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Unconstrained cross-sectional shape optimisation of cold-
formed steel beams and beam-columns 

 

Bin Wang1, Benoit P. Gilbert2, Guillaume L. Bosco3, Hong Guan4  
and Lip H. Teh5 

 

Abstract 
 

This paper is focused on optimising the cross-sectional shapes of simply-
supported, singly-symmetric and open-section cold-formed steel (CFS) beams 
and beam-columns without manufacturing or assembly constraints. A previously 
developed Genetic Algorithm (GA) is used in this study. Fully restrained and 
unrestrained beams against lateral deflection and twist, as well as unrestrained 
beam-columns are optimised, of which the nominal member capacities are 
determined by the Direct Strength Method (DSM). The optimised cross-
sectional shapes are presented and the evolution of the unrestrained cross-
sectional shapes for various combinations of axial load and bending moment is 
analysed and discussed.  
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1 Introduction 
 

Cold-formed steel (CFS) members are widely used in the construction industry 
due to their ease of erection and low weight-to-capacity ratio (Hancock, 2007). 
They can be roll-formed to any desired cross-sectional shapes at room 
temperature. Shape optimisation of CFS profiles is therefore currently gaining 
significant interests. Nevertheless, research on shape optimisation of CFS 
members has been restricted to columns with unconstrained (Gilbert et al., 
2012b, Leng et al., 2011, Liu et al., 2004, Madeira et al., 2015, Moharrami et al., 
2014) and constrained (Franco et al., 2014, Leng et al., 2012, 2013, Leng et al., 
2014, Wang et al., 2016 (Submitted)) problems. Amongst limited effort on shape 
optimisation of CFS beams, the up-to-date research has been primarily 
performed by algorithms that aimed at optimising the dimensions of a given 
cross-section rather than optimising the cross-sectional shape itself, see Adeli 
and Karim (1997), Karim and Adeli (1999), Lee et al. (2005), Magnucki et al. 
(2006), Tran and Li (2006) and Ye et al. (2016) for instance. Shape optimisation 
of thin-walled beams has been performed to a certain extent (Gilbert et al., 
2012a, Sharafi et al., 2014), but only to maximise the second moments of area 
and minimise the cross-sectional area. 
 

This paper aims at optimising the cross-sectional shapes of unconstrained (no 
manufacturing and assembly constraints) CFS beams and beam-columns by 
minimising their cross-sectional area for various combinations of axial 
compressive load and bending moment. Unconstrained optimisation problems 
allow the “absolute” optimised cross-sectional shape to be discovered. This 
outcome will be used for future reference when comparing with the optimised 
cross-sectional shape taking into account manufacturing and assembly 
constraints. The present work thus represents an important step in shape 
optimisation of practical CFS sections. An existing shape optimisation algorithm 
(Gilbert et al., 2012 (a, b)) is used for this purpose. The Direct Strength Method 
(DSM) (Schafer, 2008) is used to calculate the nominal axial compressive and 
bending capacities of the cross-sections. The algorithm is applied to beams that 
are either fully restrained or free from lateral deflection and twist, and 
unrestrained beam-columns. The optimised cross-sectional shapes are presented 
and the evolution of the unrestrained shapes for various combinations of axial 
load and bending moment is analysed and discussed. 
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2 The shape-optimisation algorithm 
 

In this study, the “self-shape” optimisation-based genetic algorithm (GA) for 
CFS members, for which the principles are published in Gilbert et al. (2012a) 
and its applications to singly-symmetric and open cross-sections are presented in 
Gilbert et al. (2012b), is used. The three fundamental buckling modes, i.e. local, 
distortional and global, are incorporated into the algorithm through the use of 
the DSM. The rules to automatically determine the elastic local and distortional 
buckling stresses in compression in an open source CUFSM (Cornell University 
Finite Strip Method) (Schafer and Ádány, 2006), proposed by Gilbert et al. 
(2012b), have been verified for bending in Wang et al. (2016). When compared 
to a manual method (Schafer, 2006), the rules were found to accurately predict 
the elastic local and distortional buckling stresses for bending. More information 
and full details of the algorithm are available elsewhere (Gilbert et al., 2012a, 
Gilbert et al., 2012b, Wang et al., 2016).  
 

