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Abstract 
 

The Direct Strength Method (DSM) of design for cold-formed sections was 

recently extended in the North American Specification for Cold-Formed Steel 

Structural Members (NAS S100:2012) to include members in shear. The method 

has largely been developed on the basis of work done on lipped channel 

sections. To utilise the method requires the critical shear buckling load of the 

section, which may be determined from a minimum point on the signature curve 

for the section in pure shear. However when longitudinal web stiffeners are 

added to the channel a minimum may not exist, or may occur at half-

wavelengths where the critical buckling mode is localised in the individual 

vertical portions of the web rather than involving the full web as an essentially 

continuous element, as occurs for a plain lipped channel in local shear buckling. 

 

This paper explores the application of the recently-developed generalised 

constrained finite strip method (cFSM) to determine critical shear buckling loads 

for lipped channels with rectangular web stiffeners, from which shear buckling 

coefficients may be back-calculated. The addition of the stiffener leads to new 

distortional modes, deemed web-distortional modes, that play an important role 

in the buckling behaviour of web-stiffened channels at half-wavelengths where 

buckling involves deformations of the web as a continuous element. Using the 

cFSM, combinations of pure local modes and the web-distortional modes are 

considered to produce modal solutions. These modal solutions always give a 

minimum regardless of section and these minima are used to identify critical 

buckling half-wavelengths. The critical shear buckling loads are then taken as 

those at the same half-wavelengths on the corresponding traditional FSM 

signature curves for the sections. The proposed method is appropriate for 

sections with small stiffeners, as are used in practice. 
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Introduction 
 

The Direct Strength Method (DSM) (Schafer and Peköz, 1998), incorporated in 

the North American Design Specification (NAS S100-2012; AISI 2012) and the 

Australian/New Zealand Standard for Cold-Formed Steel Structures (AS/NZS 

4600:2005; Standards Australia 2005), is a method of design for cold-formed 

steel members that predicts the member capacity from the critical elastic 

buckling load and the material and geometric properties of the member. The 

critical elastic buckling load is determined from minima of the section’s 

signature curve, generated by the finite strip method (FSM). The FSM was 

developed by Cheung (1968) and is a specialisation of the finite element method 

that utilises longitudinal regularity of the analysed member to reduce the 

dimension of the problem being analysed. It was first utilised for local buckling 

analysis of thin-walled members by Przemienicki (1973) and was extended to 

other forms of buckling by Plank and Wittrick (1974), in which form it was 

utilised by Hancock (1978) to develop curves of the critical elastic buckling load 

as a function of the buckling half-wavelength; i.e. the signature curve. 

 

Recently, the DSM was extended in the North American Specification to include 

local buckling of members in shear (Pham and Hancock 2012a). For members 

where tension field action (TFA) is considered, the critical elastic shear buckling 

load may be determined by a spline FSM (SFSM) analysis (Pham and Hancock 

2009, 2012b) or an FSM analysis with multiple series terms (Hancock and Pham 

2013). Where TFA is not considered, the critical elastic shear buckling load may 

be determined from the minimum of the signature curve (Hancock and Pham 

2012, Pham, Pham and Hancock 2014). A detailed study of web-stiffened 

channels in shear by Pham, Pham and Hancock (2012) revealed that the 

presence of the stiffeners often lead to signature curves that lack any minimum, 

hence complicating the selection of a critical buckling load for use in the DSM. 

 

This problem of signature curves lacking minima is not unique to members 

under shear.  In the DSM for members under compression and/or bending, two 

minima are usually expected, with that at smaller half-wavelengths 

corresponding to local buckling and the other to distortional buckling. However, 

there are many sections for which the signature curve may not have two minima, 

or may have more than one minimum for local or distortional buckling (Ádány 

2004). Further, the buckling modes at such minima are not necessarily ‘pure’ 

local or distortional buckling. This prompted the development of the constrained 

finite strip method (cFSM) (Ádány and Schafer 2006a, b, 2008), which allows 

the buckling analysis to be restricted to consideration of certain ‘pure’ modes. 

