnl,Mnd)      (1) 
 
The nominal flexural strength for local buckling (Mnl) was calculated in 
accordance with the following: 
For λl ≤ 0.776, Mnl = My       (2) 
For λl > 0.776, Mnl = [1-0.15(Mcrl/My)0.4](Mcrl/My)0.4My   (3) 
Where λl = (My/Mcrl)1/2; My = Sffy; Sf is the gross section modulus referenced to 
the extreme fiber at first yield; fy is the yield stress which is the 0.2% proof 
stress (σ0.2) obtained from tensile coupon tests in this study; Mcrl is the critical 
elastic local buckling moment (Mcrl = Sfσcrl, in which σcrl is the critical elastic 
local buckling stress). 
 
The nominal flexural strength for distortional buckling (Mnd) was calculated in 
accordance with the following: 
For λd ≤ 0.673, Mnd = My       (4) 
For λd > 0.673, Mnd = [1-0.22(Mcrd/My)0.5](Mcrd/My)0.5My   (5) 
Where λd = (My/Mcrd)1/2; Mcrd is the critical elastic distortional buckling moment 
(Mcrl = Sfσcrd, in which σcrd is the critical elastic distortional buckling stress). 
 
The critical elastic local buckling stress σcrl and critical elastic distortional 
buckling stress σcrd were obtained from the finite strip software CUFSM. The 
measured cross-section dimensions and material properties presented in Tables 1 
and 2 were used to determine the theoretical buckling load. 
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Finite Element Analysis 
 
Finite Element simulations were conducted using Marc (MSC Software, version 
2014) to simulate the four-point bending test of the beams. In this example, the 
UltraBEAMTM2 specimens C-W170T1.6 had a total length of 2920 mm, a span 
of 2691 mm, a load centre of 897 mm, thickness of 1.60 mm, flange width of 63 
mm, web width of 170 mm and corner radius of 2.0 mm. Other beam specimens 
had dimensions and material properties as presented in Table 1. Figure 3 
illustrates the FE model setup. By taking advantage of symmetry, only a half of 
the test system was modelled. The beams were presented by shell elements on 
its central plane with a thickness of 1.60 mm. In these simulations, the material 
properties of the sheet steel were obtained from physical tensile tests. The braces 
were modelled as rigid links connections. Load was applied on the two central 
cleats at their centroids using the displacement-controlled method while the two 
end supports were fully fixed in vertical direction at their centroids. Each 
loading point was at a reference node that connects to a set of tied nodes (at the 
beam web where the cleat connected to the beam). The link between the 
reference node and the tied nodes was based on a rigid link connection, only 
unrestrained in loading direction. Details of FE models were given in Nguyen et 
al. (2015). 
 

 
 
Figure 3 FEA four-point bending test setup including boundary conditions and a 
closer view of the mesh 
 
Test results and discussion 
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Results of experimental tests, DSM and Finite Element simulations of beam 
specimens C-W170T1.6 in the UltraBEAMTM2 test group are presented first.  
Results of all UltraBEAMTM2 and UltraZEDTM2 beams are presented in Table 4. 
 
The results for the elastic buckling analysis using the software CUFSM are 
provided for the beam specimens C-W170T1.6 in Figure 4. The first two 
minima indicate Mcrl/My = 1.25 and Mcrd/My = 0.75 which clearly shows that the 
distortional buckling is dominated the behaviour and failure mode of the beams. 
 

 
 
Figure 4 Buckling curves and modes of the UltraBEAMTM2 specimens C-
W170T1.6 obtained from the software CUFSM 
 
Figure 5 shows the comparison between the experimental, DSM and FE results 
for the UltraBEAMTM2 specimens. The experimental and FE load-displacement 
curves were also plotted for comparison. The DSM and FE results were similar 
in both buckling and ultimate loads, with a maximum difference of less than 2% 
in buckling load and 4% in ultimate load. The DSM ultimate load was in 
excellent agreement with experimental value for ultimate load, with a maximum 
difference of 3%. However, for this particular example the test did not clearly 
show elastic buckling prior to failure. It was noted that the buckling loads 
obtained from the DSM (or more accurate, the finite strip analysis) and FE 
analysis were even greater than the ultimate loads. The main reason for this 
could be the fact that the tested beams deformed in plastic region while the DSM 
and FE local buckling loads were evaluated by means of linear elastic analysis. 
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Figure 5 Results of experimental test, DSM and FEA, including load-
displacement curves for the UltraBEAMTM2 specimens C-W170T1.6 
 

 
 
Figure 6 Failed mode shapes of the UltraBEAMTM2 in testing and FE 
simulation. Displacement contour is presented in FE results in which lighter 
colours indicate greater displacement magnitudes 
 
Figure 6 shows the failed mode shapes of the UltraBEAMTM2 in comparison 
with the experimental shapes. It can be seen that the buckling and failed modes 
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predicted by DSM and FE models are very similar to the experimental modes. 
This further confirms the validation of the DSM and FE simulations. Figures 5 
and 6 also show that the beam specimens had similar buckling failure modes in 
DSM and FEA although in DSM the flanges came out and the web came in, 
which are in opposite directions to the experimental and FEA modes. 
 
Table 4 Comparison of moment capacities obtained from DSM and test results. 
‘L’, ‘D’, ‘F’ stand for ‘Local buckling’, ‘Distortional buckling’ and ‘Full 
section’, respectively 
 

Specimens Test   DSM   Comparison 

  
MEXP 

(kNm) 
Failed 
mode 

MDSM 
(kNm) 

Failed 
mode MEXP/MDSM 

(1) (2) (3) (4) (5) (6) 

UltraBEAMTM2           

C-W145T1.2 5.97 D 6.21 D 0.96 

C-W145T1.4 6.54 D 6.03 D 1.08 

C-W145T2.0 9.57 D 9.99 D 0.96 

C-W170T1.2 6.04 D 6.58 D 0.92 

C-W170T1.5 8.43 D 8.64 D 0.98 

C-W170T1.6 9.08 D 9.33 D 0.97 

C-W170T2.0 12.75 D 12.73 D 1.00 

C-W255T1.5 11.55 D 11.68 D 0.99 

C-W255T2.3 23.82 D 24.67 D 0.97 

C-W255T3.0 40.09 D 38.10 D 1.05 

UltraZEDTM2   
 

  
 

  

Z-W145T1.2 7.29 F 7.81 F 0.93 

Z-W145T1.5 9.50 F 9.69 F 0.98 

Z-W145T2.0 12.35 F 12.76 F 0.97 

Z-W200T1.2 10.75 F 11.49 F 0.94 

Z-W200T1.8 17.07 F 17.04 F 1.00 

Z-W200T2.5 22.20 F 23.32 F 0.95 

Z-W255T1.3 16.50 D 16.29 D 1.01 

Z-W255T1.8 23.18 F 23.96 F 0.97 

Z-W255T2.5 31.98 F 32.86 F 0.97 
 
Table 4 shows the results of moment capacities of all UltraBEAMTM2 and 
UltraZEDTM2 beams obtained from experimental test (MEXP) and Direct Strength 
Method (MDSM). The comparison between these values is shown in column (6) 
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of Table 4. Comparison of the DSM results with experimental test results shows 
a minimum variation of 0% up to a maximum of 8%. The average variation in 
bending moment achieved through the DSM and physical testing is 4% for all 
data with the DSM giving conservative results in 3/19 cases. In particular, the 
DSM and experimental values were similar, with maximum differences of 8% 
and 7% for UltraBEAMTM2 and UltraZEDTM2 specimens, respectively. In 
addition, the modes of failure observed during experimental tests were similar to 
those obtained from the DSM calculations, as shown in columns (3) and (5). In 
experimental tests of UltraBEAMTM2 specimens, it was observed that as the 
load increased, wavelike deflections appeared along the length of the flanges 
and of the beam specimens, and the flange edges bent down; these beam 
specimens clearly exhibited ‘distortional buckling’. However, for many 
UltraBEAMTM2 beams, this phenomenon happened fast and followed by failure 
of the beams. These show a very good agreement between test and DSM design 
values. Trends have been identified between bending moment capacity and 
depth-to-thickness ratio for a range of UltraBEAMTM2 and UltraZEDTM2 beams 
from both experimental and DSM results. A decrease in depth-to-thickness ratio 
shows an increase to bending moment capacity for the given depth-to-thickness 
range. This has been shown for the UltraBEAMTM2 and UltraZEDTM2 sections 
in columns (2) and (4), respectively. 
 
Table 5 Failure modes identified from DSM for 305 mm deep UltraZEDTM2 
range 
 

Section 
Depth 

Thickness Bending 
Moment 

Depth-to-
thickness 

Ratio 

Failure Mode Reduction 
in 

capacity 

(mm) (mm) (kNm) (%) 

305 1.50 22.34 203.33 Distortional Buckling -13% 

305 1.60 24.32 190.63 Distortional Buckling -11% 

305 1.80 28.35 169.44 Distortional Buckling -8% 

305 2.00 32.51 152.50 Distortional Buckling -4% 

305 2.30 38.80 132.61 Full section capacity 0% 

305 2.50 42.01 122.00 Full section capacity 0% 

305 3.00 49.92 101.67 Full section capacity 0% 

 
The depth-to-thickness ratio shows a relationship between the exhibited failure 
modes within a section range. Sections with the lowest depth-to-thickness ratio 
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show a fully effective section capacity, while the higher depth-to-thickness 
ratios show a reduced section capacity caused by local and distortional buckling 
effects. Where buckling effects are dominant the effective section modulus will 
be used to calculate the moment capacity. Where the full section capacity is 
dominant the gross section modulus will be used to calculate the section 
capacity. This has been shown for the 305mm deep zed profile range in Table 5. 
Observations from Table 5 show that sections with a higher depth-to-thickness 
ratio exhibited greater effects from buckling than sections with a lower depth-to-
thickness ratio. The magnitude of capacity reduction generated from buckling 
effects is between 0% and 13% for UltraZEDTM2 sections, and between 5% and 
37% for UltraBEAMTM2 sections. 
 
Conclusions 
 
The experimental test and design by the Direct Strength Method for the new 
channel and zed purlins with web stiffeners namely UltraBEAMTM2 and 
UltraZEDTM2 were presented. Simply supported UltraBEAMTM2 and 
UltraZEDTM2 beams were tested under four-point bending about the major axis 
of the sections. In addition to experimental tests, a non-linear finite element 
model was developed and verified against the test results. The DSM was first 
evaluated by comparing its predicted bending moment capacities with those of 
test and finite element analysis for a four-point bending test of UltraBEAMTM2 
sections. The comparison shows excellent agreements between the DSM results 
and test and finite element results, including failed modes. Based on this 
validation, the DSM was used to predict strength of a wide range of 
UltraBEAMTM2 and UltraZEDTM2 sections in terms of bending moment 
capacities and results were compared with test results. A total of 19 different 
purlin sections including 10 specimens of UltraBEAMTM2 and 9 UltraZEDTM2 
sections were investigated. Each section with the same depth had three different 
thicknesses that ranged from 1.20 mm to 3.05 mm in order to cover a wide 
popular range of section slenderness used in building construction. The overall 
beam depth-to-thickness ratios were studied. Four duplicated tests were carried 
out for each section so there were 116 tests in total for both UltraBEAMTM2 and 
UltraZEDTM2 purlins.  
 
Comparison of the DSM results with physical test results shows a minimum 
variation of 0% up to a maximum of 8%. The average variation in bending 
moment achieved through the DSM and experimental testing is 4% with the 
DSM giving conservative results in 3/19 cases. This shows that the nominal 
moment capacities predicted using the DSM are very comparable with test 
results for the UltraBEAMTM2 and UltraZEDTM2 purlins subjected to bending. 
Therefore, it is recommended that the current Direct Strength Method in the 
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North American Standard (NAS, 2007) can be used for the strength design of 
cold roll formed UltraBEAMTM2 and UltraZEDTM2 purlins subjected to bending. 
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Advanced modeling of cold-formed steel walls under fire 

J.C. Batista Abreu1, N. Punati2, K. R. Prasad3, B.W. Schafer4 

Abstract 

This paper discusses an advanced finite element model able to simulate the 
structural response of cold-formed steel walls during standard fire tests. The 
model includes experimental thermo-mechanical properties of materials, 
geometric imperfections, and temperature distributions on studs and sheathing 
boards. The model is capable of reasonably predicting the thermal bowing of 
walls, and estimating the shape, size and amount of joint openings between 
gypsum boards over time of fire exposure. Numerical results validated with 
experimental data indicate that the maximum out-of-plane displacements due to 
thermal gradients occur near the wall mid-height. Early in the heating process, 
joint openings develop on the exposed side of walls due to thermal bowing and 
contraction of gypsum boards at elevated temperatures, potentially altering the 
heat transfer and affecting the fire resistance of the entire system. Future work 
aims to utilize high fidelity modeling to study the response of load bearing cold-
formed steel systems subjected to fire, and optimize their fire resistance. 

1. Introduction  

Understanding the behavior of cold-formed steel (CFS) wall assemblies at 
elevated temperatures is the main step towards the optimization of these 
systems. In essence, two main aspects motivate this work from the point of view 
of the industry. First, in repeated standard tests, it is observed that CFS wall 
assemblies underperform compared to wood systems at elevated temperatures 
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with similar frame layout and gypsum boards. The CFS industry seeks more 
competitive solutions by providing similar or better fire resistance ratings 
compared to the wood industry, and this can be achieved by first understanding 
the behavior of CFS studs and their effect on the entire wall system. Second, 
sustainable (or green) building constructions seek a lighter footprint on the 
environment, and this can be achieved by optimizing (or reducing) the amount 
of materials used. In the design of fire-resistant structures, sustainability 
generally means reducing the thickness of gypsum boards. The simplest 
question is how can we reduce gypsum board thickness while maintaining or 
increasing the fire resistance of wall assemblies. 

Currently, sequentially coupled thermal and mechanical models are used to 
study the response of structural members and systems under fire (Chen et al., 
2013). The way this coupling works is unilateral, so that the outputs from the 
heat transfer analysis (e.g. temperature field) is used as an input for the 
structural analysis. Therefore, the heat transfer affects the structural response, 
but the structural response (e.g. deformations and damage) does not affect the 
heat transfer.  

Through numerical analysis, this paper explores the development of thermally 
induced deformations that directly affect the heat transfer; therefore, supporting 
the argument that the structural response has a direct impact on the heat transfer 
over time. This implies that the fire resistance of CFS walls does not only 
depend on the thermal properties of gypsum boards, but also depends on the 
response of the CFS frame.  

This paper aims to show that advanced modeling of CFS systems under fire is 
possible and could provide suitable results if realistic material models and other 
modeling parameters are taken into account. This study provides original insight 
on the development of thermal bowing of CFS walls and opening of joints 
between gypsum boards during standard fire tests. Numerical models are 
validated against experimental results from CFS walls in standard fire tests.  

The following sections describe the parameters used in the finite element model, 
show the validity of the numerical results, and discuss the structural behavior of 
non-load bearing walls at elevated temperatures. 

2. Modeling cold-formed steel partition walls in standard fire tests 

This paper focuses on the response of non-load bearing walls used to avoid 
spread of fire and smoke between compartments. Usually, partition walls consist 
of CFS frames with equidistant vertical lipped channels (i.e. studs), and 
horizontal channels at the top and bottom (i.e. tracks).  
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The flanges of the studs are usually connected to the flanges of the tracks by 
screws or sliding/frictional connections. Gypsum boards enclose the CFS frame, 
and act as the main components to provide fire resistance. Wall components are 
illustrated in Figure 1. 

2.1 Geometry and initial imperfections of CFS frame 

A typical CFS wall geometry is considered in the analysis (Figure 2). The frame 
is 10 ft. (3.05 m) by 10 ft. (3.05 m), and has 6 lipped channel studs, and two 
channel tracks. The length of the tracks is 120 in. (304.8 cm), and the length of 
the studs is 119.25 in. (302.9 cm), since small gaps exist between the ends of the 
studs and the web of the tracks. The gaps measure 0.50 in. (1.3 cm) and 0.25 in. 
(0.6 cm) in the top and bottom, respectively (Figure 1-b). The centerline 
dimensions of web, flange and thickness of studs and tracks are 3.60 in. (9.14 
cm), 1.23 in. (3.12 cm), and 0.0188 in. (0.478 mm), respectively. The centerline 
dimension of the lips of studs is 0.188 in. (0.48 cm).  

Gypsum boards are usually 4 ft. wide (1.22 m); therefore, several boards are 
used to cover each side of the CFS frame. In Figure 3, Board 1 is 2 ft. (0.61 m) 
wide, and Boards 3 and 4 are 4 ft. (1.22 m) wide. The thickness of gypsum 
boards is 0.61 in. (15.5 mm).  

Initial imperfections are included in the stud model, following magnitudes 
recommended by Zeinoddini and Schafer (2012). 

 
Figure 1: Components of a) wall model, b) CFS frame, and c) gypsum boards 
a) b) c) 
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In ABAQUS (ABAQUS 2013), quadrilateral shell elements with reduced 
integration and large-strain formulation “S4R” were used to model CFS 
members and gypsum boards. Studs and tracks consisted of 5656 and 8120 
elements, respectively. Each portion of the studs and tracks (i.e. web, flange and 
lip) were discretized into 4 elements. Gypsum boards 2 and 3 were modeled 
with 360 elements each, while Board 1 was modeled with 180 elements. The 
boards on each side of the CFS frame were modeled similarly.  

Connectors were modeled at screw locations, along the flanges of studs and 
tracks spaced 8 in. (20.32 cm) from screws, and 4 in. (10.16 cm) from board 
edges (Figure 4). Additional connectors on stud flanges were modeled 1 in. 
(2.54 cm) from board joints. Connectors were modeled as rigid beams, by tying 
nodes at the center of CFS flanges and adjacent nodes on the boards, within a 
radius of 0.07 in. (1.8 mm). 

The web of the bottom track was restricted in its displacements, in all directions. 
The web of the top track was allowed to displace only in the vertical direction, 
to allow thermal expansion of studs. The web of the studs at the left and right 
sides of the wall were not allowed to displace in the in-plane horizontal 
direction. These boundary conditions intend to approximate actual displacement 
restraints during tests. 

 
Figure 2: CFS frame geometry 
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Figure 3: Gypsum boards layout 

 
Figure 4: Gypsum boards and screw distribution in the model 
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2.2 Temperature distribution on CFS partition wall 

Heat transfer analysis could be used to estimate the temperature distribution on 
the walls. However, models for heat transfer analysis found in the literature do 
not explicitly include the effect of structural response due to heat. Therefore, in 
this paper, time-temperature curves obtained experimentally were used.  

During standard fire tests, the temperature of the furnace is controlled and the 
temperatures on the studs and gypsum boards can be measured (Figure 5). In the 
model presented herein, the temperature of the lips was assumed to be similar to 
the temperature of the flanges given that steel has a high thermal conductivity 
and the lips are small and thin. The temperature of the web of the studs was 
assumed to vary linearly, and it was obtained from the measured flange 
temperatures. The temperature distribution on the studs reflects the thermal 
gradient measured during test (Figure 6).  

2.3 Mechanical properties of materials at elevated temperatures 

The CFS material model used follows retention factors proposed by Batista 
Abreu (2015), assuming elastic modulus and yield stress at ambient temperature 
of 29500 ksi (203.4 GPa) and 33 ksi (228 MPa), respectively. The thermal 
expansion coefficient of CFS is 1.2×10-5 1/°C, and the Poisson’s ratio is 0.3.  

Retention factors for the mechanical properties and thermal expansion of 
gypsum are based on experimental results presented by Cramer, Friday et al. 
(2003). Retention factors for gypsum boards were fitted and extrapolated to 
1000 °C. It was assumed a linear decay of the retention factors from 0.05 at 600 
°C to 0.01 at 1000 °C. It implies that the elastic modulus of gypsum boards is 
negligible after 600 °C, as expected (Figure 7). It was assumed that gypsum is 
homogeneous, and has an elastic modulus at ambient temperature of 100 ksi 
(690 MPa), and Poisson’s ratio equal to 0.3. The thermal expansion coefficient 
was assumed to remain constant -1.60×10-6 1/°C after 400 °C (Figure 8).  
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Figure 5: Measured temperature data in standard fire test (from proprietary data) 

 
Figure 6: Temperature distribution on a CFS stud (°C) 

0 10 20 30 40 50 60
0

200

400

600

800

1000

furnace

exposed flange

unexposed flange

unexposed board

t (min)

T 
(°

C)

719



 
Figure 7: Elastic modulus of gypsum at elevated temperatures (1 ksi = 6.895 

MPa) 

 
Figure 8: Thermal expansion coefficient of gypsum used in numerical models 

3. Numerical results from finite element analysis 

Stress distributions, thermal bowing and joint opening were the main outputs 
obtained from numerical simulations. It was observed that von Mises stresses on 
the CFS frame do not exceed the yield stress at ambient conditions (Figure 9). 
The stress distribution of a single stud is presented in Figure 10 to show that 
lower stresses are developed on the exposed flange compared to the unexposed 
flange due to higher temperature and therefore more pronounced material 
degradation on the former. Interaction of local and distortional buckling modes 
is observed, consistent with previous studies (Batista Abreu and Schafer, 2013). 
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The CFS frame bowed towards the furnace due to thermal gradients, causing 
larger thermal expansion on the exposed flanges compared to the unexposed 
flanges. Thermal bowing of the wall develops large out-of-plane displacement at 
mid-height (Figure 11).  

Out-of-plane displacements on the unexposed side were obtained at the center of 
the wall, and at quarter-points at mid-height (both left and right). These values 
are compared against experimental data from two standard fire tests on CFS 
partition walls with similar geometry and materials (Figure 12). Relatively small 
displacements are observed before 20 minutes of exposure to a standard fire. 
Then, larger velocities are developed from 20 to 30 minutes, reaching a 
displacement peak between 45 and 50 minutes. Out-of-plane displacements tend 
to slightly decrease after the peak due to a reduction of the thermal gradient in 
the studs.  

 
Figure 9: von Mises stresses (in MPa, 1 ksi = 6.895 MPa) developed in the CFS 

frame after 60 minute of fire exposure (scale 5:1) 

(Avg: 75%)
SNEG, (fraction = −1.0)
S, Mises

  0
 19
 38
 57
 76
 95
114
133
152
171
190
209
228

721



Numerical models predict maximum out-of-plane displacements of 2.20 in. (56 
mm), while 1.61 in. (41 mm) and 2.05 in. (52 mm) where measured in two 
similar tests. These results imply that the wall moves closer to the fire source 
(e.g. the furnace) as the thermal gradient increases. As the studs move the entire 
wall closer to the fire, the temperatures increase more dramatically. Therefore, 
the thermal response is undoubtedly affected by the structural behavior. 

 
Figure 10: von Mises stresses in a CFS stud (in MPa, 1 ksi = 6.895 MPa) after 

60 minutes of fire exposure (scale 5:1) 
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Figure 11: Wall out-of-plane displacements (mm, 1 in. = 25.4 mm) after 60 

minutes of fire exposure (scale 5:1) 

 
Figure 12: Wall out-of-plane displacements at mid-height (solid lines) compared 
against experimental data (markers) from a) test #1 and b) test #2 (obtained from 

proprietary manufacturer data, 1 in. = 25.4 mm) 
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During the heating process and subsequent thermal bowing of the studs, it is 
commonly observed that joints between exposed boards open up (Figure 13). 
After standard fire tests, joint openings on the unexposed side of walls are not 
visible, while they are evident between exposed boards (Figure 14). These 
openings could allow rapid passage of hot gases from the furnace to the wall 
cavity, consequently accelerating the heat transfer though the studs and 
unexposed boards, and therefore compromising the fire resistance of the system. 

 
Figure 13: Joint opening on exposed side of a CFS wall during test 

 
Figure 14: CFS wall after standard fire test, a) unexposed and b) exposed boards 
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Numerical results show that joint openings are developed between studs, as 
observed in standard fire tests. Joints do not open at their intersections with 
studs due to a larger concentration of screws in those regions. Maximum 
openings tend to occur midway between two consecutive studs (Figure 15).  

Joint openings of about 0.039 in. (1 mm) wide are observed in the model at 
about 4 minutes of exposure to the standard fire curve. Maximum openings of 
about 0.197 in. (5 mm) wide are developed around 50 min to 60 minutes of fire 
exposure. According to the numerical results, the bottom joints may develop 
slightly larger joint openings after 20 minutes, compared to the top joints. 

It is important to characterize the size and shape of joint openings because they 
play an important role in the heat transfer, and consequently affect the fire 
resistance of CFS walls. Joint openings allow the passage of hot gases 
(including smoke) and flames. The rapid temperature increase in the wall cavity 
leads to higher temperatures on CFS studs and a more pronounced degradation 
of their strength and stiffness. In consequence, studs develop larger thermal 
deformations. The rapid temperature increase in the wall cavity also affects the 
unexposed boards, and their ability to satisfy insolation and integrity criteria. 

In general, models for heat transfer analysis of CFS walls found in the literature 
do not explicitly (or even implicitly) account for the effect of joint openings, and 
thermal bowing of studs. Calibrated thermal properties of gypsum are used to 
exaggerate the temperatures developed in a model that would assume not to 
deform or create joint openings. This limited approach based on arbitrary 
calibration of thermal properties has lead to dissimilar models proposed by 
different research groups.  

 
Figure 15: Joint opening observed in test and numerical model (scale 10:1) 
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Figure 16: Maximum of joint opening width “o” developed at the bottom and 

top joints (1 in. = 25.4 mm) 

The model proposed in this paper is capable of estimating the location, 
magnitude and shape of joint openings, as well as the thermal bowing of the 
wall over time of fire exposure. This information could be directly included in 
heat transfer analysis to generate accurate results without the need of significant 
calibrations of the thermal properties of materials. 

4. Conclusions and future work 

This paper presented an advanced finite element model to study the structural 
response of CFS walls exposed to the standard fire. The model includes 
temperature-dependent material properties, geometric imperfections of CFS 
members, connections between the CFS framing and sheathing boards, and 
experimental time-temperature curves. Thermal bowings obtained from 
numerical results were compared against experimental data, and were found 
reasonable. 

It was observed that the structural behavior of CFS walls could alter the heat 
transfer in such systems. For instance, thermal gradients on the studs induce 
thermal bowing of the walls towards the fire source. Also, these thermally 
induced deflections and the contraction of gypsum boards lead to the opening of 
joints between exposed boards. Through these joint openings, the passage of hot 
gases and flames is possible. Both effects (i.e. thermal bowing and joint 
opening) impact the heat transfer and the fire resistance of CFS wall systems.   
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The model presented herein could be adapted to study the response of load-
bearing walls at elevated temperatures. Therefore, future work will be dedicated 
to the analysis of load-bearing systems subjected to fire, through advance 
numerical modeling with the objective of understanding the response of load-
bearing systems and optimize their fire resistance. The work provided herein 
establishes that such an approach is possible, and likely to provide useful 
predictions of fire and structural performance. 

Future work in collaboration with the National Institute of Standards and 
Technology aims to enable fully coupled thermo-mechanical analysis of 
structural systems subjected to standard and real fires. The current model is able 
to estimate the structural response based on results obtained from heat transfer 
analysis. Furthermore, results from the structural analysis could be integrated in 
the heat transfer analysis to enhance the accuracy of the predictions. 
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A Combined Direct Analysis and Direct Strength Approach to 
Predict the Flexural Strength of Z-Purlins with Paired Torsion 

Braces 
 

Michael W. Seek1, Chris Ramseyer2 and Ian Kaplan3 
 
Abstract 
A series of 12 Base Tests for Z-section purlins with paired interior torsional 
braces and one flange attached to a flexible horizontal diaphragm are evaluated 
with the Direct Strength Method.  Rather than use the conventional constrained 
bending stress approximation, a direct analysis philosophy is adopted where 
cross section stress distributions are calculated using a displacement 
compatibility approach.  With a flexible diaphragm typical of a standing seam 
roof system, these stresses can deviate substantially from the constrained 
bending approximation and can significantly impact predicted local and 
distortional buckling behavior. The displacement compatibility approach 
incorporates estimates of load imbalances and second order effects that result 
from the standard base test procedure.  Predicted local and distortional buckling 
strength shows good correlation to tested strength.  
 
Introduction 
Z-section purlins with third point torsion braces have gained popularity in recent 
years because of their efficiency and relatively high reduction factors (R-
factors). The third point torsion braces eliminate the need to provide external 
lateral anchors along the span. As purlins deflect laterally, the torsion braces 
absorb second order torsions and allow for larger lateral deflections without 
significant strength degradation. Applying the conventional global lateral 
torsional buckling, local buckling, and distortional bucking equations presented 
in the AISI Specification (AISI 2012), typically results in very conservative 
predictions of purlin capacity. It is typically assumed when applying these 
methods, that a the stress distribution in the purlin cross section matches that of 
constrained bending which requires that the purlin is constrained to deform only 

1 Assistant Professor, Old Dominion University, Norfolk, VA 
2 Associate Professor, University of Oklahoma, Norman, OK 
3 Graduate Student, Old Dominion University, Norfolk, VA 

Wei-Wen Yu International Specialty Conference on Cold-Formed Steel Structures 
Baltimore, Maryland, U.S.A, November 9 & 10, 2016

729



in the plane of the web. In reality, the actual stress distribution falls somewhere 
between the constrained bending and the unsymmetric bending cases depending 
primarily on the flexibility of the diaphragm  
 
The Component Stiffness Method is a displacement compatibility method to 
predict brace forces in purlin systems.  A procedure for analyzing purlin systems 
with third point torsional braces is presented in the AISI Design Guide for Cold 
Formed Steel Purlin Roof Framing Systems (AISI, 2009) and is refined by Seek 
(2014).  The procedure not only calculates the brace forces but provides insight 
into the forces of the components of the system as well as the deformations of 
the system.  With the component forces and system deformations, the stresses in 
the purlin cross section can be determined from conventional mechanics.   
 
Elastic stresses calculated by incorporating the flexibility of the purlin system 
deviate substantially from those approximated by constrained bending.  Peak 
compressive stresses shift from the flange stiffener to the junction between the 
web and flange, impacting both the local and distortional bucking behavior.  The 
shift in stresses decreases the likelihood of flange or stiffener buckling and 
increases the likelihood of local buckling at the web-flange juncture.  The 
distortional buckling strength is increased or may even be eliminated as a 
buckling mode as compressive stresses at the tip of the flange are reduced.   
 
This paper presents a procedure to calculate the actual distribution of stresses 
throughout the cross section of a Z-section from the applied pressures of a Base 
Test (AISI S908, 2013). The procedure includes methods to approximate the 
additional stresses introduced by load imbalances resulting from the standard 
Base Test procedure, by concentrated forces at the torsional brace locations, and 
geometric second order effects caused by the diaphragm deformation.  From the 
calculated stress distribution, the local and distortional buckling strength can be 
calculated using the Direct Strength method.  The methodology is compared to a 
series of twelve base tests: 3 tests each of 8Z16, 8Z12, 10Z16 and 10Z12 cross 
sections.  In all cases, the predicted strength shows good correlation with the 
Base Test results.      
 
Calculation of Cross Section Stresses 
The Base Test is performed in a vacuum chamber on a full scale simple span 
specimen representing a roof system.  The specimen is constructed with two 
purlins spaced at 5’-0” typically with panels attached to the top flange of the 
purlin. To engage the resistance of the diaphragm, both purlins are oriented with 
their flanges facing in the same direction, referred to the “uphill” direction or 
ridge side.  The panels, typically 7’-0” long, overhang the purlins by 1’-0” on 
each side.  The specimen is covered with plastic sheathing that is sealed along 
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the edges of the vacuum chamber. Differential pressures are exerted on the 
specimen by evacuating the chamber.   
 
The Base Test Method produces a consistent and uniform pressure along the 
panels attached to the top of the purlin via clips. However, there are slight 
imbalances inherent in the test setup. These imbalances typically shift greater 
load to the purlin on the “downhill” side causing the downhill, or “eave” purlin 
to fail first. This phenomenon has long been recognized and the Base Test 
standard provides guidance on quantifying the load imbalance when the 
downhill purlin is the first to fail. When paired torsional braces are used, the 
torsional braces contribute to the load imbalance and therefore a slightly 
different approach than that presented in the Base Test standard must be used.  
For large lateral deformations, the imbalance of forces may shift to increase the 
downward force on the ridge purlin. This less understood phenomenon can be 
quantified by the presented method as well. 
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Figure 1.  Base Test Layout and Nomenclature 

 
The layout of the specimen used in the base test and the nomenclature used in 
the calculation of the uniform forces on the purlin is shown in Figure 1. The 
dead load of the specimen including the weight of the panel, purlin and 
insulation is ud and the applied pressure is up. To account for the differences 
between the eave and ridge purlin, the variable ξ is applied where ξ = 1 for the 
eave purlin and ξ = -1 for the ridge purlin. The balanced first order uniform 
force on each purlin is 

( ) ( )d p
1st

u panel + u panel + gap
w =

2
 (1) 
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To account for the eccentricity of the applied force at the panel as it is 
transferred to the purlin at an eccentricity esx, an additional uniform load, we is 
applied 

ew = w sx
1st

2e
spa

 
ξ 

 
 (2) 

 
The eccentricity of the load applied to the top flange is generally accepted as 1/3 
of the flange width.  The positive directions for load and displacement are 
shown in Figure 2. 
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Figure 2.  Nomenclature and Positive Load and Displacement Directions 

 
As the pressure in the chamber is increased, the purlins will deflect laterally in 
the uphill direction.  With this shift towards the ridge, the gap between the edge 
of the panel and the edge of the chamber opens at the eave and decreases at the 
ridge.  As a result of this effect, the load is increased on the eave and 
correspondingly decreased at the ridge.  This load has a parabolic distribution 
with the peak quantified as         

diaph
2nd p

panel
w u

2 spa

∆   
= ξ       

  (3) 

The displacement of the diaphragm, Δdiaph is calculated in Eq. 7 by enforcing 
displacement compatibility between the lateral deflection of the purlin and the 
resistance of the diaphragm.  The total load contributing to the lateral 
displacement of the diaphragm after the dead loads are in place is 

( )panel dw = u panel + gap  (4) 
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In Seek (2014), a method is presented to calculate the force introduced in the 
diaphragm for a system with third point torsional braces.  The method can be 
further simplified if the purlin end restraints are considered to be rigid.  For 
comparison to the base test, displacement compatibility is determined at the 
mid-span.  The in plane force in the diaphragm is   

diaph panelw = wσ⋅  (5) 

   where 

   

( )

xy 4

x

my

4 2

my

I
5 L

I

384EI
σ =

5L L
+

384EI 8G' panel

 
  
 

 (6) 

 
In the Eq. 6, Imy is the modified moment of inertia about the orthogonal y-axis as 
defined in Zetlin and Winter (1955).  From the in plane force in the diaphragm, 
the lateral displacement of the diaphragm at mid-span is 

( )

2

diaph
w L

Δ =
8G'

panel
panel

σ⋅
 (7) 

 
Torsion 
The purlins in the base test are subjected to torsion both from the eccentricity of 
the applied load and the lateral resistance of the panel attached at the top flange.  
The torsion along the length of the purlin is balanced by the concentrated 
torques at the brace location.  The uniform torque along the length of the purlin 
from first order effects is 

( ) ( )1stt = w1st e sy sxw e e+ ξ σ ⋅ −  (8) 

The purlin is subject to additional second order torsions as a result of the lateral 
deformation of the system. Torsion results from both the load shift to the eave as 
the system displaces and the torsion induces as the mid-span of the purlin 
deflects laterally relative to the supports.  Both of these torsions are 
approximated with a parabolic distribution with a peak torque per unit length 
equal to 

( )( )2ndt = -w w2nd sx 1st e 2nd diaphe w w⋅ ξ − + + ξ ∆  (9) 

The torsion along the length of the member is balanced by the paired torsion 
braces.  The braces are assumed to be rigid and the magnitude of the torque is 
determined by enforcing displacement compatibility at the brace location.  Pure 
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torsion effects can be ignored greatly simplify the calculations. The brace torque 
from first order load effects is 

1st 1st
11

T = - t L
30

  (10) 

The brace torque from the second order effects with a parabolic load distribution 
is 

2nd 2nd
602

T = - t L
2025

 (11) 

To balance the moments at each end of the torsion brace, there is vertical 
reaction, V, at each end of the brace in opposing directions as shown in Figure 3. 
The positive direction for the reaction on the purlin is in the gravity direction.  

1st

1st

1stT

V1st
V1stV1stV

T1stTT1st

 
Figure 3.  Balance of Forces for Torsional Brace 

 
When the diaphragm is stiff, this balance of forces increases the load in the 
gravity direction on the eave purlin. For more flexible diaphragms, as second 
order effects increase, the balancing torques can be reversed, resulting in 
additional force in the gravity direction on the ridge purlin. The respective first 
order and second order brace reactions at each third point are  

( )1st sy sx

1st

11
2 w L σ×e - e ξ

30
V =

spa

 
 
   (12) 

1st diaph

2nd

602
2 w Δ Lξ

2025
V =

spa

 
 
   (13) 

 
Mid-span Bending and Warping Normal Stresses 
The total mid-span moment about the orthogonal x-axis from combined first 
order and second order bending stresses is 

( ) ( )
2 2L 5L L

M = + w
8 48 3mid 1st e 2nd 1st 2ndw w V V+ + +   (14) 
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The bending normal stresses from biaxial bending of the cross section are 
calculated at each point along the cross section defined by coordinates (x,y) by  

xyxy

yx
b mid

mx my my mx

II
y σx

II-y x σ
f = M + - +

I I I I

 
 

⋅ 
 
 
 
 

 (15) 

The terms Imx and Imy are the modified moments of inertia about the orthogonal 
x- and y- axes respectively. The normal stresses caused by warping torsion, fw, 
are calculated 

''WEf Nw φ⋅⋅=  (16) 

where WN is the normalized warping function at a specific point on the cross 
section and ϕ`` is the second derivative of the rotation function with respect to z 
due to the applied load.  Guidance on calculating the normalized warping 
function for thin walled cross sections is provided in Cold-Formed Steel Design 
(Yu, 2010).  The normalized warping function is calculated at the same 
coordinates (x,y) across the cross section as the bending normal stresses. 
 
There are 3 rotation functions that need to be considered:  1) uniform torsion 
along span, 2) parabolic distribution along span, 3) concentrated torque at brace 
locations (3rd points).  At the mid-span location, the rotation functions are: 
 
Uniform Torsion 
 

1st
u

t 1
'' = -1

GJ L
cosh

2a

 
 
 φ
  
  

  

 (17) 

 
Parabolic Torsion Distribution 

2
2nd

p 2

t 8a 1
'' = 1- -1

GJ LL cosh
2a

  
  
  φ
   
   

    

 (18) 
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Concentrated Torsion at Brace Location (3rd Points) 

1st 2nd
3rd

L 2L
sinh + sinh

T + T 3a 3a1 L 2L L L
'' = sinh - cosh - cosh sinh

GJ a 2a 3a 2a 3aL
tanh

a

     
                   φ                      
   

    
 (19) 
Combining equations 17, 18 and 19 into equation 16, the normal stress resulting 
from warping torsion at each coordinate on the cross section is calculated 

( )''''''WEf rd3puNw φφφ ++⋅⋅=  (20) 

The net normal stresses are the combined sum of the bending stresses and 
warping stresses. 
 
Comparison to Base Test Results  
Traditionally, Base Test results are used to predict the strength of a purlin in a 
roof system by applying a reduction factor (R-factor) to the nominal local 
buckling strength of the purlin cross section.  The local buckling strength is 
determined using a constrained bending stress distribution. With a flexible 
diaphragm, the stresses deviate substantially from the constrained bending 
assumption. Peak compressive stresses occur at the intersection of the web and 
flange and are significantly reduced at the tip of the compressive flange.   
 
In this study, the calculation of stresses in the cross section includes the effects 
of lateral deformation and torsion.  With the more realistic distribution of 
stresses, local and distortional buckling strengths are calculated using the Direct 
Strength method.  When compared to base test results, there is good correlation 
between predicted moment strength and the test results.    
 
The base tests investigated were performed at the University of Oklahoma and 
reported by Emde (2010).  Four purlin cross sections were investigated: 8Z16, 
8Z12, 10Z16, and 10Z12, where the first number represents the nominal depth 
and the second number represents the material gauge.  Although more than three 
tests were performed for each purlin series with varying bracing configurations, 
only the three tests for each cross section used to determine the R-factors are 
investigated in this study. 
 
The purlins with an 8 inch nominal depth were tested on a span of 27’-0”.  The 
torsional braces were located at 10’-6” from each end of the purlin leaving a 6’-
0” space between the braces in the middle.  The purlins with a 10” nominal 
depth were tested on a 30’-0” span with torsional braces located at 11’-6” from 
each end of the span leaving a 7’-0” space between the braces in the middle.  It 
should be noted that the analysis provided in this paper is based on braces 
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located at the third points along the span.  It is believed that the resulting 
difference in stresses is minimal as a result of this discrepancy.     
 
