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Wei-Wen Yu International Specialty Conference on Cold-Formed Steel Structures
Baltimore, Maryland, U.S.A, November 9 & 10, 2016

Measured geometric imperfections for
Cee, Zee, and Built-up cold-formed steel members

X. Zhaot, B. W. Schafer?
Abstract

Geometric imperfections play an important role in the performance and behavior
of cold-formed steel members. The objective of this paper is to present recent
results from measurements of cold-formed steel members conducted by a laser
scanner. The measurements provide complete and precise three-dimensional point
clouds of the specimens and can be processed to determine dimensional variations
as well as variations within the plates. Processing of the data can range from
simple: e.g., mean lip length, to complex: e.g., modal decomposition magnitudes
of the measured imperfections. Three different shapes of cold-formed steel
members are selected for study: Cee, Zee, and built-up sections comprised of
back-to-back Cee’s. Realized dimensions of the studied cold-formed steel
members are statistically explored providing mean and standard deviation and
correlation data amongst the dimensions (flange width, lip length, flange-to-lip
angle, etc.) can be readily performed. In addition, global (bow, camber, and twist)
imperfections and cross-section Type I and Type II plate imperfections are
determined from the scanned specimens. Modal imperfections decomposed into
local, distortional, and global can also readily be calculated. The paper aims to
demonstrate the worth of performing the three-dimensional geometric
imperfection scanning and to provide useful data for simulations of cold-formed
steel members. In the future it is anticipated that a systematic study of member
imperfections could be used to provide definitive characterizations to help enable
geometric imperfection selection in new analysis-based design approaches.
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Introduction

The strength and stiffness of a cold-formed steel member is sensitive to geometric
deviations or imperfections due to its thin-walled nature and the varying
sensitivity of local, distortional, and global buckling to such imperfections. Due
to this fact, imperfections in cold-formed steel members have been studied for
some time. For example, Dat and Pekoz [1] measured global member out-of-
straightness at the middle of the web with reference to a straight line between the
ends of his specimens for his column tests. Mulligan [2] conducted similar
imperfection measurements for his testing on short and long columns. Young [3]
increased the imperfection measurement fidelity significantly by utilizing a single
point line laser to track longitudinal imperfections along 5 cross-section points
and was thus able to assess both global deviations and cross-section imperfections
in detail.

Schafer and Pekoz [4] employed a set up similar in spirit to Young’s using a
DCDT and measured 11 lipped channel sections in detail. In addition, they
categorized cross-section imperfections into Type 1 and Type 2, and compiled a
database on geometric imperfections existing at that time. This work was
augmented by Shifferaw et al.[5] who conducted both global and cross-section
imperfections for a series of channel sections and who utlized a postion
transducer on a manual linear stage to measure global imperfections for a large
variety of channel sections. Even with these studies Zeinoddini and Schafer [6]
concluded that the cross-section imperfection studies available to date are not of
high enough fidelity (dense enough in their imperfection information) for many
advanced numerical simulations and improved measurements are needed.

Zhao et al. [7] developed a 3D laser measurement platform which can provide
full-field measurement point clouds of target specimens placed on the platform.
Extracted geometry information from measurement point clouds allows
traditional cross-section imperfections to be better estimated, such as Type 1 and
Type 2 imperfections, but also afford opportunities to measure other imperfection
quantities and even dimensional quantities. Most past imperfection measurements
have focused on lipped and unlipped channel sections; few studies of geometric
imperfections are carried out on other cold-formed steel shapes.

This paper demonstrates the application of the laser measurement platform
developed by Zhao and Schafer [8]; including determination of dimensional
variations, as well as global and cross-section imperfections for Zee, Cee, and
built-up sections. The second section of this paper provides background on the
laser measurement platform and the measurement schemes employed.
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Dimensions of the three different shapes studied are collected and statistically
analyzed in the following section. Next, imperfection measurements and related
statistical analysis are presented, followed by discussion and conclusions.

Background of Laser Measurement

An imperfection measurement rig, Figure 1, was constructed in the Thin-Walled
Structures Laboratory at Johns Hopkins University. The objective of the
imperfection measurement rig is to achieve reasonably high-throughput and high-
accuracy representations of the three-dimensional geometry of as-manufactured
members, for example, cold-formed steel members in this paper. The imperfection
rig is designed to measure a specimen of at least 10 in (250 mm) in width or depth
and 8 feet (2400 mm) long, which in turn determined the scanning area. The
imperfection measurement rig contains three major components: laser scanner,
rotary stage, and linear stage.

Figure 1 Laser-Based Imperfection Measurement Platform: (a) Laser Scanner;
(b). Large Rotary Stage; (c). Linear Motion System; (d). Zee-shaped Specimen
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The laser scanner is a 2D line laser which can generate 800 points per reading,
covering a width of up to 9.5 in (240 mm). The laser is installed on a rotary stage,
the diameter of which is 25 in (635 mm). This allows the laser to scan different
segments of a target specimen while the stage rotates. The linear motion system
drives the rotary ring and positions the laser along the specimen. Full-field
geometric information of a target specimen can be achieved by scanning the
specimen at multiple angles of view and registering the individual scans into the
same final global coordinate system (Figure 2). In general, the number of scan
angles depends on the complexity of the geometry in order to achieve the desired
resolution of scanning segments. In the work conducted here, a Zee shape required
seven different angles for building up the measurement, while a Cee shape
required five different angles, and a built-up shape required nine different angles
to develop the desired resolution. Further documentation of the imperfection
measurement rig is available in Zhao, et al. [7].