By restricting analyses to consider only a combination of pure local and/or 

distortional modes, minima are regained on the modal solutions produced. 
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This paper applies the recently-developed generalised cFSM (Ádány and 

Schafer 2014a, b), extended to members in shear by Rendall, Hancock and 

Rasmussen (2016), to the analysis of lipped channels with rectangular web 

stiffeners in shear with the aim of determining critical elastic shear buckling 

loads. It briefly covers the current DSM design provisions for shear before 

providing an overview of the workings of the cFSM. The addition of the 

stiffener to the lipped channel gives rise to new distortional modes in the 

framework of the cFSM. The characteristics of these new modes, deemed web-

distortional modes, are briefly elucidated. Modal solutions are produced using 

various combinations of pure local and/or web-distortional modes for a wide 

range of stiffener sizes. From these solutions critical half-wavelengths are 

selected and corresponding critical elastic shear buckling loads are determined. 

By studying the results of the various modal solutions, a coherent model is 

constructed for determination of the critical elastic shear buckling load for 

lipped channels with rectangular web stiffeners. The results of this model and 

the modal solutions are presented in the form of shear buckling coefficients. 

 

Cross-section geometry and shear flow distribution 

 

The geometry of the lipped channel section with a rectangular stiffener that will 

be analysed herein is shown in Fig. 1a. The section has a web depth of 200 mm 

(7.87”), a flange width of 80 mm (3.15”), a lip size of 20 mm (0.79”) and 

uniform thickness of 2 mm (0.08”). The section will be analysed for rectangular 

stiffeners with depths (bs1) up to 190 mm (7.48”) and indents (bs2) up to 50 mm 

(1.97”) all positioned symmetrically about the centre of the web. These 

dimensions are the same as those analysed by Pham, Pham and Hancock (2012). 

 

 
Figure 1: a) Geometry of web-stiffened channels and b) shear flow distribution 

(Pham, Pham and Hancock 2012) 
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For analysis in the FSM, the sections are divided into longitudinal strips. 

Regardless of stiffener size, the lips are split into 2 equal strips each and the 

flanges into 10 equal strips each. The vertical portions of the web that sit flush 

with the ends of the flanges are split into strips of 10 mm (0.39”) width, with 

strips of 5 mm (0.20”) width added just before the stiffener if necessary. Each of 

the three elements of the stiffener are split into either 4 equal strips or strips of 

10 mm (0.39”) width, whichever produces a finer division. The material 

properties are assumed to be isotropic with a Young’s modulus of 200000 MPa 

(29008 kpsi) and a Poisson’s ratio of 0.3. 

 

Each section is subject to a shear flow distribution corresponding to that arising 

from a vertical shear load applied through the shear centre of the section; an 

example is shown in Fig. 1b. Note that such loading cannot exist without a 

moment gradient, which the FSM cannot capture, and so the analysed members 

may be said to be in a state of ‘pure’ shear. The FSM analysis utilised herein 

(for details, see Rendall, Hancock and Rasmussen 2016) is restricted to uniform 

shear stress in each strip, taken as the average of the true shear flow distribution 

over that strip. Hence a refined division of the section into strips, such as that 

utilised herein, provides a sufficient approximation to the true shear flow. 

 

DSM design rules for pure shear 
 

When tension field action is not considered, the nominal shear strength (Vn) of 

beams without holes in the web and without web stiffeners is determined from 

Appendix 1, Section 1.2.2.2.1 of NAS-2012 (AISI 2012) as follows: 

 

For 815.0v : yn VV                          (1) 

For 227.1815.0  v : ycrn VVV 815.0                     (2) 

For 227.1v : crn VV                            (3) 

ywy FAV 6.0                 (4) 

 

where Vy is the yield load of the web (Aw is the area of the web) based on an 

average shear yield stress of 0.6Fy and Vcr is the elastic shear buckling force of 

the whole section, derived by integration of the shear stress distribution at 

buckling over the whole section; λv = √      . Alternatively, Vcr may be 

determined from Eq. (5) if the appropriate shear buckling coefficient (kv) of the 

whole section is known. In Eq. (5), E is Young’s modulus, ν is Poisson’s ratio, 

d1 is the depth of the flat portion of the web and tw is the thickness of the web. 
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When tension field action is included, the nominal shear strength (Vn) of beams 

without holes is given by, 
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It is desired to determine critical elastic shear buckling loads from which shear 

buckling coefficients may be back-calculated. For web-stiffened channels, the 

exact definitions of the web area and the depth of the flat portion of the web 

become unclear. Herein, the depth of the flat portion of the web will be taken as 

the sum of the vertical flats in the web and stiffener, resulting in d1 = b1, while 

the web area will simply be taken as this depth multiplied by the web thickness; 

i.e. Aw = b1tw. Putting both of these definitions into Eq. (5) and rearranging then 

defines the shear buckling coefficient to be, 
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where Vcr,FSM is the critical elastic shear buckling load, determined from the 

FSM at a half-wavelength determined by application of the cFSM. 