Purlin section properties are calculated based on the reported cross section 
measurements and the diaphragm stiffness, G’, is estimated by comparing the 
calculated deflection to the measured deflection. Some adjustments to the 
diaphragm stiffness are required between test series to better align the measured 
and calculated deflections.  The more heavily loaded diaphragms required a 
reduced diaphragm stiffness to align deflections.  This is consistent with tests on 
diaphragms where a softening effect is typically experienced as shear in the 
diaphragm is increased.  The estimated diaphragm stiffness and the measured 
and calculated deflections are shown in Table 1. 
 

Table 1.  Comparison of Tested to Calculated Diaphragm Deflection 

     
To facilitate the finite strip analysis of the section, the cross section is 
subdivided.  Each element of the cross section (web, flange, stiffeners and radii) 
are divided into 4 equal segments resulting in 36 linear segments and 37 node 
points to describe the cross section. 
 
Based on the reported dead load of the system and the pressure differential at 
failure, the stresses in the cross section at each node point is calculated. The 
moment supported by the purlin at this load level is calculated by Eq. 14 and is 
considered the test moment, Mtest. In each test, the peak compressive stress, fc 
occurs within the radius at the top flange-web juncture.  To perform the finite 
strip analysis, the stresses in the cross section are scaled a factor of Fy/fc.  By 

Test Applied 
Pressure 

(psf) 

Estimated 
G’  

(lb/in) 

Δdiaph  
Calculated 

(in) 

Δdiaph  
Measured 

(in) 

Deflection 
Ratio 

8Z16-1A 17.68 230 1.78 1.86 L/174 
8Z16-1D 19.07 230 1.93 1.85 L/175 
8Z16-1G 16.54 230 1.65 1.33 L/244 
8Z12-2D 37.65 110 5.97 6.17 L/53 
8Z12-2E 27.15 110 4.27 5.29 L/61 
8Z12-2F 37.87 110 5.93 5.94 L/55 
10Z16-3A 19.46 300 1.74 1.18 L/305 
10Z16-3D 18.54 300 1.59 1.53 L/235 
10Z16-3E 16.55 300 1.37 1.49 L/242 
10Z12-4A 45.02 160 5.72 5.59 L/64 
10Z12-4C 40.02 160 5.06 5.75 L/63 
10Z12-5A 44.57 200 4.96 4.72 L/76 
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scaling the stresses, the peak compressive stress in the web-flange juncture is set 
to the yield stress (first yield point).  The corresponding yield moment, My is 
calculated 

y
y test

c

F
M M

f
=   (21) 

A finite strip analysis is performed using CUFSM v.4.05 (Li and Schafer, 2010) 
with the above scaled stresses to obtain the critical elastic local and distortional 
buckling moments, Mcrℓ and Mcrd, respectively.  Although, the critical elastic 
distortional buckling moment can be affected by the rotational restraint provided 
by the connection to the sheathing, this contribution to strength is not considered 
in this analysis.  The nominal local and distortional buckling strengths are 
calculated according to Section 1.2.2 of Appendix 1 of the AISI Specification 
(AISI, 2012).  The controlling nominal moment strength is the minimum of the 
nominal local buckling strength and distortional buckling strength.  The global 
flexural buckling strength was not considered in this analysis. The calculated 
nominal moment strength, Mn, was then compared to the maximum moment 
supported by the specimen in the test, Mtest.  The results of this analysis are 
presented in Table 2 for 8 inch nominal depth purlins and in Table 3 for 10 inch 
nominal depth purlins. 
          

Table 2.  Analysis Results for 8” Purlins 
Section 8Z16 8Z12 
Test ID 1A 1D 1G 2D 2E 2F 
Fy (ksi) 70.8 68.8 64.1 79.1 79.1 79.1 
t (in) .060 .060 .060 .103 .103 .103 
ud (psf) 2.62 2.65 2.66 3.18 3.18 3.2 
up (psf) 17.68 19.07 16.54 37.65 27.15 37.87 
fc (ksi) 50.9 51.1 47.3 71.3 51.5 71.1 
Mtest (kip-ft) 7.074 7.153 6.684 14.113 10.469 14.193 
Fy/fc 1.416 1.421 1.373 1.110 1.530 1.113 
Local 
load factor 

0.56 0.62 0.63 1.39 1.44 1.4 

Distortional 
Load Factor 

0.73 0.68 0.78 1.86 1.86 1.86 

Mnℓ (kip-ft) 6.996 7.354 6.678 14.811 15.316 14.973 
Mnd (kip-ft) 6.947 6.860 6.531 14.953 15.291 15.082 
Mn (kip-ft) 6.947 6.860 6.531 14.811 15.291 14.973 
Mtest/Mn 1.02 1.04 1.02 0.95 0.68 0.95 
Mean 1.03 0.86 
COV 0.01 0.15 
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Table 3.  Analysis Results for 10” Purlins 

Section 10Z16 10Z12 
Test ID 3A 3D 3E 4A 4C 5A 
Fy (ksi) 56.1 68.3 63.9 67.1 65.8 65.4 
t (in) .064 .059 .059 .103 .104 .105 
ud (psf) 2.84 2.82 2.82 3.46 3.47 3.47 
up (psf) 19.46 18.54 16.55 45.02 40.02 44.57 
fc (ksi) 50.9 51.1 47.3 71.3 51.5 71.1 
Mtest (kip-ft) 9.659 9.222 8.352 19.910 17.848 19.622 
Fy/fc 1.300 1.583 1.709 1.051 1.151 1.073 
Local 
load factor 

0.51 0.39 0.42 1.09 1.11 1.14 

Distortional 
Load Factor 

0.7 0.5 0.46 1.69 1.60 1.7 

Mnℓ (kip-ft) 8.490 8.985 9.017 18.300 18.066 18.686 
Mnd (kip-ft) 8.569 8.716 8.235 19.427 18.751 19.583 
Mn (kip-ft) 8.490 8.716 8.235 18.300 18.066 18.686 
Mtest/Mn 1.14 1.06 1.01 1.09 0.99 1.05 
Mean 1.07 1.04 
COV 0.05 0.04 
 
Discussion of Results 
For the constrained bending assumption to hold true for a purlin system with 
torsional braces, the diaphragm attached to the top flange of the purlin must be 
rigid. As diaphragm flexibility is introduced, the purlin is subjected to biaxial 
bending, causing a redistribution of stresses. In the top flange, compressive 
stresses are reduced at the flange tips and increased at the intersection between 
the flange and the web.  The peak compressive stress occurs at this intersection 
between the web and flange.  If a purlin is subjected to a uniform load parallel to 
its web, first yield will occur at the web-flange intersection at a much lower load 
level for a flexible diaphragm than with a rigid diaphragm.  The more flexible 
the diaphragm, the less applied load required to reach first yield.   
 
However, this change in stress distribution also changes the local and 
distortional buckling behavior. For local buckling, for a cross section with a 
constrained bending stress distribution, local buckling may occur in the web, 
flange or the flange stiffener.  In the biaxial bending distribution, as stresses 
shift to the web-flange intersection, driving the controlling local buckling mode 
to web local buckling.  Depending on the cross section, there may be little 
change in the local buckling load factor with this shift in stresses, however, the 
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first yield point will occur at lower load level.  The shift in stresses to the web is 
supported by the test results, where the primary mode of failure observed was 
local buckling at the web-flange juncture. 
 
For distortional buckling, when subjected to a constrained bending stress 
distribution, the flange stiffener loses effectiveness and the typically distortional 
mode is combined buckling of the flange and web.  With a biaxial bending stress 
distribution, the stresses in the flange stiffener are reduced, maintaining its 
effectiveness in stabilizing the flange, and there is a stress gradient in the flange, 
reducing its tendency to buckle.  If the biaxial bending is significant enough, the 
distortional buckling mode may be eliminated altogether. 
 
A comparison between the finite strip results is shown for the flexible 
diaphragm case (10Z12-4C) and the constrained bending case (10Z12-4C-
constrained) for the test 10Z12-4C in Figure 3.  For local buckling, the biaxial 
bending case increases the stress gradient in the web, resulting in a slightly 
lower load factor than the constrained bending case.  For distortional buckling, 
Figure 3 shows that the minima for the distortional buckling wavelength is 
eliminated for the biaxial bending case. 
 

 
Figure 4.  Comparison of Finite Strip Analysis Results 

 
The 8Z16 series (8 in nominal depth, 16 gage material), showed excellent 
correlation between the predicted and tested strengths.  The tests for the 8Z16 
series showed the greatest consistency which explains the corresponding 
consistency of the predicted strength.  Distortional buckling controlled the 
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strength of the cross section in all cases but was only slightly less than the local 
buckling strength.  If the contribution of the panel to the distortional buckling 
strength was included, local buckling strength would likely control.  In all cases, 
the predicted strength is slightly less than the tested strength and thus the 
predicted strength is conservative.  Panel lateral deflections are consistent and 
close to the lateral deflection limit for systems with torsion braces (L/180).   
 
The 8Z12 series experienced much larger deflections than the 8Z16 series as a 
result of the demands the higher supported loads place on the diaphragm.  To 
match the calculated lateral deflections with the tested deflections, a more 
flexible diaphragm is modeled for the 8Z16 series tests.  Diaphragms typically 
exhibit a softening as in-plane shear increases, so it is reasonable to use a lesser 
stiffness at higher loads.  Because of the large lateral displacement and 
corresponding reduction of compressive stresses in the flange stiffener, 
distortional buckling strength is increased and local buckling is the primary 
failure mode.  The predicted strength is higher than the tested strength.  For tests 
2D and 2F, this difference is slight (within 5%).  However for test 2E, the 
difference is significant. Failure of this specimen may have been premature as a 
result of the test configuration.  For series 8Z12, the difference between the 
predicted strength and tested strength may be the result of the assumption that 
the braces are rigid.  As larger demands are placed on the braces, they will 
undergo larger deformation, affecting the extent to which the purlin is 
restrained.  Unless these effects are accounted for, the predicted strength may 
exceed the tested strength.      
 
The 10Z16 series, like the 8Z16 series, placed less demands on the diaphragm as 
a result of the lower applied loads.  To match the predicted lateral deflections to 
the tested deflections, a stiffer diaphragm than the 8Z16 series is modeled.  In all 
cases, the predicted strength is less than the tested strength.  The distortional 
buckling strength and the local buckling strength are closely aligned but the 
distortional buckling strength generally controls.  The 10Z16 series shows more 
variation (COV = 0.05) and the predicted strength is more conservative (7% on 
average) than the 8Z16 series.  Nevertheless, the correlation between the 
predicted strength and tested strength is good. 
 
For the 10Z12 series, the local buckling strength controlled.  The finite strip 
analysis did not display a significant distortional buckling minima, but rather a 
slight plateau in the typical distortional buckling half-wavelength.  A 
conservative load factor was chosen for distortional buckling but it did not 
reduce the predicted distortional buckling strength below the local buckling 
strength.  The predicted strength is conservative but still very close to tested 
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strength (within 4% on average).  The predicted strengths were consistent with a 
coefficient of variation of 0.04.   
 
For the tests on the lighter gage material (8Z16 and 10Z16), the peak 
compressive stress at the web-flange juncture at the test failure pressure is 
significantly less than the yield stress.  For the finite strip analysis, scale factors 
of approximately 1.4 were applied to the 8Z16 series and between 1.3 and 1.7 
for the 10Z16 series.  For the heavier 12 gage material, stress scale factors were 
on the order of 1.1 except for test 2E which may be an outlier.  These scale 
factors correlate with the expectation that the thinner material will buckle at 
lower stress levels than the thicker material.       
 
Conclusions 
In the current design methodology for purlins with one flange attached to 
sheathing, there is a disconnect between the determination of flexural strength 
and the evaluation of the bracing.  Flexural strength is determined based on the 
constrained bending assumption and bracing and anchorage forces are calculated 
with the understanding that the system is not perfectly constrained. This 
disconnect is further compounded by the fact that strength of a purlin system is 
determined by the base test in the horizontal position.  With a flexible system, 
the deformations and corresponding stresses in the system on a sloped roof can 
be significantly different than on a flat roof. 
 
The direct analysis methodology provided herein directly relates the extent to 
which a purlin is laterally restrained by the panel to the stresses in the cross 
section.  The method shows the substantial deviation in stresses from the 
constrained bending assumption and that the first yield is realized at a lower 
applied load level than under constrained bending. 
 
A direct analysis method is presented to evaluate the results of Base Tests on 
purlins with paired torsional braces. The method accounts for imbalances and 
some of the geometric second order effects inherent in the Base Test.  By 
quantifying the lateral deformation of the diaphragm and the concentrated torque 
of the torsional braces, a realistic distribution of stresses across the cross section 
can be determined. With this distribution of stresses, a direct strength approach 
utilizing a finite strip analysis determines the nominal local and distortional 
buckling strengths. 
 
The method was compared to a series of 12 base tests, subdivided into 3 tests 
each of 4 different purlin cross sections (8Z16, 8Z12, 10Z16, 10Z12).  In all 
cases, the predicted flexural strength is closely aligned with the strength 
extrapolated from the test results.    For all 12 tests, the mean ratio of Mtest to Mn 
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is 1.0 with a coefficient of variation of 0.11.  The correlation within each test 
series varies but in general the predicted strength is less than the tested strength.          
 
This study is a preliminary work to explore the ability of the direct analysis 
method to predict the flexural capacity of purlins with torsional braces.  
Additional work is needed to develop equations for paired braces at any location 
along the span.  Global buckling effects, stress distributions at locations other 
than the purlin mid-span, impacts of flexible braces and the effects of roof slope 
need to be explored.  The correlation of the predicted results to the tested results 
are very promising.  With additional refinements, the presented direct analysis 
method combined with the powerful direct strength method has the potential to 
greatly improve the ability to predict the flexural strength of purlins with paired 
torsional braces.   
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Abstract 

The in-plane response of CFS framed diaphragm structures subjected to seismic 
excitation is not well understood. At present, the North American AISI S400 
Standard does not include a seismic design procedure for CFS framed diaphragms 
for use in Canada, and offers limited information for their use in the US. In 
addition, the effect of non-structural components on the lateral strength and 
stiffness of the diaphragm component has yet to be explored. In an effort to 
provide insight into the complex nature of the diaphragm structure and the 
influence of non- structural components an experimental program was initiated in 
the Jamieson Structures Laboratory at McGill University focusing on the 
characterization of the behaviour of CFS framed - wood sheathed diaphragms 
under in-plane loading. This paper presents the results for four diaphragm 
configurations with oriented strand board sheathing (OSB) tested under 
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monotonic and reversed cyclic loading following the cantilever test method. The 
3.7m x 6.1m diaphragm specimens were constructed with different structural 
configurations as well as non-structural gypsum panels below the steel framing. 
Design predictions for the shear strength and deflection of the diaphragm specimens 
were obtained using the information available in the AISI S400 Standard.  

Introduction 
Currently, the design of the lateral force resisting systems of cold-formed steel 
framed structures revolves largely around shear walls, for which extensive 
experimental and numerical work has been conducted, e.g. Liu et al. 2012, Shamim 
2012, Peterman 2014, among others. While shear walls are well understood, there 
is little research that exists on the diaphragm’s contribution to the overall seismic 
response of the CFS structure. At present, in Canada no design provisions exist for 
CFS framed diaphragms. In the US, there exist limited resources in the current 
seismic code provisions that are based largely on experimental work done on wood 
diaphragms and shear walls (AISI 2015). In addition, the effect of non-structural 
components such as gypsum panels on the overall lateral stiffness of the CFS 
diaphragm has yet to be investigated. Therefore, the need to address these design 
deficiencies is evident in order to assist professional engineers in the construction 
of safer and more economical CFS structures. 

One of the first research projects focusing on the lateral response of CFS framed 
diaphragms was conducted by the National Association of Home Builders Research 
Center (NAHBRC 1999). Their experiment-based research provided shear strength 
and stiffness values for four diaphragm configurations. Lum’s analytical work 
provided allowable design shear strength values for a limited number of CFS framed 
/ plywood sheathed diaphragm configurations (LGSEA 1998). These values are 
available in Table F2.4-1 of the AISI S400 Standard (2015). A deflection equation, 
developed by Serrette and Chau (2003) is also available in the S400 standard for 
both shear walls and simply supported diaphragms.  

In recent years, it was the work conducted by researchers at Johns Hopkins 
University that provided a better insight in the overall lateral response of CFS 
structures (Peterman 2014). The CFS - NEES project involved the investigation of 
the overall seismic response of a two storey CFS framed structure subjected to 
earthquake loading (Liu et al. 2012, Peterman 2014). After the completion of these 
tests the importance of obtaining more information concerning the isolated seismic 
performance of the diaphragm subsystem as well as including the effect of non-
structural components was noted. Gypsum’s contribution to the overall response 
was demonstrated in the numerical work of Shamim and Rogers (2013, 2015), 
which showed that adding a single 12.5mm gypsum layer to the steel sheathed shear 
walls of a CFS framed structure led to an increase of the overall seismic capacity 
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and a favourable change in the response to ground motions. In addition, test results 
of CFS strap braced walls by Lu (2015) showed that installing two layers of gypsum 
on both sides of a wall to achieve a two hour fire resistance rating can nearly double 
the ultimate shear strength of this lateral load carrying system.  

In 2015 a total of eight diaphragm tests were conducted at McGill University in 
order to characterize the behaviour of CFS framed / OSB sheathed roof and floor 
structures under in-plane monotonic and reversed cyclic loading. The tests were 
based on the configurations used in the CFS – NEES building and were conducted 
using a cantilever diaphragm test apparatus with 3.66m x 6.10m specimens 
(Nikolaidou et al. 2015). The experimental work presented herein focuses on 
building upon these tests. In this paper the testing of three new diaphragm 
configurations is described, for which structural changes were made, in addition to 
a fourth configuration, to which non-structural gypsum panels were attached. All of 
the diaphragm configurations were tested under in-plane monotonic loading, while 
the specimen with non-structural gypsum panels was also tested under reversed 
cyclic loading. This resulted in four diaphragm configurations with a total of five 
tests performed. In addition to describing the testing and test results, this paper 
contains a comparison between the measured test values and the calculated 
deflection as well as shear strength values following the AISI S400 Standard (2015). 

Test program 

The test setup constructed to accommodate the diaphragm specimens is presented 
in Figure 1. It is of the cantilever configuration and was designed to perform as a 
self-reacting braced frame with W-shape sections chosen for the main beams and 
double angle sections for the bracing (Nikolaidou et al. 2015). The frame 
dimensions were chosen to be 4.5m x 6.5m, taking into account the space 
limitations of the Jamieson Structures Laboratory, which restricted the test 
specimen size to 3.66m x 6.10m. 

In the previous experimental work of CFS framed diaphragms realized at McGill 
University (Phase 1), the first two tests performed were that of the bare frame to 
measure the corresponding stiffness of the underlying CFS structure (Nikolaidou 
et al. 2015). Following this, the basic roof and floor diaphragm configurations of 
the CFS – NEES building were tested (Table 1). Two additional test specimens 
were then included, in which a single structural alteration was featured. For the 
roof diaphragm, full panel blocking was added and for the floor diaphragm a 
larger screw size was used. Both monotonic and reversed cyclic tests were 
performed for each specimen resulting in a total of 10 tests. A thorough 
description of these Phase 1 tests is provided in the report by Nikolaidou et al. 
(2015). The Phase 2 research summarized in this paper is an extension of the 
laboratory study completed by Nikolaidou et al.. Tables 2 and 3 contain an 
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inclusive list of nomenclature for all Phase 1 and 2 diaphragm specimens tested 
to date. The configurations documented in this report correspond to specimens 11 
through 16 (Table 3), which are illustrated in Figures 2 through 5. 

 
Figure 1 – CFS Diaphragm Test Setup 

 
Table 1 – Floor and Roof Diaphragm Basic Configurations (Nikolaidou et al. 2015) 

Element Roof  Floor  

Joists 1200S200-54 1200S250-97 
Rim Joists 1200T200-68 1200T200-97 

Web Stiffeners L 38.1x38.1x1.37 L 38.1x38.1x1.37 
Joist bracing 1200S162-54 1200S200-54 

Joist bracing connectors L 38.1x101.6x1.37 L 38.1x101.6x1.37 
Joist bracing straps 38.1x1.37 38.1x1.37 

Sheathing self-drilling screws 
(150mm/300mm spacing) 

#8 #10/#12 

OSB panels 2440x1220x11.11 2440x1220x18.25 
#10 flat head self-drilling screws : all joist to rim joist flange connections 

#10 hex head self-drilling screws : all joist to rim joist web angle & joist bracing 
connections 
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Table 2 – Phase 1 Diaphragm Specimen Nomenclature 

Specimen  Description 

1-RF-M Roof Bare Steel Frame : Monotonic 

2-FF-M Floor Bare Steel Frame : Monotonic 

3-RU-M Roof Unblocked : Monotonic 

4-RU-C Roof Unblocked : Reversed Cyclic 

5-F#10-M Floor #10 Screws : Monotonic 

6-F#10-C Floor #10 Screws : Reversed Cyclic 

7-RB-M Roof Blocked : Monotonic 

8-RB-C Roof Blocked : Reversed Cyclic 

9-F#12-M Floor #12 Screws : Monotonic 

10-F#12-C Floor #12 Screws : Reversed Cyclic 

Note: Tests completed by Nikolaidou et al. (2015) 
 

Table 3 – Phase 2 Diaphragm Specimen Nomenclature 

Specimen  Description 

11-RALT-M 
Roof Blocked Alternate Direction Joists : 

Monotonic 
12-RSTRAP-M Roof Strap Blocking : Monotonic 

13-FB4-M 
Floor #12 Screws Blocked (100mm/300mm) 

Spacing : Monotonic 
14-RGYP-M Roof with Gypsum Ceiling : Monotonic 

15-RGYP-C Roof with Gypsum Ceiling : Reversed Cyclic 

 

(11-RALT-M) Roof Alternate Direction Joists - Monotonic Loading 

Specimen 11-RALT-M was the same as the blocked roof specimen tested in 2015 
(7-RB-M) with a 90 degree change in orientation of the joists (Figure 2). The main 
purpose of this configuration was to observe how the strength and stiffness would 
be affected if the applied load were parallel to the joists rather than perpendicular.  
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Figure 2 – Bare Frame and Frame with Sheathing : Test 11-RALT-M  

(12-RSTRAP-M) Roof Strap Blocking - Monotonic Loading 

Specimen 12-RSTRAP-M was also similar to 7-RB-M, with the exception that 
the full blocking at the OSB panel edges was replaced with strap blocking. Two 
lines of blocking were installed which were each composed of four fully blocked 
segments (“web stiffener” in figure) and a continuous steel strap on the top and 
bottom (Figure 3). The main purpose of this configuration was to determine if 
strap blocking, which is less costly and easier to install, would be as effective as 
full blocking in terms of providing adequate support to the OSB panel edges to 
attain similar diaphragm shear strength and stiffness. 

 

 

Figure 3 – Bare Frame and Frame with Sheathing : Test 12-RSTRAP-M  

(13-FB4-M) Floor Blocked (100mm / 300mm) Spacing - Monotonic Loading 

Test specimen 13-FB4-M (Figure 4) was designed to maximise the shear 
resistance of a diaphragm given a basic floor configuration of a 2.5 mm thick steel 
frame and 18.3 mm thick OSB sheathing. It was decided to use a fully blocked 
floor specimen with a screw (#12) spacing of 100mm along all panel edges. The 
primary objective of this configuration was to obtain an upper estimate for the 
design strength of these diaphragms. 
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Figure 4 – Bare Frame and Frame with Sheathing : Test 13-FB4-M  

 

(14-RGYP-M & 15-RGYP-C) Roof with Gypsum Ceiling - Monotonic & Cyclical 
Loading 

Test specimens 14-RGYP-M and 15-RGYP-C comprised a basic roof 
configuration (3-RU-M) with one layer of type X, 16mm thick gypsum ceiling 
installed to the underside of the frame (Figure 5). This floor assembly is expected 
to attain a fire resistance rating of 45minutes to 1-hour (SFA 2013). The gypsum 
was directly attached to the underside of the CFS framing without the use of 
resilient channels; Lu (2015) showed that when resilient channels are used to 
attach gypsum panels to strap braced walls, the influence of the gypsum on the 
strength and stiffness is close to negligible. The fasteners used to attach the 
gypsum panels to the framing were #6 32mm long Type S drywall screws, spaced 
at 305mm o/c throughout (perimeter and field). Joint compound and joint tape 
were applied to the panel intermediate and screw locations in order to reinforce 
and conceal the joints and screw heads. The main purpose was to examine the 
contribution of the non-structural gypsum panels to the shear strength and 
stiffness of the diaphragm. For the reversed cyclic test the CUREE (Consortium 
of Universities for Research in Earthquake Engineering) reversed cyclic 
displacement controlled loading protocol was employed (Krawinkler et al. 2000).  

It should be noted that the double joist shown at the ends of each diaphragm 
configuration in Figures 2 through 5 was placed in an effort to include the 
stiffening effect of a wall attached to the underside of the diaphragm. Also, to 
account for the ledger framing used in the CFS – NEES building, the sheathing 
had an extension of 152mm past the edge of the steel diaphragm frame to match 
the detail commonly used in construction; see Nikolaidou et al. (2015) for further 
construction details.   
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Figure 5 – Bare Frame and Frame with Sheathing & Gypsum : Tests 14-RGYP-
M and 15-RGYP-C 

 

Instrumentation  

The instrumentation included four string potentiometers 254mm & 508mm stroke 
to capture the lateral displacement and overall shear deformation of each 
diaphragm, as well as eight linear variable differential transformers (LVDTs) ±15 
mm stroke to measure the local in-plane displacement. The locations of the 
instruments are shown in Figure 6. In addition, the force on and displacement of 
the actuator were recorded. The measurement instruments were connected to 
Vishay Model 5100B scanners that were used to record data using the Vishay 
System 5000 StrainSmart software. 

 

Figure 6 – Placement of LVDT sensors (left) and string potentiometers (right)  

 

Test results 

The results from the diaphragm tests for shear vs. deformation (rotation and 
displacement) response are presented in Figure 7. The alternate direction test 11-
RALT-M as shown in Figure 7a and 8 had an unexpected failure in the chord to 
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rim joist connection. The screws fastening the double joist, at the north end of the 
diaphragm, into the rim joist experienced shear failure. This is what caused the 
two sudden decreases in resistance prior to peak load (Figure 7a). The ultimate 
resistance was controlled by sheathing connection failure, i.e. tear out and pull 
through of the screw fasteners. In the post peak range, once the sheathing was 
nearly completely detached from the steel frame, a hinge in the CFS framing was 
developed as shown in Figure 8; which is consistent with how the 7-RB-M 
specimen failed. In the 7-RB-M test the in-plane uplift force generated at the 
north-east corner of the diaphragm was distributed amongst the joists spanning 
the east-west direction; as such, the chord to rim joist connection failure seen in 
test 11-RALT-M did not occur. However, in the 11-RALT-M test, because the 
joists were oriented in the north-south direction it was the segmented lines of 
blocking in the east-west direction and the north end chord that carried the in-
plane uplift force. The blocking members and their end connections were 
significantly less stiff resulting in an increased load on the end chord. This 
increased load is believed to have caused the failure in the chord to rim joist 
connection. Nonetheless, the shear resistance of test 11-RALT-M is within close 
proximity to that achieved by test 7-RB-M; it is hypothesized that if this chord to 
rim joist connection had been designed to carry the full in-plane uplift force, 
without the aid of the interior blocking lines, the shear vs. deformation response 
would have been similar for these two diaphragm specimens. It is also relevant to 
note the importance of anticipating this in-plane uplift force and detailing the 
framing connections for the forces arriving from different loading directions on a 
building’s diaphragm structures.  

It is demonstrated in Figure 7b how comparable strap blocking (12-RSTRAP-M) 
is to full blocking (7RB-M) in terms of supporting the edges of the OSB panels 
and providing diaphragm shear resistance. The rigidity of both specimens were 
nearly identical, while their peak loads were within 10% of one another. The 
slightly increased peak load in the 12-RSTRAP-M case was most likely the result 
of minor changes in material properties of the OSB and CFS frame, which were 
sourced at different times. The ultimate shear resistance for both specimen with 
full blocking and strap blocking was related to the sheathing connection failures, 
as shown in Figure 9. 

Specimen 13-FB4-M was designed to maximise the shear resistance of the floor 
diaphragm configuration. By fastening the edges of all OSB panels to frame 
blocking and by reducing the spacing of the sheathing screw edge fasteners to 
100mm the maximum shear resistance was increased by over three times 
compared with the standard floor configuration (9-F#12-M) (Figure 7c). The 
reduced spacing of the sheathing fasteners increased the diaphragm shear rotation 
needed to cause failure by nearly double (Figure 7c). It was also the only test 
where the steel frame and sheathing failed together, rather than the sheathing 
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connections first followed by the hinge action of the frame. The diagonal 
compression field that developed across the diaphragm caused noticeable damage 
to the underlying joists and blocking following a path between the south-east to 
north-west corners (Figure 9).  

 

 

Figure 7 –Force vs. Deformation response for specimens: a) 11-RALT-M vs. 7-
RB-M b) 12-RSTRAP-M vs. 7-RB-M c) 13-FB4-M vs. 9-F#12-M d) 14-RGYP-

M vs. 3-RU-M e) 15-RGYP-C vs. 4-RU-C 
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Figure 8 – Test 11-RALT-M failure of chord to rim joist connection (left) and 
hinge created in the CFS frame after loss of the sheathing connections (right) 

 

 Figure 9 – Test 12-RSTRAP-M sheathing connection failures (left) and Test 13-
FB4-M sheathing connection failures with compression field damage to steel 
frame (OSB panel removed for photograph) (right) 

A 60% increase in shear strength and an approximate 105% increase in shear 
stiffness were experienced by tests 14-RGYP-M and 15-RGYP-C compared to 
the standard roof configuration specimens tested in Phase 1 due to the addition of 
the gypsum panels (Figures 7d & 7e). Overall, the diaphragms behaved in a 
similar fashion to that observed for the constructions without the gypsum panels, 
i.e. sheathing screw connection failures with lift-off of the OSB panels at the 
intermediate panel edge locations (Figure 10). The small drop in shear resistance 
(Figure 7d) just prior to the peak resistance for the monotonic test was due to some 
drywall screws in the gypsum to frame connections failing in shear. The reversed 
cyclic test was characterised, as expected, by a faster decline of the shear 
resistance after the peak load was reached compared to the monotonic response 
due to the accumulation of damage during the loading cycles. 
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 Figure 10 – Test 14-RGYP-M OSB panel lift-off (left) and Test 15-RGYP-C 
sheathing connection failures (right) 
 
Table 4 summarizes the measured results for the Phase 2 diaphragm tests. 

Table 4 – General results from the Phase 2 diaphragm tests  

Specimens 
Su  

(kN/m) 

Δnet,o.4u 

(mm) 

Δnet,u 

 (mm) 

θnet,u 

 (rad x 10-3) 

Rigidity, K 

(kN/mm) 

11-RALT-M 12.4 12.5 69.3 19.8 2.41 
12-RSTRAP-M 14.2 11.7 52.4 15.0 2.96 

13-FB4-M 38.7 22.8 108.7 31.0 4.14 
14-RGYP-M 9.0 7.0 34.1 9.7 3.12 
15-RGYP-C* 8.6 8.6 23.9 6.8 2.39 

*Based on cycle during which the maximum resistance was reached 

Design predictions 

The AISI S400 Standard contains equation C-F2.4.3-1 obtain deflection design 
values for simply supported diaphragms (AISI 2015). However, in the current 
work Eq. E1.4.1.4-1 from AISI S400 (Eq. 1 in this paper) for blocked shear walls 
was deemed appropriate for comparison purposes with measured displacement 
due to the cantilever support conditions utilised in the diaphragm tests.  

	         (1) 

Ac  = Gross cross-sectional area of chord member (mm2) 
b   = Width of the shear wall (mm) 
Es  = Modulus of elasticity of steel 203000 MPa  
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G  = Shear modulus of sheathing material (MPa) 
H  = Wall height (mm) 
s  = Maximum fastener spacing at panel edges (mm) 
tsheathing = Nominal panel thickness (mm) 
tstud       = Nominal framing thickness (mm) 
v  = Shear demand (V/b) (N/m)  
V       = Total in-plane load applied to the diaphragm (N) 
β      = 2.35 for plywood and 1.91 for OSB for SI units (N/mm1.5) 
δ    = Calculated deflection (mm) 
δv      = Vertical deformation of anchorage / attachment details (mm) 
ρ      = 1.85 for plywood and 1.05 for OSB 
ω1    = s/152.4  ω2 = 0.838/tstud  
ω3       = √((h/b)/2) ω4 = 1 for wood structural panels 
 
Equation 1 uses empirical factors to account for inelastic behaviour, however, as 
found in Phase 1, these are proven to be inadequate for the diaphragm situation 
because they were formulated from shear wall tests largely composed of walls 
with a single wood panel (Nikolaidou et al. 2015). The only method where the 
results were comparable was to calculate and compare to the elastic deflection 
(δELASTIC). The elastic deflection is determined using the stiffness values taken 
from the 40% shear demand level, and extrapolating to the peak shear resistance. 
These results are summarised in Table 5. 

Table 5 – Design deflection values (mm) Eq. 1 and comparison with δELASTIC 

Diaphragm 
Specimens 

11-RALT-M 12-RSTRAP-M 13-FB4-M 14-RGYP-M  
15-RGYP-C 

δCalculated 
 45.2 32.1 62.6 17.9 

δ ELASTIC  31.4 29.2 56.9 17.6 
% Error 20.0 5.5 5.2 1.0 

  
The AISI S400 Standard contains Table F2.4-1 to provide design shear strength 
values for a limited number of diaphragm configurations with CFS framing and 
plywood sheathing (AISI 2015). Table 6 lists the design shear strength values 
(Vdesign) to be considered for each diaphragm test configuration based on Table 
F2.4-1 and the measured shear resistance values (Vtest). Note that Table F2.4-1 
refers only to plywood sheathing and does not include the sheathing thickness 
used for the floor specimen (13-FB4-M). While these factors limit the ability to 
provide appropriate values based on the test configurations, at present, these are 
the only design values available for comparison with the test results. 
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Table 6 – Shear resistance design values using Table F2.4-1 AISI S400 (2015) 

Diaphragm 
Specimens 

11-RALT-M 12-RSTRAP-M 13-FB4-M 14-RGYP-M & 
15-RGYP-C 

Vdesign 
(kN/m) 

11.1 11.1 25.8 7.4 

Vtest (kN/m) 12.4 14.2 38.7 9.0 

Conclusions 

The focus of this paper was to characterize the in-plane behaviour of four CFS 
framed/OSB sheathed diaphragm configurations under monotonic and reversed 
cyclic loading. The tests described herein are complementary to previous 
experimental work conducted at McGill University in 2015. This second phase of 
testing examined the effectiveness of the strap method as blocking, the effect of 
the joist orientation on the overall diaphragm response and aimed to obtain an 
upper threshold for shear strength and stiffness by testing a fully blocked floor 
configuration with 100mm screw spacing. In addition, the effect of gypsum as a 
non-structural component on the diaphragm response was also investigated. The 
direction of loading was shown to have little effect on the shear strength and 
stiffness of the diaphragm, assuming that the in-plane uplift forces are properly 
accounted for in design of the CFS framing and connections. Strap blocking of 
the OSB panel perimeters was shown to be just as effective as full blocking. 
Gypsum was shown to have a significant impact on shear strength and stiffness. 
In addition, using the shear wall deflection equation (Eq. 1 in this paper) of the 
AISI S400 Standard led to a meaningful comparison between the calculated and 
observed data only by assuming elastic response of the diaphragm. Lastly, the 
limited information available in the AISI S400 Standard did not allow for reliable 
design shear strength values to be obtained. 
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A B S T R A C T                                                                  

Cold-formed steel (CFS) framed shear walls with steel sheet sheathing can achieve higher shear 

resistance compared to conventional CFS framed shear walls. Experimental and numerical 

investigation of seismic behavior was present on two CFS shear walls sheathed with steel sheet for 

the base layer combined with gypsum wallboards for the face layer on both sides. Monotonic 

shear and cyclic loading tests were conducted on wall specimens. The failure mechanism, bearing 

capacity, stiffness and ductility of specimens were obtained. On the basis of rational simplification 

of CFS framed shear walls, the finite element software ABAQUS was used to simulate the 

monotonic behavior of CFS shear walls and the structural analysis software OpenSees was used in 

developing and calibrating 2D models of reversed cyclic shear wall test. A comparison between 

the numerical simulations and the test results showed a good agreement between the results of the 

numerical studies and the test results. The conclusions of this study can be applied to the seismic 

design of CFS framed shear walls. 

Keywords: CFS framed shear wall, Steel sheathing, Finite element analysis, Seismic behavior 

                                                                                

 

1. Introduction 

Cold-Formed Steel Structure residence is 

a new type of building system which is 

composed of cold-formed steel frame and wall 

board as shown in Fig. 1. CFS framed shear 

walls have been widely used in residential and 

small commercial buildings in the USA, Japan, 

Australia, and Europe in recent years because 

of their light weight, ease of installation, and 

other advantages including environmental 

characteristics and recyclability [1].  However, 

the bearing capacity of CFS framed shear 

walls is usually smaller than the reinforced 

concrete structure and the normal steel 

structure [2].  

CFS wall frames are used to bear the 

vertical loads and to resist the horizontal loads 

such as earthquake loads and wind loads. 

These conventional walls are mainly attached 

with Oriented-Strand Board, gypsum board or 

cement board sheathing. Over the years, using 

steel sheets as a sheathed material for CFS 

wall frames has also gained popularity in the 

multi-story building construction due to its 

high shear resistance, high ductility and good 

construction feasibility. Because of the 

complex configuration of CFS framed shear 

walls with steel sheathing, large numbers of 

numerical and experimental studies have been 

conducted. N. Balh and J. DaBreo[3] 

conducted experimental study on one sided 

steel sheathed CFS framed shear walls 

differed in terms of wall aspect ratio, framing 

and sheathing thickness, screw fastener 

schedule and framing reinforcement. Saeed 

Mohebbi and Rasoul Mirghaderi[4] showed 

that using double-sided sheathings increases 

the energy dissipation, shear strength and 

elastic stiffness, respectively compared to 

those of single-sided sheathed walls. Shirin 

Esmaeili Niari and Behzad Rafezy[5] reported 

the results of an experimental and numerical 

Wei-Wen Yu International Specialty Conference on Cold-Formed Steel Structures 
Baltimore, Maryland, U.S.A, November 9 & 10, 2016
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study that has been conducted on single and 

double-sided steel sheathed CFS shear wall 

panels. In addition, Iman Shamim and Colin A. 

Rogers [6] described the numerical modelling 

using OpenSees of dynamic shake table tests 

of single and double-storey CFS framed shear 

walls with flat steel sheathing. Numerous 

experimental and numerical studies on the 

shear performance of CFS framed shear walls 

sheathed with steel sheet have shown that the 

use of steel sheathing on CFS framed shear 

walls can achieve higher shear resistance and 

high ductility, which will promote the 

development of mid-rise CFS buildings. 

 
Fig. 1 Typical CFS structure residence 

However, the requirements of fire 

performance of CFS framed shear walls with 

steel sheet sheathing receive increasing 

concerns in fire safety design of buildings. It 

was observed that the resulting fire resistance 

times of the normal steel structure without any 

protection ranged from 10 to 22 min, which 

was difficult to achieve a fire rating of more 

than 120 min under service load. However, 

such a fire rating is often required for load- 

bearing walls of mid-rise buildings [7]. Chen W 

and Ye et al. [8] reported that the fire resistant 

performance of CFS wall systems mainly 

depended on the protection of wall panels and 

the fire performance of fire-resistant gypsum 

plasterboard was considerably good. This 

paper puts forward the CFS shear wall 

sheathed with steel sheets for the base layer 

combined with gypsum wallboards for the 

face layer on both sides and presents 

experimental and numerical investigation of 

seismic behavior on these CFS shear wall. 

A complete experimental and numerical 

study was conducted by the authors from 

Southeast University China to investigate the 

seismic behavior of two CFS shear walls 

sheathed with steel sheet for the base layer 

combined with gypsum wallboards for the 

face layer on both sides. Monotonic shear and 

cyclic loading tests were conducted on wall 

specimens. The failure mechanism, bearing 

capacity, stiffness and ductility of specimens 

were obtained. On the basis of rational 

simplification of CFS framed shear walls, the 

finite element software ABAQUS was used to 

simulate the monotonic behavior of CFS shear 

walls and the structural analysis software 

OpenSees was used in developing and 

calibrating 2D models of reversed cyclic shear 

wall test. A comparison between the numerical 

simulations and the test results showed a good 

agreement between the results of the 

numerical studies and the test results. The 

conclusions of this study can be applied to the 

seismic design of CFS framed shear walls. 

2. Shear wall test programs 

2.1. Test specimens 

Fig. 2 shows a typical detailing and 

screw spacing arrangement for the specimens. 

The experimental studies were carried out on 

wall panel specimens with a rectangular 

geometry of 2400mm wide and 3000mm 

height. These CFS shear walls were sheathed 

with steel sheet with thickness of 0.8mm for 

the base layer combined with gypsum 

wallboards with thickness of 12mm for the 

face layer on both sides. In the CFS shear wall 

tests, steel profile with thickness of 1.2mm 

was used. 

