
Missouri University of Science and Technology Missouri University of Science and Technology 

Scholars' Mine Scholars' Mine 

International Specialty Conference on Cold-
Formed Steel Structures 

Wei-Wen Yu International Specialty Conference 
on Cold-Formed Steel Structures 2016 

Nov 9th, 12:00 AM - 12:00 AM 

Measured Geometric Imperfections for Cee, Zee, and Built-Up Measured Geometric Imperfections for Cee, Zee, and Built-Up 

Cold-Formed Steel Members Cold-Formed Steel Members 

X. Zhao 

B. W. Schafer 

Follow this and additional works at: https://scholarsmine.mst.edu/isccss 

 Part of the Structural Engineering Commons 

Recommended Citation Recommended Citation 
Zhao, X. and Schafer, B. W., "Measured Geometric Imperfections for Cee, Zee, and Built-Up Cold-Formed 
Steel Members" (2016). International Specialty Conference on Cold-Formed Steel Structures. 6. 
https://scholarsmine.mst.edu/isccss/23iccfss/session1/6 

This Article - Conference proceedings is brought to you for free and open access by Scholars' Mine. It has been 
accepted for inclusion in International Specialty Conference on Cold-Formed Steel Structures by an authorized 
administrator of Scholars' Mine. This work is protected by U. S. Copyright Law. Unauthorized use including 
reproduction for redistribution requires the permission of the copyright holder. For more information, please 
contact scholarsmine@mst.edu. 

http://www.mst.edu/
http://www.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/isccss
https://scholarsmine.mst.edu/isccss
https://scholarsmine.mst.edu/isccss/23iccfss
https://scholarsmine.mst.edu/isccss/23iccfss
https://scholarsmine.mst.edu/isccss?utm_source=scholarsmine.mst.edu%2Fisccss%2F23iccfss%2Fsession1%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/256?utm_source=scholarsmine.mst.edu%2Fisccss%2F23iccfss%2Fsession1%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsmine.mst.edu/isccss/23iccfss/session1/6?utm_source=scholarsmine.mst.edu%2Fisccss%2F23iccfss%2Fsession1%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsmine@mst.edu


 

Measured geometric imperfections for  

Cee, Zee, and Built-up cold-formed steel members 

X. Zhao1, B. W. Schafer2 

Abstract  

Geometric imperfections play an important role in the performance and behavior 

of cold-formed steel members. The objective of this paper is to present recent 

results from measurements of cold-formed steel members conducted by a laser 

scanner. The measurements provide complete and precise three-dimensional point 

clouds of the specimens and can be processed to determine dimensional variations 

as well as variations within the plates. Processing of the data can range from 

simple: e.g., mean lip length, to complex: e.g., modal decomposition magnitudes 

of the measured imperfections. Three different shapes of cold-formed steel 

members are selected for study: Cee, Zee, and built-up sections comprised of 

back-to-back Cee’s. Realized dimensions of the studied cold-formed steel 

members are statistically explored providing mean and standard deviation and 

correlation data amongst the dimensions (flange width, lip length, flange-to-lip 

angle, etc.) can be readily performed. In addition, global (bow, camber, and twist) 

imperfections and cross-section Type I and Type II plate imperfections are 

determined from the scanned specimens. Modal imperfections decomposed into 

local, distortional, and global can also readily be calculated. The paper aims to 

demonstrate the worth of performing the three-dimensional geometric 

imperfection scanning and to provide useful data for simulations of cold-formed 

steel members. In the future it is anticipated that a systematic study of member 

imperfections could be used to provide definitive characterizations to help enable 

geometric imperfection selection in new analysis-based design approaches. 
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Introduction 

The strength and stiffness of a cold-formed steel member is sensitive to geometric 

deviations or imperfections due to its thin-walled nature and the varying 

sensitivity of local, distortional, and global buckling to such imperfections. Due 

to this fact, imperfections in cold-formed steel members have been studied for 

some time. For example, Dat and Pekoz [1] measured global member out-of-

straightness at the middle of the web with reference to a straight line between the 

ends of his specimens for his column tests. Mulligan [2] conducted similar 

imperfection measurements for his testing on short and long columns. Young [3] 

increased the imperfection measurement fidelity significantly by utilizing a single 

point line laser to track longitudinal imperfections along 5 cross-section points 

and was thus able to assess both global deviations and cross-section imperfections 

in detail.  