 

Overview of the cFSM 
 

The basic concept of the constrained finite strip method is that any general FSM 

displacement field d may be transformed to a constrained deformation space M 

by use of a constraint matrix RM, whose columns are base vectors of the 

constrained space. The original vector and that of the constrained deformation 

space (dM) are related by, 

 

MMdRd  .                (8) 

 

By applying this transformation to the eigenvalue problem of the FSM, modal 

decomposition is achieved in that the resulting eigenmodes are constrained to 

the desired deformation space. The resulting eigenvalue problem is as given in 

Eq. (9). The constraint matrices act to reduce the size of the problem and so their 
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application to the global stiffness matrix (KE) and global stability matrix (KG) 

result in reduced-size matrices, particular to the current modal space. The 

matrices ΛM and ΘM are, respectively, a diagonal matrix of load factors and a 

square matrix whose columns are the corresponding buckling modes in the 

reduced deformation space. 

 

    0ΘKΛK0ΘRKRΛRKR MMG,MME,MMGMMMEM  TT
          (9) 

 

Formulation of the constraint matrices is not covered here (see Ádány and 

Schafer 2014a, b) however, as the pure local and distortional modes are of 

interest in the current work, a brief description of their defining characteristics in 

the cFSM is now given. The pure local modes are defined by having null 

transverse extension, in-plane shear strain and longitudinal normal strain, which 

results in modes that allow only rotations at plate junctions and allow rotations 

and local out-of-plane deflection elsewhere. This definition of the local modes 

does not allow movement of the stiffener as a continuation of the web, as occurs 

in local buckling for sections with small stiffeners (Pham, Pham and Hancock 

2012) hence the distortional modes, which do allow such movement of the 

stiffener, become of interest. The pure distortional modes are defined by null 

transverse extension and in-plane shear strain and by transverse displacements 

such that the cross-section satisfies transverse equilibrium as a frame. 

 

The theoretical formulation of the stiffness and stability matrices is given in 

Rendall, Hancock and Rasmussen (2016). The utilised formulation assumes that 

the ends of the buckling half-wavelength are free to distort, hence the buckle is 

part of a very long length without restraint from end conditions.  

 

Distortional modes of a lipped channel with a rectangular web stiffener 
 

The transverse displacements of the distortional modes of a lipped channel with 

a rectangular stiffener, as determined by the cFSM, are shown in Fig. 2. 

 

 
Figure 2: cFSM distortional modes of a lipped channel with a rectangular web 
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The last two of the modes, i.e. D5 and D6, shown in Fig. 2 respectively 

correspond to the usual anti-symmetric and symmetric distortional modes of a 

plain lipped channel. Since these two modes exist due to the presence of the lips 

as stiffeners on the flanges, they may be deemed flange-distortional modes. The 

addition of the rectangular stiffener in the web of the lipped channel gives rise to 

four additional distortional modes (D1 to D4 in Fig. 2), which may be deemed 

web-distortional modes. These four modes may be further split into two pairs, 

each consisting of one symmetric and one anti-symmetric mode. The first pair 

(D1 and D2) involve notable distortion of the stiffener, while the second pair (D3 

and D4) involve a lesser degree of distortion in the stiffener. The distortion of the 

stiffener in the modes D3 and D4 is not noticeable in Fig. 2, which was produced 

for a stiffener with a depth of 20 mm (0.79”) and indent of 5mm (0.20”), but is 

more prevalent for larger stiffener sizes, although the degree of distortion of the 

stiffener is greater in the modes D1 and D2 regardless of the stiffener size. 