The CFS sections were fabricated from 

the steel sheets of 0.8mm and 0.9mm 

thickness with the nominal yield strength of 

345 MPa. The top and bottom tracks of the 

CFS framing members were made of U 
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(un-lipped) channels with 92mm (web) ×

50mm (depth) × 0.9mm (thickness) and 

143mm (web) × 50mm (depth) × 0.9mm 

(thickness). Two C-sections with nominal 

dimensions of 89mm (web) × 50mm (flange) 

×  13mm (lip) ×  0.9mm (thickness) and 

140mm (web) × 50mm (flange) × 13mm 

(lip) ×  0.9mm (thickness) were used as 

studs. The double lipped back-to-back 

channels were used as the end studs along two 

vertical edges and a single lipped channel as 

the intermediate stud. 

Fig. 2 Details of the specimens. 

The self-drilling screws of 4.8mm 

diameter and 19mm length were used to 

connect together the CFS framing members, at 

their junctions. The steel sheathing and 

gypsum wallboard were attached to the 

framing using the self-drilling screws of 

4.8mm diameter and 32mm length. The 

screws were arranged in a single line on the 

tracks and in a staggered pattern on the chord 

studs with 50mm spacing. The latter is to 

reduce the loading eccentricity on the chord 

studs as suggested by Yu et al [9]. The screws 

connecting the sheathing to the CFS framing 

were spaced at 300mm center to center at the 

intermediate stud which is the most common 

spacing of screws in practice. The edge 

distance of the sheathing screws was 20mm on 

tracks and 25mm or 75mm on chord studs. 

The distance of the screws from the nearest 

free edge of the sheathing was 15mm at the 

intermediate stud. 

To resist shear forces four 18mm 

diameter bolts were used to connect the 

bottom track to the base beam. To resist the 

over turning forces, the hold-downs were 

connected to the base beam by two 20mm 

diameter bolts. The hold-down dimensions 

having relatively thick plates ensure no uplift 

would occur.  

2.2. Test setup 

The shear wall tests were performed on a 

6.00m span, 3.90m high adaptable structural 

steel testing frame. Fig. 3 shows the test setup 

for conducting the wall panel tests. The CFS 

shear wall panel was assembled on the floor, 

and then the wall panel was lifted to vertical 

position and placed in the test frame between 

the reaction beam at the floor level and the 

loading beam at top. The wall panel was 

connected to the bottom reaction beam using 

six threaded anchor rods, with diameter of 20 

mm in order to transfer horizontal shear forces. 

The hold-down brackets are connected to the 

web of the end studs using twenty bolts with 

diameter of 4.2mm and to the reaction beam 

through the bottom track using a 20 mm 

diameter bolt, in order to transfer uplift forces. 

 
Fig. 3 Test setup 
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The testing frame was equipped with one 

500 kN hydraulic actuator with a  250mm 

stroke. Displacement controlled loading is 

applied to the specimens by the hydraulic 

actuator. The in-plane shear force is uniformly 

transferred to the wall panel by the top loading 

beam. Lateral supports are provided at the 

loading beam to prevent out of plane behavior. 

The overall specimen response, such as 

lateral displacement, slip and uplift, was 

measured and recorded using a series of 

displacement transducers. Fig. 4 shows the 

details of the measuring-point arrangement. 

D1 was used to measure the lateral 

displacement of the loading beam; D2 was 

used to measure the lateral displacement of the 

specimen on top; D3 and D4 were used to 

measure the slip displacement between the 

specimen and bottom reaction beam; D5 and 

D6 were used to measure the vertical 

displacement of the specimen relative to 

bottom reaction beam; and D7 and D8 were 

used to measure the vertical displacement of 

bottom reaction beam relative to the 

foundation. Moreover, the displacement of the 

hydraulic actuator was also recorded. 

Specimen

Bottom reaction beam

Loading beam

Hydraulic actuator

D1

D2

D5

B

D6

C

D7
D8

D3

D4

Fig. 4 Measuring-point arrangement. 

2.3. Test procedure 

Both monotonic and cyclic tests were 

conducted in force-control mode and 

displacement control mode. The procedure of 

the monotonic tests conformed to the ECCS 

Recommendation [10]. A preload of 

approximately 10% of the estimated ultimate 

load was applied first to the specimen and 

held for 5 min to seat all connections. After 

the preload was removed, the incremental 

loading procedure started until the failure 

occurred, the load increment was set to 75% 

of the estimated peak load.  

The cyclic tests were conducted in 

force-control mode and displacement-control 

mode. Each specimen was tested under 

stepped loading with a constant cyclic 

frequency of f=0.03Hz. The load capacity of 

each specimen was estimated before the 

experiment according to previous 

experimental results and experience at home 

and abroad. During the cyclic test, the 

force-control mode was replaced by the 

displacement-control mode when a turning 

point of the load–displacement curve appeared. 

The relative displacement that corresponded to 

the turning point was defined as the elastic 

limit displacement Δel of the specimen. The 

displacement-control mode followed the 

ECCS Recommendation [10], which consisted 

of cycles of 1Δel, 2Δel, 3Δel… until failure or 

a significant decrease of the load-bearing 

capacity occurred. 

3. Test results 

3.1. Monotonic shear wall test 

Fig. 5 shows the failure mode of 

specimen under monotonic shear wall test. For 

the specimen with 50 mm/300 mm screw 

schedule under monotonic shear wall test, the 

distortion and local buckling failure on the 

flanges of boundary studs under uplift force 

was observed at the end of the studs in top of 

hold-down (just above the hold-down bolted 

connection ), as shown in Fig. 5. The buckled 

chord stud led to the sheathing-to-framing 

connection failure. Then the damaged 

boundary studs cause the collapse of the 

structure when the lateral load increased. This 

is undesired failure mode and shear resistance 

of shear wall is suddenly lost. Therefore the 
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distortional buckling of the boundary studs 

caused by loading eccentricity shall be 

checked in shear wall design. 

 
Fig. 5 Monotonic test wall: chord stud failure. 

3.2. Cyclic shear wall test 

Fig. 6 shows the failure mode of 

specimen under cyclic shear wall test. For the 

specimen with 50 mm/300 mm screw 

schedule under cyclic shear wall test, the 

distortion and local buckling failure on the 

flanges of boundary studs under uplift force 

was also observed at the end of the studs 

above the hold-down, as shown in Fig. 6. 

Similar to the monotonic test, flange distortion 

and local buckling failure on the boundary 

studs were also observed. The CFS walls 

yielded similar peak loads on both the positive 

and negative loading directions, and the walls 

were able to remain the stiffness prior to the 

peak load cycle. After passing the peak load 

cycle, both strength degradation and stiffness 

degradation were observed. 

3.3. Load-displacement behavior 

The measured displacement at the top of 

CFS shear walls consisted of slip 

displacement, overturning displacement and 

actual shear displacement. The expression to 

estimate the actual shear displacement of CFS 

shear walls is summarized in (1)-(5): 

0 1                (1) 

H

L B C   
 

      (2) 

2 1

0 2

H
V V

H A
 

        (3) 

      41 3V V                       (4) 

6 8 5 7V V V V    （ ）（ ）     (5) 

Where   is the actual shear 

displacement of the CFS shear walls, 0 is 

the measured displacement at the top of the 

CFS shear walls, 1  is the slip displacement 

of the CFS shear walls relative to the 

foundation,   is the overturning 

displacement, H is the wall height, L is the 

wall length, A is the distance between 

displacement transducers D2 and loading beam, 

B and C are the horizontal distances between 

displacement transducers D5, D6 and the 

specimen edges, respectively, and V1-V8 are 

measured values of displacement transducers 

D1-D8, respectively. 

 

Fig. 6 Cyclic test wall: chord stud failure. 
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Based on the above analysis and 

calculation, the load-displacement curve of the 

specimen was obtained using the actual shear 

displacement and the corresponding load, and 

the envelope curve formed by the peak points 

of each first load step circle was defined as the 

skeleton load-displacement curve of the 

specimen.  Fig. 7 shows the typical 

load-displacement curves of specimen under 

monotonic load and Fig. 8 shows the typical 

load-displacement curves and the 

corresponding envelope curves of specimen 

under cyclic load, respectively. 
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    Fig. 7 Load-displacement curve of monotonic wall 
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    Fig. 8 Load-displacement curve of cyclic wall 

4. Numerical modeling 

4.1. Finite element modeling of monotonic 

test wall 

In this section, the finite element 

modeling of CFS shear wall has been 

presented. The commercially available 

software package ABAQUS/Standard [11], 

version 6.11, was used to develop the finite 

element models. 

The 4-node S4R shell element with 

reduced integration was selected for the 

modeling of cold-formed steel frame and 

sheathing. The screw connections were 

modeled by mesh independent fasteners. 

Using of mesh-independent fastener is a 

convenient method to define a point-to-point 

connection between two or more surfaces. The 

fastener can be located anywhere between the 

parts that are to be connected regardless of the 

mesh. Each layer connects two fastening 

points using connector element [11]. The shear 

load-displacement behavior obtained from 

shear connection tests, carried out by the Shi 

Yu and Zhou Xuhong et al.[12], was used for 

connector element behavior. The 

load-displacement responses of screw 

connection are shown in Fig. 9. The 

engineering stresses and engineering strains 

obtained from the coupon tests carried out by 

Ye Jihong and Feng Ruoqiang et al. [13] and the 

results are shown in Fig. 10. 
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Fig. 9 Load-displacement curve of screw connection. 

The displacements of bottom track nodes 

in position of bolts connecting the track to the 

base were restrained along three global 

directions. The top track was assumed to have 

no displacement and rotation along the 

vertical and out of plane directions. The 

displacement controlled loading process was 

used and the lateral displacement was applied 
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on the top track nodes. The hold-downs are 

modeled as uniaxial spring elements with a 

stiffness of 1000 N/mm active in the vertical 

direction only. At the locations of hold-downs, 

the horizontal and out of plane degree of 

freedom is restrained. Fig. 11 shows the finite 

element models of steel sheathed CFS shear 

wall specimen under monotonic load. 
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 Fig. 10 Stress-strain curve of Q345 steel 

 

Fig. 11 Finite element model of of monotonic wall. 

4.2. Numerical modeling of cyclic test wall 

The Open System for Earthquake 

Engineering Simulation (OpenSees) software 

[14, 15] was utilized for all modelling in this 

study. Schematic drawings of the numerical 

models are provided in Fig. 12. The CFS 

frame members, including the chord studs and 

the tracks, were modelled as rigid truss 

elements; the shear wall including steel 

sheathing and screw connections was 

modelled with Two Node Link using the 

Pinching04 material property [16]. Fig. 13 

shows the parameters required to define the 

Pinching04 uniaxial material in OpenSees, 

which includes a backbone trend line, 

degradation factors, as well as other force and 

displacement related parameters. 

 Fig. 12 OpenSees model for cyclic wall 

Fig. 13 Definition of Pinching04 material parameters. 

The OpenSees numerical model 

incorporated a uniaxial material that 

represents a pinched strength vs. displacement 

response which exhibits strength and stiffness 

degradation under reversed cyclic loading. 

Cyclic strength and stiffness degradation 

occurs in three ways: un-loading stiffness 

degradation, re-loading stiffness degradation 

and strength degradation. The concept and 

parameters required to identify the Pinching04 
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material [16] are presented in Fig. 11. The 

backbone trend line was drawn for the shear 

force vs. shear displacement response 

hysteresis of each cyclic test and directly used 

to define the Pinching04 backbone trend line. 

The Pinching04 material is capable of being 

assigned two separate backbone trend lines 

each representing the positive or negative 

response excursions. Since the hysteretic 

response of the tested walls was near 

symmetric, the same trend line was used for 

the both excursions in the model. The 

degradation factors were first approximated 

from the strength vs. displacement hysteresis 

results of the cyclic tests and then 

system-antically changed along with the r 

Disp, r Force, and u Force factors, which were 

pre-measured from the test response hysteresis, 

until a reasonable fit between the tests and the 

numerical model strength as well as 

displacement response histories and energy 

dissipation were obtained. 

4.3. Verification of the numerical modeling 

In the following, the numerical modeling 

of steel sheathed CFS shear wall has been 

verified. Experimental results obtained from 

steel sheathed CFS shear wall were used to 

evaluate the validity and accuracy of the 

numerical model.  

Fig. 11 shows the finite element models 

of steel sheathed CFS shear wall under 

monotonic load. Load-displacement curves of 

steel sheathed CFS shear wall obtained from 

finite element analysis have been compared 

with those of experimental specimens in Fig. 

14. Comparison shows that the numerical 

results were close to those of tests. 

Failure modes of shear wall panel 

obtained from numerical analysis has been 

compared with those of experimental result 

under monotonic load in Fig. 15. Finally, 

comparing numerical and experimental results, 

in terms of shear resistance, stiffness and 

failure modes, shows that the numerical model 

is very capable of estimating the seismic 

behavior of actual CFS shear wall. 
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 Fig. 14 Comparison of ABAQUS and test results 

 

Fig. 15 Comparison of failure modes. 

Fig. 12 shows the numerical model of 

steel sheathed CFS shear wall under cyclic 

load. Envelope curve of the hysteresis 

response of steel sheathed CFS shear wall 

obtained from numerical analysis have been 

compared with those of experimental 

specimen in Fig. 16. Comparison of Envelope 

curve shows that the numerical results were 

close to those of test under cyclic load. 
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Therefore, it has been found that the 

numerical modeling is reliable enough to be 

used to undertake a parametric study for 

investigating into the effects of some 

parameters on the behavior of CFS steel 

sheathed shear walls. 

5. Conclusion 

In this study, experimental and numerical 

investigation of seismic behavior was present 

on two CFS shear walls sheathed with steel 

sheet for the base layer combined with 

gypsum wallboards for the face layer on both 

sides. Monotonic shear and cyclic loading 

tests were conducted on wall specimens. The 

failure mechanism, bearing capacity, stiffness 

and ductility of specimens were obtained. On 

the basis of rational simplification of CFS 

framed shear walls, the finite element software 

ABAQUS was used to simulate the monotonic 

behavior of CFS shear walls and the structural 

analysis software OpenSees was used in 

developing and calibrating 2D models of 

reversed cyclic shear wall test. A comparison 

between the numerical simulations and the test 

results showed a good agreement between the 

results of the numerical studies and the test 

results. Based on the physical test and 

numerical analysis results, the following 

conclusions are made: 

(1) Cold-formed steel (CFS) framed 

shear walls with steel sheet sheathing can 

achieve higher shear resistance compared to 

conventional CFS framed shear walls. 

(2) Wall specimens with double sided 

sheathings provide higher ultimate strength, 

stiffness, and energy absorption as compared 

with those having one-side sheathing. 

(3) The buckled chord stud will lead to 

the sheathing-to-framing connection failure 

and the damaged boundary studs cause the 

collapse of the structure when the lateral load 

increased, which is an undesired failure mode 

and shear resistance of shear wall is suddenly 

lost. Therefore it shall be checked in shear 

wall design. 

(4) Comparison of the load-displacement 

curve and failure modes of specimens 

obtained from numerical analysis and 

experimental results shows that the numerical 

results were close to those of tests. Therefore, 

it can be concluded that the numerical 

modeling is reliable enough to be used to 

undertake a parametric study. 
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Sheathing Overlapping and Attachment Methods for Cold-

Formed Steel Shear Walls with Corrugated Steel Sheathing 

Mahsa Mahdavian1, Wenying Zhang2, Cheng Yu3 

Abstract 

Cold-formed steel (CFS) shear walls sheathed with corrugated steel sheathing are 
a feasible solution to non-combustible high structural performance CFS shear 
walls in mid-rise buildings. Corrugated steel sheathings have high in-plane 
strength and stiffness due to the cross sectional shape of the sheet. This paper 
presents an experimental study on two specific issues: (1) the sheathing 
overlapping configurations and their impact to the shear wall performance, (2) the 
attachment method for sheathing to framing. For the overlapping issue, one 
overlap and two overlaps in the corrugated sheets were experimentally 
investigated, it was found that the overlap differences did not cause significant 
different behaviors and strength of CFS shear walls. For the sheathing-to-framing 
attachment method, self-drilling screws and dual spot welding were studied. A 
portable spot welder with dual heads was used in this research. Connection tests 
and full scale shear wall tests were conducted to study the two different 
connection methods. It was found that the dual spot welding yielded a weaker 
connection than the conventional self-drilling screw connections. This paper 
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presents the details of the test programs, research findings and recommendations 
for CFS shear wall applications. 

Introduction 

The usage of Cold-Formed Steel (CFS) members as primary structural elements 
has increased in recent years. Most of these structures are mid-rise residential and 
commercial buildings which fall under Type I and Type II construction of the 
International Building Code (IBC 2012). Due to Section 602.2 of IBC, building 
elements of these construction categories must be of noncombustible material. 
Therefore, lateral force resisting systems are limited to two types of: 1. Shear wall 
with flat steel sheathing, and 2. Steel strap cross bracing shear wall. Shear wall 
with flat steel sheathing has low shear strength and is not suitable for mid-rise 
buildings in high seismic and wind hazardous areas. Steel strap bracing shear wall 
requires special instillation details which result in higher material and labor costs.  
A noncombustible CFS shear wall with high structural performance is needed in 
the mid-rise construction field. 

CFS shear walls sheathed with corrugated steel sheathing are a feasible solution 
to a high performance all steel shear resisting system. Fulop and Dubina (2004) 
performed a series of full-scale shear wall tests with different sheathing materials 
including gypsum board, OSB and corrugated steel sheets. The framing members 
of all specimens were kept identical in order to be able to study the sheathing 
effect on shear wall performance. Fulop and Dubina concluded that CFS shear 
walls with corrugated steel sheathings were rigid and capable of resisting lateral 
loading. The failure mechanism of these specimens were reported in the seam 
fasteners. Stojadinavic and Tipping (2007) conducted a series of 44 cyclic tests 
on CFS shear walls with corrugated steel sheathing. Different design parameters 
including: corrugated steel sheet gauge, framing gauge, fastener type and size, 
seams fastener spacing, as well as different sheathing materials. In all tests, the 
failure mode reported was the eventual pulling out of screws due to the corrugated 
sheet warping. CFS shear walls with corrugated steel sheathings are continuously 
under research at University of North Texas. Yu et al. (2009) studied the new 
shear resisting system under monotonic and cyclic lateral loading. The parameters 
under investigation included the framing member thickness, fastener size and 
spacing, and the boundary stud configurations. Results indicated that corrugated 
sheathed shear walls yielded higher strength and greater initial stiffness in 
comparison to CFS shear walls with flat steel sheets having the same thickness.  

CFS shear walls with corrugated steel sheathings have demonstrated high 
structural performance. Design details of shear walls such as sheathing 
connections, seams connections and corrugated sheathing profile have high 
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influences to the structural performance of a shear wall. Sheathing overlapping 
configuration and sheathing to frame connection methods are the focus of this 
paper. Design details, test details, and analysis results of the shear walls under 
cyclic lateral loading are reported herein.  

Shear Wall Test Setup 

Shear wall tests were conducted on a 16 ft. by 13.3 ft. high self-equilibrating steel 
testing frame located in the Structural Laboratory at the University of North 
Texas. The testing frame is equipped with a MTS 35 kip hydraulic actuator with 
a 10 in. stroke. A MTS 407 controller and a 20-GPM MTS hydraulic power unit 
were used to drive the loading system. A 20 kip TRANSDUCER TECHNIQUES 
SWO universal compression/tension load cell was used to pin-connected the 
actuator shaft to the T-shape loading beam. A total of five NOVOTECHNIC 
position transducers were used to measure the horizontal displacement at the top 
of the shear wall, and to measure the vertical and horizontal displacements at the 
bottom of the two boundary frame members. The data acquisition system 
consisted of a National Instruments unit and an HP Compaq desktop. The applied 
force and the five displacements were recorded instantaneously during each test. 
Details of the testing frame and the location of the position transducers are shown 
in Figure 1. 

 

 

Figure 1 - Testing frame and position transducer locations 

The specimens were bolted to the base of the testing frame and loaded horizontally 
at the top. The base beam is a 5 in. × 5 in. × ½ in. structural steel tube and is bolted 
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to a W16×67 structural steel beam which is anchored to the floor. One web of the 
base beam has cut outs in several locations to provide access of the anchor bolts 
connection hold-downs to the base beam. Figure 2 demonstrate the testing frame 
with an 8 ft. × 4 ft. shear wall installed.  

 

 

Figure 2 - Testing frame, front view 

The lateral loading was applied directly to the T-shaped load beam by the actuator. 
The load beam was attached to the web of the top track using a pair of No. 12-14 
× 1 ¼ in. hex head self-drilling screws every 3 in. on center so that a uniform 
linear racking force could be transmitted to the top track of the shear wall. The 
stem of the T-shape beam was placed in the gap between the rollers located at the 
top of the testing frame to prevent out-of-plane movement of the walls. The 
rotation of the rollers were able to reduce the friction generated by the movement 
of the T-shape during the test procedure and were also able to guide the loading 
T-shape beam. To anchor the specimen to the base beam of the testing frame, two 
Simpson Strong-Tie S/HD15S hold-downs with 33 pre-drilled holes 
corresponding to No. 14-14 × 1 in. hex washer head self-drilling screws were 
used. In cases which studs had a punch-out at the hold-down location, additional 
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Position Transducer #2 Position Transducer #3 

T-shape load beam 

Hydraulic actuator 

Load cell 

Cut outs on base beam 
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welding around the edge of the punch-out was used to reinforce the hold-down to 
stud attachment. In addition, two Grade 8 3/4 in. bolts and two Grade 8 5/8 in. 
bolts were used in the anchorage system.  

Cyclic tests were conducted in a displacement control mode following CUREE 
protocol in accordance with the ICC-ES AC130 (2004). The CUREE basic 
loading history includes 43 cycles with specific displacement amplitudes. The 
specified displacement amplitudes are based on Guowang Yu’s research (2013). 
A constant cycling frequency of 0.2-Hz (5 seconds) for the CUREE loading 
history was adopted for all tests. 

 

Shear Wall Test Specimens  

The specimens tested in this research were of 8 ft. height by 4 ft. width (2:1 aspect 
ratio). Boundary studs (350S162-68, 50 ksi) are connected back-to-back using a 
pair of No. 12-14 × 1 ¼ in. hex washer head self-drilling screws every 6 in. on 
center starting from above the hold-downs. One track steel member (350T150-68, 
50 ksi) was used as top and bottom track. Studs were inserted into tracks and 
flanges were connected using No. 12-14 × 1 ¼ in. hex washer head self-drilling 
screws on both sides of each wall. The sheathing is Verco Decking SV36 27 mil 
thick corrugated steel sheet with 9/16 in. rib height. For each wall specimen, the 
sheathing was made of three corrugated steel sheets which over-lapped and were 
connected by a single line of screws at the over-lapped locations. The sheathing 
is installed on one side of the wall and on the outside of the frame using No. 12-
14 × 1 ¼ in. hex washer head self-drilling screws. Due to the sheathing profile, 
the spacing of the screws were limited to 3 in. on the boundary studs and tracks 
as well as the seams locations, and 6 in. fastener spacing along the field stud. 
Specimen 1, the corrugated sheets over lapped by two ribs. For specimen 2, the 
top and bottom sheathing of the shear walls were cut so that the sheathings only 
over lapped by one rib. Both specimens have a total of 24 vertical slits, each have 
2 in. length, in order to improve the ductility of the shear walls following 
Guowang Yu (2013) research. Figure 3 shows details of the two specimens.  
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Figure 3 - Specimen 1 and specimen 2 design details 

 

For specimens 3 and 4, a different sheathing connection method was investigated. 
Instead of using self-drilling screws, a spot-welding machine, shown in Figure 4, 
was employed for all sheathing connections. The spot-welder “EQUA-PRESS 
Dual Tip Holders “model 4010 was purchased from LORS Machinery. Also, two 
“A” pointed double bent shanks with ½ in. diameter points were purchased. Due 
to the double bent shank, the spacing between the two welders could be adjusted 
(between 2 in. to 4 in.) to meet our design requirements. The sheathing connection 
spacing for these two specimens were 3 in. along the boundary studs, field stud, 
and at seams locations. Due to the dual tip of the spot-welding machine, the sheets 
were connected at seams in two parallel rows (Figure 5). A designated spot-
welding power supply was purchased from TECNA to be able to control the 
power and the rest time between each cycle to obtain stronger welds.  
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Figure 4 - Spot-welding machine and “A” pointed double bent shanks 

 

 

Figure 5 - Spot-welded specimen details 
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Test Results & Discussions 

Sheet Over-lapping 

Shear wall specimen 1 with double overlapping ribs and shear wall specimen 2 
with a single overlapping rib both failed due to sheathing connection failure along 
boundary studs. Table 1 is a summary of numerical test results. The average peak 
load and average displacement of the two specimen were only 3% and 6% 
different, respectively. Figure 6 compares the hysteresis curve of the two shear 
walls. It is appropriate to conclude that different over-lapping configurations have 
minimum impact on the shear wall performance. As a result, double overlapping 
is recommended as to reduce the construction duration and labor required. 

 

Table 1 - Over-lapping test results 

Specimen # 
Average 

peak load 
(lbs) 

Average 
disp (in.) 

1 10865 2.601 

2 11179 2.453 
 

 

Figure 6 - Hysteresis curve comparison - over-lapping 
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Sheathing Connections 

Connection Tests 

A series of connection tests were performed on the self-drilling and spot-welding 
(resistance welding) connections. The connection tests were conducted following 
AISI S905-13 “Test Standard for Cold-Formed Steel Connections” on No. 12 Hex 
Washer Head (HWH) self-drilling screws as well as different voltage and cycle 
time settings of the spot-welding machine. The cycle time is the time selected for 
the electrical source to conduct through the materials under applied force. Each 
cycle time is equivalent to 1/60 of a second.  

The connection tests were tensioned on an INSTRON 4482 universal testing 
machine. The tests were conducted in displacement control at a constant rate of 
0.05 in/min. Sheathing-to-stud connection test setup for HWH screw and SW are 
seen in Figures 7 and 8 respectively. Three connection tests were conducted for 
each setting and the average test results are shown in Table 2 and Table 3. Multiple 
spot-welded settings were tested to obtain best SW connections. For sheet-to-
sheet configuration, the dual heads created two welds therefore the results are to 
be divided by two. It was concluded that high voltage and low cycle time caused 
the sheet to burn therefore it impacted the surface of the connection area poorly 
and did not create welds. The best connection with high strength was achieved 
with high voltage of 9.0 volts and high cycle time of 60.  

 

              

Figure 7 - HWH connection test      Figure 8 - SW connection test 
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Table 2 - Sheet-to-sheet connection test results 

SW volt-cycle 
time 

Peak Load 
(lbs) 

Extension at 
peak (in.) 

Peak 
Load/2 
(lbs) 

SW 4.5-40 784 0.303 392 

SW 5.5-55 1254 0.099 627 

SW 6.0-60 1392 0.100 696 

SW 7.0-55 1187 0.108 594 

SW 8.9-60 1801 0.115 901 

SW 9.0-55 1554 0.099 777 

SW 9.0-60 1630 0.094 815 
 

Table 3 - Sheet-to-stud connection results 

SW volt-cycle 
time 

Peak Load 
(lbs) 

Extension at peak 
(in.) 

SW 4.5-40 538 0.186 

SW 9.0-60 1193 0.377 
 

 

Figure 9 and Figure 10 shows a comparison of sheet-to-sheet and sheet-to-stud 
connection test results, respectively. Connection 1 reports the No. 12 HWH screw 
and Connection 2 reports the spot-weld connection with 9 volts and 60 cycle time. 
The spot-welds lost connection between two surfaces upon failure which resulted 
into instant connection loss. For sheet-to-sheet, the SW showed higher strength 
and in sheet-to-stud connection, the SW failed at a lower strength compared to the 
screw connection. Also, the SW had higher initial stiffness in comparison to the 
screw connections.   
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Figure 9 - Sheet-to-sheet connections 

 

 

Figure 10 - Sheet-to-stud connections 
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SW Shear Wall Test Results 

Specimen 3 is shear wall with SW 7.0-35 sheathing connection and specimen 4 is 
shear wall with SW 9.0-60 sheathing connections. Specimen 3 failed prematurely 
due to weak sheathing connections. Almost all spot-welds were disconnected in 
an unzipping act seen in Figure 11. Most shear walls fail at cycle 35-38 but shear 
walls with SW connections failed at an earlier cycle 21-25. Table 4 summarizes 
specimen 3 and specimen 4 results. The nominal shear strength of specimen 4 
increased by 172% in comparison to specimen 3, though still failed prematurely 
and the frame was undamaged.  

 

Figure 11 - SW sheathing connection failure 

 

Table 4 - Spot-welded shear wall test results 

Specimen # 
Average 

peak load 
(lbs) 

Average 
disp (in.) 

3 2709 0.255 

4 7357 0.630 
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Figure 12 - SW hysteresis curves 

 

Figure 12 shows the hysteresis curve of the two SW tests and Specimen 1. Even 
though changing the SW voltage and cycle time improved the shear wall 
performance greatly, it was not comparable to the self-drilling screw connections. 
Shear walls with SW sheathing connections presented higher initial stiffness but 
lower shear resistance and ductility in comparison to shear walls with screw 
sheathing connections. Thus, the spot-welded sheathing connections were not a 
feasible connection method. 

Conclusion 

A total of four shear wall specimens and seven connection specimens were tested 
for this research paper. The primary objective of this paper was to determine the 
effect of the sheathing overlapping and to investigate a new sheathing connection 
method – spot weld. Shear wall with one rib overlapping was compared to shear 
wall with double ribs overlapping. The results showed less than 10% difference 
in peak load and displacement between the two configurations. Therefore, 
overlapping sheets by two corrugations is acceptable which results into less labor 
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and construction time of the shear wall system. A series of connection tests were 
performed to obtain the optimal setting for a dual-head spot-welding connections. 
Two shear walls with different spot-weld voltage and cycle time were tested. 
Results indicated premature failure of both specimens due to weak sheet-to-stud 
connections. The spot-weld sheathing connection is not recommended for CFS 
shear wall applications.   
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Abstract 

Cold-formed steel framed shear wall sheathed with corrugated steel sheets is a 
promising shear wall system for low- and mid-rise constructions at high wind 
and seismic zones due to its advantages of non-combustibility, high shear 
strength, and high shear stiffness. A lot of work has been done on this subject. 
However, all the previous work is focused on the wall panel levels and more 
research work is needed on the entire building systems. The objective of this 
paper is to investigate the response of a cold-formed steel framed building with 
corrugated sheet sheathing subjected to earthquake excitation primarily through 
nonlinear time history analysis employing the incremental dynamic analysis 
(IDA) framework. High fidelity models were simulated in OpenSees program. 
The detailed modeling information and system assessment are presented in this 
paper. 
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Introduction 

The cold-formed steel (CFS) corrugated sheet is widely used as the floor 
decking and roofing materials in both residential and commercial buildings. 
Only recently, CFS corrugated sheets have been used as sheathing material in 
shear walls. Researchers have been focusing on the performance of this new 
type of shear wall as the primary lateral resistance system. Fülöp and Dubina 
(2004) developed a testing program to investigate the structural characteristics 
of 2.44 m high × 3.66 m wide CFS shear walls with different sheathing materials 
including LTB20/0.5 corrugated steel sheet, gypsum boards, and OSB. A total 
of 7 monotonic tests and 8 cyclic tests were conducted. The test results indicated 
that the CFS walls were rigid and could effectively resist lateral loads. The 
failure of the seam fastener was the failure mechanism for the corrugated sheet 
specimens.  

Stojadinovic and Tipping (2007) conducted a series of 44 cyclic shear wall tests 
on 2.49 m high × 1.22 m or 0.61 m wide CFS shear walls with corrugated sheet 
steel sheathing on one side or both sides. The shear walls specimens differed in 
gauge of the sheet steel, gauge of the cold-formed steel framing, size and 
spacing of the fasteners. Stojadinovic and Tipping reported that in all the tests, 
the failure mode was the eventual pulling out of the screws due to warping in the 
corrugated steel sheet.  

A series of full scale shear wall tests were conducted at University of North 
Texas (UNT) in recent years (Yu el al. 2009, Yu 2013). The test program used 
typical framing configurations and the approved test method by International 
Code Council. The test results indicated that the CFS framed shear walls using 
corrugated steel sheathings demonstrated higher strength, greater initial stiffness 
and a similar ductility in comparison to CFS walls using conventional sheathing 
materials (flat steel sheets, plywood panels, OSB boards).  

In order to investigate the influence of gravity/vertical loads and to assist in the 
fragility analysis recommended by FEMA P695 (2009), another test program on 
CFS shear wall with corrugated steel sheet sheathing was conducted recently at 
UNT under combined gravity/vertical and lateral loading (Zhang et al., 2016). 
The tests involved 4 shear wall specimens and 4 bearing wall specimens. The 
results indicated that moderate gravity loading led to an increase of shear 
strength and initial stiffness. Also, the bearing walls contribute almost 34.2% of 
shear strength and 35.5% of dissipated energy in comparison to shear walls. It’s 
observed that both shear walls and bearing walls were able to carry the full 
weight during entire loading process without collapse. As a result, 7% drift was 
recommended by the authors as collapse drift limit in seismic fragility analysis.  
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The objective of this paper is to investigate the response of cold-formed steel 
framed buildings with corrugated sheet sheathing under earthquake excitation 
and to produce appropriate seismic performance factors for design usage. High 
fidelity models of one 2-story and one 5-story office building were simulated in 
OpenSees program (McKenna, 2015). The detailed modeling information and 
relevant system assessment are presented in this paper.  

Finite Element Modeling 

Building Prototype 

The building archetype used in the NEES-CFS project (Madsen, Nakata, 
Schafer, 2011) was adopted as a reference in this research. The NEES building 
was redesigned by the authors to employ the CFS shear walls with corrugated 
steel sheathing. The hypothetical office buildings were assumed to be located in 
Orange County, California which has a total plan layout of 49.75ft×23ft (15.2m
×7m). Site Class D was chosen as is typical for sites in the vicinity of this 
project. For the office occupancy chosen, IE = 1.0 was used. The seismic force 
modification factors were based on wood light-frame shear wall systems with 
wood structural panel (ASCE/SCE 7-10), and were set at R = 6.5 and Ω= 3.0. 

OpenSees Building Modeling 

The nonlinear dynamic analysis software OpenSees (McKenna, 2015) was used 
in the FE analysis. The length and distribution of shear wall were re-assigned 
based on the test data since the sheathing material has changed from OSB to 
corrugated steel sheet. Figure1 illustrates the schematic drawings of FE models 
used in OpenSees (McKenna, 2015). 

 
1a - 2-story building 

 
1b - 5-story building 

Figure 1 - OpenSees models 
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Modeling of Shear Walls 

The shear walls were simulated in OpenSees (McKenna, 2015) as two diagonal 
truss elements and elastic frame boundary elements as illustrated in Figure 2. 
Rigid connection method was used since linear static analysis results showed 
that the diagonal bracing stiffness greatly exceeded the small moment stiffness 
of the stud-to-track connection. In order to achieve the pinching effect, the 
strength degradation as well as the stiffness degradation of the shear wall, 
pinching4 uniaxial hysteretic material was used for the diagonal truss elements. 
To obtain the backbone curve of pinching4 material, the horizontal load V vs. 
deflection Δ was first converted to stress-strain relationship according some 
derivation of basic equilibrium and geometry: 

The axial force in the diagonal bracing F can be expressed as: 

/ (2cos  )F V θ=  

The stress and strain in the diagonal bracing can be obtained as: 

/ / (2 cos )F A V Aσ θ= =  

/ ( cos ) /d l lε θ= = ∆  

Where 2 2cos /b b hθ = + , 2 2l b h= + . Herein b, h is the width and height of the 
shear wall respectively. 

 

    Figure 2 - Shear wall Modeling         Figure 3 - Simulation of shear wall 

The OpenSees result was compared to the test result in Figure 3. It can be seen 
that the model has a good agreement with the test result and the model was able 
to simulate the post-peak behavior of the shear wall.  
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Modeling of Bearing Walls 

In the building model, the bearing walls were designed to have the same 
sheathing material as the shear walls. Shear resistance of the bearing walls was 
considered in the FE analysis. The modeling technique of bearing walls was 
same as the shear walls.  

The backbone curve and perimeters of pinching4 material of shear walls and 
bearing walls were according to the test results in Zhang et al. (2016). Aspect 
ratio adjustment recommended in AISI S213 (2012) was performed when the 
width of the wall in the building was different from the width of test specimen. 
As for the small bearing walls at the opening positions (windows and doors), 
ABAQUS model was first created for each height of wall and then aspect ratio 
adjustment was performed. The ABAQUS modeling technique was according to 
Mahdavian et al. (2016). 

Modeling of Diaphragm 

Rigid diaphragm was used in the model by a built-in element in OpenSees 
(McKenna, 2015). The rigid diaphragm element requires a master-slave 
relationship of nodes in the same plane. Lateral displacement in two directions 
and rotation about the vertical axis is defined at the master node.  

Seismic Mass and Gravity load 

Total seismic mass was set to the value from the design narrative (Madsen, 
Nakata, Schafer, 2011) and the mass of each story was divided equally and 
lumped to the four corners. Gravity load of the building should be added 
separately since seismic mass is only related to the mass matrix in the FE 
formulation. The weight applied herein was the product of seismic mass and the 
acceleration of gravity g. P-delta effect was included since large displacement 
might arise. 

Static Pushover Analysis 

Pushover analysis is performed in order to obtain the ductility parameter and 
system over-strength factor. The displacement ductility factor is defined as

u
T

y

δµ
δ

= , where δu is the displacement at peak load and δy is the displacement at 

yield. Over-strength factor is defined as max
0

design

V
V

Ω =  , where Vmax is the maximum 

base shear in actual behavior and Vdesign is base shear at design level. The 
displacement ductility factor and over-strength factor are listed in Table 1. 

  

789



Table 1 - Pushover results 

 Ω0 µT 
2-story building 8.69 2.07 
5-story building 3.84 1.92 

 

Incremental Dynamic Analysis  

Nonlinear time history analysis lies in the core of the Incremental Dynamic 
Analysis method (IDA), where the structure is subjected to a suite of ground 
motion records. Every record is scaled to multiple levels of intensity until a 
designated DM limit for collapse is reached, producing the structure's capacity 
curve in terms of structure damage measure (DM) versus an intensity measure 
(IM). Story drift is a typical DM and the spectral acceleration of the first natural 
period of the structure is a typical IM.  

To avoid bias, a specified set of ground motion records should be utilized as 
excitations. FEMA P695 (2009) recommends two sets of ground motion records 
for collapse assessment using nonlinear dynamic analysis: Far-Field record and 
Near-Field record set. The Far-Field record set includes twenty-two component 
pairs of horizontal ground motions from sites located greater than or equal to 10 
km from fault rupture. The record sets do not include the vertical component of 
ground motion since this direction of earthquake shaking is not considered of 
primary importance for collapse evaluation, and is not required by the 
Methodology for nonlinear dynamic analysis. The Near-Field record set is only 
for supplemental information and is used in special studies to evaluate potential 
differences in the CMR for SDC E structures. As a result, the Far-Field record 
set was chosen and horizontal components of ground motion were used. 

Figure 4 indicates the IDA curves and Figure 5 indicates collapse fragility 
curves of the two building models. The median collapse intensity, SCT, is 
defined as the spectral acceleration causing 50% collapse probability. The ratio 
between the median collapse intensity (SCT) and the Maximum Considered 
Earthquake (MCE) intensity (SMT) is the collapse margin ratio (CMR). CMR is 
the primary parameter used to evaluate the collapse safety of the building 
design. 
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4a - 2-story building 

 

4b - 5-story building 

Figure 4 - IDA curves 
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5a - 2-story building 

 

5b - 5-story building 

Figure 5: Collapse fragility curves 
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structure, 𝛽𝛽𝑀𝑀𝐷𝐷𝐿𝐿. FEMA P695 (2009) quantifies each of these uncertainties based 
on the following scale: (A) superior, β = 0.10; (B) good, β = 0.20; (C) fair, β = 
0.35; and (D) poor, β = 0.50. The total system collapse uncertainty, 𝛽𝛽𝑇𝑇𝑂𝑂𝑇𝑇, is 
calculated based on these four uncertainties: 2 2 2 2

TOT RTR DR TD MDLβ β β β β= + + + .To 

account for the effects of the frequency content (spectral shape) of the applied 
earthquake record set, the CMR was adjusted using the spectral shape factor, 
SSF. For each archetype building, the adjusted collapse margin ratio, ACMR 
was calculated by multiplying the CMR by SSF (spectral shape factor). 