 

Schafer and Pekoz [4] employed a set up similar in spirit to Young’s using a 

DCDT and measured 11 lipped channel sections in detail. In addition, they 

categorized cross-section imperfections into Type 1 and Type 2, and compiled a 

database on geometric imperfections existing at that time. This work was 

augmented by Shifferaw et al.[5] who conducted both global and cross-section 

imperfections for a series of channel sections and  who utlized a postion 

transducer on a manual linear stage to measure global imperfections for a large 

variety of channel sections. Even with these studies Zeinoddini and Schafer [6] 

concluded that the cross-section imperfection studies available to date are not of 

high enough fidelity (dense enough in their imperfection information) for many 

advanced numerical simulations and improved measurements are needed.  

 

Zhao et al. [7] developed a 3D laser measurement platform which can provide 

full-field measurement point clouds of target specimens placed on the platform. 

Extracted geometry information from measurement point clouds allows 

traditional cross-section imperfections to be better estimated, such as Type 1 and 

Type 2 imperfections, but also afford opportunities to measure other imperfection 

quantities and even dimensional quantities. Most past imperfection measurements 

have focused on lipped and unlipped channel sections; few studies of geometric 

imperfections are carried out on other cold-formed steel shapes. 

 

This paper demonstrates the application of the laser measurement platform 

developed by Zhao and Schafer [8]; including determination of dimensional 

variations, as well as global and cross-section imperfections for Zee, Cee, and 

built-up sections. The second section of this paper provides background on the 

laser measurement platform and the measurement schemes employed. 
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Dimensions of the three different shapes studied are collected and statistically 

analyzed in the following section. Next, imperfection measurements and related 

statistical analysis are presented, followed by discussion and conclusions. 

  

Background of Laser Measurement  

An imperfection measurement rig, Figure 1, was constructed in the Thin-Walled 

Structures Laboratory at Johns Hopkins University. The objective of the 

imperfection measurement rig is to achieve reasonably high-throughput and high-

accuracy representations of the three-dimensional geometry of as-manufactured 

members, for example, cold-formed steel members in this paper. The imperfection 

rig is designed to measure a specimen of at least 10 in (250 mm) in width or depth 

and 8 feet (2400 mm) long, which in turn determined the scanning area. The 

imperfection measurement rig contains three major components: laser scanner, 

rotary stage, and linear stage.  

 

Figure 1 Laser-Based Imperfection Measurement Platform: (a) Laser Scanner; 

(b). Large Rotary Stage; (c). Linear Motion System; (d). Zee-shaped Specimen 
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The laser scanner is a 2D line laser which can generate 800 points per reading, 

covering a width of up to 9.5 in (240 mm). The laser is installed on a rotary stage, 

the diameter of which is 25 in (635 mm). This allows the laser to scan different 

segments of a target specimen while the stage rotates. The linear motion system 

drives the rotary ring and positions the laser along the specimen. Full-field 

geometric information of a target specimen can be achieved by scanning the 

specimen at multiple angles of view and registering the individual scans into the 

same final global coordinate system (Figure 2). In general, the number of scan 

angles depends on the complexity of the geometry in order to achieve the desired 

resolution of scanning segments. In the work conducted here, a Zee shape required 

seven different angles for building up the measurement, while a Cee shape 

required five different angles, and a built-up shape required nine different angles 

to develop the desired resolution. Further documentation of the imperfection 

measurement rig is available in Zhao, et al. [7]. 

  

 
Figure 2 Example of Nine Different Scans Used to Develop Built-up Cee 

 

A series of steps are applied to the scanned segments to develop a full model. The 

scanned segments are first globally registered and colored based on deviation 

from nominally expected dimensions as shown in Figure 3. The reconstructed 3D 

models are categorized based on its geometric characteristics, i.e. corners, lips, 

flanges, and web [9]. Results from this step can be applied into studies on 
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dimensions, imperfection estimations, or even used as the true geometry in shell 

finite element modeling. This paper mainly discusses the first two applications, 

see Zhao, et al. [9] for an example of the last application. 

 
Figure 3 Example 3D Reconstructed Models from Laser Measurement Platform;  

(a) Zee; (b) Built-up Cees; (c) Cee  

 

Analysis of Member Dimensions from Laser Scanner Data 

Dimension Definition 

One important application from laser measurement point clouds is the calculation 

of cross-section dimensions. Dimensional variation, which can be considered as a 

primary imperfection, leads to variation in section properties, contributing to 

variation of strength and stiffness of a structural member. However, due to the 

constraints of conventional dimensional measurement tools, minimal statistical 

data exists on cold-formed steel cross-section variation. Thus, the laser 

measurement point clouds potentially fill in this gap. Dimensions of three shapes 

of studs have been estimated from reconstructed laser measurement models. 