 

Shear buckling coefficients from individual modal solutions 

 

In light of the pairs of new web-distortional modes, a total of three modal 

analyses shall be performed; one considering only the pure local (L) modes as 

defined by the cFSM, one considering the mode pair D1 and D2 and one 

considering the mode pair D3 and D4. As such, three modal solutions shall be 

produced for each section, each with its own distinct minimum. For the 

minimum of each modal solution, the half-wavelength at which it occurs shall 

be taken as a critical half-wavelength. The critical elastic shear buckling load is 

then taken as the result from the FSM signature curve at the same half-

wavelength, from which a shear buckling coefficient is back-calculated using 

Eq. (7). An example of this process, up to determining the critical elastic shear 

buckling loads, is shown in Fig. 3 for a stiffener depth of 70 mm (2.76”) and a 

stiffener indent of 15 mm (0.59”). Note that although the minimum critical loads 

of the distortional modal solutions lie significantly above the FSM solution 

(especially in the case of the mode pair D1 and D2), the minimum may still be 

used an as indicator of the half-wavelength at which the analysed modes may 

play their greatest role in the overall buckling mode. 

 

Following this process, the shear buckling coefficients obtained for each section 

from modal solutions considering only the pure local modes are shown in Fig. 4. 

The coefficient at a stiffener depth of 0 mm (i.e. no stiffener) is 6.478, which is 

slightly lower than the 6.583 given by Pham, Pham and Hancock (2014), due to 

the more refined division of the cross-section; this minimum occurs at a half-

wavelength of 196 mm.  
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Figure 3: Identifying critical elastic shear buckling loads using critical half-

wavelengths from modal cFSM solutions (bs1 = 70 mm, bs2 = 15 mm) 

 

 
Figure 4: Shear buckling coefficients from considering local modes 
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Figure 5: Shear buckling coefficients from considering modes D1 and D2 

 

 
Figure 6: Shear buckling coefficients from considering modes D3 and D4 
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The shear buckling coefficients obtained from the local modal solutions display 

very similar behaviour regardless of the size of the stiffener indent, with the 

exception of the smallest indent, which has a significantly smaller shear 

buckling coefficient as the stiffener depth increases to 80 mm (3.15”). This 

discrepancy is due to stiffeners with such a small indent contributing little to the 

out-of-plane stiffness of the web and so leading to FSM solutions whose critical 

loads are smaller, at the half-wavelengths determined from the modal solutions, 

than those determined for stiffeners with larger indents. The initial drastic 

increase in the shear buckling coefficient as the stiffener depth becomes non-

zero (i.e. as the section gains the stiffener) is due to the definition of the pure 

local modes in that the plate junctions may rotate but not deflect. Hence, in the 

limit as the stiffener depth approaches zero (for a sufficiently large stiffener 

indent), the section may be treated as equivalent to a plain lipped channel with 

the centre of the web simply-supported longitudinally, for which the shear 

buckling coefficient from the FSM solution is 23.304. For the stiffeners with 

indents of 10 mm (0.39”) or greater, the shear buckling coefficients increases in 

a quadratic fashion up to a maximum at a stiffener depth of 60 mm (2.36”), 

before decreasing in a similar manner as the stiffener depth is further increased. 

This behaviour is due to the local modal solution constraining the buckling to 

within individual elements of the web, hence the maximum shear buckling 

coefficient occurs where the maximum size of the individual elements is at their 

smallest; this occurs at a stiffener depth of between 60 and 70 mm (2.36 and 

2.76”). Naturally then, the shear buckling coefficients become quite large, with 

the maximum of 56.923 being achieved for a stiffener of depth 60 mm (2.36”) 

and indent of 20 mm (0.79”), and the corresponding critical half-wavelengths 

from which the coefficients are determined are similar to the maximum depth of 

any of the vertical elements in the web. 

 

The shear buckling coefficients obtained by considering the distortional mode 

pair D1 and D2 are shown in Fig. 5. As with the shear buckling coefficients in 

Fig. 4, those in Fig. 5 display a sudden increase as the stiffener is introduced, a 

general increase as the stiffener depth increases to 60-70 mm (2.36-2.76”) and 

then a general decrease as the stiffener depth is further increased. The trends of 

the increase and decrease are more linear in nature, except for a region near the 

maximum shear buckling coefficient for a given stiffener indent size, which 

becomes more localised around the maximum as the stiffener indent size 

increases. As noted in Pham, Pham and Hancock (2012), the addition of 

stiffeners of any size has a significantly smaller effect on increasing the 

distortional buckling load of the section than it does on increasing the local 

buckling load, hence leading to the shear buckling coefficients in Fig. 5 being 

generally significantly less than those in Fig. 4. The exceptions to this are those 

sections with large stiffener depths and indents, due to an increase in the critical 
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half-wavelength identified using this distortional mode pair. The maximum 

critical half-wavelength identified for a given stiffener indent varies from 320 

mm (12.60”) for the smallest indent to 950 mm (37.40”) for the largest indent. 