Table 2 summarizes the aforementioned data, specifically, the median collapse 
intensity, SCT, the collapse margin ratio, CMR, the adjusted collapse margin 
ratio, ACMR, and is compared with the reference value given in FEMA P695 
(2009).The Record-to-record collapse uncertainty is calculated based on 
0.2 ≤ βRTR = 0.1 + 0.1µT ≤ 0.4 ( µT ≤ 3 ). The design requirements-related 
uncertainty, the test data related uncertainty and modeling of structure related 
uncertainty were taken as good. Results in Table 2 show that the collapse 
probability well passed the FEMA requirements, which improved that the design 
method, including the seismic force modification factors of R=6.5 and Ωo = 3.0, 
is appropriate for shear wall systems with corrugated steel sheet sheathings. 

Table 2 - IDA results 

 SCT CMR SSF ACMR 𝜷𝜷𝑻𝑻𝑻𝑻𝑻𝑻 ACMR20% 
2-story building 3.84 2.76 1.134 3.130 0.463 1.476 
5-story building 3.69 2.65 1.125 2.981 0.453 1.464 
 

Conclusion 

Seismic fragility analysis was performed on one 2-story and one 5-story office 
building using CFS framed walls sheathed by corrugated steel sheathing. The 
finite element analysis program OpenSees was used and IDA was adopted for 
the nonlinear time history analysis. The results show that the current seismic 
performance factors for light wood framed structures seem appropriate for the 
new shear wall type. The modeling techniques described in this paper is 
appropriate for future more comprehensive seismic analysis on CFS buildings. 
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This paper presents an experimental investigation of the behavior of cold-formed 
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1. Introduction

Given the properties of light weight, high strength, ease mass production and 

prefabrication, uniform quality, non-combustibility, etc., cold-formed steel (CFS) 

is becoming widely used in low- and mid-rise buildings. 

According to International Building Code  (IBC, 2012) and the North American 

Standard for Cold-Formed Steel Framing - Lateral Design (AISI S213-12), three 

types of sheathing materials including structural plywood, oriented strand board 

(OSB), and steel sheet are provided for sheathing materials of CFS shear walls. 

CFS shear walls and bearing walls with steel sheets are of great importance due 

to its all-steel nature and non-combustibility. In this paper, the seismic 

performances of CFS shear walls and bearing walls with steel sheet sheathing are 

studied and reported herein. 

Yu (2007) tested a series of CFS shear walls sheathed by steel sheet. The tested 

shear walls were different in aspect ratio, screws spacing, thickness of steel sheet, 

and thickness of stud and track members. In the previous studies, shear walls were 

considered as the only lateral resistance component in CFS buildings, the bearing 

wall lateral resistance ability was ignored. Bearing walls were also tested to study 

its lateral resistance ability. In the actual buildings, CFS walls usually bear not 

only lateral loads but also vertical loads from upper floor. It is the intent of this 

research to study the effect of vertical load on the seismic performances of CFS 

shear walls and bearing walls.  

This paper presents a recent research project conducted at the University of North 

Texas to study the seismic performance of various configurations of CFS shear 

walls and bearing walls sheathed by steel sheet. A total of 6 monotonic and 2 

cyclic full-scaled tests are included. All test specimens were of 4-ft. (1.22 m) in 

width and 8-ft. (2.44 m) in height, and subjected to both vertical and lateral 

loading. Base on the test results, a simplified model in OpenSees was created for 

the shear and bearing walls, it was shown that the model can simulate the CFS 

shear walls appropriately and therefore recommended for future seismic 

performance analyses on buildings.  

2. Test Program

2.1 Test Setup 

All the tests were conducted on a 16-ft. (4.88 m) span, 12-ft. (3.66 m) high 

adaptable steel testing frame located in the structural testing laboratory of the 

University of North Texas. As shown in Figure 1, the testing frame was equipped 
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with a 35 kip (156 kN) hydraulic actuator with ±5 in. (13 mm) stroke. A 20 kip 

(89 kN) compression/tension load cell was used to measure the applied force, and 

the load cell was pin connected to a T-shape beam. By No. 12 hex washer head 

(HWH) self-drilling screws, T-shape beam was installed on the top of  the test 

specimens, and the lateral supports on the frame was used to restrict out of plane 

displacement of the test specimens. The force was applied to the top of test 

specimens horizontally. Consequently, a uniform linear racking force could be 

transmitted to the top track of the test specimens. At last, test specimens were fix 

on the base beam of testing frame by shear bolts. 

Fig. 1.  Front view of the test setup 

In order to obtain seismic performance of CFS shear walls and bearing walls under 

combined lateral and vertical loading, steel chains connected with 2 box that 

contained sand bags were used to apply vertical loading on the top of test 

specimens as illustrated in Figures 2 and 3. The weight of each box was 412 lbs 

(186.88 kg), and weight of each sand bags was 60 lbs (27.2 kg). The total weight 

applied on the top of the test specimens was 5380 lbs (2440 kg), while the line 

load on top of the wall was 1345 lbs / ft. (19.49kN / m). Lateral support was placed 

to keep the boxes from contacting the test specimens. Five position transducers 

were employed to measure the horizontal displacement at the top of the wall, as 

well as the vertical and horizontal displacements at the bottoms of the two 

boundary studs. 
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Fig. 2. Side view of test setup               Fig. 3. Photograph of test setup 

2.2 Test Procedure 

Both monotonic and cyclic tests were conducted in a displacement control mode. 

For cyclic tests, the test specimens were loaded based on CUREE protocol in 

accordance with ASTM E2126 (2004). For the sake of comparing different tests 

results, Δ was chose as 2.25 in. (57.2 mm). A constant cycling frequency of 0.2-

Hz (5 seconds per cycle) for the CUREE loading history was adopted to all the 

cyclic tests as listed in Table 1. The standard CUREE loading history includes 40 

cycles with specific displacement amplitudes. But in order to fully investigate the 

post peak behavior of the test specimens, 43 cycles were adopted in the test 

programs as shown in Figure 4. 

Table 1 CUREE loading history 

Cycle 

No. 
% Δ 

Cycle 

No. 
% Δ 

Cycle 

No. 
% Δ 

Cycle 

No. 
% Δ 

1 5 12 5.6 23 15 34 53 

2 5 13 5.6 24 15 35 100 

3 5 14 10 25 30 36 75 

4 5 15 7.5 26 23 37 75 

5 5 16 7.5 27 23 38 150 

6 5 17 7.5 28 23 39 113 

7 7.5 18 7.5 29 40 40 113 

8 5.6 19 7.5 30 30 41 200 

9 5.6 20 7.5 31 30 42 150 

10 5.6 21 20 32 70 43 150 

11 5.6 22 15 33 53 
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2.3 Monotonic and cyclic tests 

2.3.1 Test specimen assembly 

All the test specimens had the same overall dimensions of 4-ft. (1.22 m) in width 

and 8-ft. (2.44 m) in height (2:1 aspect ratio). Steel Studs Manufacturers 

Association (SSMA, 2004) structural stud and track members were used for the 

framing members of all test specimens.  

For shear walls test specimens assembly, shown in Figure 5, 2 studs fastened 

together back-to-back with No.8 × 1/2-in. modified truss head self-drilling 

tapping screws pairs at every 6 in. (152.4 mm) on center as the boundary studs for 

the shear walls test specimens, and a single stud was employed as the middle stud. 

Then both top and bottom ends of all studs were connected to the tracks by 

No.8×1/2-in. modified truss head self-drilling tapping screws. At the bottom of 

shear walls, 2 Simpson Strong Tie HD/S 15S hold down were fixed on the inner 

side of boundary studs as illustrated in Figure 5 and 6. Steel sheet was installed 

on one side of the test specimens by No. 8 × 1/2-in. modified truss head self-

drilling tapping screws. The screw spacing was 2 in. (50.8 mm) or 4 in. (101.6 

mm) in the panel edges and 12 in. (304.8 mm) in the field. Hold down was fixed 

on the base beam by 3/4 in. (19 mm) diameter ASTM A307 shear bolts, and the 

bottom tracks were fixed on the base beam by two 5/8 in. (16 mm) diameter 

ASTM A490 shear bolt. For the bearing walls, shown in Figure 7, both boundary 

studs were single stud, and no hold-down were employed in these specimens. The 

Fig. 4. CUREE basic loading history 
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bearing walls connected to the base beam using 4 ASTM A490 anchor bolts as 

illustrated in Figure 8. 

Fig. 5. Sketch of shear wall 

Fig. 6 Hold-down and shear bolts at 

bottom of shear wall 

Fig. 7. Sketch of bearing wall 

Fig. 8. Shear bolts at bottom of 

bearing wall 
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2.3.2 Test matrix 

A total of 6 shear walls test specimens and 2 bearing walls test specimens in 

different configurations were studied in this paper. Cyclic full-scale tests were 

conducted on 2 shear walls test specimens, and monotonic full-scale test were 

conducted on 4 shear walls test specimens and 2 bearing walls test specimens. 

The thickness of all steel sheets are 0.838mm, Table 2 summarizes the test matrix 

of all tests. For the meaning of test label in the table, for example, S-54-M means 

the test specimen is shear wall, thickness of framing member is 54 mil (1.372 mm) 

and test procedure is monotonic test. B-68-C means the test specimen is bearing 

wall, thickness of framing members are 68 mil (1.727 mm) and test procedure is 

cyclic test. 

Table 2 Test matrix 

Test 

label 

Vertical 

loading 

Perimeter 

fastener 

spacing 

(in.) 

Stud Track 

S-43-M1 - 4 350 S 162-431 350 T 150-434 

S-43-M2 √ 4 350 S 162-43 350 T 150-43 

S-54-M √ 2 350 S 162-542 350 T 125-545 

S-54-C √ 2 350 S 162-54 350 T 125-54 

B-54-M √ 2 350 S 162-54 350 T 125-54 

S-68-M √ 2 350 S 200-683 350 T 150-686 

S-68-C √ 2 350 S 200-68 350 T 150-68 

B-68-M √ 2 350 S 200-68 350 T 150-68 

Note: 

1. 350S162-43 SSMA 3.5 in. x 1.625 in. structural stud made of 43 mil Grade 33 steel

2. 350S162-54 SSMA 3.5 in. x 1.625 in. structural stud made of1.54 mil Grade 33 steel

3. 350S200-68 SSMA 3.5 in. x 2.00 in. structural stud made of 68 mil Grade 50 steel

4. 350T150-43 SSMA 3.5 in. x 1.50 in. structural track made of 43 mil Grade 33 steel

5. 350T125-54 SSMA 3.5 in. x 1.25 in. structural track made of 54 mil Grade 50 steel

6. 350T150-68 SSMA 3.5 in. x 1.50 in. structural track made of 68 mil Grade 50 steel

2.3.3 Material Properties 

Coupon tests were conducted to obtain the actual properties of the materials used 

in test specimens. The testing procedure conformed to the ASTM A370 (2006), 

“Standard Test Methods and Definitions for Mechanical Testing of Steel 

Products”. A total of three coupons were tested for each member, and the average 
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results, including actual uncoated thicknesses of the materials, are provided in 

Table 3.  

Table 3 Material properties 

Component 

Uncoated 

Thickness 

(in.) 

Yield 

Stress Fy 

(ksi) 

Tensile 

Strength 

Fu (ksi) 

Fu/Fy  

33 mil steel sheet 0.0358 41.62 53.88 1.3 

350 T 150-43 0.042 43.1 55.6 1.29 

350 S 162-43 0.043 47.6 55.1 1.15 

350 T 125-54 0.0555 52.96 68.47 1.293 

350 S 162-54 0.0553 38.9 54.84 1.41 

350 T 150-68 0.0721 53.15 70.07 1.32 

350 S 200-68 0.0709 55.01 71.075 1.29 

2.4 Test Results 

The average peak load, initial stiffness, drift ratio at the peak load and the ductility 

factor are provided in Table 4.  The ductility of test specimens was evaluated by 

using the concept of equivalent energy elastic plastic model (EEEP) which was 

first proposed by Park (1989) and later revised by Kawai (1997) et al.  

Table 4 Summary of test results 

Load-deformation curve and hysteresis curve obtained from tests as shown in 

Figure 9 to 13. 

Test label 
Peak load 

(plf) 

Drift ratio at 

peak load (%) 

Initial 

stiffness 

（lbs/in.） 

Ductility 

factor 

S-43-M1 1174 1.80 5435 3.10 

S-43-M2 1169 1.46 6852 3.79 

S-54-M 1953 1.75 13241 4.54 

S-54-C 2218 1.58 10540 3.15 

B-54-M 1013 1.82 5020 2.80 

S-68-M 2262 2.94 11241 7.61 

S-68-C 2308 2.19 12198 4.80 

B-68-M 1332 2.51 6344 3.69 
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Fig. 11. Load-deformation curve for 

S-68-M and B-68-M 
Fig. 12. Test hysteresis for S-54-C 

Fig. 9. Load-deformation curve for S-

43-M1 and S-43-M2 

Fig. 10. Load-deformation curve for 

S-54-M and B-54-M 

Fig. 13. Test hysteresis for S-68-C 
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Comparing test reslut of S-43-M1 and S-43-M2, shown that the peak load of shear 

wall with vertical loading and without vertical loading are almost same, but in 

terms of the drift ratio at peak load, shear wall without vertical loading is 27.6% 

greater than the shear wall with vertical loading. For the initial stiffness, shear 

wall with vertical loading is 22% greater than the shear wall without vertical 

loading. Comparing test reslut of S-54-M and B-54-M, the peak load of shear wall 

is 92.7% greater than bearing wall, the deflections at peak load of bearing wall is 

4% greater than shear wall, and the initial stiffness of shear wall is 163.75% 

greater than bearing wall. Comparing test reslut of S-68-M and B-68-M ,the peak 

load of shear wall is 69.83% greater than bearing wall, the deflections at peak load 

of shear wall is 4% greater than bearing wall and the initial stiffness of shear wall 

is 77.2% greater than bearing wall. Failure mode of all test specimens is listed in 

Table 5. Details of failure modes are shown in Figure 14. 

Table 5 Failure modes 

Test label 

Failure mode 

Screw pull 

out 

Boundary Stud 

 buckling 

Middle stud 

buckling 

S-43-M1 √ - - 

S-43-M2 - √ √ 

S-54-M - √ √ 

S-54-C - √ √ 

G-54-M √ √ √ 

S-68-M - √ √ 

S-68-C - √ √ 

G-68-M √ √ - 

Fig. 14. Failure mode of test specimens: (a) screw pull out, and (b) middle 

stud buckling, and (c) boundary stud buckling 

a b c 
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4. Conclusion

A series tests on the seismic performance of various configurations of CFS shear 

walls and bearing walls sheathed by steel sheet were conducted. The test results 

showed that the gravity load has limited impact to the CFS shear wall’s behavior 

and performance and vertical loading won’t weaken the lateral force resistance 

ability of shear walls. Secondly, The CFS bearing walls could provide 

considerable shear resistance which would generate conservativeness to the 

current lateral design method specified in AISI standards. The shear strength of 

bearing walls shall be considered into the numerical modeling of CFS buildings. 
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The European project named "Energy Efficient LIghtweight-Sustainable-SAfe-
Steel Construction" (Project acronym: ELISSA) is devoted to the development 
and demonstration of cold-formed steel (CFS) modular systems. In particular, 
these systems are nano-enhanced prefabricated lightweight steel skeleton/dry 
wall construction with improved thermal, vibration/seismic and fire 
performance, resulting from the inherent thermal, damping and fire spread 
prevention properties. The different building performances are studied and 
improved by means of experimental and numerical activities organized on three 
scale levels: micro-scale, meso-scale and macro-scale. In particular, the 
evaluation of the seismic performance is carried out at the University of Naples 
by means tests on connections (micro), seismic-resistant systems (meso) and 
full-scale two stories house prototype (macro). From a structural point of view, 
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the system is a sheathed-braced CFS solution, in which the seismic resistant 
elements are made of CFS stud shear walls laterally braced by gypsum-based 
panels. In the adopted solution, the sheathing panels are attached to the CFS 
frame by means of ballistic nails, whereas clinching points are used for steel-to-
steel connections. The present paper illustrates the results of meso-scale tests 
performed on four full scale shear walls, in which the influence of the aspect 
ratio, the type of loading and the effect of finishing was investigated. 
 
 
Introduction 
 
 
In recent years, the use cold formed steel (CFS) systems for residential low-rise 
building (housing) is spreading all over the world. The reason of the growing 
use of these systems lies on the capability to ensure high structural, 
technological and environmental performances. In particular, the main 
advantages are the high quality of products, thanks to the production in 
controlled environment; the economy in transportation and handling, due to the 
lightness of systems; and the short execution times (Landolfo, 2011). Therefore, 
CFS systems represent a suitable and competitive solution to the demand for 
low-cost high performance houses. 
The structural behavior of CFS systems, with particular reference to the seismic 
actions, is defined by the in-plane response of floors and walls, which can be 
designed by using two different approaches: “all-steel” and “sheathing-braced”. 
In the case of the “all-steel” approach, only steel elements are considered as part 
of the load-bearing structure and the lateral bracing system is usually made with 
flat straps. In the “sheathing-based” design approach, the bracing contribution is 
provided by the interaction between the steel frame and the sheathing panels 
(Fiorino et al., 2012b). In this case, the efficiency of the bracing effect provided 
by sheathing panels is guaranteed by the connections with the steel frame, which 
strongly influence the lateral/seismic response of walls.  
Currently, the University of Naples is involved in the research project named 
"Energy Efficient LIghtweight-Sustainable-SAfe-Steel Construction" (Project 
acronym: ELISSA), which is funded by European Commission under the Seven 
Framework Programme (www.elissaproject.eu). The project is devoted to the 
development and demonstration of nano-enhanced prefabricated lightweight 
CFS skeleton/dry wall constructions with improved thermal, vibration/seismic 
and fire performance, resulting from the inherent thermal, damping and fire 
spread prevention properties. The project consortium is composed by several 
academic and industrial partners, which are: National Technical University of 
Athens (Greece, Coordinator), STRESS SCARL (Italy), Farbe SPA (Italy), 
Woelfel Beratende Ingenieure GmbH & Co KG (Germany), Ayerisches 
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Zentrum fur Angewandteenergieforschung ZAE EV (Germany), Knauf Gips GK 
(Germany), University of ULSTER (United Kingdom), Haring Nepple AG 
(Switzerland), University of Naples Federico II (Italy), Knauf of Lothar Knauf 
SAS (Italy), VA-Q-TEC AG (Germany). 
In particular, the University of Naples is directly involved in structural/seismic 
behavior assessments. From the structural point of view, the research is focused 
on the seismic response of the walls sheathed with gypsum panels. The 
peculiarity of the investigated system is the use quick connecting systems. 
Clinching for connections among profiles and ballistic nails for panel to steel 
connections were selected, with the aim of optimizing the assembling operations 
toward a more efficient level of prefabrication. 
In the last years, several experimental research programs studied similar CFS 
systems. In particular, Tissel (1993) and Serrette & Nolan (2009) carried out 
experimental tests on full-scale walls sheathed with OSB and plywood panels 
connected by means of ballistic nails (steel pins). Monotonic tests on wall 
sheathed with gypsum board having different aspect ratio were carried out by 
Pan & Shan (2011). Lange & Naujoks (2006) tested walls sheathed with gypsum 
fibreboard under vertical and horizontal monotonic loads. Ye et al. (2015) 
performed cyclic tests on walls sheathed with gypsum board in combination 
with calcium silicate board or bolivian magnesium board, whereas Wang & Ye 
(2015) extended this research by considering the effect of RHS stud reinforced 
with concrete. The interaction of gypsum boards and strap-braced walls was 
investigated by Moghimi & Ronagh (2009). 
On this topic, many research activities were also undertaken at the University of 
Naples. In particular, experimental tests were performed on full-scale wall 
prototypes and their components (Landolfo et al. 2006; Iuorio et al. 2014); 
whereas numerical and theoretical studies were carried out on the prediction of 
the wall response (Della Corte et al. 2006; Iuorio et al. 2012), the evaluation of 
behavior factor (Fiorino et al. 2012a) and the definition of design procedures 
(Fiorino et al. 2009; Fiorino et al. 2012b). 
This paper presents the results of the experimental activity on full-scale shear 
walls. Four different wall tests were carried out, in order to evaluate the 
influence on the wall response of different parameters, such as the wall aspect 
ratio, the type of loading protocol and the effect of finishing materials. 
 
 
The experimental program 
 
 
The objective of the ELISSA project is to evaluate and enhance the different 
building performances (seismic, vibration, thermal, hygrometric, fire) of 
lightweight steel modular systems, mainly conceived for residential housing. To 
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this aim, a case study, consisting of a dwelling named “ELISSA house”, were 
developed. The dwelling is composed by three rectangular modules (Fig. 1) of 
plan dimensions 2.5×4.5 m, horizontally and vertically jointed, and it aims to be 
expression of a real-life solution, which could potentially incorporate in the full 
testing phase all the facilities required for a residential housing (Fiorino et. al 
2015). 

 
Figure 1. The ELISSA house. 

 
From a structural point of view, the load-bearing structure of ELISSA house is 
based on the “Transformer” system by COCOON (by Haring Nepple AG), 
which consists in an industrially prefabricated module composed by floors and 
walls made with lightweight steel profiles sheathed with gypsum-based boards. 
The system is already in use and obtained the European Technical Approval for 
static loads (ETA-11/0105, 2011). Its upgrading to withstand also seismic loads 
is one of the main objective, in terms of structural performance, of the ELISSA 
project. In particular, the main lateral resisting system is represented by a 
sheathed-braced CFS solution (Fiorino et al. 2012b), in which the seismic 
resistant elements are made of CFS stud shear walls laterally braced by 
Diamant-X gypsum board by Knauf. Therefore, a comprehensive experimental 
campaign was planned in order to investigate the response of the seismic 
resistant systems. In order to improve the seismic response of the structural 
systems, the components selected for the ELISSA house were investigated by 
means of the experimental tests organized on three scale levels: micro-scale, 
meso-scale and macro-scale.  
Micro-scale level consisted of monotonic and cyclic tests on main connecting 
systems, namely clinching steel-to-steel connections and ballistically nailed 
panel-to-steel connections (Fiorino et al., in press). Meso-scale tests, consisting 
of monotonic and cyclic tests on full-scale seismic resistant systems (shear 
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walls), were conducted and the obtained results are the topic of this paper. 
Finally, in order to evaluate the global seismic response of the ELISSA house, 
shaking table tests on two-storeys module (macro-scale level) will be performed.  
Meso-scale tests were aimed at investigating the seismic behavior of the shear 
walls, representative of the seismic resistant system of the ELISSA house. In 
particular, four tests on full-scale shear walls were performed. The wall 
configurations are selected in order to consider the influence of the aspect ratio 
(different wall length), the type of loading (monotonic and cyclic) and the effect 
of the presence of finishing materials. The test program is summarized in Table 
1, in which each tested configuration is illustrated. The series label defines the 
specimen typology. Namely, the first group of characters indicates the wall 
typology (WS: only structural wall without finishing; WF: structural wall with 
finishing); the second group of digits is the wall length expressed in millimeters; 
the third group represents the loading protocol (M: monotonic, C: CUREE 
cyclic protocol). 
 

Table 1: Test matrix for the monotonic and cyclic tests on shear walls 

Typology Label 
Geometry 

(length x height) 
Finishing 

Loading 
protocol 

No. 
tests 

1 WS_2400_M 2.4 m x 2.3 m NO Monotonic 1 

2 WS_2400_C 2.4 m x 2.3 m NO 
Cyclic 

CUREE 
1 

3 WS_4100_C 4.1 m x 2.3 m NO 
Cyclic 

CUREE 
1 

4 WF_2400_C 2.4 m x 2.3 m YES 
Cyclic 

CUREE 
1 

   Total number of tests 4 
 
 
Wall specimens 
 
 
For all the wall specimens, the steel frame was made with studs having 
C147/50/1.5 mm (outside-to-outside web depth/flange size/thickness) lipped 
channel sections fabricated by COCOON mainly spaced at 625 mm on the 
center. The studs were connected at the ends to U150/40/1.5 section wall tracks 
by COCOON. All the steel members were fabricated by S320GD+Z steel 
(characteristic yield strength: 320 MPa, characteristic ultimate tensile strength: 
390 MPa). The connections among the steel profiles were made by 8 mm 
diameter clinching points. The steel frame was sheathed with 15.0 mm thick 
Knauf Diamant-X panels (impact resistant special gypsum board) on both sides. 
Sheathing panels were attached to steel frame by 2.2 mm diameter ballistic nails 
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spaced at 150 mm both at field and at the perimeter of the panels. In order to 
withstand the axial force due to overturning phenomena, back-to-back coupled 
studs and HTT5 hold-down devices by Simpson strong tie were placed at the 
wall ends. The hold-down devices were connected to studs by 26 SX5/8-L12 
screws (5.5 mm diameter self-drilling screws) and to the base beam by one M16 
bolt (8.8 steel grade; characteristic yield strength: 640 MPa, characteristic 
ultimate tensile strength: 800 MPa). The shear connection between tracks and 
top and bottom beam was made by M8 bolts (8.8 steel grade) spaced at 300 mm.  
The steel framing of wall with length of 2400 mm (WS_2400_M; WS_2400_C; 
WF_2400_C) and 4100 mm (WS_4100_C) are provided in Fig. 2 and 3, 
respectively. In the case of the specimen WF_2400_C, the wall was completed 
with finishing and insulating materials. In particular, insulation mineral wool 
was inserted among the steel stud and wall linings were realized on both faces of 
the structural wall. The different layers used for WF_2400_C specimen are 
shown in Fig. 4. 
It is important to note that, in the case of the WS_4100 specimen, some 
connections between gypsum panels and steel framing presented imperfections. 
In particular, the connections between the panel edges and the internal studs 
were realized with an edge distance lower than 15 mm and some nails 
excessively penetrated the panel. 
 

 
Figure 2: Steel frame for WS_2400_M, WS_2400_C and WF_2400_C 

specimens 
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Figure 3: Steel frame for WS_4100_C specimen 

 

 
Figure 4: Section of WF_2400_C wall 

 
Test set-up and loading protocols 
 
 
Tests on full-scale wall specimens were carried out by using a specifically 
designed testing frame for in-plane horizontal loading. Horizontal loads were 
transmitted to the upper wall track by means of a 200x120x10 mm (width x 
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height x thickness) steel beam with rectangular hollow section. The wall 
prototype was constrained to the laboratory strong floor by the bottom beam of 
testing frame. The out-of-plane displacements of the wall were avoided by two 
lateral supports realized with HEB 140 columns and equipped with roller 
wheels. The tests were performed by using a hydraulic actuator having 500 mm 
stroke displacement and 500 kN load capacity. A sliding-hinge was placed 
between the actuator and the loading top beam in order to avoid the transmission 
of any vertical load on the specimen. 
Six instruments were used to measure the specimens displacements, as shown in 
Figure 5. In particular, two wire potentiometers (W1, W2) were used to record 
the horizontal displacements of the loading beam and at wall top, whereas four 
LVDTs measured vertical (L1, L3) and horizontal (L2, L4) displacements at 
bottom wall corners in correspondence of hold-down devices. A load cell was 
used to measure the applied loads. 
 

 
Figure 5. Test set-up and instrumentation 

 
Tests on wall prototypes were conducted under displacement control in quasi-
static monotonic and reversed cyclic regime. Under monotonic loading history, 
specimens were subjected to progressive displacements up to failure. This 
testing protocol involved displacements at a rate of 0.15 mm/s and the data were 
recorded with a sampling frequency equal to 25 Hz. 
The CUREE protocol was used for cyclic tests. This loading procedure is a 
reversed cyclic protocol, developed for wood-frame structures by Krawinkler et 
al. (2001). The displacement amplitudes of each cycle were defined starting 
from a reference displacement Δ = γ Δm, where the values of Δm was calculated 
on the basis of monotonic test results, as the displacement corresponding to a 
load equal to 80% of the maximum load on the post-peak branch of the response 
curve (conventional ultimate displacement), and γ was assumed equal to 0.60. 
From the result of monotonic test, Δ is set equal to 39.0 mm. The considered 
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displacement rate involved displacements at a constant rate of 0.50 mm/s up to 
cycle 28 (maximum applied displacement equal to 9.0 mm) and 2.00 mm/s for 
cycle 29 and higher. The CUREE cyclic protocol with the indication of stepwise 
increasing deformation cycles is shown in Figure 6.  
 

 
Figure 6. CUREE cyclic protocol 

 
 
Tests results 
 
 
The results of tests on wall protoypes are shown in Table 2, in which the 
parameters used to describe the experimental behavior are: Hp wall resistance 
corresponding to the maximum recorded load; dp displacement corresponding to 
Hp; He conventional elastic limit load equal to 40% of the maximum load (Hp); 
de displacement corresponding to He; du ultimate displacement corresponding to 
a load equal to 0.80∙Hp on the post-peak branch of the response curve; ke 
conventional elastic stiffness assumed equal to He /de, μ ductility defined equal 
to du/de; Em monotonic dissipated energy defined as the area under the response 
curve (backbone curve for cyclic tests) for displacements not more than the 
conventional ultimate displacement (du); Ec cyclic dissipated energy defined as 
the sum of area inside each cycle evaluated for displacements not more than the 
conventional ultimate displacement. These parameters were evaluated on the 
load (H) vs. top wall displacement (d) curves. In the case of cyclic tests, the 
values of parameters are obtained on both positive (pushing) and negative 
(pulling) envelopes, the average values are also provided. 
The test results revealed that, for all specimens, the wall collapse was mainly 
governed by the sheathing-to-frame connections with the tilting and pull-out of 
the nails, as shown in Figure 7. At global level, the steel frame deformed as a 
parallelogram with a consequent rigid rotation of the sheathing panels, as shown 
in Figure 8. 

-150

-100

-50

0

50

100

150

0 5 10 15 20 25 30 35 40 45 50

d [mm]

N° Cycles

815



Table 2: Results of shear wall tests 
Label  Hₑ 

[kN] 
dₑ 

[mm] 
k 

[kN/m] 
Hmax 
[kN] 

dmax 
[mm] 

du 
[mm] 

µ Em 

[kNmm] 
Ec 

[kNmm] 

WS_2400_M - 16.54 4.16 3.98 41.36 43.60 64.91 16 2527 - 

WS_2400_C 

Pos. 
Env. 

13.36 4.38 3.05 33.41 27.16 44.77 10 2368 5768 

Neg. 
Env. 

13.22 4.46 2.96 33.05 27.24 44.47 10 2284 6575 

Av. 13.29 4.42 3.01 33.23 27.20 44.62 10 2326 6171 

WS_4100_C 

Pos. 
Env. 

18.80 4.52 4.16 46.99 37.73 62.99 14 3786 8961 

Neg. 
Env. 

17.15 3.64 4.71 42.87 27.17 62.43 17 3624 8582 

Av. 17.98 4.08 4.44 44.93 32.95 62.71 16 3705 8771 

WF_2400_C 

Pos. 
Env. 

20.21 5.19 3.90 50.54 38.78 61.66 12 3025 7198 

Neg. 
Env. 

19.05 4.28 4.45 47.62 27.17 31.12 7 1914 5856 

Av. 19.63 4.74 4.17 49.08 32.98 46.39 9 2470 6527 

 

   
Figure 7. Failure of nailed sheathing-to-frame connections 

 
Figures 9 through 12 show the experimental response in terms of acting load (H) 
vs. top displacement curve (d) for each performed test. As far as the cyclic tests 
are concerned, the experimental curves showed a substantially symmetrical 
response in the two loading directions with the only exception of finished 
specimen WF_2400_C. In this case, the area inside the part of the cycles of the 
pushing phase was larger than the pulling phase (Fig. 12). This evidence was 
also demonstrated by the marked difference of dissipated energy in the two 
phases. In addition, an unexpected contact between the loading beam and the 
external wall finishing, which influenced the post-peak branch, was observed in 
the pushing phase. The results in terms of wall strength showed that values 
recorded in pushing phase were higher with respect to the pulling phase, with 
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quite small differences ranging from 1% to 9%. In the case of conventional 
elastic stiffness, the differences between pushing and pulling phase ranged from 
3% to 12%. 
 

 
Figure 8. Wall deformed shape 

 
In order to evaluate the influence of the cyclic loads, the results of the 
WS_2400_M and WS_2400_C specimens were compared. In particular, the 
experimental results showed that, in the cases of cyclic loads, the wall strength 
decreased of 20% in average with respect to the monotonic results, whereas the 
values of the wall stiffness in cyclic test showed a reduction of 32% with respect 
to monotonic one. 
The comparison between WS_2400_C and WS_4100_C provided the influence 
on the wall response of the wall aspect ratio and, in particular, of the wall length. 
It has to be noted that WS_4100_C specimen (wall length: 4100 mm; aspect 
ratio: 2) exhibited values of the wall strength and stiffness higher than 
WS_2400_C (wall length: 2400 mm; aspect ratio: 1), with difference of 35% 
and 48%, respectively. It also has to be noted that, by comparing the 
experimental results per unit length, the WS_2400_C showed a higher unit 
strength (13.9 kN/m) than WS_4100_C specimen (11.0 kN/m) with a difference 
of 26%. Also in the case of unit stiffness, WS_2400_C (1.26 kN/mm/m) results 
are higher than those of WS_4100_C specimen (1.08 kN/mm/m). This evidence 
was related to the presence of imperfect connections between the panel edges 
and the internal studs of the specimen WS_4100_C. 
The effect of non-structural parts and finishing on the lateral response of the 
wall can be evaluated by comparing the results of WF_2400_C and 
WS_2400_C. In particular, the presence of the finishing entailed an increase in 
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average of 48% for the wall strength, whereas the difference in terms of stiffness 
was of 39%. 
 

 
Figure 9. H-d curve for WS_2400_M 

 

 
Figure 10. H-d curve for WS_2400_C 

 

 
Figure 11. H-d curve for WS_4100_C 
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Figure 12. H-d curve for WF_2400_C 

 
 
Conclusions 
 
 
The paper presents the results of an experimental campaign on seismic resistant 
systems adopted in the ELISSA house prototype. In particular, monotonic and 
cyclic tests on different configurations of shear walls laterally braced by gypsum 
boards connected to the CFS frame by ballistic nails were carried out. In 
particular, four full-scale walls were tested and the wall configurations were 
selected in order to investigate the effect of the type of loading, aspect ratio and 
finishing on lateral/seismic wall response. The experimental results mainly 
allowed to characterize the shear walls response in terms of strength and 
stiffness, which are key parameters for the seismic design of CFS structures. The 
tests showed that the wall collapse always occurred for the failure of sheathing-
to-frame nailed connections. The experimental results revealed that the cyclic 
loads gave a reduction of wall lateral strength of 20%, whereas the increase of 
the aspect ratio from 1 m to 2 m resulted in an increase of strength of 35%. The 
presence of finishing material showed an increasing of strength of about 50%.  
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Appendix. – Notation 
 
 
d  applied displacement; 
de  displacement corresponding to He; 
dp  displacement corresponding to Hp;  
du  ultimate displacement corresponding to a load equal to 0.80∙Hp on the post-

peak branch of the response curve; 
Ec  cyclic dissipated energy; 
Em monotonic dissipated energy; 
H horizontal force acting on wall; 
He  conventional elastic limit load equal to 40% of the maximum load (Hp); 
Hp  wall resistance corresponding to the maximum recorded load; 
ke  conventional elastic stiffness assumed equal to He /de, 
γ coefficient assumed equal to 0.60 
Δ  reference displacement CUREE protocol 
Δm  displacement corresponding to a load equal to 80% of the maximum load 

on the post-peak branch of the response curve 
μ ductility defined equal to du/de; 
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Abstract 

This research is concentrated on the study of structural strength and behavior of 
cold-formed steel frame with strap bracing subjected to horizontal loads. The 
wall specimens with and without calcium silicate board sheathing were tested to 
compare the differences of shear resistance. Based on the test data, the ultimate 
strength, stiffness, ductility ratio, and failure behavior were studied for each 
specimen, and the wall’s movements were also discussed in this paper. The 
cold-formed steel framing wall without bracing from previous study was 
introduced for the comparison purpose. As expected, the ultimate strength was 
increased for the cold-formed steel wall sheathed with calcium silicate board 
after installing strap bracing. However, the initial stiffness and ductility ratio of 
cladded wall specimens with bracing did not show much difference as compared 
to cladded wall specimens without bracing. It was found that the ultimate 
strength of cold-formed steel wall frame installed with both sheathing and strap 
bracing is not the sum of ultimate strengths of cold-formed steel wall frame with 
sheathing and cold-formed steel wall frame with strap bracing only. A better 
performance of energy absorption beyond the portion of ultimate strength was 
found for the wall specimen with both sheathing and bracing. It was also 
observed that the failure type and location are different for the cladded wall 
specimens with and without bracing. 
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1. Introduction 

Cold-formed steel framing structures are getting popular and accepted type of 
residential buildings in North America and other areas such as Australia, Japan 
and Europe, due to the characteristic of high strength-to-weight ratio, design 
flexibility for architect and builder, easy to fabricate and construct, and no 
influence on temperature and humidity changes. Basically, steel framing 
building is constructed by wall system which is used to carry vertical and 
horizontal loads. The wall system is fabricated by cold-formed steel framing 
sheathed by cement fiber board, gypsum board, calcium silicate board, and steel 
panel. Because the steel framing walls with panel sheathing have been studied 
by many researchers, this study is focused on the structural strength and 
behavior of cold-formed steel frame with both sheathing and strap bracing 
subjected to horizontal loads. The LVDTs were adopted to measure the lateral 
and vertical displacements of specimen, and strain gages were mounted on the 
surface of sheathing boards and strap bracings to record to strain changes during 
the test. 
 
Zeynalian and et al (2012) conducted a series of experiments to investigate the 
lateral performance of K-braced cold-formed steel structures and their response 
modification coefficients, R factor. As can be seen in Figure 1, total of 12 
full-scale 2.4×2.4 m specimens of different configurations were studied under a 
standard cyclic loading regime. All of the frame elements, such as top and 
bottom tracks, noggins, studs and K-elements were made by an identical 
C-section of dimensions 90×36×0.55 in mm. The dimensions of the straps' cross 
sections are 30×0.8 mm. Based on the test result, the common failure mode for 
most of the specimens was plastic local buckling in the K-elements to studs 
connections, which was followed by rivet pull-out. For specimen K11, which 
consisted of both strap and K-braces, the failure mode was the pull-out of the 
screws of the strap-to-stud connections while no significant buckling was 
observed in the elements during the test. This is because the stiffness of the 
strap-brace system is higher than the K-stud system. They concluded the 
strength of shear panels having both lateral resistant systems concurrently is not 
equal to the sum of the strengths of two separate panels having either of the 
systems only. 
 
An experimental program was designed and tested by Moghimi and Ronagh 
(2009a & 2009b) to provide information on the failure modes of walls braced 
with different types of strap braces and to study the effects of various parameters 
on the vertical and lateral performance of cold-formed steel shear panels 
subjected to cyclic loads. The test program consisted of 20 full-scale specimens 
to evaluate the performance of five different strap-braced walls. All of the frame 
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components, i.e. top and bottom tracks, noggings and studs, were identical C 
channels of 90_36_0:55, connected together by one rivet at each flange. In 
specimens using gypsum board as cladding, two 10 mm thick sheets of 
2400×1200 mm size were placed horizontally and connected to one side of all 
frame members by self-tapping screws at 150 mm intervals. Each back-to-back 
double section was constructed by connecting the web of two sections by screws 
at 150 mm centers. Figure 2 shows two typical strap-braced specimens 
with/without sheathing.  
 

  
Figure 1 Configuration of specimens K1 to K12 

 
They found out that adding brackets at four corners of the wall panel improves 
the lateral performance (strength, stiffness and ductility) of the wall panel 
considerably, even when only a single stud is used as a chord member; gusset 
plates provide enough room for connecting straps to the panel (eliminating the 
possibility of strap-to-panel connection failure), and present a good performance 
with sufficient ductility and stiffness; and strap-braced walls without gypsum 
board or bracket members present severe pinching in their hysteretic loops due 
to plastic slack of strap braces and lack of redundancies. The energy absorption 
capacity therefore is not satisfactory and cyclic loads may present an additional 
impact due to the straps' slack. 
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Figure 2 Configuration of specimen CD and CB1 
 

2. Experimental Study 

2.1 Specimen 
The material designated Chinese National Standard (CNS) No. 6183 and G3122 
(1995) is used to fabricate the cold-formed steel wall framing members. The 
mechanical properties are in accordance with a nominal ultimate strength (Fu) of 
400 MPa and up, and a yield strength (Fy) above 245 MPa. Based on the tensile 
testing, the material properties had a Fu of 414.5 MPa and a Fy of 330.1 MPa, 
which met the regulations. The 9-mm thick calcium silicate board of categorized 
in the No. 13777 and A2266 of fibred cement plate in Chinese National Standard 
(2001) is adopted as sheathing material. 
 