3 The optimisation problem 
 

 
Fig. 1: Optimisation problem 

 

The “self-shape” optimisation algorithm is used herein to optimise simply-
supported, free-to-warp, singly-symmetric and open-section beams and beam-
columns. The yield stress fy of the steel is 6.5×104 psi (450 MPa), the Young’s 
modulus E is 2.9×107 psi (200 GPa) and the shear modulus G is 1.2×107 psi (80 
GPa). The wall thickness t is taken as 0.047 inch (1.2 mm). The member is 
subjected to a compressive axial load N* and a uniform bending moment M* 
about its axis of symmetry (x-axis). The optimisation problem is illustrated in 
Fig. 1. 
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In reference to Fig. 1, the member length L is fixed at 59 inch (1.5 m) 
throughout this study. Five main load cases (LC1 to LC5) are considered to 
investigate the optimum cross-sectional shapes of simply-supported beams, 
columns and beam-columns: 

• LC1: Pure bending (N* = 0 and M* = 1844 lbf·ft (2.5 kN·m)) for a fully 
restrained beam, (i.e. Ley = Lez = 0, where Ley and Lez are the effective 
buckling lengths for bending about the y-axis and for twisting about the 
longitudinal z-axis, respectively). 

• LC2: Same moment as LC1 but for an unrestrained beam (i.e. Ley = Lez = 
L = 59 inch (1.5 m)). 

• LC3: Pure axial compression (N* = 16861 lbf (75 kN) and M* = 0) for an 
unrestrained column (i.e. Lex = Ley = Lez = L = 59 inch (1.5 m), where Lex 
is the effective buckling length for bending about the axis of symmetry). 
This case has already been investigated in (Wang et al., 2016 
(Submitted)) and the relevant outcomes are used in this study. 

• LC4: Combined actions for an unrestrained beam-column with dominant 
bending. N* is taken as 1/3 of the axial compressive load in LC3 and M* 

as 2/3 of the bending moment in LC2 (N* = 5620 lbf (25 kN) and M* = 
1232 lbf·ft (1.67 kN·m)). 

• LC5: Combined actions for an unrestrained beam-column with dominant 
axial compression. N* is taken as 2/3 of the axial compressive load in 
LC3 and M* as 1/3 of the bending moment in LC2 (N* = 11241 lbf (50 
kN) and M* = 612 lbf·ft (0.83 kN·m)). 

 

While 10 runs are performed for each of the abovementioned five load cases to 
verify the robustness of the algorithm, two additional load cases (LC6 and LC7), 
only analysed over 4 runs, are performed to better understand the optimised 
cross-sectional shapes:  

• LC6: Combined actions for an unrestrained beam-column with the same 
axial load as LC4 but a lower bending moment M* of 737 lbf·ft (1 
kN·m). 

• LC7: Combined actions for an unrestrained beam-column with the same 
axial load as LC5 but a lower bending moment M* of 369 lbf·ft (0.5 
kN·m). 

 
 