For stiffener indents of, say, 15 mm (0.59”) or greater, for which the identified 

half-wavelength is significantly larger than the web depth, the local shear 

buckling behaviour in the web is different than for a plain lipped channel and so 

assessing such sections using these modes may not be entirely appropriate. 

 

The shear buckling coefficients obtained by considering the distortional mode 

pair D3 and D4 are shown in Fig. 6. The shear buckling coefficients obtained are 

significantly lower than those obtained from the two previous models, as the 

minima of the modal solutions considering this distortional mode pair occur at 

greater half-wavelengths. The maximum critical half-wavelength identified for a 

given stiffener indent varies from 490 mm (19.29”) for the smallest indent to 

1880 mm (74.02”) for the largest indent. At such large half-wavelengths, any 

strength due to the stiffener is clearly lost, as evidenced by the coefficients for 

the sections with an indent of 50 mm (1.97”) initially dropping with the 

introduction of the stiffener. Given the erratic variation of the shear buckling 

coefficients in this model, as well as the very large half-wavelengths at which 

minima may be identified, the model based on this distortional mode pair does 

not seem appropriate for identifying shear buckling coefficients. 

 

A model for shear buckling coefficients 

 

From the results presented, a model for determining shear buckling coefficients 

is developed as follows. As the pure local modes clearly characterise the 

buckling within each plate element, they must be included in such a model. The 

distortional mode pair D1 and D2 presents coherent and sensible results for shear 

buckling coefficients, while also occurring at the shortest half-wavelengths of 

the three distortional mode pairs, and so this mode pair will be included. This 

suggests a model based on considering the local modes and the distortional 

mode pair D1 and D2 simultaneously. However, in some instances, considering 

these modes together can lead to the loss of one of the two minima or to a 

minimum whose corresponding critical elastic shear buckling load is greater 

than that obtained by considering either the local modes or the distortional mode 

pair in isolation from the other. As such, the proposed model for determining 

shear buckling coefficients will determine three critical elastic shear buckling 

loads by considering i) the pure local modes only, ii) the distortional mode pair 

D1 and D2 and iii) the pure local modes and the distortional mode pair D1 and D2 

simultaneously. The minimum load obtained will then be taken as the critical 

elastic shear buckling load for the section. The shear buckling coefficients 

obtained by this ‘L – D1 – D2’ model are presented in Table 1.  
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Table 1: Shear buckling coefficients obtained by L – D1 – D2 model 

Depth 

(mm) 

Indent (mm) 

5 10 15 20 30 40 50 

5 8.313 10.260 11.500 12.246 12.740 12.887 12.567 

10 8.987 11.155 12.354 13.052 13.620 13.734 13.416 

20 10.152 12.661 14.110 14.823 15.756 15.827 15.796 

30 11.184 14.178 15.827 16.620 17.901 18.559 18.594 

40 12.008 15.418 17.294 18.513 20.275 20.955 20.829 

50 12.744 16.587 18.738 20.177 22.323 23.147 23.029 

60 13.135 17.285 19.688 21.749 24.429 25.617 25.170 

70 13.118 17.348 20.255 22.500 25.702 28.155 26.922 

80 12.827 17.067 19.907 22.425 25.505 27.548 26.994 

90 12.333 16.478 19.097 21.319 24.192 25.689 25.504 

100 11.675 15.337 17.850 19.772 22.472 23.907 23.346 

110 10.969 14.363 16.666 18.532 20.811 20.152 19.596 

120 10.311 13.317 15.492 17.177 17.729 17.197 16.739 

130 9.716 12.412 14.473 15.797 15.335 14.893 14.509 

140 9.141 11.495 13.389 13.804 13.428 13.057 12.741 

150 8.612 10.588 12.209 12.160 11.879 11.575 11.313 

160 8.175 9.597 10.737 10.791 10.592 10.351 10.140 

170 7.936 8.788 9.318 9.583 9.479 9.309 9.150 

180 7.372 8.064 8.342 8.302 8.446 8.369 8.274 

190 6.732 6.949 7.173 7.062 7.348 7.444 7.413 

 