The test wall specimen is assembled by cold-formed steel framing, calcium 
silicate board, and two steel straps. The steel framing employed C-shaped studs 
of 92 mm×65 mm×12 mm section which had a thickness of 1.6 mm and length 
of 240 cm, and channels having a cross-sectional dimension of 95 mm×45 mm, 
thickness of 2.3 mm, and length of 128.4 cm, which placed on the two ends of 
studs and connected together by # 10 self-drilling screws. The 39 mm×39 mm 
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openings with center to center distance of 50 cm are utilized in the web of stud. 
Figure 3 shows the dimensions of wall specimen and the screw arrangement. 
Four rectangular steel plates placed on the corners of steel framing by 
self-drilling screws are utilized to connect steel strap to the steel framing. Same 
as steel framing section, the thickness of both steel strap and gusset plate is 1.6 
mm. Figure 4 shows the configuration of wall specimen with calcium silicate 
board on one side and X strap bracing (diagonal strap bracing) on the other side. 
 
2.2 Test setup 
As can be seen in Figure 5, the bottom track of specimens was bolted to the 
support I-beam. The hold-down devices were used to anchor two chord studs of 
steel frame to the support beam as well. A 50-ton capacity MTS testing machine 
was used to apply the monotonic shear load to the top beam of wall specimen. 
The horizontal load is applied in a constant speed of 5 mm/min to the test 
specimen until the test failure occurred. The LVDTs were applied to obtain 
lateral and vertical displacements. Strain gages attached on sheathed board were 
also used to determine the strain variations during test. 
 

2400

1284

400 400 400

100

200

(top view)

channel

stud

hold-down device

unit : mm

sheathing

 

Figure 3 Dimensions of wall specimen 
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Figure 4 Configuration of specimen 

 
 

 
Figure 5 Setup of wall test specimen 

 
 

828



3. Test Results and Evaluations 

3.1 Failure mode and ultimate strength 
A total of 6 wall specimens were conducted in test program. There are three 
groups of test specimens: (1) steel frame with both steel straps and sheathing; (2) 
steel frame with steel straps only; and (3) steel frame without strap and 
sheathing. The specimen numbered as B10 is the steel frame with 10-cm width 
of strap bracing. The specimen sheathed with 9-mm thick board is numbered as 
C09. Figure 6 represents the tested load-displacement diagrams for all 
specimens. The specimen HM-C09-HO1, sheathed with 9-mm thick calcium 
silicate board, shown in Figure 6 was tested by Chen (2010) for the comparison 
purpose. Table 1 lists the ultimate strength and its corresponding displacement 
for each wall specimen including previous test specimen (HM-C09-HO1) under 
horizontal load. 
 
The rigid body motion of rotation was found for the specimen 
HMB10-C09-HO1, because the anchor bolt used in the hold-down device was 
pulled upward from the bottom beam. To prevent local failure of bottom beam, 
the connected flange of bottom beam was welded a thicker steel plate, and the 
larger diameter and high strength bolt was utilized as anchored bolt. As a 
consequence, the failure type of specimen HMB10-C09-HO2 was different from 
the specimen HMB10-C09-HO1 due to the improvement of anchor condition. 
From observing the specimen HMB10-C09-HO2 during test, the calcium silicate 
board started to crack from the bottom area as the load reached 29.79 kN. The 
crack extended to middle high of sheathing as the load reached 42.32 kN as can 
be seen in Figure 7. It is noticed that the local buckling of chord studs was found 
close to the area of top gusset plate as the load reached 39.23 kN. Figure 8 
shows the photo of stud’s buckling. The load of specimen HMB10-C09-HO2 
reached to the maximum (46.12 kN) when the sheathing started to fracture at top 
area of wall specimen. 
 

Table 1 Tested ultimate strength of each specimen 
Specimen Pu (kN) ΔPu (mm) 

HMB10-C09-HO1 47.40 63.77 
HMB10-C09-HO2 46.12 56.07 
HMB10-C09-HO3 50.13 55.07 
HM-C09-HO1 33.12 43.35 
HMB10-1 22.94 118.01 
HMB10-2 22.78 59.32 
HM-1 3.49 244.11 
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Figure 6 Load and displacement curves of test specimens 

 
 
For the specimens with steel strap bracing only (HMB10-1 and HMB10-2), the 
failure mode of local buckling was observed at bottom portion of inside chord 
stud which was located at loading side (front end) in middle stage of loading. 
The specimens reached to the maximum when the torsional-flexural buckling 
was occurred in top portion of chord studs of back end, and the wall twisted 
outward to the plane with no bracing, due to both shear and bending actions. 
Similar phenomenon was found in the specimen without sheathing and bracing 
(HM-1), the local buckling was occurred at lower portion of chord studs located 
at loading side in middle stage of loading, the ultimate strength (3.49 kN) was 
reached as the lower portion of chord studs at opposite end buckled locally. 
 
As expected, the steel frame with both sheathing and steel strap has a highest 
ultimate strength as compared with other groups of wall specimen. However, the 
strength of steel frame having both lateral resistant devices (calcium silicate 
board and X strap bracing) is not equal to the sum of the strengths of two 
separate steel frame with either of the devices only. Similar finding was 
concluded in the research of Zeynalian and et al (2012). 
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Figure 7 Fracture of Sheathed board 

 

 
Figure 8 Local buckling of chord studs 

 
3.2 Stiffness and ductility ratio 
According to the regulation of ASTM E2126 (2005), the stiffness of structure 
(Ke) can be defined as the slope of tested load-displacement curve between zero 
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and 0.4Pmax (maximum load). Table 2 lists the stiffness for all tests. The 
specimen HM-C09-HO1 sheathed with calcium silicate board tested previously 
was also listed in Table 2. As compared HMB10 specimen to HM-C09-HO 
specimen, the stiffness of wall specimen with sheathing is about two times than 
the stiffness of wall specimen with strap bracing only. It is also observed from 
Table 2 that the stiffness of specimen with both sheathing and strap bracing is 
quite close to the stiffness of specimen with sheathing only. It is because the 
sheathing provides most of shear resistance in the early and middle stages of 
loading for the specimen with both sheathing and bracing. 
 
In order to obtain the stress in horizontal and vertical directions and to calculate 
the principal stresses at different location in the specimen HMB10-C09-HO2, 
nine three-axis strain gages were mounted on the calcium silicate board and one 
three-axis strain gage was attached in the center of diagonal steel strap. Figure 9 
shows the readings of strain gage located at steel strap. The angles between 
longitudinal axis of diagonal strap and 0o strain gage, 45o strain gage, and 90o 
strain gage are 67o, 22o, and 23o, respectively. This is why the strain changes for 
45o strain gage and 90o strain gage are very similar, during the test, as can be 
seen in Figure 9. It is observed from Figure 3 that the steel strap bracing 
provided a consistent stiffness and shear resistance for wall specimen 
HMB10-C09-HO2 until the fracture appeared at top area of sheathing of wall. 
Therefore, the steel strap bracing plays an important role in increasing the 
strength and energy absorption of wall specimen in the middle and late stages of 
loading, as well as extends the ductility to prevent the wall from collapse 
instantly after specimen reaching the maximum load. 
 

Table 2 Stiffness of each specimen 

Specimen 
0.4Pu 
(kN) 

Δ0.4Pu 
(mm) 

Ke 
(kN/mm) 

HMB10-C09-HO1 18.96 11.18 1.70 

HMB10-C09-HO2 18.45 7.89 2.34 

HMB10-C09-HO3 20.05 10.26 1.95 

HM-C09-HO1 13.25 6.51 2.04 

HMB10-1 9.18 9.50 0.97 

HMB10-2 10.68 9.11 0.85 

HM-1 1.46 83.36 0.01 
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Figure 8 Strain and displacement relationships of strap bracing  

 
The definition of ductility ratio, μ, is the ratio of the ultimate displacement to the 
yield displacement, Du/Dy. In the calculation of ductility ratio, the failure limit 
state (Du) can be defined as the 80% post ultimate load (AISI, 2007), and the 
yield state (Dy) can be obtained by adopting the equivalent energy elastic-plastic 
analysis model which is based on the notion that the energy dissipated by the 
wall specimen during a monotonic or reserved cyclic test is equivalent to the 
energy represented by a bilinear curve (AISI, 2007). Table 3 lists the ductility 
ratio for all tests. It can be observed from Table 3 that the steel fame with steel 
strap bracing only has highest ductility ratios, and the steel frame having 
one-side sheathing has lowest value. It seems that sheathed steel frame can 
increase not only shear resistant capacity but also ductility ratio after installing 
diagonal strap bracing. 
 

Table 3 Ductility of each specimen 
Specimen Dy (mm) Du (mm) μ 

HMB10-C09-HO1 24.15 69.37 2.87 

HMB10-C09-HO2 18.09 70.58 3.90 

HMB10-C09-HO3 23.05 77.87 3.38 

HM-C09-HO1 15.28 48.87 3.20 

HMB10- 1 21.80 166.40 7.63 

HMB10- 2 18.09 83.87 4.64 
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4. Conclusions 
 
A total of 6 wall specimens were conducted in this study including steel frame 
with both steel straps and sheathing; steel frame with steel straps only; and steel 
frame without strap and sheathing. The cold-formed steel framing wall sheathed 
with calcium silicate board from previous study was introduced for the 
comparison purpose. The following conclusions can be drawn from the 
research’s findings: 
1. The strength of steel frame having both lateral resistant devices (calcium 
silicate board and X strap bracing) is not equal to the sum of the strengths of two 
separate steel frame with either of the devices only. However, the wall specimen 
with sheathing increases 45% of strength after installing with diagonal steel 
strap bracing. 
2. The energy absorption between origin and yield state for the steel fame with 
both sheathing and steel strap bracing is equal to the sum of the energy 
absorptions of wall frame with sheathing and wall frame with strap bracing only. 
3. The stiffness of steel frame with steel strap bracing is about 44% less than the 
stiffness of steel frame with sheathing. The stiffness of steel frame with both 
sheathing and strap bracing is quite close to the stiffness of specimen with 
sheathing only. It is found that the sheathing provides most of shear resistance in 
the early and middle stages of loading for the specimen with both sheathing and 
bracing. 
4. The ductility ratio can be improved for the sheathed steel frame after 
installing diagonal strap bracing. 
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Development of a Method to Generate a Simplified Finite 
Element Model for an Electrical Switchboard Cabinet 

Edwin Lim1, Barry J. Goodno2, James I. Craig3 

Abstract 

Electrical switchboards are one of the key pieces of equipment used in 
operations of most critical facilities such as hospitals and emergency services 
buildings. Unfortunately, past observations have shown that the switchboard 
cabinet and its contents may be vulnerable to damage or failure during an 
earthquake. An electrical switchboard cabinet is a complex structure typically 
constructed using cold-formed steel frame members enclosed by steel panels and 
containing a variety of switchgear and bus bars. The panels are usually fastened 
to the steel members by screws, and the steel members are connected together 
by bolts or screws. The structural behavior of the cabinet can be evaluated using 
shake table testing and/or high fidelity finite element models. However, these 
methods are relatively expensive, highly specific, and interpretation of the 
results may be difficult. Therefore, a method to formulate a simplified finite 
element model for the cabinet is proposed in this study. The simplified model 
consists of beam elements (Timoshenko), shell elements and springs. This 
model can be constructed and executed computationally at a lower cost, and 
interpretation of the results is a simpler assignment. The present model has the 
capability to capture the effect of warping deformation in the frame members 
and possible nonlinear behaviors of the cabinet, such as: local buckling at the 
end of frame members due to high bending moments, failure of the screw 
connections and buckling of the panels. The simplified model is validated using 
a high fidelity model of the cabinet under 1st-order and 2nd-order pushover 
analyses. Future work to incorporate structural models for the internal 
components is also discussed. 

Wei-Wen Yu International Specialty Conference on Cold-Formed Steel Structures 
Baltimore, Maryland, U.S.A, November 9 & 10, 2016
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Int roduction 

Electrical power is transmitted from a generating station through a wide area 
transmission system and distribution subsystems leading eventually to end-
users. At the facilities of a commercial end-user (e.g. hospital), the electrical 
power is distributed to different devices (loads) through transformers and 
switchboards consisting of switches and monitoring, distributing, and 
controlling equipment housed in cabinet-like structures (see Figure 1, which 
diagrams a simple configuration of electrical distribution and shows a 
switchboard installation). This electrical equipment is essential to maintaining 
the continuity and stability of electrical distribution within a facility and is 
therefore critical to the operation of most facilities. 

(a)  (b) 
Figure 1  Typical switchboard cabinet system: (a) diagram of typical power 
distribution system at an end-user’s facility, and (b) a group of switchboard 

cabinets. 

Unfortunately, the electrical equipment in such cabinets is vulnerable to damage 
or failure during an earthquake. In general, there are two categories of failure 
that can happen to the equipment. The first is failure of the equipment caused by 
structural damage to the cabinets. Structural damage to an electrical cabinet can 
be further categorized into one of two broad types: 1) failure of 
unanchored/inadequately anchored cabinets, or 2) failure of properly anchored 
cabinets. The reconnaissance reports developed by EQE Engineering (EQE 
Engineering., 1991) and Goodno, et al. (Goodno et al., 2011) have shown that 
most of the structural damage to unanchored/inadequately anchored cabinets is 
caused by sliding or overturning of a cabinet and the failure of inadequate 
anchorage. In experimental tests, three types of failures have been observed 
related to properly anchored cabinets: 1) shearing/pull-out of panel-frame 
connections (screws), 2) deformation of enclosure panels, and 3) detachment of 
electrical components inside the cabinet. The second category is the failure of 
electrical equipment due to seismic vibration. This failure is related to the 
sensitivity of the internal electrical equipment to acceleration and displacement 
vibration intensity inside the cabinet. This paper will focus on the second 
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category, specifically the performance of the cabinet structural system caused by 
seismic loading of properly anchored electrical cabinets. 

Two methods are typically used to assess the behavior of an electrical cabinet: 
1) an experimental shake table test and 2) a high fidelity finite element model of
the cabinet in which all structural components of the cabinet are modeled 
explicitly using shell elements. Both of these methods are expensive, and 
interpretation of the results may be difficult, especially for groups of cabinets 
(see Figure 1.b). Therefore, several researchers have proposed simplified models 
of electrical cabinets to assess their dynamic behavior and performance. Gupta 
et al. (Gupta and Yang, 2002) adopted the Rayleigh-Ritz approach to develop 
the simplified models considering one global and one local mode. The results of 
their simplified models are validated by the results of detailed finite element 
models. Despite its accuracy and simplicity, the applicability of this method to 
other configurations of cabinets is unclear, especially with regard to how the 
model handles the variety of partially rigid connections between frames as well 
as connections between panels and frames.  

Hur et al. (Hur, 2012) developed a framework to generate the simplified 
electrical cabinet models that consist of frame elements for framing members, 
shell elements for panels, and nonlinear springs for connections between frames 
and for connection between panels and frames. This approach allows a general 
application of the framework to different configurations of cabinets. Validation 
of this approach has shown that a model generated using this framework 
underestimated the first-mode experimental frequency by 1% and overestimated 
the second-mode experimental frequency by 20%. Despite its relatively accurate 
results and its more general applicability, some cabinet behaviors cannot be 
explained thoroughly based on this work.  Specifically, 1) the definition of 
partially rigid connections between frames and the connections between panels 
and frames are not validated individually so the contribution to the modal 
properties of the cabinet of the modeling features (springs) developed for each 
type of connections cannot be distinguished; 2) omission of the effect of 
warping and shear deformations in the framing members to the behavior of 
cabinets; and 3) omission of the effect of elastic local buckling near the ends of 
a member that may exist when the cabinet is subjected to a dynamic load. 

This study proposes a method to generate a simplified finite element model for 
electrical switchboard cabinets. The general framework proposed by Hur et al. is 
adapted and improved in this proposed method, in which the framing members 
and the panels are modeled with frame and shell elements, respectively. In 
addition, linear rotational springs and nonlinear translational springs are 
introduced to model the connection between framing members and the 
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connection between panels and frames, respectively. Additional modeling 
features, such as rotational springs and constraint equations, are also introduced 
to the simplified model to improve the capability of the model to capture: 1) 
possible elastic local buckling behavior near the ends of the member, and 2) the 
effect of warping deformation of the framing members to the behavior of 
cabinets. 

Structural Configuration of the Electrical Switchboard Cabinet 

An electrical switchboard cabinet model, in which all structural components are 
built from plain sections (i.e. plain angles, plain channels, and flat panels with 
no folded edges), is selected for this study. Besides modeling a cabinet with 
relatively simple member configurations, this model is also selected as the first 
step to take to solve more complicated problems in an electrical cabinet with 
more complex configurations. The selected cabinet is constructed with four 
vertical posts with a plain angle section. These vertical posts are connected with 
beam members formed from a folded channel section and attached to the posts 
at the top, the mid-height, and the bottom of the cabinet using bolts/screws to 
form the framing system of the cabinet. This framing system is then enclosed by 
steel panels inserted in all eight openings in the sides of the frame and one panel 
at the top of the cabinet,  The panels are attached using thread rolling screws 
attached at the four corners of each panel. Figure 2 shows the dimensions of the 
cabinet and the cross section used in this selected model, as well as the 
configurations of the connection between a panel and a framing member and the 
connection between the framing members.  

Figure 2  The switchboard cabinet under study:  (a) the cabinet model enclosed 
by steel panels, (b) framing system of the cabinet model, (c) cross section of 

beam member, (d) cross section of vertical post, (e) connection between a panel 
and a frame, and (f) connection between framing members. 
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Selection of the Finite Element Model and Development of the Modeling 
Features for the Simplified Model 

Framing members, panels and their connections to the framing members, and 
the connections between framing members are the main structural components 
of electrical switchboard cabinets. In the simplified model, each component is 
represented by finite element models and/or modeling features (i.e. springs, 
constraints). The material of the framing members and the panels is assumed to 
be linearly elastic, and the behavior of the connection between the framing 
members is assumed to be linear. These assumptions are taken because there is 
no clear evidence from earthquake reconnaissance surveys or shake-table tests 
that these components have yielded. The only sources of nonlinearities 
incorporated in the simplified model are: 1) failure of the connection between 
panels and framing members, 2) elastic buckling of the panels, and 3) possible 
elastic local buckling near the ends of the framing members due to high local 
bending moments.  

Framing Members 

The shear center of the channel and angle sections used in the framing members 
do not coincide with their sectional centroid, and as a result, these framing 
members will deflect and twist if loads are applied at the centroid. Furthermore, 
this twisting will also cause axial deformation (warping) in the members which 
may or may not be restrained. The members are also susceptible to elastic local 
buckling because the cross sections are thin. In structural analysis of the 
members, inclusion of this local buckling mode will further complicate the 
problems, and typically, finite element analysis using shell elements is used for 
this purpose because it can inherently capture the local buckling behavior of the 
members. However, this method becomes impractical once the complexity of 
the structure increases. Several researchers ((Silvestre and Camotim, 2003), 
(Wang and Errera, 1971), (Ayhan and Schafer, 2012)) have developed simpler 
models that have the capability to capture this local buckling behavior. Yet, the 
application of these methods for a more complex structure is still onerous. 

Further simplification of the existing methods can be performed for a specific 
type of analysis, such as a pushover analysis. In the pushover analysis, the 
framing members of the cabinets are subjected to double curvature bending 
condition. In this condition, high stress is developed near the ends of the 
member, and it may eventually cause elastic local buckling in the members. To 
capture this local buckling behavior, a hybrid model consisting of Timoshenko 
beam elements commonly found in commercial structural analysis software 
along with a rotational spring at each end of a member is proposed (see Figure 
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3.a). The stiffness properties of the rotational spring can be generated based on
the results of two different methods used to predict the behavior of a frame 
member subjected to double curvature bending: 1) a high fidelity method based 
on a finite element analysis of the member, and 2) a simplified method using an 
effective-width model of the buckled flange to describe its behavior. In the first 
method, finite element analysis of the member is performed using shell elements 
and including the nonlinear geometry effect so that local buckling can be 
captured in the analysis. In the second method, the end-rotation of the member is 
calculated for a prescribed value of the end-moment using a nonlinear effective-
width model for the effective cross-sectional bending stiffness.  The nonlinearity 
in the model arises when the cross sectional second area moment is reduced 
once the local bending moment exceeds the local buckling moment (Mcr) of the 
member. The reduced second area moment is calculated based on the effective 
cross section which is obtained by reducing the width of a compressed flange 
using a modified effective-width equation. In both methods, the behavior of the 
member is represented by an end-moment versus end-rotation curve 
characterized by the local buckling moment of the member and its stiffness prior 
to and after local buckling. More detailed explanations of the effective-width 
method and its validation can be found in (Lim et al., 2016). 

(a)  (b) 
Figure 3  Hybrid frame model: (a) model schematic, (b) approximate sketch of 

the moment-rotation properties of the rotational springs 

Using the results of either the finite element model or the effective-width 
prediction, the properties of the rotational springs in the hybrid model are 
calculated. The local buckling moment of the member is incorporated as the 
break point between the initial and the post-buckled segments characterized by 
the linear initial stiffness (Ks1) and nonlinear post-buckled stiffness (Ks2), 
respectively. Since, the member and the rotational springs are arranged in series 
with the member, this stiffness (see Figure 3.b) can be generated as follows: 

BTS

BTS
s KK
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K

−
= Equation 1 
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KS = stiffness of the nonlinear spring, 
KTS = stiffness of the Timoshenko frame model, and 
KB = stiffness of the member subjected to double curvature bending. 

Panel Model 

Finite Element Model of the Panel 

The panels of the electrical cabinets are constructed with thin-steel plates 
(typical thickness = 3/32 in.). These panels, together with the connection 
between the panels and the frames, are important to the structural rigidity of the 
cabinets. Furthermore, experimental tests of electrical cabinets have shown that 
significant deformation of the panels can occur during an earthquake. Therefore, 
shell elements are selected to model the steel panels because they have the 
capability to capture these behaviors. 

Properties of Screw Connections Between Panels and Framing Members 

The panels and the framing system of the electrical cabinet are usually 
connected by thread-rolling screws. In the cabinet model, this screw connection 
is modeled using the CONNECTOR–CARTESIAN, ALIGN feature in 
ABAQUS (see the two coincident nodes at point 1 and 3 in Figure 4). This 
feature rigidly constraints the rotational DOFs of two nodes (ALIGN) and 
defines zero-length translational springs (CARTESIAN) in three orthogonal 
directions (two shearing directions and one tensile direction) between two 
coincident nodes. The shearing properties of the springs are typically defined by 
the uniaxial load-deformation curve obtained from lap-splice tests using two thin 
plates connected with one or more screws. The lap splice tests of the screw 
connections have been conducted by many researchers to characterize their 
strength (Pekoz, 1990). However, studies that characterize the load-deformation 
behavior (e.g. initial stiffness) of the screw is still limited. Pham and Moen 
(Pham and Moen, 2015) developed empirical approaches in predicting the load-
deformation characteristic of the connection. However, validations of those 
approaches to other types of screws are still needed. 

843



Figure 4 Detailed of locations of modeling features assigned to the simplified 
model 

Due to limited information on the load-deformation behavior of screw 
connections, researchers typically conducted lap splice tests as part of their 
larger experimental test. Figure 5.a shows the lap splice tests on one type of 
screw connections conducted by Fulop and Dubina (Fulop and Dubina, 2004) as 
part of their experiments on a cold-formed shear wall. The tests were conducted 
with different loading rates, 0.039 in./min (1 mm/min) and 16.55 in./min (420 
mm/min), to study the influence of time-dependent forcing functions on the 
behavior of screw connections. The results of the tests were scattered in nature 
and the average load displacement curves are shown in Figure 5.b. In an average 
(simplified) sense, the curves can be described as a linearly elastic (possibly 
rigid), perfectly plastic curve. This curve is characterized by two parameters: 1) 
initial stiffness, and 2) maximum load. Based on these characteristics, the load-
deformation curve of the springs (in three orthogonal directions) used for the 
screw connection of electrical cabinet are defined. This assumption seems 
reasonable because it defines the ‘failure’ state (maximum load) of the screw 
connection although it may oversimplify the characteristics of the connections 
prior to and after the maximum load. 

(a) (b) 
Figure 5  Lap splice tests conducted by Fulop and Dubina: (a) specimen 

geometry (units in mm), and (b) average load-deformation curves obtained from 
the tests (figures courtesy of Fulop and Dubina) 
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One possible method to define the initial stiffness of the curve is based on an 
interpretation of the ECCS-TC7 guideline (ECCS, 1984) – “the design and 
testing of connection in steel sheeting and sections”. In this guideline, it is stated 
that the maximum load of the connection can be defined as the load at a 
deformation value of 3 mm (0.118 in.). According to this information, the initial 
stiffness of the screw connection is assumed as the ratio between the maximum 
load and the deformation value of 3 mm (0.118 in.). This approach applied to 
calculate the initial stiffness of screw connection in shear is also adapted to 
define the initial stiffness in tension. Hence, the maximum shear and tensile load 
of the screw connection can be calculated based on Equation 2 and 3 as defined 
in AISI S100 (AISI, 2007).  

( )( )22112
3
2 7.2,7.2,2.4min uuushear FdtFdtFdtF = Equation 2 

( )1
'

12 5.1,85.0min uwucten FdtFdtF = Equation 3 

where 
Fshear = shear strength of the screw connection 
t2  = thickness of member not in contact with screw head 
d  = diameter of the screw 
Fu2  = tensile strength of member not in contact with screw head 
t1  = thickness of member in contact with screw head 
Fu1  = tensile strength of member in contact with screw head 
Ften  = tensile strength of the screw connection 
tc  = lesser of the depth of penetration and the thickness t2. 
d`w  = minimum of the diameter of the head of screw and 0.5 in. (12.7 mm). 

Development of Constraint Equations for the Panel Attachment 

Rigid beam and warping constraints are assigned to pairs of points at the 
centroidal axis of the vertical posts and the flanges of the posts where panels are 
attached to them. Figure 4 shows two pairs of points (points 1-2 and 2-3) in 
which these constraints are imposed at the top left corner of the cabinet. Rigid 
beam constraints are applied to restrict the deformation of the points on the 
flanges based on the beam kinematic assumption that plane sections remain 
plane. Additional warping deformation constraints are imposed on those points 
because the vertical posts will warp when the cabinet is subjected to lateral load. 
The warping deformation of the vertical posts is calculated based on an 
assumption that a vertical post is subjected to a linearly varying internal 
torsional force distribution induced by in-plane double-curvature bending of the 
post. The boundary conditions for the post are assumed to be warping-free and 
partially fixed at both ends. The partial fixity is due to the out-of-plane bending 
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stiffness of the beam members connecting at the ends of the vertical post. The 
warping constraint equation is written as the axial deformation of a point at the 
flange of the vertical post due to a unit torsional rotation at the centroid of the 
post. 

Connection Between Framing Members 

The connection between framing members is represented as linear rotational 
springs in three orthogonal directions assigned to each member coincident at a 
joint (see the frame-frame connectors in Figure 4). These springs are modeled 
by the CONNECTOR–JOIN, ROTATION feature in ABAQUS. This feature 
rigidly constrains all translational DOFs (JOIN) and assigns rotational springs in 
three orthogonal directions (ROTATION). The stiffness of the springs for a 
member is obtained by imposing a unit rotation in each orthogonal direction to 
that member while fixing the other members coincident at the joint. These 
members are modeled using shell elements, and their length is about 5 – 7 % of 
their total length. The members are connected with FASTENER features in 
ABAQUS by assuming a BEAM interaction that connects all DOFs of the 
connecting nodes located at the positions of the screws/bolts. Furthermore, the 
nodes at the free end of each member (see Figure 2.f) are constrained to its 
centroid at that end using the BEAM MPC (Multi Point Constraint) feature in 
ABAQUS, and the centroids are then fixed in all DOFs, except: 1) when a unit 
rotation (besides torsional rotation) is applied to a member to generate the 
stiffness of the springs; the centroid of that member is only fixed in the direction 
corresponding to the applied rotation, and 2) when a unit torsional rotation is 
applied to a member to generate the torsional stiffness of the springs; distributed 
couplings are assigned (instead of MPC) in the torsional DOF between the nodes 
at the free end of the member and its centroid at that end to impose a warping 
free boundary condition, and the centroid is fixed only in the torsional direction. 
In the MPC feature, the DOFs of the slave nodes are eliminated. Therefore, 
relative displacements between the slave nodes are not possible. Meanwhile, in 
the distributed coupling, the DOFs of the slave nodes are not eliminated. The 
force/moment applied at the master node is distributed to the slave nodes in an 
average sense. In this coupling, relative displacements between slave nodes are 
possible. Afterward, the stiffness of the springs in each direction for each 
member coincident at the joint is calculated as the ratio of the reaction moment 
at the centroid to the corresponding applied unit rotation. 

In addition to the rotational springs, the finite-joint size of the connection 
between framing members is also considered in the simplified model. The size 
of the joint is the same as the size of the connection models used to generate the 
properties of the rotational springs. Furthermore, a rigid beam constraint is also 
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assigned between a point (point 4 at Figure 4) at the intersection of the beam 
members and a point (point 2 at Figure 4) at the extension of the centroidal axis 
of the vertical post.  

Validation of the Simplified Models to High Fidelity Models of the Cabinets 

Development of the High Fidelity Models 

In the high fidelity models, all structural components of the cabinet (framing 
members and/or panels) are modeled explicitly using shell elements in 
ABAQUS. The framing members are connected together using the 
FASTENER–BEAM feature. In addition, three translational springs with 
properties the same as those assigned to the simplified model are used to 
represent the connections between the panels and the frames. These translational 
springs are modeled using the CONNECTOR–CARTESIAN, ALIGN feature in 
ABAQUS.  

Development of the Simplified Models 

The simplified models are developed using the methods described in the 
previous section. Timoshenko beam elements and shell elements are selected to 
model the framing members and panels, respectively. Next, in-plane rotational 
springs with properties generated from the effective-width prediction for the 
framing member are attached at each end of the framing members to handle the 
elastic local buckling behavior. The framing members are then connected with 
rigid beam constraints and rotational springs in three orthogonal directions (see 
rigid beam connector and frame-frame connectors in Figure 4), in which their 
properties are generated from detailed finite element models of the joint. 
Furthermore, before attaching panels to the cabinet, rigid beam and warping 
constraints are assigned to pairs of points between the centroid of the vertical 
posts and the points of attachment of the panels to the flanges. Lastly, the panels 
are connected to the attachment points with the zero-length translational springs 
in three orthogonal directions (see panel-frame connectors in Figure 4). 

Validation of the Simplified Models 

Two configurations of the electrical cabinet model are considered in this study. 
The first configuration is the cabinet model without panel enclosures (bare-
frame), and the second configuration is the cabinet model with panel enclosures 
(full-cabinet). The bare-frame model is needed to validate the spring properties 
defined for the connection between framing members. High fidelity (HF) and 
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simplified (SM) models are then developed for each configuration of the 
cabinet. The models are fixed at the four bottom cabinet corners and subjected to 
pushover analyses in the front-back (FB) and left-right side-to-side (SS) 
directions (see Figure 2.b) of the cabinet by applying a displacement at the top 
of the cabinets. The analyses are performed by including the nonlinear 
geometric effects (2nd order) and not including them (1st order). Inclusion of the 
2nd order effects enables the models to capture the local buckling behavior of the 
framing members and panels. 

Validation of the Bare-frame Models 

In the first order analyses, the bare-frame models behave in a linear elastic 
manner. Comparisons of the stiffness of the pushover curves obtained from the 
simplified and the high fidelity model show that the simplified models 
underestimate the elastic stiffness by -0.3 % and -1.45 % in the SS and FB 
directions, respectively. These results show the accuracy of the spring properties 
developed for the connection between framing members.  

In the second order analyses, elastic local buckling occurs near the ends of the 
vertical posts for both pushover analyses in the SS and FB directions. The local 
buckling reduces the rigidity of the bare-frame cabinet model as shown in the 
pushover curves in Figure 6.a and b. The simplified models are able to 
reproduce the initial stiffness of the high fidelity models. However, they slightly 
overestimate the post buckling stiffness of the high fidelity models. It should be 
noted that the vertical posts are constructed from a plain angle section and 
subjected to unsymmetric bending. Meanwhile, the stiffness-reducing effect 
incorporated into the simplified model through a rotational spring at each end of 
the vertical posts is only applied in the in-plane bending direction. Addition of 
rotational springs with coupled properties (in-plane moment and out-of-plane 
rotation) may improve the performance of the simplified models. However, the 
improvement may not be necessary for electrical switchboard cabinet because: 
1) the electrical cabinets are most likely enclosed by panels which may change
the behavior of the cabinet and 2) the simplified models are able to predict the 
behavior of the high fidelity model accurately up to a reasonable top 
displacement value of cabinet (e.g. 3 in.).  
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(a) (b) 

(c) 
Figure 6  Pushover curves for the bare-frame models under: (a) 2nd order 
analysis in the SS (Z) direction, and (b) 2nd order analysis in the FB (Y) 

direction, as well as (c) elastic local buckling near the ends of framing members 
(pushover analysis in the SS direction) 

Validation of the Full-cabinet Models 

In the first order analyses, the behavior of cabinet models is characterized by the 
‘failure’ of connections between panels and frames in shear. The ‘failure’ state 
is defined when the loads at the springs defining the connections have reached 
the perfectly plastic region. Comparisons between the pushover curves obtained 
from the simplified and the high fidelity models show that the simplified models 
are capable of capturing the initial stiffness, the ‘failure’ load and the post-
failure stiffness of the high fidelity models (see Figure 7.a and b).  In the second 
order analyses, the behaviors of the cabinet models are defined by multi-linear 
curves (see Figure 7.c and d). The main stiffness reduction is caused by two 
factors: 1) buckling of panels (see Figure 7.e), and 2) ‘failure’ of the connection 
between panel and frame. After the buckling of the panels, the compressed 
vertical posts are subjected to local deformation as shown in Figure 7.f. This 
local deformation may be caused by the axial force instead of bending moment 
in the member since this deformation is spread out along the length of the posts. 
However, the stiffness reduction caused by this local deformation is not 
significant compared to the overall behavior of the cabinet. It is evident by the 
stiffness of the pushover curves after the buckling of panels which is almost the 
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same as before the ‘failure’ of the connections. Therefore, including this 
behavior in the simplified model may not be significant.  

(a) (b) 

(c) (d) 

(e) (f) 
Figure 7 Pushover curves of the full-cabinet models under: (a) 1st order analysis 

in the SS (Z) direction, (b) 1st order analysis in the FB (Y) direction, (c) 2nd 
order analysis in the SS (Z) direction, and (d) 2nd order analysis in the FB (Y) 
direction, as well as (e) out-of-plane deformation of the panels at the buckling 
load (pushover analysis in the SS direction), and (f) local deformation in the 

flanges of the compressed vertical posts (pushover analysis in the SS direction) 

In general, the load-displacement curves produced by the simplified models are 
in a good agreement with the curves produced by the high fidelity models. The 
simplified models overestimate the buckling load of the panel, the ‘failure’ load 
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of the connection, and the initial and the post buckling stiffness of the cabinet by 
less than 10% for both the SS and FB directions. However, the predictions of the 
stiffness after the ‘failure’ of the connections are about +12% in the FB direction 
and about twice of the stiffness of the high fidelity model in the SS direction. 
Despite the overestimation of the stiffness after the ‘failure’ of the connections, 
the load (base shear) at the cabinet is overestimated by only about 10% or less 
for a realistic maximum top displacement of the cabinet (e.g. 3 in.). This 
indicates that the load carrying capacity of the cabinet is significantly reduced 
after the ‘failure’ of the connections.  

Conclusions and Future Works 

This study has presented and validated a method to generate a simplified finite 
element model of an electrical switchboard cabinet that has the capability to 
capture nonlinear effects caused by: 1) ‘failure’ of the connections between 
panels and frames, 2) elastic buckling of panels, and 3) possible elastic local 
buckling near the end of members due to double curvature bending. Future work 
will include application of the method to a more complex configuration of 
electrical cabinets and study of the dynamic characteristics of a single cabinet 
and groups of cabinets by introducing the electrical equipment into the cabinet 
models. 
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Appendix - Notation 

d  = diameter of the screw 
d`w  = minimum of the diameter of the head of screw and 0.5 in. (12.7 mm) 
Fshear, Ften  = shear and tensile strength of the screw connection, respectively 
Fu1, Fu2  = tensile strength of member in and not in contact with screw head, 

respectively 
KB, Ks = stiffness of the member and the rotational springs, respectively 
Ks1, Ks2 = initial and post buckling stiffness of the rotational spring 
KTS = stiffness of the Timoshenko beam model 
Mcr = buckling moment of the member 
t1, t2 = thickness of member in and not in contact with screw head, 

respectively 
tc = the lesser of the depth of penetration and the thickness t2. 
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An Improved Two-stage Seismic Analysis Procedure for  
Mid-Rise Buildings with Vertical Combination of  

Cold-Formed Steel and Concrete Framing 
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Abstract: Presented in this paper is an improved two-stage analysis procedure 
for evaluating the seismic load of the mid-rise buildings with vertical 
combination of cold-formed steel and concrete framing. By comparing the 
improved procedure to the one prescribed in ASCE 7, it is found the stiffness 
requirement of the two-stage analysis procedure stated in ASCE 7 may be over-
relaxed, which may consequently result in the underestimation of the base shear 
of the upper structure in certain cases. Furthermore, the lateral load at the top 
storey of the upper structure evaluated by ASCE 7 two-stage analysis procedure 
may also be considerably underestimated. Therefore, an additional amount of 
lateral load is proposed to be applied to the top of the upper structure. The 
results of the improved and the existing ASCE 7 two-stage analysis procedures 
are compared to those of the elastic modal response spectrum analysis, 
respectively. Comparing to the one prescribed in ASCE 7, the proposed 
improved two-stage analysis procedure yields more accurate results. 

1. Introduction 

Mid-rise buildings with vertical combination of cold-formed steel (CFS) and 
concrete framing adopt a structural system in which the upper structure uses a 
lightweight CFS frame while the lower one is a reinforced concrete (RC) framed 
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structure. Due to the presence of vertical irregularities on both mass and 
stiffness in such system, the traditional equivalent lateral force (ELF) procedure 
which is normally applied to “regular” structures in practice is no longer 
applicable (Xiong et.al, 2008). The ASCE 7 (ASCE, 2006; 2010) prescribed a 
simplified approach, i.e., the two-stage ELF procedure (two-stage analysis 
procedure), to approximate the seismic load of the combined framing systems if: 
(a) the stiffness of the lower structure is at least 10 times the stiffness of the 
upper structure, and (b) the period of the entire structure is not greater than 1.1 
times the period of the upper structure considered as a separate structure fixed at 
the base. The two-stage analsyis procedure allows the lower and upper structures 
to be analyzed by the ELF procedure separately, and is adopted in current 
practice because of its simplicity (Allen et.al, 2013). 

The two-stage analysis procedure has been introduced into building codes of 
United States for almost forty years (ATC, 1978). Nevertheless, its applicable 
requirement and seismic load distribution method have not been systematically 
evaluated. Traditionally, the two-stage analysis procedure is applied primarily to 
the building in which the storey number of the lower structure is one, two or 
three (Allen et.al, 2013), while for other cases it is rarely applied and its 
accuracy is questionable. In fact, recent research suggested that the two-stage 
analysis procedure prescribed in ASCE 7 (ASCE, 2006) may underestimate the 
seismic load of the upper CFS structure for certain cases (Xu et.al, 2015; Yuan 
& Xu, 2014). The research related to the evaluation and improvement of the 
two-stage analysis procedure prescribed in ASCE 7 is of great importance for 
engineering practice. Presented in this paper is an improved two-stage analysis 
procedure as well as the systematic evaluation on the procedure prescribed in 
ASCE 7 (ASCE, 2006; 2010). Two examples are presented to illustrate the 
possible errors related to the existing ASCE procedure and the efficiency of the 
proposed improved procedure.  

2. Scope and assumption 

For a mid-rise building with an NL-storey lower RC and an NU-storey upper CFS 
structure, the idealized analytical model of such building is shown in Figure 1 (a) 
with the following assumptions: (1) the total number of storeys of the buildings 
is not greater than ten, i.e., (NL+NU)≤10, since only the mid-rise building is 
accounted for in this study; (2) the storey-mass and lateral storey-stiffness 
associated with the lower and upper structures, designated respectively by (mL 
and kL) and (mU and kU), are uniformly distributed; (3) storey-mass ratio rm and 
storey-stiffness ratio rk of the lower and upper structures are limited to 1≤rm≤3 
and 1≤rk≤20, respectively (Xu et.al, 2015), where rm=mL/mU and rk=kL/kU; (4) 
single storey-periods of the practical lower and upper structures, denoted as 
TsingL and TsingU, are both limited to the range between 0.2TS and 1.1TS 
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(a) MDOF model    (b) stiffer lower structure     (c) simplified 2DOF model 

Figure 1:  Analytical model of mid-rise building with CFS and concrete framing 

(Xu et.al, 2015), where TS is the period at which the horizontal and descending 
curves of the ASCE 7 design spectrum (ASCE, 2010) intersects; (5) the 
damping ratio is 5% and ASCE 7 design spectrum is adopted; and (6) the first 
mode shape should satisfy the relationship ϕL1≤0.88NL/(NL+NU) , as shown in 
Figure 1 (b), to ensure that the lateral stiffness of the lower structure is greater 
than that of the upper one (Xu et.al 2015).  