As cold-rolled steel coil can usually be ordered in any width, the approach is to 
mimic a CFS manufacturer who wants to optimise the cross-sectional shape 
against a given design loading combination. The unconstrained problem in the 
GA consists of minimising the cross-sectional area As subject to an inequality 
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penalty function on N* and M*. The interaction equation described in Clause 3.5 
of the Australian cold-formed steel design specification AS/NZS 4600 
(Standards Australia, 2005) is used as the penalty function, 
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where φc and φb are the capacity reduction factors, taken as 1.0 in this study. Nc 
and Mb are the nominal member capacities in compression and bending, 
respectively, evaluated in Wang et al. (2016). The fitness function f in the GA is 
then expressed as, 
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where Aref is the reference area of similar value to the optimised cross-sectional 
area. Aref is estimated herein with preliminary runs and is taken as 0.30 inch2 
(190 mm2) for LC1, 0.45 inch2 (292 mm2) for LC3 (Wang et al., 2016 
(Submitted)), and 0.40 inch2 (260 mm2) for other cases. α is a penalty factor 
(Holland, 1975). To avoid ill-conditioning problem, the AL constraint-handling 
method developed by Adeli and Cheng (1994) for the GA is used herein. The 
fitness function f becomes, 
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where γ is the penalty function coefficient, and µ is the real parameter associated 
with the penalty function. Initial values of γ = 2.0 and μ = 0 found in Gilbert et 
al. (2012a) are used. Similar to Gilbert et al. (2012a), the AL penalty increasing 
constant β and convergence rate ρ are set to 1.05 and 1.5, respectively.  
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In this study, 500 cross-sections are analysed per generation and the algorithm 
converges in less than 60 generations (see Section 4.1). Therefore, a maximum 
of 30,000 solutions in total are analysed per run, this is similar to the 40,000 
solutions analysed per run in Leng et al. (2011), Madeira et al. (2015). The 
design space is set to 100 mm × 100 mm. The cross-sections are composed of 
consecutive elements having nominal length of 4 mm. The probabilities of 
cross-over and mutation operators are equal to 80% and 1%, respectively. 
 

4 Results and discussions 
 

4.1 Convergence 
 

Fig. 2 shows the average fitness functions f in Eq. (2) for load cases 1 to 5, with 
α = 10, times Aref /As over 10 runs. Load cases 6 to 7 present similar average 
fitness functions to the ones presented in Fig. 2. The ratio Aref /As, where As is the 
optimised cross-sectional area reported in Section 4.2, enables comparisons of 
the convergence performance among the five load cases. The algorithm always 
converges to an optimised solution for all load cases in about 50 generations. 
The convergence rates of beams and beam-columns are similar to each other.  
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(1) LC3 is given in Wang et al. (2016 (Submitted)). 

 
Fig. 2: Average fitness f times Aref/As over 10 runs 

 

4.2 Average results 
 

Table 1 summarises the average results over 10 runs for load cases 1 to 5 and 4 
runs for load cases 6 to 7. The algorithm consistently satisfies the strength ratio 
criteria and converges to consistent solutions with small CoVs on the cross-
sectional area (maximum of 0.34% for LC4). This confirms the robustness of the 
algorithm. For LC1 and LC2 (pure bending), the average nominal member 
moment capacity Mb is constantly equal to the target bending moment M* = 1844 
lbf·ft (2.5 kN·m) with a maximum CoV of 0.42% for LC2. The average 
optimised cross-sectional area (As = 0.29 inch2 (189.2 mm2)) of the fully 
restrained beams for LC1 is about 20% smaller than the same of the unrestrained 
beams for LC2 (As = 0.37 inch2 (235.2 mm2)). For the beam-columns (LC4 to 
LC7), the interaction equation in Eq. (1) provides an average action-to-capacity 
ratio of 1.00 with a maximum CoV of 0.45% for LC7. 
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Table 1: Average results for all load cases 

Load 
cases 

Cross-sectional 
area 

Nominal 
member 
capacity 

in compression 

Nominal 
member 
moment 
capacity 

Combined 
Capacity 

 ratio 

As 
(inch2) 
(mm2) 

CoV 
(%) 

Nc 
(lbf) 
(kN) 

CoV 
(%) 

Mb 
(lbf·ft) 
(kN·m) 

CoV 
(%) 

N*/Nc 
+ 

M*/Mb 

CoV 
(%) 

LC1(2) 0.29 
(189.2) 0.19 - - 1,844 

(2.50) 0.39 - - 

LC2(2) 0.37 
(235.2) 0.18 - - 1,844 

(2.50) 0.42 - - 

LC3(1,2)  0.45 
(289.1) 0.31 16,863 

(75.01) 0.05 - - - - 

LC4(2) 0.41 
(264.4) 0.34 12,454 

(55.40) 2.94 2,242 
(3.04) 2.47 1.00 0.38 

LC5(2) 0.44 
(281.8) 0.33 15,460 

(68.77) 2.20 2,286 
(3.10) 6.49 1.00 0.36 

LC6(3) 0.37 
(237.6) 0.30 10,337 

(45.98) 1.25 1,623 
(2.20) 1.32 1.00 0.16 

LC7(3) 0.44 
(266.0) 0.12 13,974 

(62.16) 1.26 1,940 
(2.63) 4.70 0.99 0.45 

(1) LC3 is given in (Wang et al., 2016 (Submitted)). 
(2) Average over 10 runs, and (3) Average over 4 runs. 