In Table 1, the colour of each cell indicates which set of cFSM modes produces 

the critical elastic shear buckling load. Red indicates that considering the local 

modes only is critical, yellow indicates that considering the distortional mode 

pair D1 and D2 only is critical and orange indicates that considering both the 

local modes and the distortional modes pair D1 and D2 is critical. For most of the 

stiffeners analysed, the critical elastic shear buckling load comes from 

considering the distortional mode pair D1 and D2 only. However, as the stiffener 

depth and indent both become large, this usually changes to either of the other 

two obtained loads being critical. 

 

There is a further consideration to be made for this model; namely, for sections 

where the FSM solution provides a minimum at short half-wavelengths for local 

buckling, such a minimum will obviously provide the smallest possible shear 

buckling coefficient at such half-wavelengths. If this buckling coefficient is 

considered in addition to the three determined previously, the results of such a 

‘L – D1 – D2 – FSM’ model are given in Table 2.  
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Table 2: Shear buckling coefficients obtained by L – D1 – D2 – FSM model* 

Depth 

(mm) 

Indent (mm) 

5 10 15 20 30 40 50 

5 8.006 10.260 11.500 12.246 12.740 12.887 12.567 

10 8.987 11.155 12.354 13.052 13.620 13.734 13.416 

20 10.152 12.661 14.110 14.823 15.756 15.827 15.796 

30 11.184 14.178 15.827 16.620 17.901 18.559 18.594 

40 12.008 15.418 17.294 18.513 20.275 20.955 20.829 

50 12.744 16.587 18.738 20.177 22.323 23.147 23.029 

60 13.135 17.285 19.688 21.749 24.429 25.617 25.170 

70 13.118 17.348 20.255 22.500 25.702 28.155 26.922 

80 12.827 17.067 19.907 22.425 25.505 27.548 26.994 

90 12.333 16.478 19.097 21.319 24.192 25.689 25.504 

100 11.675 15.337 17.850 19.772 22.472 23.907 23.343 

110 10.969 14.363 16.666 18.532 20.788 20.150 19.595 

120 10.311 13.317 15.492 17.177 17.723 17.193 16.736 

130 9.716 12.412 14.473 15.743 15.327 14.889 14.509 

140 9.141 11.495 13.389 13.754 13.419 13.057 12.741 

150 8.111 10.588 12.087 12.126 11.869 11.574 11.312 

160 7.601 9.597 10.638 10.740 10.577 10.348 10.138 

170 7.100 8.142 9.318 9.492 9.448 9.300 9.145 

180 6.664 7.250 7.867 8.281 8.392 8.340 8.256 

190 6.366 6.463 6.667 6.907 7.262 7.360 7.370 

* Shaded cells are those for which the FSM solution is critical and hence the coefficient 

differs from that in the corresponding cell in Table 1. 
 

The shaded cells in Table 2 indicate the sections for which the minimum from 

the FSM solution is critical; for these particular sections with stiffener indents of 

20 mm (0.79”) or more, the difference is less than 1% between Tables 1 and 2. 

For smaller stiffeners, the difference may be up to 10%. Of the remaining 

sections, the distortional mode pair D1 and D2 gives the critical solution in all 

but two cases; those with an indent of 50 mm (1.97”) and depths of 130 and 140 

mm (5.12 and 5.51”). 

 

Conclusions 
 

This paper has explored application of the cFSM to the identification of shear 

buckling coefficients of lipped channels with rectangular web stiffeners 

experiencing local buckling. The pure local modes as determined by the cFSM 

were elucidated as being insufficient for identifying this mode for sections with 

stiffeners and so lead to a brief exploration of the pure distortional modes of 
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such a section. New web-distortional modes were identified and briefly 

analysed, leading to three separate models for identifying shear buckling 

coefficients. Two of the models presented coherent results and so these were 

merged to produce a combined model for determining shear buckling 

coefficients. This model was then updated to include shear buckling coefficients 

obtained from the minimum of the FSM signature curve, which gives the 

smallest possible shear buckling coefficient when examining short half-

wavelengths. While this shear buckling coefficient was critical for a number of 

the sections, in many cases the difference was on the order of 1%. The 

developed model is appropriate for sections with small stiffener indents. 
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