3. Improved two-stage analysis procedure 

The improved two-stage analysis procedure is established based on a simplified 
two-degree-of-freedom (2DOF) model (Figure 1 c) that is used to represent the 
multi-storey combined framing system. The overall masses and stiffnesses for 
the lower and upper structures of the simplified 2DOF model are approximated 
as: ML=mLNL, KL=[ω1L(kL/mL)0.5]2ML, and MU=mUNU, KU=[ω1U(kU/mU)0.5]2MU, 
respectively; where ω1L ( or ω1U) is the normalized first mode natural frequency 
of an NL(or NU)-storey “regular” structure, as listed in Table 1. Then, based on 
the modal analysis of the simplified 2DOF model, it is found when the lower 
structure is considerably stiffer than the upper one, the effective mass 
distribution of the model is shown in Figure 2. From Figures 2 (b) and (c), it is 
observed that: (a) the upper structure is dominated by the first mode of the 
2DOF model, with the period of the first mode of the building T1 being 
equivalent to that of the upper structure TU, and (b) the lower structure is 
dominated by the second mode of the 2DOF model, with the period of the 
second mode of the building T2 being equivalent to that of the lower structure TL. 
Consequently, the lateral seismic forces of the lower and upper structures (FU 
and FL, respectively), can be calculated as 
 ( )U U a UF M S T=   (1) 

 ( )L L a LF M S T=   (2) 

where Sa(TU) and Sa(TL) are the spectral accelerations corresponding to the 
periods TU  and TL, respectively. From Eqs. (1) and (2), it is seen the interaction  
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Table 1:  Normalized first mode natural frequency of uniform structures 
number of 
storey N 

1 2 3 4 5 6 7 8 9 

ω1 1 0.618 0.445 0.347 0.285 0.241 0.209 0.185 0.165 

 
(a) mass distribution          (b) first mode                             (c) second mode 

of 2DOF model                 (T1≈TU)                                      (T2≈TL) 
Figure 2:  Effective mass distribution of simplified 2DOF model with extremely 

stiff lower structure 

between lower and upper structures in terms of mass and stiffness can be 
neglected. The lower and upper structures can be considered rigidly connected 
to the ground base. This is the case the two-stage analysis procedure is applied. 

3.1 Applicable requirement 
The applicable requirement of the improved two-stage analysis procedure 
associated with the simplified 2DOF model is expressed in terms of the overall 
mass ratio Rm and overall stiffness ratio Rk, where Rm and Rk are defined as 
 / /m L U m L UR M M r N N= =  (3) 

 ( )( )2

1 1/ / /k L U k L U L UR K K r N N ω ω= =  (4) 

For a given overall mass ratio Rm, let Rk2stg, which is the minimum value of 
the overall stiffness ratio that ensures Eqs. (1) and (2) be satisfied 
simultaneously, be the overall two-stage stiffness ratio such that the two-stage 
analysis procedure is applicable. As discussed in Appendix A, Rk2stg can be 
calculated as 

 2

1.637 9.07          1.23

11.029 2.5          1.23
m m

k stg
m m

R R
R

R R
+ ≤

=  − >
  (5) 

Then, based on Eq.(4), the critical storey-stiffness ratio, rk2stg, for the combined 
framing systems can be computed as follows: 

 ( )( )2

2 2 1 1/ /k stg k stg U L U Lr R N N ω ω=  (6) 

Possible storey combinations of lower and upper structures that can be analyzed 
with use of the improved two-stage analysis procedure and their corresponding 
values of rk2stg are listed in Table 2. In general, as long as rk≥rk2stg, 

UM

LM 0

UM 0
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Table 2:  Values of rk2stg, ηmin1 and ηmin2 

NL NU rk2stg rm=1 rm=2 rm=3 
rm=1 rm =2 rm =3 ηmin1 ηmin2 ηmin1 ηmin2 ηmin1 ηmin2 

1 1 10.71 19.56 30.59 1.00  1.00  1.00  1.00  1.00  1.00  
1 2 7.55 8.18 10.73 1.00  1.00  1.00  1.00  1.00  1.00  
2 2 10.71 19.56 30.59 1.00  1.00  1.00  1.00  1.00  1.00  
3 2 18.06 39.33 60.60 1.00  1.00  1.00  1.00  1.00  1.00  
1 3 5.71 6.04 6.36 1.00  1.00  0.91  0.91 0.70  0.7 
2 3 7.90 9.49 15.21 0.95 0.95 0.57  0.57 0.55  0.55 
3 3 10.71 19.56 30.59 0.68  0.68  0.49  0.49 N/A N/A 
4 3 15.03 33.14 51.24 0.60  0.6 0.46  0.46 N/A N/A 
1 4 4.57 4.77 4.97 1.00  1.00  0.86  0.86  0.74  0.74  
2 4 6.25 6.76 8.87 0.90  0.90  0.68  0.68  0.55  0.55  
3 4 8.36 11.41 18.12 0.78  0.78 0.56  0.56 0.55  0.55 
4 4 10.71 19.56 30.59 0.72  0.72 0.42  0.42 N/A N/A 
5 4 13.45 29.87 46.29 0.68  0.65 0.51  0.51 N/A N/A 
1 5 3.81 3.94 4.07 1.00  1.00  0.89  0.89  0.79 0.79 
2 5 5.16 5.50 5.85 0.91  0.91  0.70  0.70  0.63  0.63  
3 5 6.85 7.52 11.83 0.83  0.83  0.63  0.61  0.53  0.53  
4 5 8.71 12.71 20.12 0.77  0.75  0.55  0.55  0.47  0.47  
5 5 10.71 19.56 30.59 0.68  0.68  0.49  0.49  N/A N/A 
1 6 3.26 3.35 3.45 1.00  1.00  0.90  0.90  0.83  0.83  
2 6 4.39 4.64 4.89 0.93  0.93  0.81  0.78  0.70  0.69  
3 6 5.81 6.29 8.24 0.88  0.86  0.73  0.68  0.52  0.52  
4 6 7.35 8.82 14.14 0.84  0.78  0.60  0.59  0.50  0.50  
1 7 2.85 2.92 2.99 1.00  1.00  0.92  0.92  0.87  0.85  
2 7 3.82 4.01 4.20 0.95  0.95  0.84  0.80  0.74  0.72  
3 7 5.03 5.40 6.02 0.88  0.87  0.77  0.74  0.62  0.58  
1 8 2.53 2.58 2.64 1.00  1.00  0.92  0.92  0.86  0.86  
2 8 3.38 3.53 3.67 0.95  0.95  0.82  0.82  0.73  0.73  
1 9 2.27 2.32 2.36 1.00  1.00  0.94  0.94  0.89  0.89  

Note: N/A indicates the improved two-stage analysis procedure is not applicable. 

the improved two-stage analysis procedure is applicable. From Table 2, it is seen 
the improved procedure is usually applicable to the mid-rise buildings in which 
the number of the storey of the lower structure is less than that of the upper one. 
For example, for the case where NL=1 and NU =9, the value of rk2stg is 
considerably small regardless of the magnitude of the storey-mass ratio rm. In 
fact, when the number of the storey of the lower structure is considerably less 
than that of the upper one, the lower structure can be treated as a “podium” to 
the upper one, and the upper structure usually behaves as it is rigidly connected 
to the ground base directly. 

3.2 Seismic load distribution 
The lateral seismic forces at the ith-storey of the upper and lower structures,  

857



designated as FUi and FLi, respectively, are linearly distributed along the height  
as follows (Figure 3 ): 
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where 
 2 ( )Ub U stg U U a UV m N S Tα=   (9) 

In Eqs.(7) ~ (9), hUi and hLi are the heights of the ith-level measured from the 
base of the upper and lower structures, respectively; Ft is the proposed 
additional amount of shear force to be applied at the top level of the upper 
structure; and αU2stg is the proposed shear-force-amplification factor of the upper 
structure for the case rk≥rk2stg. Values of αU2stg are functions of NL, NU and rm, 
and can be obtained from the previously study (Xu et.al, 2015). Details on the 
evaluation of force Ft will be presented in section 3.3. 

Then, the shear forces of the upper and lower structure associated with level i, 
designated by VUi and VLi, respectively, can be computed as follows: 
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3.3. Top storey loading 
The applicable requirement of the improved two-stage analysis procedure is 
derived based on the simplified 2DOF model. While the simplified 2DOF model 
only accounts for the possible interaction of the first modes between the lower 

 
(a) entire building                  (b) upper structure                (c) lower structure 

Figure 3: Lateral force distribution of improved two-stage analysis procedure 
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and upper structures (first mode interaction), the interaction of other possible 
vibration modes between the lower and upper structures (higher vibration mode 
interaction), may not be ignored for the MDOF model shown in Figure 1 (a). In 
fact, the effect of the higher vibration mode interaction on the base shear force 
of the upper structure has been accounted for in the proposed two-stage 
amplification factor αU2stg shown in Eq. (9). Theoretically, the value of αU2stg 
should be unity. Nevertheless, to account for the effect of higher vibration mode 
interaction associated with the MDOF model, the previous study (Xu et.al, 2015) 
proposed to increase the magnitude of αU2stg rather than by setting it be unity. 
Furthermore, the amplification effect of such interaction on the shear force 
associated with the top storey of the upper structure is far more significant than 
that on the base shear force of the upper structure. Consequently, an additional 
shear force, Ft, as shown in Figure 3 (b), is proposed to be applied to the top 
storey and it is calculated as follows: 

 t UbF Vγ=   (12) 

in which 

 reg intrγ γ γ= +
 (13) 

where γ accounts for the additional portion of the base shear force associated 
with the upper structure to be applied to the top storey. Values of γreg for 
different number of stories of upper structures are listed in Table 3, and the 
corresponding values of γintr are calculated as follows: 

 intr intr1γ η= −  (14) 
where 
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( ) ( )6 min 2 min1 21
ln / / ln / / /U L k stg mCRTx T T R Rη η  =    (18) 

( ) ( ) ( )7 min 2 2 3
ln / ln / / /U L U LCRT CRTx T T T Tη  =    (19) 

859



In Eqs. (15) ~ (19), values of (TU/TS)CRT , (TU/TL)CRT1, (TU/TL)CRT2 and (TU/TL)CRT3 
are shown in Table 4, and values of ηmin1 and ηmin2 for possible storey 
combinations of the lower and upper structures are listed in Table 2.  

3.3.1 Determination of γreg 
The parameter γreg in Eq. (13) accounts for an additional amount of shear force 
to be applied to the top storey of the upper structure when the upper structure is 
treated as a regular structure being rigidly connected to the ground base directly. 
Numerical values of γreg listed in Table 3 are calculated based on the modal 
response spectrum analysis (Yuan, 2015). 

3.3.2 Determination of γintr 
The parameter γintr in Eq. (13) represents the additional amount of the shear force 
induced by the interaction of higher vibration modes between the lower and 
upper structures. As shown in Eq.(15), the value of γintr is calculated based on 
the parameter ηintr. The value of ηintr ranges between zero and unity, with ηintr=1 
representing that the higher vibration mode interaction does not result in the 
additional top shear force. The smaller the value of ηintr is, the larger amount of 
the additional top shear force will apply. 

The effect of the higher vibration mode interaction on the value of ηintr is 
characterised primarily by the period ratio TU/TS and period ratio between lower 
and upper structures TU/TL, as shown in Eqs. (15) and (17), respectively. In 
general, a larger magnitude of the additional top shear force will be applied as 

Table 3:  Values of γreg applicable for the top storey of upper structures 
TsingU/Ts 

NU  0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 

2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.02 0.02 
6 0.00 0.00 0.00 0.00 0.00 0.01 0.02 0.03 0.04 0.04 
7 0.00 0.00 0.00 0.00 0.01 0.02 0.03 0.04 0.05 0.05 
8 0.00 0.00 0.00 0.00 0.02 0.03 0.04 0.05 0.05 0.06 
9 0.00 0.00 0.00 0.02 0.03 0.04 0.05 0.05 0.06 0.06 

Table 4:  Values of (TU/TL)CRT1, (TU/TL)CRT2, (TU/TL)CRT3 and (TU/TS) CRT 
NU (TU/TL)CRT1 (TU/TL)CRT2 (TU/TL)CRT3 (TU/TS)CRT 
3 2.34 3.18 4.71 1.00 
4 3.06 4.25 7.44 1.00 
5 3.74 4.61 9.3 1.05 
6 4.44 5.87 10.92 1.24 
7 4.6 6.4 10.7 1.43 
8 4.83 6.64 12.97 1.63 
9 4.86 7.82 13.08 1.82 
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the period elongates, i.e., the value of ηintr decreases as the period ratio TU/TS 
increases, as shown in Eq. (15). This is similar to that occurs in the “regular” 
buildings. In addition, the value of TU/TL determines which mode of the upper 
structure will be interacted with the first mode of the lower structure. For 
example, for the case where NL=2, NU=8 and rm=3, if TU/TL =4.83, the first mode 
period of the lower structure is close to the third mode period of the upper 
structure, and the interaction is primarily associated with first mode of the lower 
structure and the third mode of the upper structure. When the first mode of the 
lower structure interacts with different vibration modes of the upper structure, 
the resulted magnitude of the additional top shear force is different. Therefore, 
the force Ft is affected by the value of the period ratio TU/TL, as shown in Eq.(17) 
(Yuan, 2015). 

3.4 Error analysis 
The shear forces for each storey of the upper and lower structures calculated 
from the proposed improved two-stage analysis procedure are compared to those 
from the elastic modal response spectrum analysis of the MDOF model (Chopra, 
2007). For all possible storey combinations listed in Table 2, errors of the shear 
forces resulted from the improved procedure for the upper structure are in the 
range between -0.9% ~ 38.0%, with the positive and negative errors representing 
that the improved two-stage analysis procedure overestimates and 
underestimates the shear force, respectively. Such magnitude of errors 
associated with the improved procedure is comparable to that of the 
conventional ELF procedure (ASCE, 2010) for “regular” structures, which can 
be as large as 35% (Xu et.al, 2015). The improved procedure may overestimate 
the shear forces of the lower structure considerably in some cases. Such 
overestimation is induced by the neglect of the effect of the higher vibration 
mode interaction between the lower and upper structures on the lower structure 
(Yuan, 2015). However, compared to the two-stage analysis procedure 
prescribed in ASCE 7 (ASCE, 2006), which will be discussed in section 4.2, the 
results obtained from the proposed procedure is more accurate. 

4. Evaluation of two-stage analysis procedure prescribed in ASCE 7 

4.1 Evaluation of applicable requirement 
Let Rk2stg-ASCE be the overall two-stage stiffness ratio corresponding to the one 
prescribed in ASCE 7 such that the two-stage analysis procedure is applicable. 
The previous study (Xu et.al, 2015) suggested that there is a considerable 
difference between the values of Rk2stg-ASCE  and the proposed Rk2stg. When 
Rm≥1.23, the proposed Rk2stg is considerably greater than that prescribed in 
ASCE 7. Covert the overall two-stage stiffness ratios, Rk2stg and Rk2stg-ASCE, to the 
storey-stiffness ratio associated with the two-stage analysis procedure, rk2stg and 
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Table 5:  Comparison of rk2stg and rk2stg-ASCE 

NL NU rm=1 rm=2 rm=3 
Rm rk2stg rk2stg-ASCE Rm rk2stg rk2stg-ASCE Rm rk2stg rk2stg-ASCE 

3 3 1.00 10.71 10.00 2.00 19.56 10.00 3.00 30.59 10.00 
4 3 1.33 15.03 12.31 2.67 33.14 12.31 4.00 51.24 12.31 
5 4 1.25 13.45 11.91 2.50 29.87 11.91 3.75 46.29 11.91 
4 5 0.80 8.71 8.39 1.60 12.71 8.39 2.40 20.12 8.39 
5 5 1.00 10.71 10.00 2.00 19.56 10.00 3.00 30.59 10.00 
1 6 0.17 3.26 3.49 0.33 3.35 3.49 0.50 3.45 3.49 
2 6 0.33 4.39 4.57 0.67 4.64 4.57 1.00 4.89 4.57 
3 6 0.50 5.81 5.87 1.00 6.29 5.87 1.50 8.24 5.87 
4 6 0.67 7.35 7.23 1.33 8.82 7.23 2.00 14.14 7.23 
1 7 0.14 2.85 3.06 0.29 2.92 3.06 0.43 2.99 3.06 
2 7 0.29 3.82 4.01 0.57 4.01 4.01 0.86 4.20 4.01 
1 8 0.13 2.53 2.72 0.25 2.58 2.72 0.38 2.64 2.72 
2 8 0.25 3.38 3.57 0.50 3.53 3.57 0.75 3.67 3.57 
1 9 0.11 2.27 2.46 0.22 2.32 2.46 0.33 2.36 2.46 

rk2stg-ASCE, respectively. The comparison of rk2stg-ASCE and rk2stg is show in Table 5. 
From the table it can be seen for the possible storey combinations of the lower 
and upper structures that may result in the overall mass ratio Rm >1.23, 
considerable difference exists between the values of rk2stg-ASCE and rk2stg, such as 
the case where NL=4, NU=3 and rm=3. Nevertheless, for the traditional “podium” 
building, in which the number of storey of the lower structure is considerably 
less than that of the upper one, there is not much difference between values of 
rk2stg-ASCE  and rk2stg, such as the case where NL=1 and NU=9. 

4.2 Evaluation of seismic load distribution 
4.2.1 Base shear forces of lower and upper structures 
As prescribed in ASCE 7 (ASCE, 2006; 2010), the peak base shear forces of the 
lower structure associated with the first and second modes are combined by the 
absolute sum (ABSSUM) rule as follows: 
 ( ) ( )7Lb ASCE U a U L a LV M S T M S T− = +  (20) 

However, the improved procedure adopts the SRSS (square-root-of-sum-of-
square) rule to combine the modal responses, as shown in Eq. (11). Compared to 
the ABSSUM rule, the SRSS rule can yield to a more accurate result, which will 
be demonstrated in section 5.1. In fact, as discussed in section 3.4, by means of 
Eq. (11), the proposed procedure may overestimate the seismic load of the lower 
structure considerably in some cases. The two-stage procedure prescribed in 
ASCE-7, may significantly overestimate the base shear force of the lower 
structure due to the adoption of the ABSSUM rule (Yuan, 2015).  

On the other hand, as it will be demonstrated in section 5.2, previous research 
(Xu et.al, 2015) suggested that the two-stage analysis procedure prescribed in 
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ASCE 7 may underestimate the base shear force of the upper structure due to the 
underestimation of the storey-stiffness ratio associated with the two-stage 
analysis procedure. 

4.2.2 Seismic load distribution 
The two-stage analysis procedure prescribed in ASCE-7 may underestimate the 
seismic load of the top storey of the upper structure since no additional top shear 
force is applied to account for the higher vibration mode interaction between the 
lower and upper structures. In addition, due to the overly conservative 
estimation for the base shear force of the lower structure as discussed in section 
4.2.1, shear forces for other stories of the lower structure may also be 
significantly overestimated by the procedure as discussed in section 5.1. 

5. Examples 

5.1 Example 1 
Shown in Figure 4 is the floor plan of the lower structure of an eight-storey 
combined framing systems. The two-storey lower structure is constructed with 
the special RC moment frame while the six-storey upper structure is to be built 
with CFS framing. The storey-heights of the lower and upper structure are 10.8ft 
(3.3m) and 10 ft (3.06m), respectively. The specified dead loads associated with 
the upper and lower structures are taken as 0.416 psi (2.87kPa) and 0.949psi 
(6.55 kPa), respectively. Therefore, the effective seismic weights of each storey 
for the upper and lower structures are mU=2.16×105lb (96,113kg) and 
mL=4.92×105 lb (219,352kg), respectively, which result in 
rm=mL/mU=4.92/2.16=2.28. 

Assume the elastic modulus of the concrete is 4.351×106 psi (3×107 kPa). The 
column size of the RC concrete frame is 23.6 in×23.6 in (600mm×600mm). All 
the columns in Figure 4 are connected to beams with moment connections. The 
lateral storey-stiffness of the lower structures is then calculated as kL=5.93×104

 

kip/ft (8.66×105 kN/m). The upper structure adopts a total length of 141.70 ft 
(43.2 m) CFS shear walls, which are sheathed with the double-sided 11mm OSB 
panel and of which the screw spacing is 4/12 in (100/300mm). The initial 
stiffness of the CFS shear wall can be approximated as 80.117 kip/ft per feet 
(3836 kN/m per meter) (Branston, 2004). Therefore, the storey-stiffness of the 
upper structure is kU=1.14×104

 kip/ft (1.66×105 kN/m). The storey-stiffness ratio 
rk=kL/kU=5.93/1.14=5.20. 

The building is located in Washington D.C and the soil condition for the 
building is assumed as Class B, with the building risk category being II. From 
Table 5, it is seen rk2stg=4.71 and rk2stg_ASCE=4.57. As rk>rk2stg and rk>rk2stg_ASCE, 
both the proposed improved and the code-specified two-stage analysis 
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Figure 4: Floor plan of lower RC structure 

procedures can be applied. The shear forces for each storey of the combined 
framing system calculated by the both procedures are shown in Figure 5 (a). 
From the figure, it is seen the shear force of the upper structure evaluated by the 
improve procedure is a good approximation to the accurate one which is 
obtained from elastic modal response spectrum analysis of the MDOF model. 
However, the two-stage analysis procedure prescribed in ASCE 7 
underestimates the shear force of the top storey by almost 20%. The main reason 
for such underestimation is that the procedure prescribed in ASCE 7 does not 
account for the amplification effect associated with the higher vibration mode 
interaction between the lower and upper structures. Based on the improved 
procedure, the additional amount shear force to be applied to the top storey Ft is 
about 18% of the base shear force of the upper structure obtained from elastic 
modal response spectrum analysis of the MDOF model. Without applying such a 
large magnitude of the additional top shear force, the procedure prescribed in 
ASCE 7 underestimates the top storey shear force considerably. In addition, 
since the ASCE 7 procedure adopts the ABSSUM rule to combine the peak 
modal responses, compared to results of the elastic modal response spectrum 
analysis of the MDOF model, the ASCE 7 overly estimated the shear forces for 
the first and second storeys of the lower structure by 100.2% and 95.1%, 
respectively, as shown in Figure 5 (a).  

5.2 Example 2 
The building in this example is the same as that of Example 1, except that this is 
a nine-storey building. The lateral load resisting system of the lower six-storey 
structure is the special RC moment frame whereas that of the upper three-storey 
is the CFS shear wall. The total length of CFS shear wall is 39.4 ft (12.0 m), 
which results in kU=3.17×103

 kip/ft (4.60×104 kN/m) and rk= 5.93/0.317=18.7. 

Assume the building is located in Log Angels, California. It is calculated that 
the critical storey-stiffness ratio prescribed in ASCE 7 is rk2stg-ASCE=17.2. As 
rk>17.2, ASCE 7 permits the two-stage analysis procedure to be applied to 
evaluate the seismic load of the building, and the corresponding results are 
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(b) Example 2 

Figure 5: Result comparisons of Example 1 and 2 

shown in Figure 5 (b) where the results of “accurate” are obtained frame elastic 
modal response analysis of MDOF model. From the figure, it is seen ASCE 7 
underestimates the shear forces for all storeys of the upper structure, of which 
the maximum error occurs at the base of the upper structure, being 18%. 

The primary reason for such underestimation is that ASCE 7 overly relaxes 
the stiffness requirement of the two-stage analysis procedure for the case 
Rm≥1.23, as stated in section 4.1. In fact, in accordance with the improved two-
stage analysis procedure presented in this study, rk2stg=81.41 based on Eq.(6), 
which is much greater than the stiffness requirement set by ASCE 7, i.e.,  
rk2stg-ASCE=17.2. As rk=18.7, which is less than rk2stg=81.41, the proposed 
improved two-stage analysis procedure is not applicable for this building as the 
interaction between the lower and upper structures in terms of mass and stiffness 
cannot be neglected for this particular case. The building should be analysed 
with elastic modal response spectrum analysis of the MDOF model or other 
dynamic-based analyses. 

6. Conclusions 

Presented in this study is an improved two-stage analysis procedure as well as a 
systematic evaluation of the existing one specified in ASCE 7 (ASCE, 2006; 
2010).The following conclusions are obtained from this study: 
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(1) For buildings that the applicable requirement of the proposed improved 
two-stage analysis procedure is satisfied, an additional top shear force should be 
applied to the top of upper structure to account for the higher vibration mode 
interaction between the lower and upper structures. Equations to compute the 
additional top shear force are provided. 

(2) Since the stiffness requirement of the code-specified two-stage analysis 
procedure may be overly-relaxed, ASCE 7 may underestimate the base shear 
force of the upper structure. 

(3) Compared to the two-stage analysis procedure prescribed in ASCE 7 
(ASCE, 2006; 2010), the proposed improved two-stage analysis procedure 
yields more accurate results. 
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Appendix A 
The lateral forces FU and FL for the simplified 2DOF model shown in Figure 1 (c) can be 
evaluated as follows (Chopra, 2007): 

( ) ( ) ( ) ( ) ( ) ( )2 22 2* * * *
1 1 2 2 1 2 1 22U U a U a U U a aF M S T M S T M M S T S Tρ= + +        (A.1) 

( ) ( ) ( ) ( ) ( ) ( )2 22 2* * * *
1 1 2 2 1 2 1 22L L a L a L L a aF M S T M S T M M S T S Tρ= + +        (A.2) 

where 𝑀𝑀𝑈𝑈1
∗ (𝑀𝑀𝐿𝐿1

∗ ) and 𝑀𝑀𝑈𝑈2
∗  (𝑀𝑀𝐿𝐿2

∗ ) are the effective modal masses of the upper (lower) 
structure associated with the first and second vibration modes, respectively; T1 and T2 are 
the periods of first and second vibration modes, respectively; and ρ is the correlation 
coefficient between first and second modes. Analytical expressions of the effective modal 
masses (𝑀𝑀𝑈𝑈1

∗ , 𝑀𝑀𝑈𝑈2
∗ , 𝑀𝑀𝐿𝐿1

∗  and 𝑀𝑀𝐿𝐿2
∗ ), periods (T1 and T2) and the correlation coefficient ρ 

can be derived by the eigenvalue analysis of the simplified 2DOF model (Yuan, 2015). 
Based on the eigenvalue analyses, it is found to ensure Eqs. (1) and (2) be satisfied 
simultaneously, the following three conditions should be satisfied simultaneously: 
(a)  𝑀𝑀𝑈𝑈1

∗ ≤ 1.1𝑀𝑀𝑈𝑈 , (b) 𝑀𝑀𝐿𝐿1
∗ ≤ 0.1𝑀𝑀𝐿𝐿  and (c) T1≤1.1TU. By further substituting the 

analytical expressions of 𝑀𝑀𝑈𝑈1
∗ , 𝑀𝑀𝐿𝐿1

∗  and T1 into the three conditions, the applicable 
requirement of the two-stage analysis procedure can be obtained. More details can be 
found in the research carried out by Yuan (2015). The derived requirement is Rk≥Rk2stg, 
where Rk2stg is expressed as shown in Eq.(5). 

Appendix - Notation 
mL(mU) storey-mass of the lower (upper) structure 
kL(kU) lateral storey-stiffness of the lower (upper) structure 
ML(MU) total mass of the lower (upper) structure 
KL(KU) overall stiffness of the lower (upper) structure 
NL(NU) number of the storey of the lower (upper) structure 
hLi (hUi) height from the base of the lower (upper) structure to the ith-level 
TL(TU) first mode period of the lower (upper) structure 
TsingL (TsingU) single storey-period  period of the lower (upper) structure 
VLb(VUb) base shear force of the lower (upper) structure 
VLi(VUi) shear force for the ith-storey of the lower (upper) structure 
FLi(FUi) lateral force for the ith-storey of the lower (upper) structure 
FL (FU) lateral force of the lower (upper) structure in the 2DOF model 
ω1 normalized first mode natural frequency of the uniform structure 
Rm (rm) overall (storey-) mass ratio between the lower and upper structures 
Rk (rk) overall (storey-) stiffness ratio between the lower and upper structures 
Sa response spectrum acceleration 

Ts period at which the horizontal and descending curves of the response 
spectrum in ASCE 7 intersects 

Rk2stg(rk2stg) overall (storey-) stiffness ratio of the two-stage analysis procedure 

γ the ratio between the applied additional top shear force and the base 
shear force of the upper structure 

γreg value of γ for a “regular” structure rigidly connected to the ground base 
γint value of γ resulted from the interaction of higher vibration modes  
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Seismic Modeling and Incremental Dynamic Analysis of the 
Cold-formed Steel Framed CFS-NEES Building 

J. Leng1, S.G. Buonopane2 and B.W. Schafer3 

Abstract 

The objective of this paper is to present seismic modeling of a two-story cold-
formed steel (CFS) framed building. The selected building, known as the CFS-
NEES building, was designed to current U.S. standards and then subjected to 
full-scale shake table tests under the U.S. National Science Foundation Network 
for Earthquake Engineering Simulation (NEES) program. Test results showed 
that the building’s stiffness and capacity was considerably higher than expected 
and the building suffered only non-structural damage and no permanent drift, 
even at maximum considered earthquake (per ASCE 7 and the selected 
California site) level. Past modeling, including that of the authors, largely 
focused on nonlinear hysteretic modeling of the shear walls. The test results 
indicate that additional building elements must be considered to develop an 
accurate characterization of the strength, stiffness, and ductility of the building. 
Advanced 3D models were developed in OpenSees to accurately depict the 
lateral response and included all structural and non-structural framing and 
sheathing, explicit diaphragm modeling, and nonlinear boundary conditions to 
capture bearing load paths This paper details the modeling techniques adopted 
and typical results including comparison with experiments. The impact of the 
various modeling assumptions on the results is also explored to provide a 
measure of system sensitivity. In addition, incremental dynamic analysis was 
performed on the building model and the results post-processed consistent with 
the FEMA P695 protocol. For the CFS-NEES building, designed to current 
standards, results indicate that the advanced model predicts an acceptable 
collapse margin ratio. In the future, the modeling protocols established here 
provide a means to analyze a suite of CFS-framed archetype buildings and 
provide further insight on seismic response modification coefficients.  

                                                
1 Postdoctoral Research Fellow, McGill University, (jiazhen.leng@mcgill.edu), 
formerly Graduate Research Assistant, Johns Hopkins University 
2 Associate Professor, Bucknell University, (sbuonopa@bucknell.edu) 
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Introduction 

This paper summarizes a multi-year effort in high-fidelity modeling, analysis 
and performance evaluation for the archetype building of the CFS-NEES project: 
Enabling Performance-Based Seismic Design of Multi-Story Cold-Formed Steel 
Structures, funded by he U.S. National Science Foundation (NSF) and the 
American Iron and Steel Institute (AISI). The goal of the project was to develop 
a system level perspective for the behavior of cold-formed steel (CFS) framed 
multi-story buildings under seismic load.  

The design of CFS lateral force resisting systems (LFRS) has largely been 
established by testing, as summarized by Peterman (Peterman et al. 2016b). The 
experimental effort of the CFS-NEES project focused on the lateral response of 
a full-scale two-story archetype building with all constructional details under 
Design Basis Earthquake (DBE) and Maximum Considered Earthquake (MCE) 
levels. Available findings on the system and its components from these tests are 
available (Peterman et al. 2016b; Peterman et al. 2016a). 

Compared with tests, there is an even greater need for the development of 
advanced computational models for CFS building lateral response. A number of 
previous models (Christovasilis et al. 2014; Fiorino et al. 2012; Fülöp and 
Dubina 2004; Shamim and Rogers 2012; Yu et al. 2014), including those from 
the authors (Leng et al. 2012; Leng et al. 2013), may lack sufficient fidelity for 
accurate predictions. Typically implemented in OpenSees or similar (McKenna 
2011) the shear walls, as the major standalone LFRS, are idealized as a 
nonlinear spring or a pair of nonlinear diagonal truss elements using test data; 
gravity systems are usually ignored and the diaphragm is simplified as a rigid 
element or ignored in favor of 2D models. The CFS-NEES testing provides a 
benchmark for the development of higher fidelity models.  

This paper highlights the CFS-NEES building modeling detailed in Leng’s 
dissertation (Leng 2015). After a brief review of the design, construction and 
testing of the CFS-NEES building, high fidelity modeling techniques for shear 
walls, gravity walls with and without sheathing, semi-rigid diaphragms and 
interior walls are addressed. The comparison between typical models and shake 
table results shows the developed models to be adequate. Incremental Dynamic 
Analysis (IDA) and performance evaluation of the CFS-NEES building with 
three different models shows the importance of modeling fidelity. Interpretation 
of the model results shed further light on the high lateral stiffness and capacity 
developed in the CFS-NEES building. The large predicted collapse margin ratio 
from the IDA analysis confirms the building’s safety under seismic load, but 
also leaves room for the potential of more efficient design.  
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Design, construction and testing of the CFS-NEES building 

The CFS-NEES building was designed as a two-story CFS-framed commercial 
building in Orange County, California in accordance with the International 
Building Code (IBC) (ICC 2009). The IBC specifies the load standard ASCE 7 
(ASCE 2005), the member standard AISI-S100 (AISI 2007), and the lateral 
seismic system standard AISI-S213 (AISI 2009). The structural system was 
designed by Devco Engineering, with input from the project team. Drawings, 
details, calculations and a design narrative are available (Madsen et al. 2011). 
The building featured ledger framing as the current state-of-the-practice in 
construction, as advocated by the Industrial Advisory Board. The structural 
system is shown in Figure 1(a). The selected LFRS uses OSB sheathed shear 
walls and diaphragms, from ASCE 7 this results in a seismic response 
modification coefficient R = 6.5, overstrength factor Ω0 = 3, and deflection 
amplification factor Cd = 4. The Type I shear walls use back-to-back 600S162-
54 chord studs, Simpson S/HDU6 holddowns, and 7/16 in. (1.11 cm) OSB 
fastened at 6 in. (15.24 cm) o.c.. Building dimensions were 49 ft 9 in. x 23 ft x 
19 ft 3 in. (15.2 m x 7 m x 5.8 m). The building was attached to thick HSS steel 
tubes as its foundation across two synchronized shake tables in the lab at the  
University at Buffalo. For Phase 1 only the structural system was constructed 
and tested up to the 100% Canoga Park ground motion in three axes (i.e. DBE-
level excitation Peterman 2014). The Phase 1 building was then demolished and 
the Phase 2 building was built and tested in several phases nondestructively 
before the final three-axial test on the complete Phase 2e building, see Figure 
1(b), under 100% Rinaldi record, i.e. MCE-level excitation (Peterman 2014). 
Intermediate stages in Phase 2 included (a) structural system only (nominally 
identical to Phase 1), (b) addition of exterior OSB, (c) addition of gypsum to the 
interior face of the exterior walls, (d) addition of non-structural interior 
partitions, ceilings, and stairs, (e) addition of exterior DensGlass. 

   
 (a) Phase 1 (structural components only) (b) Phase 2e (complete) 

Figure 1 Photos of the CFS-NEES building at the test site at University at 
Buffalo (taken by K.D. Peterman, as seen in (Peterman 2014)) 
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The design weight of the building was estimated to be 77500 lbs (35100 kg). 
Supplemental mass from concrete blocks and steel plates (see Figure 1(a)) were 
added and removed at different phases to keep the total mass constant. The 
building’s response was recorded by an extensive sensor array. A major 
observation from the tests is that the response benefitted greatly from 
components not normally assumed to contribute to the lateral resistance 
including gravity walls as well as non-structural sheathing and interior partitions. 
The first mode period in the long and short direction decreases by ~100% from 
Phase 1/2a to Phase 2e. The Phase 1 (structural only) building experienced less 
than 2% story drift and returned to vertical after DBE-level excitation. The 
Phase 2e (complete) building experienced less than 1% story drift at MCE-level 
excitation and damage only occurred in the interior non-structural walls 
(Peterman et al. 2016b). Further results and details available in Peterman (2014).  

High-fidelity OpenSees models of the CFS-NEES building 

An approach for high fidelity building modeling generally considered 
appropriate for seismic analysis is to make sure the key hysteretic nonlinearities 
in the LFRS are included. For example, the authors developed the model of 
Figure 2(a), labeled P-3D-RD-b where the shear walls were characterized using 
the best available information in practice (P), in 3D, with a rigid diaphragm 
(RD). (Later models preceded with an A- are at the state-of-the-art as opposed to 
the practice, and SD indicates a semi-rigid diaphragm). The P-3D-RD-b model 
predicts a first natural period of 0.66 s in the long direction, which is 2× that of  
the Phase 1 building and over 4× that of the Phase 2e building. The model also 
predicts collapse of the building due to large drift (Leng 2015). This discrepancy 
between reality and the best state-of-the-practice modeling motivated the high-
fidelity models shown in Figure 2(b)-(f). Details of the improved modeling 
details are provided in the following. 

Modeling of shear walls 
The shear walls are modeled using nonlinear diagonal truss elements, with 
Pinching4 models of the overall hysteretic behavior necessary, as opposed to 
elastic perfectly plastic (EPP) models previously shown as inappropriate (Leng 
et al. 2012). The P-models employ capacity and stiffness determined from AISI 
S213: strength per Table C2.1-3 (vnP=825 plf (12.04 kN/m) and VnP =vnPb) and 
stiffness based on deflection δ at 0.4VnP from Eq. C2.1-1. Hold-downs are 
modeled as pins (Figure 3(a)). The A-models employ strength from averaged 
test results (vnA=1013 plf (14.78 kN/m)) and the initial stiffness is calculated 
from δ at 0.2VnA. In the A-model hold-downs are explicitly modeled as a 
nonlinear spring (detailed later) and shear anchors at a spacing of 12 in. (30.48 
cm) are included in the model. 
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(a) P-3D-RD-b: shear walls modeled as 
nonlinear trusses, parameters set by capacities 
available in AISI S213/400. 

(b) A1-3D-RD-C: shear walls modeled as 
nonlinear trusses, parameters set by directly 
tested shear walls 

  
(c) A1-3D-SD-a for Phase 1/2a: same as 
(b) plus all gravity framing, distrib-uted 
mass, and elastic diaphragm 

(d) A2b-3D-SD-a for Phase 2b: same as (c) 
plus nonlinear truss elements for all 
exterior sheathing 

  
(e) A2c-3D-SD-a for Phase 2c: same as (d) 
with additional exterior nonlinear truss 
elements for gypsum 

(f) A2d-3D-RD-a for Phase 2d/2e: same as 
(e) with interior framing as nonlinear truss 
elements  

Figure 2 3D models of the CFS-NEES building with various fidelity levels 

The resulted shear wall model, Figure 3(b) was applied in a model later 
designated A1-3D-RD-c (Figure 2(b)); the difference between simulation and 
Phase 1 testing was reduced, but still significant. The authors determined that 
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the gravity framing, especially the deep ledger track, provided additional 
stiffness and introduced interaction between thee LFRS and even the bare steel 
gravity system that needed to be incorporated. To incorporate all members of the 
steel framing (Figure 2(c)) the shear wall is subdivided into subpanels that align 
with the framing, Figure 3(c), such that the whole wall shear response remains 
unchanged. This is completed by assuming the wall is in a state of pure shear 
and equating the whole wall shear strain to the subpanels, see Leng (2015) . 
 

 
 (a) State-of-the-practice (b) State-of-the-art, (c) State-of-the-art, 
  simplified refined 
Figure 3 Comparison of single story shear wall modeling strategies: from state-

of-the-practice to state-of-the-art models divided into subpanels 

The hold-down is a critical element and its modeling important to the shear wall 
response. For the A-models the stiffness data available for the S/HDU6 hold-
down (Simpson Strong-Tie Company Inc. 2013) provides tensile capacity and 
deflection at ASD and LRFD levels that are used to develop the multi-linear 
curve of Figure 4. The hold-down response is rigid in compression. For refined 
A-models, Figure 3(c), the hold-down is modeled as a pair of parallel spring 
elements since our experience shows highly unsymmetrical nonlinear backbone 
curves hampers convergence times. Pinching4 and EPP-Gap uniaxial materials 
model the tension and compression branch respectively. In free vibration and 
linear static analysis the linear hold-down stiffness is set so the linear model 
matches the nonlinear model at 0.2Vn, where Vn is the wall capacity.  

 
Figure 4 Response curve of nonlinear state-of-the-art hold-down models  
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Modeling of gravity system 
With the exception of the Figure 2(b) A-model, all of the studs and track that 
comprise the all-steel gravity system are explicitly modeled as beam-column 
elements in state-of-the-art (A-) models. Failure of the individual members must 
be included otherwise the building model will have an artificial residual strength 
and stiffness after the LFRS fails. Although recent work exists on non-linear 
hysteretic models for CFS members (Padilla-Llano et al. 2014; Padilla-Llano 
2015; Ayhan and Schafer 2012) a simpler approach using EPP models 
implemented with the OpenSees section aggregator are employed here as 
summarized in Table 1. The capacities for axial compression and bending 
moments consider local and distortional buckling failure (assuming continuous 
bracing for global buckling), and are determined per the Direct Strength Method 
in AISI S100. Axial-bending interaction is ignored; however pushover analysis 
results of 3D A-models show that failures are primarily axial force or single axis 
bending dominated (Leng 2015). Stud ends can transfer load in bearing, but are 
limited by the track bending and minimal capacity of intermittent shear anchors 
in uplift, this behavior is modeled using a spring element attached with multi-
linear uniaxial material (with no energy dissipation). 
 