 

4.3 Cross-sectional shapes 
 

Fig. 3 shows the fittest beam cross-sections under load cases 1 and 2. The 
optimised cross-sectional area As is used to determine how fit a cross-section is. 
As seen in Fig. 3 (a), the fully restrained beams converge to a slender “I” section 
type with a curved web. The parallel flanges are short and without lip stiffeners. 
The curved web enhances the local buckling capacity of the web and maximises 
the second moment of area by moving the material away from the neutral axis. 
The section in Fig. 3 (a) is 4.7 inch (120.3 mm) deep, 0.67 inch (17.1 mm) wide 
and therefore has a depth-to-width ratio of 7.0. The unrestrained beams converge 
to a largely open and stocky “Cee” section type in Fig. 3 (b). When compared to 
the restrained beam, this shape allows significantly larger (i) second moment of 
area about the y-axis thereby enhancing the flexural buckling load about this 
axis and (ii) warping constant which enhances the torsional buckling load. The 
difference in torsional constant between the two sections is about 20 %. The 
section has short lip stiffeners of about 0.71 inch (18 mm), approximately 
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orientated at 45° to the horizontal flange with the depth of 3.8 inch (95.9 mm), 
the width of 2.4 inch (59.6 mm) and therefore the depth-to-width ratio of 1.6. 
This corresponds to a depth-to-width ratio 77% less than the section in Fig. 3 
(a). More optimised cross-sectional shapes are presented in Wang et al. (2016). 
 

  
 (a) As = 0.29 inch2 (b) As = 0.36 inch2 
 (188.55 mm2)  (188.55 mm2)  
 Ms = 1,837 lbf·ft Mb = 1,844 lbf·ft 
 (2.49 kN·m) (2.50 kN·m)  
 M*/Ms = 1.01 M*/Mb = 1.00  

Fig. 3: Fittest beam cross-sections, (a) LC1 and (b) LC2  
 

Fig. 4 presents the fittest column and beam-column cross-sections for LC3 to 
LC5. The cross-section (column) in Fig. 4 (a) is extracted from Wang et al. 
(2016 (Submitted)) and is a closed “Cee” type cross-section. This section has a 
depth of 3.7 inch (93.3 mm), a width of 2.0 inch (50.6 mm) and therefore a 
depth-to-width ratio of 1.8. On the other hand, “Cee” type cross-sectional shapes 
(Fig. 4 (b, c)) are observed for the fittest beam-column sections. When the 
design axial load N* increases and the design bending moment M* decreases 
(from LC4 (Fig. 4 (b)) to LC5 (Fig. 4 (c))), the cross-section tends to close up. 
The cross-sectional shape, with the depth of 4.0 inch (101.1 mm), the width of 
2.0 inch (49.4 mm) and thus the depth-to-width ratio of 2.1 in Fig. 4 (c), is 
therefore stockier than the one in Fig. 4 (b). The fittest cross-sectional area As = 
0.44 inch2 (280.75 mm2) in Fig. 4 (c) is however 6.3% larger than the one shown 
in Fig. 4 (b) where As = 0.41 inch2 (263.10 mm2). More optimised cross-sections 
can be found in Wang et al. (2016). 
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 (1)(a) As = 0.44 inch2 (b) As = 0.41 inch2  (c) As = 0.44 inch2 
 (286.68 mm2) (263.10 mm2) (280.75 mm2) 
 Nc = 16,778 lbf Nc = 12,338 lbf  Nc = 15,743 lbf 
 (74.63 kN) (54.88 kN) (70.03 kN) 
 N*/Nc = 1.01 Mb = 2,235 lbf·ft  Mb = 2,146 lbf·ft 
  (3.03 kN·m)  (2.91 kN·m) 
  N*/Nc+M*/Mb = 1.01 N*/Nc+M*/Mb = 1.00 