Dimensional quantities are in Figure 4-6. Radii are estimated from corners. Best-

fit linear segments are fit to other regions intersections of which are used for 

estimating out-to-out dimensions.  
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Figure 4 Dimension Definition for Zee Shape 

 
Figure 5 Dimension Definition for Cee Shape 

 
Figure 6 Dimension Definition for Built-Up Cee Shape 
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Dimension summary from measurements 

The study conducted herein includes 19 nominally identical Zees, 8 Cees, and 8 

members built-up from Cees. The Zees members are all 4 ft (1219 mm) long and 

7 in. (178 mm) deep (additional dimensional details in Table 1). The Cees are of 

two types, i.e., four 362S162-68 specimens and four 600S137-54 specimens (AISI 

S200-12 nomenclature). Similar to the Cees, the built-up members contain two 

different types, eight 362S162-68 specimens comprising four built-up members, 

and eight 600S137-54 specimens comprising an additional four built-up members. 

Both the Cees and built-up Cees are 6 ft (1829 mm) long.  

 

  
Figure 7 Typical Dimension Measurement of a Scanned Cee Specimen;  

(a) Histogram of Web Heights; (b) Typical Web Height Longitudinal Variation 

 

Typical dimensions derived from the laser scanned point clouds are provided in 

Figure 7 for a single specimen. Statistical summaries including the 5%, 10% and 

50% CDF values for the dimensions as well as the mean and standard deviation 

of the dimensions are provided with respect to the Zee, Cee, and built-up members 

in Table 1 - 3. Comparisons are also provided to the nominal specified dimensions 

in the Table. 

 

As expected, variation in the web depth, compared to all other dimensional 

quantities, are minimal in general. Corner radii, in general, differ greatly from 

specified dimensions. However, corners adjacent to the web generally have better 

manufacturing control and the difference with nominal dimensions are smaller 

than those adjacent to the lips. Angles between elements, particularly the flange 

and lip, also have large variations. The statistics supplied here can be used to 

develop cross-sections with a certain probability of occurrence, compare against 

quality control standards, or form the basis for fundamental reliability studies. 

a) b) 
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Analysis of Imperfections from Laser Scanner Data 

Imperfection Definition 

Geometric imperfections can be automatically identified from the measurement 

point clouds, e.g. Figure 3, for different member geometries. In this paper, three 

member types are studied following conventional imperfection definitions, i.e.: 

[4]. Figure 8 through Figure 10 depict the 3 global imperfections related to bow, 

camber and twist, and the 2 cross-sectional imperfections related to Type 1 (d1) 

and Type 2 (d2) for the Cee, built-up Cee, and Zee sections respectively. 

    

 
Figure 8 Imperfection Definition of Cee Shape; (a) Bow Imperfection - G1; (b) 

Camber Imperfection - G2; (c) Twist Imperfection - G3; (d) Type 1 Imperfection 

- d1; (e) Type 2 Imperfection - d2 

 

       
Figure 9 Imperfection Definition of Built-up Cee Section; (a) Bow Imperfection 

- G1; (b) Camber Imperfection - G2; (c) Twist Imperfection - G3; (d) Type 1 

Imperfection - d1; (e) Type 2 Imperfection - d2 

 

(a) (b) (c) 

(d) (e) 

(a) (b) (c) 

(d) (e) 
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Figure 10 Imperfection Definition of Zee Shape; (a) Bow Imperfection - G1; (b) 

Camber Imperfection - G2; (c) Twist Imperfection - G3; (d) Type 1 Imperfection 

- d1; (e) Type 2 Imperfection - d2 

 

The imperfection magnitudes are calculated from the reconstructed three-

dimensional point clouds from the laser scanner (i.e. Figure 3). Bow (G1) and 

camber (G2) imperfections are established by finding the centroid of each 

measured cross- section and comparing to the nominal cross-section centroid. It 

is always assumed that centroids at the ends’ of the sections coincide with those 

of the nominally perfect specimens. The maximum values found from the 

comparisons are denoted as extreme imperfections of bow and camber 

respectively (one per each measured specimen – this statistic is collected because 

historically this value was often recorded). A mid-span cross-section is used to 

find the angle of twist of the entire specimen. The angle of twist is defined as the 

difference between the two ends, and is the extreme G3 imperfection. Cross-

section imperfection, Type 1 magnitude (d1) is constructed by fitting a best-fit line 

to the ends of the web flat region and taking the maximum perpendicular deviation 

from that line. Type 2 magnitude (d2) is constructed from every cross-section by 

projecting an ideal flange 90° from the web flat and finding the perpendicular 

distance from this ideal flange to the measured flange. 
 