Table 1 Uniaxial material types and properties in section aggregator of studs 
Load type Material type Stiffness Peak capacity 

Axial force, P EPP EA Tn (+), Pn (-) 
Strong axis moment, Mz EPP EIz Mnz 
Weak axis moment, My EPP EIy Mnyt (+),Mnyc (-) 

 
In Phase 2b the gravity walls are sheathed by OSB, and in Phase 2c with interior 
gypsum boards. Given the success with fastener-based models to predict shear 
wall stiffness and strength (Buonopane et al. 2015) this concept was extended to 
sheathed gravity walls. We developed fastener-based surrogate models of OSB 
and gypsum sheathed gravity walls (Bian et al. 2014; Bian et al. 2015b; Bian et 
al. 2015a) and then characterized (matched) the response using Pinching4 
material-based diagonal truss elements (Leng 2015). 

Modeling of semi-rigid diaphragms 
The semi-rigid diaphragm models of the floor and roof levels are shown in 
Figure 5. The models follow the out-to-out dimensions of the real diaphragms 
and include staircase openings. Sheathing is discretized into subpanels. Joists, 
ledger tracks and blocking are positioned 6 in. (15.24 cm) below the diaphragm 
plane, at their centroid, and connected using two-node link and rigid link 
elements so they have the same translations, but their three rotation DOFs are 
weakly coupled to approximate the connection stiffness between the deep CFS 
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joists and ledger tracks and sheathing panels (Leng 2015). Given a lack of test 
data for characterization of the Pinching4 material for the diaphragm subpanels, 
we used the response of 12 ft (3.66 m) x 9 ft (2.74 m) shear walls (with hold-
down deformation removed) as an estimate of the roof diaphragm with the same 
7/16 in. (1.11 cm) thick sheathing. For the floor diaphragm with 23/32 in. (1.83 
cm) thick sheathing, we interpolated based on the sheathing rigidity values from 
APA (2012). Comparison of the developed model with the AISI S213 deflection 
expression was reasonable (Leng 2015). 

   
 (a) Floor diaphragm (b) Roof diaphragm 

Figure 5 Semi-rigid diaphragm models  

Modeling of interior walls 
Surrogate fastener-based models using the method of Buonopane et al. (2015) 
were used to predict the lateral response of the interior gypsum sheathed walls 
and then modeled as nonlinear diagonal trusses (Leng 2015). The resulting 
interior wall models (interior of Figure 2(f)) are at the their exact locations in the 
floor plan. For interior walls on the floor level, the boundary condition of stud 
end bearing is set at the stud end nodes. No lateral constraints are applied, 
therefore interior walls cannot resist base shear, but can support exterior walls 
and thereby contributes to the LFRS. 

Distribution of seismic mass and gravity load  
P-models simply distribute the seismic mass on a floor equally to the corner 
nodes. The fully developed A-models equally distribute the self-weight mass to 
four corners and all supplemental mass is placed on the diaphragm and lumped 
to the joist ends (see Figure 2). Gravity load is applied separately and nodal 
gravity force is the mass multiplied by g. 

Comparison of high-fidelity models with full scale shake table tests 

The high-fidelity models in Figure 2(c) - (f) are exercised with free vibration 
analysis and nonlinear time history analysis and results are compared with full-
scale shake table tests. Excitations in the time history analysis are the 
experienced ground motion of the building specimen instead of the original 
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ground motion record since the experienced acceleration is different from the 
targeted acceleration despite shake table tuning (Peterman 2014). The damping 
ratio is taken as 5%, a value close to the building’s measured damping before 
damage. Comparison of natural period, story drift and hold-down load cells are 
provided herein, for detailed comparison and discussion see Leng (2015).  

Comparison of natural period 
Figure 6 plots the variation of first natural period at various phases, as predicted 
from system identification test of the building specimen (Peterman 2014) and 
from free vibration analysis of the model. Given the fixed mass, the ~50% drop 
of natural period from Phase 1/2a to Phase 2d/2e indicates a stiffness increase of 
~400%. In general, the model is able to predict this change. The model is 
modestly stiffer than the building in the short direction and more flexible in the 
long direction. The modeling procedure appears to successfully capture 
dominant sources of stiffness in the real building and the method to model 
nonstructural components, although heuristic with estimated response 
backbones, provides credible estimation of the building’s stiffness. 

 
Figure 6 Comparison of natural periods between model and test across phases 

Comparison of story drift 
Predicted vs. measured building story drift for the strong motion Phase 1 and 
Phase 2e tests in the long (u) and short (v) direction for the floor (subscript 1) 
and roof (subscript 2) are provided in the time histories of Figure 7. Figure 7(a) 
provides the response of the structural-only model: frequency and peak drift are 
in good, though not perfect agreement, formal comparison statistics appear in 
Leng (2015). The roof response in the model generally seems modestly stiffer 
than measured response perhaps due to simplifications made in modeling the 
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inter-story connections of the shear wall chord studs (see Peterman et al. 2016a 
for more on the response of this connection). Figure 7(b) indicates that the 
model (A2d-3D-RD-b) also provides an acceptable prediction of the complete 
building’s behavior under MCE excitation. Peak drift is within 30% and the 
model accurately predicts minimal residual drift. Taken together, the results 
indicate that a proper engineering model, without artificial calibration, can 
reasonably capture actual response.  

 
(a) Phase 1 test vs. A1-3D-SD-a model, 100% Canoga Park 

 
(b) Phase 2e test vs. A2d-3D-SD-a model, 100% Rinaldi 

Figure 7 Comparison of time history plots for story drift 
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Comparison of hold-down load cell forces 
In the testing a load cell is placed in the anchor bolt of the hold-downs that 
connect the shear wall chord studs to the foundation. The setup is pre-tensioned 
such that tension and only a modest amount of compression can be measured in 
the load cell. Pre-tensioning occurs after building construction so all measured 
loads are due to lateral loads, not gravity.  

A time history of pairs of hold-down load cells for two shear walls (LC5 and 
LC6 on shear wall L1S1 and LC7 and LC8 on shear wall L1W1, see the sensor 
plan in (Peterman 2014)) are compared with the models for Phase 1 strong 
motion testing in Figure 8. The match between the model and test is acceptable: 
in phase and similar maxima (note again the test data is one-sided only). Given 
that the shear walls only see a limited percentage of the total lateral load the 
match with the hold-down load cells gives confidence that the model is 
accurately distributing the demands to the shear walls as well as other elements. 
An example of the spatial distribution of the hold-down load cell forces at 
maximum drift are provided in Figure 9. Results indicate greater Type I 
(uncoupled) shear wall behavior in the model than observed in the test results. 

 
Figure 8 Comparison of history plots of selected load cells for  

Phase 1 test vs. A1-3D-SD-a model, 100% Canoga Park 
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 (a) Phase 1 test, 100% CNP (b) A1-3D-SD-a model, 100% CNP 

Figure 9 Comparison of hold-down load cell force distribution 

IDA and performance evaluation of the CFS-NEES building 

IDA, as proposed by Vamvatsikos and Cornell (2002) may be conceptualized as 
a dynamic extension of pushover analysis. Ground motions in a suite are linearly 
scaled and applied to nonlinear structural models until the detection of failure. 
Typically, peak story drift is chosen as the damage measure and the spectral 
acceleration of the first natural period of the structure as the intensity measure. 
IDA is the kernel for building performance evaluation per FEMA P695 (ATC 
2009) where acceptable collapse margin ratios (CMRs) are compared to IDA 
predicted median CMRs across an assigned suite of earthquake records. The 
procedure is usually performed on a number of different archetype designs to 
examine candidate response modification coefficients (R, Ωo, Cd). Here the 
procedure is applied to three different CFS-NEES building models: 3D state-of-
the-practice P-3D-RD-b (Figure 2(a)), and two 3D state-of-the-art models Phase 
1: A1-3D-SD-a (Figure 2(c)) and Phase 2b A2b-3D-SD-a (Figure 2(d)). 

IDA analysis results of the A1-3D-SD-a (structural system only) model are 
plotted in Figure 10(a) along with the proposed collapse criterion of 4% story 
drift selected based on shear wall tests (Liu et al. 2014). The empirical 
cumulative distribution function (CDF) of the collapse probability is developed 
from the Sa at 4% story drift, Figure 10(b). A lognormal CDF is fit to the data 
and the median collapse capacity SCT determined. The collapse margin ratio 
CMR=1.2SCT/SMT where SMT is from the ASCE 7 response spectrum at MCE 
intensity and the factor of 1.2 is applied to 3D analysis per 6.4.5 of FEMA P695. 
A spectral shape adjustment factor (SSF), as explained in 7.2.2 of FEMA P695, 
is then multiplied with CMR to obtain the adjusted CMR, or ACMR. The 
acceptable CMR accounts for the total uncertainty from the design requirements, 
test data, and modeling (see Chapter 3, 5, and 7 of FEMA P695). Since there is 
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only one archetype design, we selected the acceptable CMR as ACMR20% and 
compared it with ACMR. Results are tabulated in Table 2, and the analysis 
indicates the building is safe (passes) for a model that includes only the 
structural systems (Figure 2(c)).  

   
 (a) IDA curve, A1-3D-SD-a model (b) Fragility curve, A1-3D-SD-a model 

   
 (c) IDA curve, A2b-3D-SD-a model (d) Fragility curve, A2b-3D-SD-a model 

Figure 10 IDA and fragility curves of selected models 
 

Table 2 Summary of performance evaluation using three models 
Model Name CMR ACMR Accepted ACMR20% Pass/Fail 

A2b-3D-SD-a 2.01 2.67 1.52 Pass 
A1-3D-SD-a 1.39 1.85 1.56 Pass 
P-3D-RD-b 0.41 0.43 1.80 Fail 

 
The procedure is repeated for A2b-3D-SD-a (see Figure 10(c) and Figure 10(d)) 
and the P-3D-RD-b models. As shown in Table 2, performance evaluations 
using high-fidelity models pass the P695 procedure, but the state-of-the-practice 
model fails dramatically. Moreover, the results show that the building can pass 
P695 with only the structural components, and the addition of nonstructural 
components creates a large safety margin. The large margin suggests the design 
could be improved for efficiency. The results also show that high fidelity models 
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Ŝ C T= 1 .61g

SM T = 1 .39g

IDA results
Lognormal fit

0 1 2 3 4 5 6 7 8
0

1

2

3

4

5

6

7

Collapse Limit−State

IDA of A2b−3D−SD−a model, P695 record suite

Max interstory drift (%)

Fi
rs

t M
od

e 
Sp

ec
tu

ra
l A

cc
el

er
at

io
n 

Sa
 (g

)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

First Mode Spectral Acceleration Sa (g)

C
ol

la
ps

e 
Pr

ob
ab

ili
ty

Collapse fragility curve, collapse drift limit is 4%
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as described herein are necessary for meaningful predictions of the building’s 
behavior for performance evaluation. See Leng (2015) for additional results. 

Discussion 
 
It is always possible to improve one’s models, but an effort was made in the 
work herein to include all nonlinearities and model aspects crucial to the 
complete response of the building, but not more. FEMA P695 procedures 
demand more from a model than typical engineering analysis, particularly in 
buildings with complex system response such as repetitively framed CFS 
buildings. The match between the models and measured period, drift, and hold-
down forces is acceptable, but not perfect. Improvements in the modeling of the 
shear wall chord stud inter-story connections and ledger-to-joist connections 
may improve modeling accuracy. Additional attention to assumed damping may 
also be warranted given measured damping results. At a higher level, model 
validation and performance evaluation of the CFS-NEES building stress the 
crucial importance of advanced models. Only the high-fidelity models that 
include the LFRS, but also the gravity walls can accurately predict the 
building’s behavior under test ground motions and can pass the performance 
evaluation. The engineering idealization of isolated shear walls as the only 
element contributing to the LFRS has practical use, but is divorced from reality. 
New design paradigms that evaluate the entire building as a system are needed 
to incorporate this reality. Leng (2015) provides additional analysis in this 
direction including the predicted amount of base shear carried outside the LFRS. 

Conclusions 

Recent shake table testing of a full-scale two-story cold-formed steel (CFS) 
framed building as part of the CFS-NEES project demonstrated excellent 
performance, but also revealed that the gravity structural system as well as other 
non-structural finishes, partitions, and details contribute meaningfully to the 
response. Models of the CFS-NEES building, even with accurate nonlinear 
hysteretic characterization of the shear walls, but ignoring any lateral 
contribution from the gravity structural system or other non-structural details, do 
not agree well with the testing. Further, such models when evaluated with 
incremental dynamic analysis (IDA) do not have acceptable collapse margin 
ratios. A series of modeling advances were pursued to develop higher fidelity 
building models in OpenSees that explicitly included the unsheathed gravity 
framing and diaphragm framing along with bearing load paths that these systems 
allow. Model results for the complete structural system (shear walls and gravity 
framing, also tested as Phase 1) agree well with testing and demonstrate 
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acceptable collapse margin ratios via IDA. Further model refinement including 
the addition of all non-structural sheathing on exterior walls and all interior 
partitions also results in acceptable agreement with testing in terms of period, 
drift, and hold-down forces, and demonstrates collapse margin ratios with a 
considerable margin of safety. The models developed herein demonstrate that 
accurate nonlinear models of CFS-framed buildings are possible, enabling 
further investigation for seismic response modification coefficients used in 
design, and helping to realize seismic performance-based design for CFS-framed 
buildings. 
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Abstract 

 

 

Land subsidence phenomenon due to ground water withdrawal is a current 

problem in many places around the world, particularly in the shallows of 

Mexico. This causes ground differential settlements that affect structures, 

mainly dwellings and buildings based on reinforced concrete and masonry. 

Eventually, these structural materials do not exhibit an adequate performance 

beyond a certain level of angular distortion. This work presents the experimental 

and numerical results about a study regarding the performance of a full-scale 

thin-walled cold-formed steel building affected by angular distortions simulating 

ground differential settlements due to land subsidence. The experimental stage 

consisted in the design and construction of a laboratory facility (hidro-

mechanical device) which is able to reproduce differential settlements in 

laboratory as well as the construction of a full-scale one story building over this 

device, in order to test the building to differential settlements. The numerical 

stage consisted in modelling the building in non-linear structural analysis 

software, considering all the geometrical and mechanical properties, such as 

rotational stiffness, moment-rotation curves (based on the direct strength 

method), etc. A numerical non-linear static pull-down analysis was performed 

producing several degrees of angular distortion simulating the same differential 

ground settlements that the full-scale building constructed over the experimental 

device. The experimental and numerical results show that the structural 

performance of the tested building was very suitable in terms of ductility, since 

the structure was able to support large angular distortions without suffering 
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considerable damages. Lastly, using structures based on cold-formed steel 

would be suitable to reduce damages and guarantee structural safety in 

structures constructed in zones affected by ground settlement due to land 

subsidence. 

 

 

Introduction 

 

 

Ground failure associated with land subsidence is the primary geotechnical 

hazard in several cities in central Mexico (Arroyo et al 2004), that has caused 

enormous economic loss by damaging public and private properties, including 

dwellings. The damage caused by ground failures is variable and considerable, 

even though the local government is aware of this problem and has undertaken 

steps to mitigate ground failure-related damages. Active fracture zones 

associated with land subsidence induce displacements in buildings in the form of 

differential settlements, which cause damage to structural systems in dwellings, 

especially those based on masonry, because of their low capacity to absorb 

angular distortion.  

Cold-formed steel sections have instability problems because of the effects of 

certain buckling modes due to the slenderness of the section (Anapayan, 2012). 

One of the principal uses for this type of material is for structural frames in the 

form of modules, which are most commonly assembled using elements with 

edge-stiffened flanges and elements with simple flanges with different 

dimensions and gages. The majority of studies on cold-formed steel structures 

have been primarily focused on their performance under seismic events, e.g., the 

performance under lateral loads using non-linear static push-over analysis, as 

described in the specifications provided by the Applied Technology Center 

(ATC-40, 1996). However, few studies have focused on the case of cold-formed 

steel structures affected by ground settlement due to land subsidence 

phenomenon; therefore, conducting research on this issue is a priority for zones 

affected by land subsidence.  

Because of its mechanical properties, the structural performance of thin-walled 

cold-formed steel structures could allow large displacements to be absorbed 

without failing. In this report, the results of an experimental and numerical 

study, with the objective of assessing the performance of a full-scale thin-walled 

cold-formed steel building under angular distortion and simulating the 

differential ground settlements due to land subsidence phenomenon, is 

presented. 
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Experimental and numerical methodology 

 

 

Full-scale thin-walled cold-formed steel building subjected to vertical 

displacements. 

A full scale thin-walled cold-formed steel one-story building with 8 bearing 

walls of 2.5 m high was built. Figure 1 shows interior view of housing which 

was structured with simple channel section 350T125-33 elements (tracks) on the 

top and bottom parts of the frame and vertical stiffened channel section 

350S162-33 elements (studs). The center to center distance between the studs 

was 400 mm. Used as a sheathing material; a high-density expanded polystyrene 

panel with a thickness of 75 mm was inserted between the studs. The 

connections between the studs and the tracks were made using N° 8 flat head 

self-drilling screws with a longitude of 20 mm and applied to each joint; thus, 

four screws were used. To fasten the wall frames to the ground, “hold-down” 

type anchors at a right angle, constructed of steel plate A-36 of 4-mm thickness, 

were put in each bottom end of the frame; the anchors fastened the frame using 

14 self-drilling screws N° 10 that were 38 mm in longitude, and a steel screw A-

307 Gr. B with a diameter of 16 mm was used to anchor the frame to the ground.  

 

 

 

 
 

Figure 1.- Interior view of the cold-formed steel building 
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A double action hydraulic actuator with a 160 kN capacity connected to the 

ground was necessary to apply the monotonic vertical pull-down load on the 

bottom end of the frame, which was gradually increased to reach a 140 mm 

target vertical displacement. Measuring instruments were placed on the points of 

interest to evaluate the displacements for a total of 20 points distributed 

uniformly on the area of each frame. The average rate of load application was 

12.5 mm/min.  

Tests on lateral load in thin walled cold-formed steel wall frames were 

conducted to obtain information related to the mechanical performance of the 

wall in terms of the elastic rotational stiffness of the system to calibrate the 

parameters of the finite element models. 

 

 

Static non-linear pull-down analysis. 

The methodology followed in this study consisted on performing a non-linear 

pull-down analysis to a full scale thin-walled cold-formed steel one-story 

building affected by vertical displacement and simulating the effects produced 

by land subsidence, which develops gradually in buildings over the years. 

The pull-down analysis of a structure can be considered when one of its supports 

suffers a vertical displacement, generally downwards. The results for this type of 

analysis are similar to the results that occur when a static non-linear push-over is 

used; the only difference is the direction in which the displacements are 

evaluated. In the push-over analysis, the horizontal displacements are assessed; 

in the pull-down analysis, the focus is on the vertical displacements, which can 

be generated by different causes. An important parameter in this type of vertical 

displacement (settlement) is its rate, which depends on the landslide type or 

other phenomenon that affects the structure (Negelescu, 2010). A calibration of 

the model analysed was conducted based on all of the variables of influence, 

such as the aspect ratio, the gauge of the studs and tracks, the distance between 

the studs, the thickness of the sheathing, the elastic rotational stiffness and the 

mechanical properties of the materials involved, e.g., the modulus of elasticity 

and shear modulus. Afterwards several numerical simulations were performed 

using finite element software (SAP 2000) to verify that the numerical structural 

behaviour was equal to that of the experimental tests. Subsequently, the 

numerical pull-down analysis was performed on the virtual structural model by 

applying a gradual vertical monotonic incremental vertical displacement on the 

support (control joint), which simulated a differential settlement of the ground 

due to the land subsidence phenomenon.  

The angular distortion is the ratio between the displacement and the longitude of 

the analysed structural frame; neither the studs nor the wall frames supported 

any vertical or horizontal load.  
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The behaviour of the virtual model was assessed by obtaining the values of the 

moment dependent on the angular distortion for each step in the application of 

incremental displacement beyond the linear regime and adopting the following 

methodology: 

1. Building the virtual model of cold-formed steel without any type of 

sheathing in the non-linear analysis SAP 2000 software based on the 

geometry and number of elements (studs and tracks). 

2. Assigning properties: mechanical parameters of the materials (steel and 

sheathing), geometrical properties of the cross-section of cold-formed 

steel elements, applied loads and states of the load. 

3. Calibrating the virtual model to reproduce the structural behaviour with 

lateral loads based on experimental tests conducted for the expanded 

polystyrene system, which are based on elastic rotational stiffness 

values, elasticity and shear modulus.  

4. Assigning moment-rotation curves for distortional and local buckling 

on the ends of each stud to simulate plastic hinges (Ayhan, 2002) 

5. Configuring parameters for static non-linear pull-down analysis: 

maximum displacement, control joint and number of steps. 

6. Running non-linear analysis on the virtual model and processing the 

results. 

 

 

Results and analysis 

 

 

Experimental results. 

The experimental phase of housing prototype was carried out in three stages 

vertical displacement applied in the central part of the rear wall located at the 

North end of the building. Figure 2 shows the North wall during the 

experimental test. The cumulative total displacement was around 150 mm. The 

affected area by the pull-down effect corresponds to the West, Central , East and 

North walls. Figure 3 shows the structure and the location of the North and 

Central walls. Elements with the most significant damage were the Central and 

North walls. In the first phase of displacement (50 mm) damage and 

deformations due local buckling in bottom tracks were observed. The more 

affected tracks at this stage correspond with those located in the north and 

central walls, that connect at the point of application of displacements. In the 

second phase of displacement (100 mm accumulated), the polystyrene sheathing 

begins to detach from the metal structure without being broken. The diagonal 

bracing which at minimum vertical movements begin to bear and transmit 

tensile and compression forces. At this stage bending stresses are greatly 

enhanced by generating excessive deformations in bottom tracks. 
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Figure 2.- Detail of north wall during the experimental test 

 

 

 

 
 

Figure 3.- Structural layout of the building and location of north and central 

walls 
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This condition of stresses, coupled with the presence of stiffening elements such 

as studs and connecting plates, causes plastic hings mainly in those segments of 

walls that connect to the bearing wall (Figure 4).  

 

 

 
 

Figure 4.- Local failure of bottom track 

 

 

At the final stage (150 mm accumulated) some structural elements reached their 

maximum strength. Bottom tracks start to break at vulnerables areas near to 

bolted connections. Polystyrene sheathing completely breaks in top and bottom 

ends of walls affected and most of the connectors between slab and walls 

completely fail. 

 

 

Numerical results. 

The parameter used to evaluate the performance of studs in affected walls is the 

relative moment value (M/Mp), which measures the ability of the element to 

withstand bending moments in relation to the distortion applied in each of the 

walls.  
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According with this was observed that in the case of the north wall, the stud 416 

located at the point of application of displacement, distortion reached a value of 

12% to 58% of its bending capacity. In the case of Central wall stud 528 reached 

98% of capacity to a distortion value only 5%. The stud 531 achieves 100% 

capacity for a distortion of about 7%. The rest of the studs on each of the walls 

studied showed lower values than those listed in this paragraph. According to 

the numerical analysis we can see that the behavior of structural elements is 

excellent as it allows high levels of distortion, without elements reach fail. 

 

 

Conclusions 

 

 

The cold-formed steel structure with polystyrene sheathing presents a greater 

flexibility because it allows significant displacements (vertical settlement 

expressed as angular distortion) without suffering excessive damage in 

comparison with other materials; this result has been verified from a numerical 

standpoint by determining the relative moment. This construction system has an 

excellent behaviour when considering flexibility. Lastly, using structures based 

on cold-formed steel wall frames with polystyrene sheathing would be suitable 

to reduce damages and guarantee structural safety in housing structures 

constructed in zones affected by ground settlement due to land subsidence. 
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Design method for cold-formed thin-walled steel beams with 
built-up box section 

 
 

Ying-Lei Li1, Yuan-Qi Li1,2* 
 
 

Abstract: Built-up sections has been extensively used in cold-formed thin-walled 
steel structures. The structural behaviour and moment capacity of built-up box 
beams, which is consisted of nested C and U-sections, are the major concerns in 
this paper. A finite element model for built-up box beams was firstly developed 
and validated by existing test results. The effects of screw configuration and the 
global buckling behaviour of built-up box beams were investigated by parametric 
analysis. Then, the simple superposition method and equivalent cross-section 
method were introduced and adopted to estimate the moment capacity of built-up 
box beams bending about major or minor axis. Finally, a comparison was made 
between the predicted capacity and the numerical analysis results and the 
reasonability of these methods was assessed. 
 
Keywords: cold-formed thin-walled steel beams, built-up box section, numerical 
analysis, moment capacity, design method 

1 Introduction 
Built-up sections have been widely used in cold-formed thin-walled 

structures such as wall frames and floor openings. The main advantages of built-
up sections include: a) built-up sections have higher load-carrying capacities; b) 
most of the built-up sections are closed, doubly-symmetric cross-section shape 
and have much higher torsional stiffness than C and Z-sections; c) different shapes 
of built-up sections can be fabricated from one “standard” single section, which 
is beneficial for the industrialisation of building constructions; d) the connection 
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of built-up sectional components is convenient and reliable. Among the various 
types of built-up sections, built-up box beams, which are consisted of nested 
lipped channel sections (C-section) and channel sections (U-sections), are 
commonly used in floor openings (Fig. 1).  

 
Fig. 1 Application of built-up box beams in floor opening 

With respect to the capacity estimation of built-up box beams, the simple 
superposition method was suggested in the Standard for Cold-Formed Steel 
Framing - Prescriptive Method for One and Two Family (AISI S230 2012). The 
bending strength of the box-beam header in wall framing is based on two C-
section alone and the bending strength of box-beam header joist in floor opening 
is taken as the summation of moment capacity of the C-section and the track. 
Nevertheless, the equivalent section method was adopted in the Chinese code 
Technical specification for low-rise cold-formed thin-walled steel buildings (JGJ 
227 2011). The moment capacity of built-up box beam, which is composed of 
nested C and U-sections, is calculated based on the assumption that the flange is 
assumed as partial-stiffened element with summated thickness from C and U-
sections. 

Only limited researches have been conducted on cold-formed, thin-walled 
built-up box beams by now. Serrette (2004) tested 6 built-up box beams to 
evaluate their flexural and torsional response to eccentric loading. The built-up 
box section was composed of two toe-to-toe C-sections and two U-sections 
covering both top and bottom flanges of C-sections. Experimental results 
indicated that the eccentric load cannot be uniformly transferred to individual C-
sections and the moment capacity is at most 85%-90% of its fully braced 
calculated flexural capacity. Xu et al. (2009)  developed a finite element model 
for built-up box beams made of nested C and U sections, which was validated by 
the test results of Beshara and Lawson (2002) , and conducted a series of 
parametrical analysis. Xu’s analysis result showed that the flexural strength of 
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built-up box section under concentric load could be considered as the summation 
of individual components, while for the case of eccentric loading, this method 
would over-estimate the flexural strength. Jiang (2014) conducted four-point 
bending experimental investigation on lateral constrained built-up box beams 
consisted of nested C and U-sections. A total of 5 groups of beams with different 
section dimensions and screw spacing were tested. Experimental results indicated 
that increasing screw spacing from 300mm to 600mm did not impair the flexural 
strength obviously (2% decrease) and the tested moment capacity was higher than 
the capacity summation of individual C and U-sections due to the ‘built-up effect’. 

This paper mainly focuses on the structural behaviour and design methods of 
built-up box beams composed of nested C and U-sections (denoted as CU-section 
throughout this paper). A finite element model for built-up box beams was firstly 
developed and validated by the test results of Li (2014). The effects of screw 
configuration and the elastic lateral-torsional buckling behaviour of built-up box 
beams were investigated by parametric analysis. The simple superposition method 
and equivalent cross-section mothed were adopted to estimate the moment 
capacity of built-up box beams (bending about major or minor axis) with 
commonly used cross-section dimensions and the reasonability of these methods 
was also assessed.  

2 Experimental investigation (Li 2014) 
 In Li’s research (2014), 3 groups of built-up box beams bending about major 

axis (X axis) and 1 group of built-up box beams bending about minor axis (Y axis, 
lips in tension) were tested. Each group was consisted of two identical specimens. 
The cross-section dimensions are illustrated in Fig. 2. The nominal wall thickness 
of all the specimens is 1.2mm and the measured yield strength is 390.6MPa. 

 
                            (a) CU h×b×d×t – X                 (b) CU h×b×d×t - Y 

Fig. 2 Cross-section dimensions of built-up box beams (Li 2014) 

Four-point bending test was conducted on simply supported built-up box 
beams, in which an 800mm long pure bending portion was achieved (Fig. 3).  In 
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order to avoid the local failure at loading points, all specimens were strengthened 
at the loading points by covering a U-section on the top of the specimen. For 
beams bending about major axis, 4 pairs of braces were installed to restrain the 
out-of-plane deflection to avoid the occurrence of lateral-torsional buckling. 

 

 
Fig. 3 Test setup (Li 2014) 

In general, the failure mode of built-up box beams was local buckling (Fig. 
4). The built-up box beams bending about minor axis displayed much higher 
ductility than beams bending about major axis. The test results are summarised in 
Table 1, in which L0 is beam length, Pt is failure load (peak load recorded during 
the test), Dt is mid-span deflection corresponding to failure load, Mt is moment 
capacity, and Mt_ave is averaged moment capacity for each group. 

Table 1 Summary of test results (Li 2014) 

Specimen 
L0 

(mm) 
Pt 

(kN) 
Dt 

(mm) 
Mt 

(kN·m) 
Mt_ave 

(kN·m) 
Failure 
modea 

CU140×35×12×1.2-X-1 2495.2 14.7 22.5 6.23 
6.36 

L 

CU140×35×12×1.2-X-2 2494.3 15.3 24.9 6.49 L 

CU140×50×12×1.2-X-1 2493.8 14.6 18.8 6.17 
7.27c 

Lb 

CU140×50×12×1.2-X-2 2494.8 17.2 20.8 7.27 L 

CU140×65×12×1.2-X-1 2494.7 17.0 18.5 7.20 
7.07 

L 

CU140×65×12×1.2-X-2 2495.2 16.4 16.9 6.94 L 

CU140×50×12×1.2-Y-1 2618.8 4.9 66.7 2.24 
2.20 

L 

CU140×50×12×1.2-Y-2 2619.2 4.7 67.7 2.15 L 
a D-distortional buckling, L-local buckling. 
b Failure at loading point. 
c Result of CU140×50×12×1.2-X-1 is not included. 

898



     
             (a) CU140×65×12×1.2-X-1                            (b) CU140×50×12×1.2-Y-1 

Fig. 4 Typical failure modes 

3 Finite element modelling 

3.1 Modelling of specimens 
The commercial finite element software ANSYS was adopted in this paper 

to conduct numerical analysis. The SHELL181 element was selected to model the 
thin-walled members and the mesh size of element is 5mm×10mm. As reported 
in the test, no screw failure occurred for built-up sections. For simplicity, the 
effect of screw was accounted by coupling translational and rotational degrees of 
the nodes where screws were located in test beams. The multilinear stress-strain 
relationship, which was from the tensile coupon test, was adopted in the ANSYS 
model to consider the material nonlinearity. The surface-to-surface contact 
elements CONTA174 and TARGE170 were selected to simulate the interaction 
between overlapped flanges and between the lips of C section and webs of U 
section. The friction factor was set as zero and the thickness of the element was 
considered in order to help the convergence of the analysis. A typical ANSYS 
model is shown in Fig. 5. 

3.2 Boundary conditions and loads application 
In this paper, only the pure bending part of the beam was modelled. A rigid 

region was created at each end of the specimen and the master node was selected 
at the centre of the web of C section. The simple supported boundary condition 
was achieved by restraining the translational freedoms of the master nodes (Fig. 
5). 

The load was applied at the master node of the rigid region, which is different 
from load conditions during the test (Li 2014). However, a comparison between 
numerical analysis results and test results indicated that this difference would not 
affect moment capacity accuracy of FEM as the failure occurred within the pure 
bending part. For Eigen-buckling analysis the moment was applied at each master 
node, while for nonlinear collapse analysis, the displacement (rotation) was 
applied at each master node. In the nonlinear analysis, the Newton-Rapson 

899



method was adopted as the solution technique. The bending capacity was 
determined from the reaction moment at the master nodes. It should be noted that 
during the post-failure part, the reaction moments at the nodes possibly be 
different if the plastic hinge was not formed at the mid-span. However, little 
attention will be addressed on the post-failure behaviour in this paper. 

 

 
Fig. 5 ANSYS model 

3.3 Initial geometric imperfection 
The initial geometric imperfection was seeded into the perfect model by 

scaling the first eigenvalue buckling mode shape. In this research, the geometric 
imperfection was not measured due to the lack of appropriate measuring 
equipment. Based on the research of Zeinoddini and Schafer (2012), the 
magnitude of the imperfection was taken as 0.31 times of the plate thickness, 
which was in correspondence with 50% probability of exceedance. 

3.4 validation of finite element model 
A comparison between the tested results and numerical analysis results is 

summarized in Table 2, in which MA, Mt is the bending moment capacity from 
ANSYS and test, and DA, Dt is the mid-span deflection corresponding to the peak 
load from ANSYS and test, respectively. As shown in Table 2, the moment 
capacity obtained by FEM is in well agreement with the test results with MA/Mt 
mean of 1.01 and COV of 0.05. However, the mid-span deflection obtained by 
FEM is much less than the test results, which are mainly caused by the facts that 
only pure bending part was modelled in FEM and Dt is the deflection difference 
at mid-span and loading point of tested beams. The typical failure modes of built-
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up box beams are given in Fig. 6, which are similar to the observation during the 
test.  

Based on the above comparison, it can be concluded that the ANSYS model 
can accurately and reliably predict the moment capacity of built-up box beams 
and can be adopted in the following discussion. 

Table 2 Comparison between test results and numerical analysis results 

Specimen 
MA 
(kN·m)   

Mt 
(kN·m) 

MA/Mt 
DA  
(mm) 

Dt  
(mm) 

DA/Dt 

CU140×35×12×1.2-X-1 6.59 6.23 1.06 1.80 2.82 0.64 

CU140×35×12×1.2-X-2 6.75 6.49 1.04 1.99 3.38 0.59 

CU140×50×12×1.2-X-2 7.70 7.27 1.06 1.64 2.16 0.76 

CU140×65×12×1.2-X-1 6.70 7.20 0.93 1.53 1.81 0.84 

CU140×65×12×1.2-X-2 6.60 6.94 0.95 1.32 1.84 0.72 

CU140×50×12×1.2-Y-1 2.26 2.24 1.01 5.93 9.39 0.63 

CU140×50×12×1.2-Y-2 2.25 2.15 1.05 5.44 9.63 0.57 

Mean   1.01   0.68 

COV   0.05   0.13 

 

 
              (a) CU140×50×12×1.2-X-2                            (b) CU140×50×12×1.2-Y-1 

Fig. 6 Typical failure modes 

4 Discussion 

4.1 Effects of screw configuration 
The current design codes have not regulate the screw configuration for built-

up box beams. In engineering practice, the screws are commonly located at the 
mid-part of overlapped flanges (as shown in Fig. 2) and the spacing of screws 
ranges from 300mm to 600mm. This section mainly focuses on the effects of 
screw configuration on the moment capacity of built-up box beams. 
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A total of 8 types of screw configurations ( as shown in Fig. 7) are adopted 
for 800mm long built-up box beams under pure bending (CU140×35×12×1.2-X, 
CU140×65×12×1.2-X, CU140×35×12×1.2-Y). The moment capacities were 
obtained by finite element method and the results are summarised in Fig. 8.  

 

 
Fig. 7 Screw configurations 

 

  
Fig. 8 Effects of screw configuration 

As shown in Fig. 8, with the increase of screw spacing, the moment capacity 
of built-up box beams will decrease.  The influence of screw spacing is more 
obvious for beams bending about major axis (from CU140×35×12×1.2-X vs. 
CU140×35×12×1.2-Y) and for beams with large flange width (from 
CU140×35×12×1.2-X vs. CU140×65×12×1.2-X). An explanation for this is the 
screw can restrain the deformation of overlapped flanges. Specially, if the screw 
spacing increases from 300mm (screw configuration 5) to 600mm (screw 
configuration 8), the moment capacity decreases are 6%, 17% and 3% for 
specimen CU140×35×12×1.2-X, CU140×65×12×1.2-X, and CU140×35×12×1.2 
-Y respectively. A comparison between configuration 4, 5, 6, and 7 indicates that 
the built-up box beam with screw located at mid-span will not have obviously 
higher moment capacity than other beams with the same screw spacing but 
without screw located at mid-span. 
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4.2 Discussion on elastic lateral-torsional buckling 
It is well known that the lateral-torsional buckling strength of closed cross-

section is much higher than that of open cross-section. Therefor the lateral-
torsional buckling strength of built-up box beams shall be much higher than that 
of individual C-sectional beams. As the C and U-sectional components in built-
up sections are only connected by the screws at the middle part of flanges, it is 
assumed that the strength of built-up box beams (CU) should be less than that of 
equivalent box beams (□). 

The elastic critical lateral-torsional buckling moments (Mcre) of C-sectional 
beams and equivalent box sectional beams with different slenderness ratios (λy) 
are plotted in Fig. 9, in which Mcre is determined by AISI standards, My is yield 
moment, L is beam length, and ry is radii of gyration of cross-section about minor 
axis. The elastic lateral-torsional buckling moments of built-up box sectional 
beams, which are obtained from ANSYS Eigen-buckling analysis, are also plotted 
in Fig. 9. The cross-section dimensions of analysed beams are h=140mm, 
b=35mm, d=12mm, and t=4mm, so that the local and distortional buckling modes 
are avoided. 

As shown in Fig. 9, the elastic buckling moments of built-up box beams are 
much higher than the calculated elastic buckling moments of individual C-
sectional beams, but slightly less than that of box beams.  Based on AISI standards, 
if Mcre/My<2.78, the lateral-torsional buckling strength should be considered (i.e. 
nominal flexural strength is less than My).  Fig. 9 indicates that the lateral-torsional 
buckling should be considered if slenderness ratio is greater than 60 for C sections 
and if it is greater than 200 for built-up box sections. Therefore, the lateral-
torsional buckling resistance of built-up box beam can be significantly higher than 
that of individual C-sectional beams 
 

  
Fig. 9 Lateral-torsional buckling strength of typical cross-section dimensions 

(C140×35×12×4-X, CU140×35×12×4-X) 
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5 Design methods for built-up box beams 

5.1 Simple superposition method 
The simple superposition method shall only apply to built-up box beams 

bending about major axis. The moment capacity of built-up box beams is equal to 
the capacity summation of individual C-section and U-section. Three different 
codes are adopted herein to determine the moment capacity of C-sectional beams 
and U-sectional beams: 1) Chinese code (GB50018 2002); 2) effective width 
method (EWM) in AISI code (AISI S100 2012); 3) direct strength method (DSM) 
in AISI code (AISI S100 2012). A total of fifteen 800mm long built-up box beams 
are calculated in this paper and the cross-section dimensions of the beams are 
commonly used in engineering practice. The “real” capacity of the beams was the 
numerical capacity obtained by ANSYS analysis (denoted as “MA”) and the 
material properties is the same to the test of Li (2014). 

A comparison of the numerical capacity and the predicted capacity 
determined by the superposition method is reported in Table 3. The meaning of 
specimen label, taken “CU100×30×12×1-X” as an example, is built-up box beam 
with web height of 100mm, flange width of 30mm, lip width of 12mm, thickness 
of 1.0mm, and bending about major axis. As shown in Table 3, the superposition 
method can conservatively estimate the moment capacity of built-up box beams 
bending about major axis as the interaction between overlapped flanges was not 
considered in this method. The GB 50018 code is more conservative than AISI 
codes. It is necessary to mention that the distortional buckling was considered 
when using the effective width method (EWM) in AISI code.   

Table 3 Simple superposition method for built-up box beams bending about major axis 
(unit: kN·m) 

Specimen MA 
GB 50018  AISI EWM  AISI DSM 

M M/MA  M M/MA  M M/MA 

CU100×30×12×1-X 3.4 2.5 0.74  2.9 0.83  2.9 0.85 

CU100×50×12×1-X 3.8 2.6 0.68  3.0 0.80  3.0 0.80 

CU100×70×12×1-X 3.6 2.7 0.74  3.0 0.84  3.0 0.84 

CU150×50×14×2-X 17.3 13.1 0.76  14.6 0.84  15.4 0.89 

CU150×70×14×2-X 18.8 13.9 0.74  14.9 0.79  14.9 0.79 

CU150×90×14×2-X 19.2 14.4 0.75  15.0 0.78  15.0 0.78 

CU200×50×20×3-X 44.4 34.8 0.78  35.8 0.81  38.7 0.87 

CU200×100×20×3-X 54.8 40.7 0.74  43.3 0.79  43.3 0.79 

CU200×150×20×3-X 60.1 43.7 0.73  43.6 0.72  43.6 0.72 

CU80×40×15×2-X 7.0 5.7 0.81  5.5 0.79  6.3 0.89 
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CU140×50×20×2-X 16.2 12.4 0.76  13.7 0.84  14.4 0.89 

CU160×60×20×2-X 19.3 15.1 0.78  17.3 0.90  17.3 0.90 

CU180×70×20×2-X 24.3 17.6 0.73  20.2 0.83  20.2 0.83 

CU200×70×20×2-X 28.4 20.0 0.70  22.8 0.80  22.8 0.80 

CU220×75×20×2-X 31.9 22.4 0.70  25.7 0.81  25.7 0.81 

Mean   0.74   0.81   0.83 

COV   0.04   0.05   0.06 

 
For built-up box beams bending about minor axis, because the centroid axis 

of individual C and U-section will shift after “built-up” and the calculation of U-
section bending about minor axis is not reliable. It is not suggested to apply simple 
superposition method to built-up box beams bending about minor axis. 