(1) LC3 is given in Wang et al. (2016 (Submitted)). 
Fig. 4: Fittest column cross-section (a) LC3, beam-column cross-section (b) LC4 

and (c) LC5 
 

Fig. 5 presents the fittest beam-column cross-sections for LC6 and LC7. The 
fittest cross-sections for LC6 and LC7 have similar cross-sectional shapes to the 
ones presented in Fig. 4 (b) (LC4) and Fig. 4 (c) (LC5), respectively. Therefore, 
decreasing the bending moment, for a constant axial load, did not seem to 
impact the overall cross-sectional shape for these particular cases. 
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 (a) As = 0.37 inch2 (b) As = 0.41 inch2   
 (236.8 mm2) (265.6 mm2)  
 Nc = 10,229 lbf Nc =  13,758 lbf   
 (45.5 kN) (61.2 kN)  
 Mb = 1,645 lbf·ft Mb = 2,014 lbf·ft  
 (2.23 kN.m) (2.73 kN.m) 
 N*/Nc+M*/Mb = 1.00 N*/Nc+M*/Mb = 1.00  

Fig. 5: Fittest column cross-section (a) LC6 and (b) LC7 
 

4.4 Evolution of the optimised cross-section from column to beam 
 

The evolution of the average results (see Section 4.2) and the fittest shape (see 
Section 4.3) for the unrestrained cases is summarised in Fig. 6. As the design 
bending moment M* increases from zero to 1844 lbf·ft (2.5 kN·m) and the 
design axial compression N* decreases from 16861 lbf (75 kN) to zero, the 
average cross-sectional area As decreases by 18.6% from 0.45 inch2 (289.1 mm2) 
to 0.37 inch2 (235.2 mm2) and the fittest cross-sectional shape gradually opens 
up as described in Section 4.3. Specifically, the cross-sectional area only 
decreases by 2.5% between LC3 and LC5 where the design axial load N* 
decreases by 33%. This result implies that the value of the design moment (M* = 
612 lbf·ft (0.83 kN·m)) in LC5 is not large enough to significantly influence the 
cross-sectional shape. However, the reduction in the cross-sectional area 
increases to 6.3% when the design axial load N* is further reduced from 11241 
lbf (50 kN) to 5620 lbf (25 kN) between LC5 and LC4, and to 10.8% between 
LC4 and LC2 when N* is reduced from 5620 lbf (25 kN) to zero. 
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LC3 is given in Wang et al. (2016 (Submitted)). 

 
Fig. 6: Evolution of average cross-sectional areas and shapes for the 

unrestrained load cases 
 

5 Conclusions 
 

This paper aims to optimise the cross-sectional shapes of CFS beams and beam-
columns. Manufacturing and assembly constraints were not included in this 
study. Various load combinations of axial compressive load and bending 
moment were used to perform shape optimisations of simply-supported 1.5 m 
long singly-symmetric and open sections. Fully restrained beams and 
unrestrained beams and beam-columns against lateral deflection and twist were 
considered. The main conclusions can be summarised as follows: 

• The robustness of the algorithm is demonstrated by consistent optimised 
solutions over 10 runs. 

• The algorithm was able to converge to optimised cross-sectional shapes 
of CFS members subject to pure bending and combined axial 
compression and bending. 

• An optimised slim “I” type cross-sectional shape with a curved web was 
typically found for the fully restrained beams, and a stocky and largely 
open “Cee” like cross-sectional shape with lip stiffeners for the 
unrestrained beams. For the unrestrained beam-columns, “Cee” type 
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cross-sectional shapes were also found, with the cross-section tending to 
close up when the axial compressive load was increased and to open up 
when the bending moment was increased. 

• The unconstrained algorithm for shape optimisation of CFS beams or 
beam-columns allows the cross-section to be able to freely converge to 
any cross-sectional shape. This provided a reference cross-sectional 
shape for future comparison with the new shapes optimised with 
manufacturing and assembly constraints.  
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