40 deg.

-100 deg.

Figure 2 Example of Nine Different Scans Used to Develop Built-up Cee

A series of steps are applied to the scanned segments to develop a full model. The
scanned segments are first globally registered and colored based on deviation
from nominally expected dimensions as shown in Figure 3. The reconstructed 3D
models are categorized based on its geometric characteristics, i.e. corners, lips,
flanges, and web [9]. Results from this step can be applied into studies on
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dimensions, imperfection estimations, or even used as the true geometry in shell
finite element modeling. This paper mainly discusses the first two applications,
see Zhao, et al. [9] for an example of the last application.

0.4

Figure 3 Example 3D Reconstructed Models from Laser Measurement Platform;
(a) Zee; (b) Built-up Cees; (c) Cee

Analysis of Member Dimensions from Laser Scanner Data
Dimension Definition

One important application from laser measurement point clouds is the calculation
of cross-section dimensions. Dimensional variation, which can be considered as a
primary imperfection, leads to variation in section properties, contributing to
variation of strength and stiffness of a structural member. However, due to the
constraints of conventional dimensional measurement tools, minimal statistical
data exists on cold-formed steel cross-section variation. Thus, the laser
measurement point clouds potentially fill in this gap. Dimensions of three shapes
of studs have been estimated from reconstructed laser measurement models.
Dimensional quantities are in Figure 4-6. Radii are estimated from corners. Best-
fit linear segments are fit to other regions intersections of which are used for
estimating out-to-out dimensions.
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Dimension summary from measurements

The study conducted herein includes 19 nominally identical Zees, 8 Cees, and 8
members built-up from Cees. The Zees members are all 4 ft (1219 mm) long and
7 in. (178 mm) deep (additional dimensional details in Table 1). The Cees are of
two types, i.e., four 3625162-68 specimens and four 600S137-54 specimens (AISI
S200-12 nomenclature). Similar to the Cees, the built-up members contain two
different types, eight 362S162-68 specimens comprising four built-up members,
and eight 600S137-54 specimens comprising an additional four built-up members.
Both the Cees and built-up Cees are 6 ft (1829 mm) long.

Hist (%)

H (in}

0
a) 369 3695 37 3705 37 3715 372 b) s 0

w0 50
H {in) longitudinal (in)

Figure 7 Typical Dimension Measurement of a Scanned Cee Specimen;
(a) Histogram of Web Heights; (b) Typical Web Height Longitudinal Variation

Typical dimensions derived from the laser scanned point clouds are provided in
Figure 7 for a single specimen. Statistical summaries including the 5%, 10% and
50% CDF values for the dimensions as well as the mean and standard deviation
of the dimensions are provided with respect to the Zee, Cee, and built-up members
in Table 1 - 3. Comparisons are also provided to the nominal specified dimensions
in the Table.

As expected, variation in the web depth, compared to all other dimensional
quantities, are minimal in general. Corner radii, in general, differ greatly from
specified dimensions. However, corners adjacent to the web generally have better
manufacturing control and the difference with nominal dimensions are smaller
than those adjacent to the lips. Angles between elements, particularly the flange
and lip, also have large variations. The statistics supplied here can be used to
develop cross-sections with a certain probability of occurrence, compare against
quality control standards, or form the basis for fundamental reliability studies.
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Analysis of Imperfections from Laser Scanner Data
Imperfection Definition

Geometric imperfections can be automatically identified from the measurement
point clouds, e.g. Figure 3, for different member geometries. In this paper, three
member types are studied following conventional imperfection definitions, i.e.:
[4]. Figure 8 through Figure 10 depict the 3 global imperfections related to bow,
camber and twist, and the 2 cross-sectional imperfections related to Type 1 (d))
and Type 2 (d,) for the Cee, built-up Cee, and Zee sections respectively.

AR
»

“a (G3)

__,—_61_ //
()E_ jbl{— 1 ()[( D
a | (b) ) _) C -

e
) : j(edi i: :)

Figure 8 Imperfection Definition of Cee Shape; (a) Bow Imperfection - G1; (b)
Camber Imperfection - G2; (c) Twist Imperfection - G3; (d) Type 1 Imperfection
- di; (e) Type 2 Imperfection - d,

(d) © (L )
Figure 9 Imperfection Definition of Built-up Cee Section; (a) Bow Imperfection
- G1; (b) Camber Imperfection - G2; (c) Twist Imperfection - G3; (d) Type 1
Imperfection - di; (e) Type 2 Imperfection - d,
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(@) (o
Figure 10 Imperfection Definition of Zee Shape; (a) Bow Imperfection - G1; (b)
Camber Imperfection - G2; (c) Twist Imperfection - G3; (d) Type 1 Imperfection
- di; (e) Type 2 Imperfection - d;