Imperfection Measurement Summary 
 

A typical realization for G1, G2, G3, d1, and d2 imperfections along the length of 

a specimen are provided in Figure 11. The results are consistent across most 

specimens and suggest first buckling mode shapes for G1 and G2 are generally 

consistent with measured imperfections. Twist (G3) and cross-section 

imperfections are more complex and analysis in the frequency domain can be 

useful [10].  

(a) (b) (c) 

(d) (e) 
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Figure 11 Typical Imperfection Findings towards a target sample; (a) Bow 

Imperfection - G1; (b) Camber Imperfection - G2; (c) Twist Imperfection - G3; 

(d) Type 1 Imperfection - d1; (e) Type 2 Imperfection - d2 of Left Flange; (f) 

Type 2 Imperfection - d2 of Right Flange. 

 

Although complete CDFs can be constructed, only the mean and standard 

deviation of the maximum measured imperfections are provided in Table 4. In 

addition, the 50% CDF values from past studies (Zeinoddini and Schafer 2014) 

and the maximum tolerances from ASTM C955 are provided for reference. The 

measured imperfections indicate that current tolerances can be challenging to 

meet particularly for camber (G2), twist (G3), and cross-section/element out-of-

straightness (d2). Also, imperfections for the studied Zees are considerably larger 

than the typical imperfections summarized through past data (listed as Zeinoddini 

in Table 4).  

(a) (b) 

(c) (d) 

(e) (f) 
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Table 4 Statistical summary of maximum geometric imperfections 
  Type1 Type2 Type2 Type1 Type2 Type2 G1 G2 G3 

 d1/t d2L/t d2R/t d1/t d2L/t d2R/t L/δ L/δ °/ft 

 mean 1.086 1.073 1.010 1.238 1.19 1.327 3772 1705 0.2 

BUCa std.dev. 0.441 0.299 0.283 0.434 0.428 0.342 2356 538 0.1 

Cee mean 1.05 1.471 1.360    1754 2806 0.2 

 std.dev. 0.046 0.552 0.581    952 745 0.2 

Zee mean 0.68 1.78 3.37    1000 372 1.7 

 std.dev. 0.23 0.5 1.78    2087 857 0.3 

 50%b 0.34 0.94 0.94 0.34 0.94 0.94 2242 3477 0.1 

 C955c  1.05 1.05  1.05 1.05 960 960 0.1 

Notes:  
a. BUC indicates built-up Cee shape 

b. statistical summary from measurements on lipped channels [10] 

c. reference tolerances from ASTM C955 for Cees, d2 tolerance is ±1.05t; G1 (bow) and G2 
(camber) are L/960; G3 is 1/32 in./ft of a specimen. 

Discussion 

Technology related to the ability to scan 3D objects and create accurate point 

clouds of the resulting object is growing quickly. The potential of such 

information is vast, particularly for imperfection sensitive objects such as thin-

walled cold-formed steel members. This paper provides an introduction to the 

possibilities of what may be realized through such information based on 

measurements of industry standard profiles using a laser scanner. Additional 

examples are discussed in Zhao et al. [9]. Information on using photogrammetry 

for similar measurements in cold-formed steel are also available [11] . In addition, 

the potential to use the scanner information in reliability studies [12] or to improve 

simulated imperfections [10] also significant. The first author is currently 

completing her Ph.D. dissertation on this topic with a dissertation expected in the 

Summer of 2016.  

Conclusions 

High-throughput high accuracy laser-based measurements may be performed to 

develop accurate 3D point clouds of cold-formed steel cross-sections. Scans on 

Cees, Zees, and built-up Cee shapes are completed to demonstrate the potential of 

the recorded data. With tens of thousands of points per specimen it is possible to 

provide highly accurate dimensions as well as the statistics of how dimensions 

vary along the member length. In addition, it is readily possible to synthesize the 

data to point estimates at desired statistical levels for key imperfection quantities 

such as bow, camber, twist, plate flatness, and element out-of-straightness. 

Together these provide powerful tools in potential quality control and quality 

assurance measures. The laser scanning also affords a number of additional 

possibilities in simulation and reliability studies that can significantly aid in our 

understanding of cold-formed steel members.     
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