5.2 Equivalent cross-section method 
In equivalent cross-section method, the built-up box section was regarded as 

box section and the interaction between the overlapped flanges was considered by 
assuming the overlapped flanges as fully stiffened elements with thickness of t (as 
shown in Fig.10).  

The specimens calculated in this Section is the same to those in Section 5.1. 
The comparison results using the Chinese code (GB50018 2002) and the EWM 
in AISI code (AISI S100 2012) are summarized in Table 4 and Table 5, in which 
Table 4 includes the specimens bending about major axis and Table 5 includes the 
specimens bending about minor axis. 

As shown in Table 4, the equivalent cross-section method can generally 
predict the moment capacity about major axis with desirable accuracy. The 
prediction is conservative for built-up box beams with narrow flanges but it is un-
conservative for beams with wide flanges. A reason for this is that the interaction 
effect (built-up effect) between overlapped flanges is relate to the flange width. 

For built-up box beams bending about minor axis (Table 5), the equivalent 
cross-section method is more conservative than beams bending about major axis. 
During the calculation, it is found that the overlapped webs under gradient stresses 
are fully effective. Therefore the conservative prediction is mainly caused by the 
effective width calculation of flanges, which is independent of the stiffening 
assumption of overlapped webs.  

Comparing to simple superposition method, the prediction by the equivalent 
cross-section method is more accurate (higher mean value of M/MA) but is more 
scattered (higher COV of M/MA). The capacity calculation using simple 
superposition method is more complicated as both the C and U-sections have to 
been calculated. The equivalent cross-section method is suggested by the authors 
to estimate the moment capacity of built-up box beams. Another advantage of this 
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method is that it can be potentially applied to more complicated built-up cross-
section shapes. 

 
Fig. 10 Element stiffening assumption in equivalent cross-section method 

Table 4 Equivalent cross-section method for built-up box beams bending about major 
axis (unit: kN·m) 

Specimen MA 
GB50018  AISI EWM 

M M/MA  M M/MA 

CU100×30×12×1-X 3.4 3.1 0.91  3.4 0.98 

CU100×50×12×1-X 3.8 3.8 0.99  4.3 1.13 

CU100×70×12×1-X 3.6 4.0 1.11  4.6 1.28 

CU150×50×14×2-X 17.3 16.5 0.95  16.7 0.96 

CU150×70×14×2-X 18.8 18.8 1.00  20.8 1.11 

CU150×90×14×2-X 19.2 20.8 1.08  22.8 1.19 

CU200×50×20×3-X 44.4 36.9 0.83  36.9 0.83 

CU200×100×20×3-X 54.8 53.7 0.98  58.4 1.07 

CU200×150×20×3-X 60.1 63.1 1.05  67.3 1.12 

CU80×40×15×2-X 7.0 6.1 0.86  6.1 0.86 

CU140×50×20×2-X 16.2 15.2 0.94  15.2 0.94 

CU160×60×20×2-X 19.3 19.1 0.99  20.5 1.06 

CU180×70×20×2-X 24.3 23.3 0.96  25.7 1.06 

CU200×70×20×2-X 28.4 26.4 0.93  29.1 1.02 

CU220×75×20×2-X 31.9 30.2 0.95  33.7 1.06 

Mean   0.97   1.04 

COV   0.07   0.11 
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Table 5 Equivalent cross-section method for built-up box beams bending about minor 
axis (unit: kN·m) 

Specimen MA 
GB50018  AISI EWM 

M M/MA  M M/MA 

CU100×30×12×1-Y 0.8 0.7 0.79  0.8 0.95 

CU100×50×12×1-Y 1.5 1.4 0.95  1.7 1.10 

CU100×70×12×1-Y 2.3 2.4 1.08  2.7 1.21 

CU150×50×14×2-Y 5.1 3.9 0.76  4.5 0.89 

CU150×70×14×2-Y 7.3 6.4 0.87  7.3 0.99 

CU150×90×14×2-Y 10.4 9.3 0.90  10.4 1.00 

CU200×50×20×3-Y 9.9 7.2 0.72  8.5 0.86 

CU200×100×20×3-Y 24.7 19.7 0.80  22.0 0.89 

CU200×150×20×3-Y 39.5 36.4 0.92  39.7 1.00 

CU80×40×15×2-Y 3.2 2.4 0.74  2.8 0.88 

CU140×50×20×2-Y 5.1 3.8 0.75  4.5 0.87 

CU160×60×20×2-Y 6.7 5.1 0.77  5.9 0.89 

CU180×70×20×2-Y 8.2 6.6 0.80  7.5 0.92 

CU200×70×20×2-Y 8.3 6.7 0.80  7.7 0.92 

CU220×75×20×2-Y 9.4 7.5 0.80  8.6 0.92 

Mean   0.83   0.95 

COV   0.11   0.10 

6 Conclusions 
The structural behaviour of built-up box beams under pure bending were 

investigated in this paper by the numerical analysis. Several conclusions can be 
made as following: 

1) The finite element model developed in this paper can be used to predict 
the moment capacity of built-up box beams bending about major or minor axis 
and the accuracy of the model has been validated by existing experimental results. 

2) With the increase of screw spacing, the moment capacity will decrease. 
The bending direction and flange width can also affect the amplitude of the 
decrease. 

3) The lateral-torsional buckling resistance of built-up box beams is much 
higher than that of individual C -sections. 

4) The simple superposition method is conservative to predict the moment 
capacity of built-up box beams bending about major axis. 
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5) The accuracy of the equivalent cross-section method is more desirable and 
the calculation using this method is less complicated than using simpler 
superposition method. Therefore, the equivalent cross-section method is 
suggested in this paper to prediction the flexural strength of built-up box beams 
consisted of nested C and U-sections. 
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An Archetype Mid-Rise Building for Novel Complete Cold-
formed Steel Buildings 
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Abstract 
 
This paper introduces an archetype mid-rise cold-formed steel (CFS) building 
that aids in assessing the limits of current structural solutions, particularly lateral 
force resisting systems, and also in the development of new CFS technologies. A 
unified archetype building provides a platform for comparing the performance 
of new lateral force resisting systems to existing ones. The study herein provides 
quantitative evaluation of the design limitations of a typical “complete” cold-
formed steel building (i.e. only cold-formed steel based elements are used for all 
gravity and lateral force resisting systems) at different heights (4 through 20 
stories) located in a high seismic zone. The primary focus is the seismic force 
resisting system, which is limited to shear wall systems detailed in AISI 
specifications. The archetype buildings are designed using ASCE7-10 for all 
required loads and load combinations; and the CFS framing systems are 
designed utilizing AISI specifications, particularly AISI-400-15. Limitations in 
the application of current specifications for designing mid-rise cold-formed steel 
buildings are provided, and the potential for further studies discussed.  
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Introduction 
 
Cold-formed steel (CFS) buildings are an effective solution for low and mid-rise 
structures (Schafer 2008, 2011).  Robust structural and non-structural 
performance, as well as ease, efficiency, and economy of CFS construction are 
all favorable characteristics for mid-rise construction. However, the potential of 
CFS systems has not been fully realized in the building industry at this time, 
especially for commercial and multi-family residential applications where CFS 
solutions are at their most efficient. 
 
Currently, CFS framing provides both the gravity and lateral load resisting 
system for low-rise buildings, but as building heights rise, other materials are 
often used for the lateral load resisting system such as reinforced masonry or 
concrete shear walls, mostly as core shear walls around the elevators or stair 
cases. Introducing multiple trades into the construction process can reduce the 
favorability and efficiency of CFS construction. Accordingly, a full archetype 
building using only CFS, representative of commercial and multi-family 
residential buildings, is needed to assess the limits of current structural 
solutions, particularly lateral load resisting systems. The archetype can also aid 
in the development and evaluation of new CFS technologies. New technologies 
may increase the performance of CFS buildings, and enable these building to be 
wholly constructed by systems similar to the ones indicated in the AISI S100 
(general specification), S240 (framing design specification), and S400 (seismic 
specification). A unified CFS archetype building is essential for comparing the 
performance of new lateral load resisting systems to existing ones, and also to 
assess the limitations of current design methods and solutions.  
 
To address these needs, an archetype building, representative of commercial and 
multi-family buildings, is selected. The building dimensions and loading 
assumptions are provided in detail to establish a unified suite of archetype 
buildings. The considered heights of the archetype building are 4, 6, 8, 10, 12, 
15, 18 and 20 stories. These heights are selected in order to find the limits of 
current design and to shed light on different aspects of mid- and high-rise CFS 
structural design; including: shear capacity of the walls, stiffness or drift, chord 
stud and diaphragm design, hold-down and ties, and anchor rods. The height 
limit of the archetype building is reported based on each design limit state and 
the potential to improve the existing design methods or available construction 
details are discussed. 
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Archetype Building 
 
A unified archetype building needs to be the representative of a particular 
construction method. Different architectural forms and performance 
requirements for buildings can result in quite complicated architectural shapes 
that may not be suitable for an archetype building. Accordingly, archetype 
buildings are typically simple buildings in term of geometrical shape, but they 
still represent a large number of buildings using a particular construction 
method. As an example, the full-scale two story archetype CFS building in the 
CFS-NEES project was designed as a small low-rise commercial building (see 
Fig. 1) with wholly CFS gravity and lateral load resisting systems, including 
ledger framing, lipped channel joists, OSB sheathed shear walls, built-up lipped 
channel chord studs, and OSB sheathed floors (see Fig. 2) (Schafer et al., 2014; 
Peterman et al., 2014; Peterman 2015). The designed buildings were subjected 
to extreme earthquake loads on a shake table with and without non-structural 
components, including non-structural sheathing (i.e. gypsum boards), interior 
drywalls, stairs, and exterior envelope (Peterman 2014).  
 

 
Fig. 1. Architectural drawings of the two-story archetype building in CFS-NEES. 

(Peterman 2014) 
 

 
Fig. 2. Structural system of the two-story archetype building in CFS-NEES. (Peterman 

2014) 

 13 

1.2 CFS-NEES building design 

The CFS-NEES building was designed by the engineering firm Devco (in particular Rob 

Madsen) in accordance with modern design and construction practices and as an attempt 

at a state-of-the-practice archetype building. The building structural system is an all-steel 

design for CFS-framed gravity walls and CFS-framed shear walls sheathed in oriented 

strand board (OSB) for the lateral force resisting shear walls. The building was designed 

assuming a hypothetical location of 520 W. Walnut Blvd, Orange, CA, USA (latitude 

33.8 degrees, longitude -117.86 degrees). Building dimensions (50 ft. x 23 ft. in plan, 19 

ft. in height) were limited by the shake table dimensions, bridged together with a 100.5 

inch extension with a bolted connection to the tables (bolts were not tightened or capped 

by a nut—this resulted in a soft connection between the shake tables and shake table 

bridge). Mader Construction Corporation of Alma, NY was contracted to build the 

structures and deconstruct them.  Designed to be a functioning office building, the 

building was designed with windows, doorways, and staircases (architectural drawing 

shown in Figure 1-3). 

 

Figure 1-3: Architectural drawings of the test specimen, demonstrating partition wall layout (note: half-
height partition walls on the west side of the building were constructed as full-height partition walls) 
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Since the CFS-NEES building is relatively small (dimensions were about 50 ft × 
23 ft in plan) to be considered as a mid-rise building (i.e. up to 20 stories or 
about 180 ft), a search has been performed to find larger candidates for the 
unified archetype building. Accordingly, a family of buildings has been found 
including hotels, residential buildings, and some commercial buildings that 
share a typical architectural plan. The plan includes repetitive rooms on both 
sides of a long hall way, two stair cases at the ends of the building, and a central 
elevator, as shown in Fig. 3. All perimeter walls, walls between rooms, and 
walls of the hallway are suitable places for placing gravity walls and lateral 
force resisting systems including shear walls or strap bracing.  
 

 
(a) 

 
(b) 

 
(c) 

Fig. 3. Typical hotel and residential building plans. (Courtesy of Nabil Rahman, DSi 
Engineering and Panel Systems Inc.)  

 
 

Accordingly, a similar building plan is also provided in Example-1 of the IBC 
SEAOC Structural/Seismic Design Manual Vol. 2: Four story wood light-frame 
structure (IBC, 2012) and has been adopted as a typical plan applicable for CFS 
construction (see Fig. 4). 
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Fig.4. The unified archetype building plan, elevation and shear wall layout. 
 

The buildings designed in this study (based on the unified archetype building) 
are sited in Irvine, CA (site class D) and are 116 ft × 48 ft in plan with a typical 
story height of 9.44 ft (Note, the original example for the archetype is a four-
story building). To design the buildings with different amounts of stories, the 
following parameters were presumed in accordance to ASCE 7 (ASCE 2010): 
Importance Factor, Ie=1, Acceleration Parameter at short periods, Ss=1.39, 
Spectral Response Acceleration Parameter at a period of 1s, Sl=0.5, Short Period 
Site-Coefficient, Fa=1 and Long-Period Site Coefficient, Fv=1.5.  
 
In general, the structural details of the building including lateral force resisting 
system (LFRS), and gravity framing is selected to be similar to the CFS-NEES 
archetype building. Accordingly, ledger framing is assumed and the LFRS 
mainly consists of Type I OSB (7/16 in.) sheathed shear walls, as designated in 
Fig. 4. Each shear wall is anchored by hold-downs at the ends only on the 
foundation, and ties or strap at floor levels are used to provide chord stud 
continuity. The parameters R (Response Modification Coefficient), Ωo (Over-
Strength Factor) and Cd (Deflection Amplification) were determined to be 6.5, 3 
and 4, respectively, per ASCE 7 Table 12.14-1 as Light-frame (cold-formed 
steel) walls sheathed with wood structural panels rated for shear resistance or 

A

B

C

D

E

F

H

Shear&Wall Width&(Ft)
A 21
B 21
C 5
D 10
E 4
F 20
H 6
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steel sheets. The maximum structural height of this type of building is 65 ft, 
which is equivalent to a 7-story building. Notably, the height limitation is not 
enforced in this study to find the limitations of current solutions. The effective 
seismic weight was based on the estimated weights of roof, floor and exterior 
walls (see Tables 1 and 2). A 1200 lb allowance for rooftop MEP has been 
included per each 2 stories (i.e., 2400 lb for a 4-story building). 

Table 1. Unit Weight of the dead load and live load 
Roof Weights:  Floor weights: 

Roofing + re-roof 5.0 psf  Flooring 1.0 psf 
Sheathing 2.5  Lt.wt. concrete 14 
Trusses 3  Sheathing 2.8 
Insulation + sprinklers 2.5  I-joist 4.0 
2layers gyp + misc 7  2 layers gyp + misc 8.2 

Dead load  20.0 psf  Dead load 30.0 psf 
Live load  20.0 psf  Live load 40.0 psf 

 
Table 2. Effective seismic weight of the 8 story building 

   
Dead Load 

(included in the effective weight)  Live Load 
(Not included) 

Level 
Height 
of each 
floor 

Assembly 
Unit 
Wt 
(psf) 

Area 
(ft2) 

Weight 
(kips) 

Story 
Wt 
(kips) 

 
Unit 
Wt 
(psf) 

Story 
Wt 
(kips) 

Roof 

14.75 
(to the 
centroid 
of the 
roof) 

Roof 20 5288 105.8 

157.3 

 20 

105.76 
Ext wall 15 1350 20.3  - 
Int wall 10 2644 26.4    
Rooftop 
MEP     4.8  - 

Typical 
floor 
Floor 

9.44 
Floor 30 5288 158.6 

258.0 
 40 

211.52 Ext wall 15 3100 46.5  - 
Int wall 10 5288 52.9  - 

Note: The vertical part of the wall in the last floor is assumed to be 8.25'. Half of the interior and 
exterior walls assigned to the upper floor and half to the lower floor. 

 
In this study, design of the gravity load framing system has not been explicitly 
included. However, certain steps have been provided to satisfy the important 
seismic requirements of the LFRS; including: shear wall analysis and design for 
shear demands, controlling the lateral drift of the structure; design of chord 
studs, hold-downs, and anchor bolts for the applied demands; and analysis and 
design of the diaphragms. Notably, gravity load effects do need to be 
considered, and are considered, in chord stud and hold-down demands. All 
elements have been designed using LRFD load combinations in ASCE 7 and 
LRFD design methods in AISI-S100 and AISI-S400. Due to the symmetric 



 
 
 
 
 
 

 

915 

geometry of the structure and for simplicity in the analysis, accidental 
eccentricity has not been considered in the archetype design, although it is 
mandated in ASCE 7. The accidental eccentricity would modestly change shear 
demands on the shear walls far from the rigidity center of the building and 
would need to be considered in the future. 
 

Table 3. Shear wall stiffness of the first floor of the 8-story building 
   Stiffness portion (%)   

Axis 
line 

Shear 
wall b (ft) k1 k2 k3 k4 

Stiffness 
(lb/in.) 

Relative stiffness 
of shear walls in 

the story (%) 
A H 6 9.2 17.4 46.0 27.4 6621 4.4 
B C 5 9.0 14.3 49.7 27.0 5436 3.7 
C A 21 7.5 49.9 20.2 22.4 18976 12.7 
E B 21 7.5 49.9 20.2 22.4 18976 12.7 
F B 21 7.5 49.9 20.2 22.4 18976 12.7 
G C 5 9.0 14.3 49.7 27.0 5436 3.7 
H H 6 9.2 17.4 46.0 27.4 6621 4.4 
         

1 E 4 8.8 11.1 53.9 26.2 4222 2.0 
1 D 10 9.1 28.7 35.2 27.0 10900 5.1 
2 F 20 7.7 48.5 21.0 22.8 18419 8.6 
3 F 20 7.7 48.5 21.0 22.8 18419 8.6 
4 E 4 8.8 11.1 53.9 26.2 4222 2.0 
4 D 10 9.1 28.7 35.2 27.0 10900 4.0 
Note: Stiffness potion of the walls. k1: Cantilever effect, k2: Sheathing shear deflection, k3: 

Nonlinear deflection, k4: Anchors deflection. k1 to k4 are representing four terms added together in 
AISI-S400-15 Eq. E1.4.1.4-1. 

 
 
Design of OSB Sheathed Shear Wall Systems 
 
OSB sheathed Type I shear walls (E1.3.1.1 in AISI-S400) have been sheathed 
on either one or both sides, and detailed with hold-down and anchors at each end 
of the wall segment. To distribute the lateral force between shear walls, the 
relative stiffness of the shear walls are estimated in Table 3 using the design 
deflection method provided in AISI-400-15 section E1.4.1.4. The lateral force at 
each story level is distributed between the walls based on the associated relative 
stiffness. 
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Fig. 5. Typical details of the CFS-NEES archetype building applicable to the unified 

archetype building: (a) Joist blocking and strapping detail; (b) Ledger-frame construction 
method; (c) Built-up chord studs and hold-downs; (d) Chord stud ties at the story level; 

(e) Bridging detail of the wall studs (Peterman 2015, Madsen et al. 2011).  
 
To meet strength requirements, the maximum thickness of the chord-studs and 
top and bottom tracks are assumed 97 mil, and 68 mil, respectively. However, in 
many cases lower thickness can be satisfactory for the design. To provide the 
required shear strength of the shear walls, different perimeter fastener spacing 
was selected (see Table 4). For instance, for perimeter #10 fasteners at 2 inches 
on center, the nominal shear strength of a one-sided CFS framed shear wall with 
7/16” OSB sheathing and appropriately sized chord studs is 3080 (lb/ft), where 
the thickness of the studs and tracks are more than 68mil per Table E1.3-1 of 
AISI-S400 to provide the required chord stud capacity as explained later (see 
Table 7). It should be noted that the chord stud thickness requirements 
sometimes contradicts the strength requirements and further investigation is 
required due to the limitation it places on current design. The capacity of the 
wall can be increased to two fold of the current capacity by adding a similar 
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ROLLED CHANNEL
(CRC)

1-1/2"x1-1/2"x54mil CLIP ANGLE
LENGTH = STUD WIDTH LESS 1/2"
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sheathing to the other side of the wall. All shear walls in this study are selected 
as having sheathing on both sides. As shown in Table 4, the ratio of v/(φvn) 
(shear demand to nominal shear strength) for all buildings and all different shear 
walls is satisfactory, using nominal shear capacities in the design specification. 
Notably, the design could be more optimized for some walls, but the results 
shows the basic applicability of the current design method for design of the 
archetype buildings. 
 

Table 4. v/(φvn) ratio of the first floor  
    Story 

Axis Wall W 
(ft) 

Thickness 
of OSB 

Sheathing 
(Number of 
sheathing) 

4 6 8 10 12 15 18 20 

 (number of sheathing)×Vn (lb/ft) 
(2) 

1230 
(2) 

1850 
(2) 

1850 
(2) 

2310 
(2) 

2310 
(2) 

2310 
(2) 

3080 
(2) 

3080 

Fastener spacing at panel Edges (in)- Screw #10 
6 4 4 3 3 3 2 2 

A H 6 (2) 7/16" 0.69 0.75 0.97 0.84 0.89 0.95 0.79 0.77 
B C 5 (2) 7/16" 0.67 0.70 0.96 0.83 0.88 0.94 0.79 0.77 
C A 21 (2) 7/16" 0.56 0.58 0.80 0.69 0.73 0.78 0.66 0.64 
E B 21 (2) 7/16" 0.56 0.58 0.80 0.69 0.73 0.78 0.66 0.64 
F B 21 (2) 7/16" 0.56 0.58 0.80 0.69 0.73 0.78 0.66 0.64 
G C 5 (2) 7/16" 0.67 0.70 0.96 0.83 0.88 0.94 0.79 0.77 
H H 6 (2) 7/16" 0.69 0.72 0.97 0.84 0.89 0.95 0.79 0.77 
   (2) 7/16"         

1 E 4 (2) 7/16" 0.23 0.25 0.34 0.30 0.31 0.34 0.28 0.28 
1 D 10 (2) 7/16" 0.52 0.54 0.74 0.64 0.67 0.72 0.60 0.59 
2 F 20 (2) 7/16" 0.40 0.41 0.56 0.49 0.52 0.56 0.47 0.46 
3 F 20 (2) 7/16" 0.40 0.41 0.56 0.49 0.52 0.56 0.47 0.46 
4 E 4 (2) 7/16" 0.23 0.25 0.34 0.30 0.31 0.34 0.28 0.28 
4 D 10 (2) 7/16" 0.52 0.54 0.74 0.64 0.67 0.72 0.60 0.59 

 
According to ASCE 7 the seismic story drift shall be limited to 0.025h for this 
type of structure, where h is the story height. Drift was determined based on 
AISI 400-15, including the drift resulting from cantilever actions of the wall, 
shear deformation of the sheathing, nonlinear deformation of the wall resulted 
from fastener nonlinear behavior, and hold-down and anchor deformation. The 
resulting lateral drift is amplified by Cd (Deflection Amplification) and 
compared to the 0.025h, per ASCE 7. As, shown in Table 5, all archetype 
buildings can satisfy the drift limitations using the current design methods. The 
provided drift ratios in Table 5 are calculated based on the stiffness of shear 
walls as provided in Table 3 for the 8-story building (as a sample). However, the 
available methods may not consider the actual behavior of a tall cantilever wall, 
where the stiffness has been separately calculated for each story and 
improvements may be needed in design for this case.  
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Table 5. Drift ratio for archetype buildings 
Number of Stories  4 6 8 10 12 15 18 20 

Maximum Drift  0.011 0.012 0.017 0.015 0.016 0.017 0.015 0.015 
 
 
Chord Stud Design 
 
Chords studs are primarily designed for axial load demands, including gravity 
loads and tension/compression induced by lateral demands, particularly 
earthquake in this study. Using sheathing on one side of the chord studs will 
result in eccentric axial loads demands and chord studs need to be designed for 
combined axial load and bending moments. However, this eccentric bending 
moment need not be considered, when both sides of the wall are sheathed. 
 
Chord studs are assumed to be back-to-back lipped channels, and the maximum 
practical size of the chord stud is considered to be a (rather large) back-to-back 
800S259-97 (AISI-S200-12 designation). For higher demands it is common to 
use more studs packed together, although the behavior and the load paths for 
stud packs are not well studied. In addition, the choice to allow up to 800S studs 
implies wall thickness that may require architectural changes from current 
practice, but are intended to illustrate the potential of such deeper studs.   
 
Table 6 summarizes chord stud demand analysis and design for the first story of 
the 4-story building. Chord studs of the first story include the gravity and 
seismic forces of the above stories. The chord studs have been designed for 
LRFD load combinations and also for expected seismic load combinations. For 
all chord studs, the expected seismic load combination governed the design. 

Table 6. Chord stud demand analysis and design of the first story of the 4-story building 
(Note: gravity and seismic forces include th effect of the above stories) 

           LRFD Expected 

Axis SW Pn
1 

(kip) 
v  

(lb/ft) 
vn 

(lb/ft) 
Pseis 
(kip) 

PDL 
(kip) 

PLL 
(kip) 

Pu
2

 
(kip) 

Pu-amp
3

 
(kip) 

Pu-exp
4

 
(kip) 

Pu/ 
φPn 

Min (3,4) / 
Pn 

A H 86.3 1015 2460 26.8 0.73 0.56 28.09 81.70 66.3 0.383 0.768 
B C 86.3 993 2460 26.2 0.73 0.56 27.52 79.98 66.2 0.375 0.768 
C A 86.3 834 2460 22.1 0.73 0.56 23.34 67.45 66.4 0.318 0.769 
E B 86.3 834 2460 22.1 0.73 0.56 23.34 67.45 66.4 0.318 0.769 
F B 86.3 834 2460 22.1 0.73 0.56 23.34 67.45 66.4 0.318 0.769 
G C 86.3 993 2460 26.2 0.73 0.56 27.52 79.98 66.2 0.375 0.768 
H H 86.3 1015 2460 26.8 0.73 0.56 28.09 81.70 66.3 0.383 0.768 
1 E 86.3 292 2460 7.7 3.91 3.01 14.62 30.03 71.8 0.199 0.348 
1 D 86.3 774 2460 20.5 3.91 3.01 27.37 68.28 71.9 0.373 0.791 
2 F 86.3 588 2460 15.5 4.82 3.71 24.08 55.18 73.6 0.328 0.639 
3 F 86.3 588 2460 15.5 4.82 3.71 24.08 55.18 73.6 0.328 0.639 
4 E 86.3 292 2460 7.7 3.95 3.038 14.69 30.09 71.9 0.200 0.349 
4 D 86.3 774 2460 20.5 3.95 3.038 27.44 68.34 72.0 0.374 0.792 

Nominal axial capacity of (2) 800S250-97; 2(1.2+0.2SDS)PDL+0.5PLL+ Pseis; 
3(1.2+0.2)PDL+0.5PLL+ΩΕPseis, where ΩΕ

 =Ωο =3.0; 4(1.2+0.2)PDL+0.5PLL+Pexp; φ=0.85. 
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Per AISI-S400 requirements, chord studs should be sized for the expected 
strength of the shear wall, but need not exceed the load effect including seismic 
loads with overstrength. Increasing the height of the building could increase the 
overturning moment on the shear walls. Accordingly, (2) 800S250-97, can only 
meet the requirements for 4-story building and for taller buildings a higher 
capacity member is required for the chord studs, as shown in Table 7. Thus 
chord stud capacity is an immediate and important limiting factor for taller CFS 
buildings. Currently, either packs of CFS studs, or HSS sections have been used 
to work around this limitation.  

Table 7. Chord stud and hold-down design summary   
Number of Stories 4 6 8 10 12 15 18 20 

Max chord stud size 800S250-97 Size>800S250-97 
Max hold-down size S/HD158 Size>S/HD158 

 
 
Tie and Hold-down Design 
 
Ties are used to transfer chord stud forces through the building floors. Hold-
downs connect the chord studs to the foundation. Both ties and hold-downs need 
to be designed for the expected strength of the shear wall, but need not exceed 
the load effect including seismic loads with overstrength, per AISI-S400. 
 
Table 8. Hold-downs demand analysis and design of the first story of the 4-story building 

(Note: gravity and seismic forces include th effect of the above stories) 
          LRFD Expected 

Axis SW Tn
1 

(kip) 
# of H-
downs 

Tseis 
(kip) 

PDL 
(kip) 

PLL 
(kip) 

Tu
2

 
(kip) 

Tu-amp
3

 
(kip) 

Tu-exp
4

 
(kip) 

Tu/ 
φTn 

Min (3,4) / 
Tn 

A H 42.4 2 26.8 0.73 0.56 25.81 79.42 62.51 0.43 0.737 
B C 42.4 2 26.2 0.73 0.56 25.30 77.77 62.58 0.42 0.738 
C A 42.4 2 22.1 0.73 0.56 20.09 64.20 59.18 0.34 0.697 
E B 42.4 2 22.1 0.73 0.56 20.09 64.20 59.18 0.34 0.697 
F B 42.4 2 22.1 0.73 0.56 20.09 64.20 59.18 0.34 0.697 
G C 42.4 2 26.2 0.73 0.56 25.30 77.77 62.58 0.42 0.738 
H H 42.4 2 26.8 0.73 0.56 25.81 79.42 62.51 0.43 0.737 
1 E 42.4 2 7.7 3.91 3.01 4.20 19.60 49.78 0.07 0.231 
1 D 42.4 2 20.5 3.91 3.01 16.56 57.46 57.25 0.28 0.675 
2 F 42.4 2 15.5 4.82 3.71 10.25 41.35 55.85 0.17 0.487 
3 F 42.4 2 15.5 4.82 3.71 10.25 41.35 55.85 0.17 0.487 
4 E 42.4 2 7.7 3.95 3.038 4.17 19.57 49.75 0.07 0.231 
4 D 42.4 2 20.5 3.95 3.038 16.53 57.43 57.22 0.28 0.674 

1Nominal capacity of one S/HD158 (a Simpson Strong-Tie product); 2(0.9-0.2SDS)PDL+ Tseis; 
2(0.9-0.2SDS)PDL+ΩΕTseis; , where ΩΕ

 =Ωο =3.0; 3(0.9-0.2SDS)PDL+Texp; φ=0.7. 
 
Ties (straps in Fig. 5 d) can be provided by flat plated connected to the web of 
the chord studs via required screws. There is no specific limitation for sizing the 
ties and accordingly, design of these elements is not reported herein. Notably, 
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using short straps may result in block shear failure of the connection in tension. 
Moreover, the shear lag between the flanges and web of the chord stud needs to 
be studied further for large-scale applications. The alternative of using 
continuous tie rods is possible, but not detailed in the archetype herein.   
 
Table 8 summarizes hold-down demand analysis and design for the first story of 
the 4-story building. Hold-downs have been designed for LRFD load 
combinations and also for expected seismic load combinations. For all chord 
studs, the expected seismic load combination governed the design. 

 

Fig. 6. Diaphragm analytical model for a unit distributed load of w=1 kip/ft. 
 
 
Diaphragm Design 
 
Floor diaphragms have been designed for the diaphragm design force, Fp, 
considering the minimum and maximum limitations, as required by ASCE 7. 
The diaphragm design force is applied as a distributed load (horizontal line load, 
wx, and wy) and the diaphragm is analyzed as a continuous beam on multiple 
supports, as shown in Fig. 6. The resulting maximum shear and moment of the 
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beam is used to design the diaphragm shear and diaphragm chord design, 
respectively. Notably, the analysis shown in Fig. 6 has been provided for a unit 
distributed load of 1 kip/ft and the results can be used for all buildings by 
scaling the associated shear force and bending moment to the applied demands 
on the diaphragms, such as wx and wy. 

The diaphragm design method is implemented in Table 9 for analysis and design 
of the 8-story building. The diaphragm has been designed using nominal shear 
capacity of 768 lb/ft provided in AISI-S400 as blocked 3/8 in. OSB floor 
sheathing and screw spacing at diaphragm boundary edges and at all continuous 
panel edges equal to 6 inches. 

Table 9. Diaphragm analysis and design for the 8-story building 

Long Direction 
Fp 

(lb) 
w 

(lb/ft) 
Vmax 
(kip) 

Mmax 
(kip-ft) 

vu 
(lb/ft) 

vn
1 

(lb/ft) vu/φvn 
Chord Force 

(kip) 
Roof 44111 380 6.1 29.1 127.0 768 0.28 0.61 
8th 66759 576 9.2 44.0 192.1 768 0.42 0.92 
7th 61384 529 8.5 40.5 176.7 768 0.38 0.84 
6th 56550 488 7.8 37.3 162.8 768 0.35 0.78 
5th 51903 447 7.2 34.2 149.4 768 0.32 0.71 
4th 49847 430 6.9 32.9 143.5 768 0.31 0.68 
3rd 49847 430 6.9 32.9 143.5 768 0.31 0.68 
2nd 49847 430 6.9 32.9 143.5 768 0.31 0.68 

Short Direction 
        

Roof 44111 919.0 11.7 39.9 101.1 768 0.22 0.34 
8th 66759 1390.8 17.8 60.3 153.1 768 0.33 0.52 
7th 61384 1278.8 16.3 55.5 140.8 768 0.31 0.48 
6th 56550 1178.1 15.0 51.1 129.7 768 0.28 0.44 
5th 51903 1081.3 13.8 46.9 119.0 768 0.26 0.40 
4th 49847 1038.5 13.3 45.0 114.3 768 0.25 0.39 
3rd 49847 1038.5 13.3 45.0 114.3 768 0.25 0.39 
2nd 49847 1038.5 13.3 45.0 114.3 768 0.25 0.39 

1AISI-S400-15. Table F2.4-1. φ=0.6. 
 
 
Discussion 
 
Dimensions and loading conditions of a unified archetype building are provided 
to help assessing the current design practice for mid-rise wholly cold-formed 
steel buildings and are intended to be used to evaluate novel structural systems 
for CFS construction. 
 
According to ASCE 7 the maximum height permissible for light-frame (cold-
formed steel) walls sheathed with wood structural panels rated for shear 
resistance or steel sheets is 65 ft. However, this limitation is not considered here 
in an effort to find the limitations of the current practice and to provide an 
archetype for innovative lateral load resisting system. Based on available 
solutions buildings up to 52.51 ft (4 stories, with typical story height of 9.44 ft) 



 
 
 
 
 
 

 

922 

were found to be possible and 200 ft (20 stories, with typical story height of 9.44 
ft) plausible with only minor improvements in technology or design. 
 
Shear capacity of the OSB sheathed shear walls provided in AISI-S400 could 
provide enough capacity for mid-rise buildings. As a measure of the amount of 
shear walls in the building, there is 1 ft of Type I shear wall per 35 ft2 of the 
building in the unified archetype building (note: CFS-NEES building had 1 ft of 
Type I shear wall per 39 ft2. This shows the archetype building has slightly more 
shear wall per plan area of the building). Obviously, providing less shear walls 
may lead to higher required shear capacity for individual shear walls and the 
capacity may be limited by the limitations of the design standard itself.  
 
The deflection equation in AISI-S400 does not consider the overturning effect in 
the multistory buildings and the equation is essentially provided for a one-story 
building (shear wall). Accordingly, a more mechanic based analytical model is 
required for multistory building to consider the system effects. 
 
Overturning moment at the base of the shear walls is a serious concern for 
multistory buildings that can affect design of chord studs, hold-down and anchor 
bolts. Moreover, the required demands on the foundations imply using mat or 
deep strip reinforced concrete foundations. The results shows that for even a 4-
story building, the chord studs are to be built-up lipped-channels as large as 
800S250-97. For higher demands more studs (stud packs) should be used. 
However, providing ties and hold-downs for more that two lipped channels is 
challenging. Using Type II shear walls may alleviate high axial demands on the 
chord studs; however, the load path and design method provided in the design 
standard for Type II shear walls has not practically examined for multistory 
building and more studies are required to understand the performance of these 
shear walls. 
 
A similar issue exists for the design of hold-downs, and anchor bolts, as well as 
the design for bearing. Available hold-downs are barely enough for a 4-story 
building (we just examined Simpson strong tie, herein and not independently 
designed/engineered hold-downs). The required associated anchor bolt would be 
also larger than the available anchors. High compressive loads of the chord studs 
may need a separate baseplate to spread the load over the concrete foundation 
and the common bottom track may not be enough. 
 
Diaphragm design showed that the intermediate shear walls (those that are not at 
the ends of the buildings) can effectively reduce shear and chord demands of the 
diaphragms. A simplified model, consisting of a continuous beam on multiple 
supports, is considered to analyze the diaphragms for in plane actions and the 
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results shows that diaphragms are not critical in design and may function as 
rigid diaphragms.  
 

 
Fig.7. Summary of the design results: maximum number of stories per design limit states 

 
 

Fig. 7 has summarized the result for all design buildings. Accordingly, providing 
high capacity chord studs, hold-downs, and anchors is required for enabling 
mid-rise and high-rise CFS constructions. Additionally, mechanics-based 
analytical models are required to model multi-story buildings and consider 
system effects.  
 
 
Conclusions 
 
Assessing current cold-formed steel (CFS) framing standards for mid-rise 
applications through a unified archetype building frame work sheds light on the 
potentials and limitations of the current practice to enable multistory CFS 
construction. Incorporating system effects in the analysis and design of mid-rise 
buildings in addition to high capacity shear walls that need high capacity chord 
studs, hold-downs, and anchors is needed to bring the efficiency of complete 
CFS construction (all systems framed from CFS) to mid-rise construction. 
  
 
Acknowledgements  
 
This work was funded by Cold-Formed Steel Research Consortium (CFSRC)-
Johns Hopkins University. Any opinions, findings, conclusions, or 
recommendations stated are those of the author(s) and do not necessarily reflect 
the views of the sponsor.  

 

0 
2 
4 
6 
8 

10 
12 
14 
16 
18 
20 

Story Drift Shear 
Capacity 

Chord Studs Ties/Hold 
downs 

Diaphragm 

St
or

ie
s 



 
 
 
 
 
 

 

924 

References 
 
AISI S100. (2012). North American specification for the design of cold-formed 
steel structural members. American Iron and Steel Institute, Washington, D.C. 

AISI S240  (2015). North American Standard for Cold-Formed Steel Structural 
Framing. American Iron and Steel Institute, Washington, D.C. 

AISI S400  (2015). North American Standard for Cold-Formed-Lateral Design. 
American Iron and Steel Institute, Washington, D.C. 

ASCE. (2010). “ASCE 7: Minimum Design Loads for Buildings and Other 
Structures.” ASCE Standard. American Society of Civil Engineers. 

IBC 2012. (2012). IBC SEAOC Structural/Seismic Design Manual Vol. 2: Four 
story wood light-frame structure. International code council. 

Madsen, R.L., Nakata, N., Schafer, B.W. (2011) “CFS-NEES Building 
Structural Design Narrative”, Research Report, RR01, access at 
www.ce.jhu.edu/cfsness, October 2011, revised RR01b April 2012, revised 
RR01c May 2012.  

Peterman, K.D., (2014). “Behavior of full-scale cold-formed steel buildings 
under seismic excitations. PhD Dissertation.” Johns Hopkins University.  

Peterman, K.D., Schafer, B.W., Madsen, R.L., Buanopane, S., Nakata, N. 
(2014). "Experimental Performance of Full-Scale Cold-Formed Steel Buildings 
Under Seismic Excitations", Network for Earthquake Engineering Simulation 
(distributor), Dataset, DOI:10.4231/D3DB7VR05  

Schafer, B. W. (2008). “Review: The Direct Strength Method of cold-formed 
steel member design.” Journal of Constructional Steel Research, 64(7-8), 766–
778. 

Schafer, B. W. (2011). “Cold-formed steel structures around the world.” Steel 
Construction 4.3, 141-149. 

Schafer, B.W., Ayhan, D., Leng, J., Liu, P., Padilla-Llano, D., Peterman, K.D., 
Stehman, M., Buonopane, S.G., Eatherton, M., Madsen, R., Manley, B., Moen, 
C.D., Nakata, N., Rogers, C., Yu, C. (2014). “The CFS-NEES Effort: 
Advancing Cold-Formed Steel Earthquake Engineering.” 10th U.S. National 
Conf. on Earthquake Engineering, Anchorage, Alaska. 11pp.  


	Wei-Wen Yu International Specialty Conference on Cold-Formed Steel Structures 2016: Recent Research and Developments in Cold-Formed Steel Structures
	Recommended Citation