The imperfection magnitudes are calculated from the reconstructed three-
dimensional point clouds from the laser scanner (i.e. Figure 3). Bow (G1) and
camber (G2) imperfections are established by finding the centroid of each
measured cross- section and comparing to the nominal cross-section centroid. It
is always assumed that centroids at the ends’ of the sections coincide with those
of the nominally perfect specimens. The maximum values found from the
comparisons are denoted as extreme imperfections of bow and camber
respectively (one per each measured specimen — this statistic is collected because
historically this value was often recorded). A mid-span cross-section is used to
find the angle of twist of the entire specimen. The angle of twist is defined as the
difference between the two ends, and is the extreme G3 imperfection. Cross-
section imperfection, Type 1 magnitude (d,) is constructed by fitting a best-fit line
to the ends of the web flat region and taking the maximum perpendicular deviation
from that line. Type 2 magnitude (d) is constructed from every cross-section by
projecting an ideal flange 90° from the web flat and finding the perpendicular
distance from this ideal flange to the measured flange.

Imperfection Measurement Summary

A typical realization for G1, G2, G3, d, and d, imperfections along the length of
a specimen are provided in Figure 11. The results are consistent across most
specimens and suggest first buckling mode shapes for G1 and G2 are generally
consistent with measured imperfections. Twist (G3) and cross-section
imperfections are more complex and analysis in the frequency domain can be
useful [10].
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Figure 11 Typical Imperfection Findings towards a target sample; (a) Bow
Imperfection - G1; (b) Camber Imperfection - G2; (c) Twist Imperfection - G3;
(d) Type 1 Imperfection - di; (e) Type 2 Imperfection - d, of Left Flange; (f)
Type 2 Imperfection - d, of Right Flange.

Although complete CDFs can be constructed, only the mean and standard
deviation of the maximum measured imperfections are provided in Table 4. In
addition, the 50% CDF values from past studies (Zeinoddini and Schafer 2014)
and the maximum tolerances from ASTM C955 are provided for reference. The
measured imperfections indicate that current tolerances can be challenging to
meet particularly for camber (G2), twist (G3), and cross-section/element out-of-
straightness (d»). Also, imperfections for the studied Zees are considerably larger
than the typical imperfections summarized through past data (listed as Zeinoddini
in Table 4).
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Table 4 Statistical summary of maximum geometric imperfections
Typel Type2 Type2 Typel Type2 Type2 Gl G2 G3
dit dou/t dor/t di/t dau/t dor/t L/3 L3 °/ft

mean 1.086 1.073 1.010 1238 1.19 1.327 3772 1705 0.2
BUC® | std.dev. | 0441 0.299 0283 0434 0428 0342 2356 538 0.1
Cee mean 1.05 1471 1360 1754 2806 0.2
std.dev. | 0.046  0.552  0.581 952 745 0.2
Zee mean 0.68 1.78 3.37 1000 372 1.7
std.dev. | 0.23 0.5 1.78 2087 857 0.3
50%"° 0.34 0.94 0.94 0.34 0.94 0.94 2242 3477 0.1
C955¢ 1.05 1.05 1.05 1.05 960 960 0.1
Notes:
a. BUC indicates built-up Cee shape
b. statistical summary from measurements on lipped channels [10]

C. reference tolerances from ASTM C955 for Cees, d, tolerance is +1.05t; G1 (bow) and G2
(camber) are L/960; G3 is 1/32 in./ft of a specimen.

Discussion

Technology related to the ability to scan 3D objects and create accurate point
clouds of the resulting object is growing quickly. The potential of such
information is vast, particularly for imperfection sensitive objects such as thin-
walled cold-formed steel members. This paper provides an introduction to the
possibilities of what may be realized through such information based on
measurements of industry standard profiles using a laser scanner. Additional
examples are discussed in Zhao et al. [9]. Information on using photogrammetry
for similar measurements in cold-formed steel are also available [11] . In addition,
the potential to use the scanner information in reliability studies [12] or to improve
simulated imperfections [10] also significant. The first author is currently
completing her Ph.D. dissertation on this topic with a dissertation expected in the
Summer of 2016.

Conclusions

High-throughput high accuracy laser-based measurements may be performed to
develop accurate 3D point clouds of cold-formed steel cross-sections. Scans on
Cees, Zees, and built-up Cee shapes are completed to demonstrate the potential of
the recorded data. With tens of thousands of points per specimen it is possible to
provide highly accurate dimensions as well as the statistics of how dimensions
vary along the member length. In addition, it is readily possible to synthesize the
data to point estimates at desired statistical levels for key imperfection quantities
such as bow, camber, twist, plate flatness, and element out-of-straightness.
Together these provide powerful tools in potential quality control and quality
assurance measures. The laser scanning also affords a number of additional
possibilities in simulation and reliability studies that can significantly aid in our
understanding of cold-formed steel members.
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