
Missouri University of Science and Technology Missouri University of Science and Technology 

Scholars' Mine Scholars' Mine 

International Specialty Conference on Cold-
Formed Steel Structures 

Wei-Wen Yu International Specialty Conference 
on Cold-Formed Steel Structures 2016 

Nov 10th, 12:00 AM - 12:00 AM 

Simulating the Seismic Performance of Cold-Formed Steel Simulating the Seismic Performance of Cold-Formed Steel 

Framed Buildings using Corrugated Sheet Shear Walls Framed Buildings using Corrugated Sheet Shear Walls 

Wenying Zhang 

Mahsa Mahdavian 

Yuanqi Li 

Cheng Yu 

Follow this and additional works at: https://scholarsmine.mst.edu/isccss 

 Part of the Structural Engineering Commons 

Recommended Citation Recommended Citation 
Zhang, Wenying; Mahdavian, Mahsa; Li, Yuanqi; and Yu, Cheng, "Simulating the Seismic Performance of 
Cold-Formed Steel Framed Buildings using Corrugated Sheet Shear Walls" (2016). International Specialty 
Conference on Cold-Formed Steel Structures. 4. 
https://scholarsmine.mst.edu/isccss/23iccfss/session10/4 

This Article - Conference proceedings is brought to you for free and open access by Scholars' Mine. It has been 
accepted for inclusion in International Specialty Conference on Cold-Formed Steel Structures by an authorized 
administrator of Scholars' Mine. This work is protected by U. S. Copyright Law. Unauthorized use including 
reproduction for redistribution requires the permission of the copyright holder. For more information, please 
contact scholarsmine@mst.edu. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Missouri University of Science and Technology (Missouri S&T): Scholars' Mine

https://core.ac.uk/display/229107216?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.mst.edu/
http://www.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/isccss
https://scholarsmine.mst.edu/isccss
https://scholarsmine.mst.edu/isccss/23iccfss
https://scholarsmine.mst.edu/isccss/23iccfss
https://scholarsmine.mst.edu/isccss?utm_source=scholarsmine.mst.edu%2Fisccss%2F23iccfss%2Fsession10%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/256?utm_source=scholarsmine.mst.edu%2Fisccss%2F23iccfss%2Fsession10%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsmine.mst.edu/isccss/23iccfss/session10/4?utm_source=scholarsmine.mst.edu%2Fisccss%2F23iccfss%2Fsession10%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsmine@mst.edu


   

Simulating the Seismic Performance of Cold-Formed Steel 

Framed Buildings using Corrugated Sheet Shear Walls 

Wenying Zhang1, Mahsa Mahdavian2, Yuanqi Li3,Cheng Yu4 

Abstract 

Cold-formed steel framed shear wall sheathed with corrugated steel sheets is a 
promising shear wall system for low- and mid-rise constructions at high wind 
and seismic zones due to its advantages of non-combustibility, high shear 
strength, and high shear stiffness. A lot of work has been done on this subject. 
However, all the previous work is focused on the wall panel levels and more 
research work is needed on the entire building systems. The objective of this 
paper is to investigate the response of a cold-formed steel framed building with 
corrugated sheet sheathing subjected to earthquake excitation primarily through 
nonlinear time history analysis employing the incremental dynamic analysis 
(IDA) framework. High fidelity models were simulated in OpenSees program. 
The detailed modeling information and system assessment are presented in this 
paper. 
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Introduction 

The cold-formed steel (CFS) corrugated sheet is widely used as the floor 
decking and roofing materials in both residential and commercial buildings. 
Only recently, CFS corrugated sheets have been used as sheathing material in 
shear walls. Researchers have been focusing on the performance of this new 
type of shear wall as the primary lateral resistance system. Fülöp and Dubina 
(2004) developed a testing program to investigate the structural characteristics 
of 2.44 m high × 3.66 m wide CFS shear walls with different sheathing materials 
including LTB20/0.5 corrugated steel sheet, gypsum boards, and OSB. A total 
of 7 monotonic tests and 8 cyclic tests were conducted. The test results indicated 
that the CFS walls were rigid and could effectively resist lateral loads. The 
failure of the seam fastener was the failure mechanism for the corrugated sheet 
specimens.  

Stojadinovic and Tipping (2007) conducted a series of 44 cyclic shear wall tests 
on 2.49 m high × 1.22 m or 0.61 m wide CFS shear walls with corrugated sheet 
steel sheathing on one side or both sides. The shear walls specimens differed in 
gauge of the sheet steel, gauge of the cold-formed steel framing, size and 
spacing of the fasteners. Stojadinovic and Tipping reported that in all the tests, 
the failure mode was the eventual pulling out of the screws due to warping in the 
corrugated steel sheet.  

A series of full scale shear wall tests were conducted at University of North 
Texas (UNT) in recent years (Yu el al. 2009, Yu 2013). The test program used 
typical framing configurations and the approved test method by International 
Code Council. The test results indicated that the CFS framed shear walls using 
corrugated steel sheathings demonstrated higher strength, greater initial stiffness 
and a similar ductility in comparison to CFS walls using conventional sheathing 
materials (flat steel sheets, plywood panels, OSB boards).  

In order to investigate the influence of gravity/vertical loads and to assist in the 
fragility analysis recommended by FEMA P695 (2009), another test program on 
CFS shear wall with corrugated steel sheet sheathing was conducted recently at 
UNT under combined gravity/vertical and lateral loading (Zhang et al., 2016). 
The tests involved 4 shear wall specimens and 4 bearing wall specimens. The 
results indicated that moderate gravity loading led to an increase of shear 
strength and initial stiffness. Also, the bearing walls contribute almost 34.2% of 
shear strength and 35.5% of dissipated energy in comparison to shear walls. It’s 
observed that both shear walls and bearing walls were able to carry the full 
weight during entire loading process without collapse. As a result, 7% drift was 
recommended by the authors as collapse drift limit in seismic fragility analysis.  
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The objective of this paper is to investigate the response of cold-formed steel 
framed buildings with corrugated sheet sheathing under earthquake excitation 
and to produce appropriate seismic performance factors for design usage. High 
fidelity models of one 2-story and one 5-story office building were simulated in 
OpenSees program (McKenna, 2015). The detailed modeling information and 
relevant system assessment are presented in this paper.  

Finite Element Modeling 

Building Prototype 

The building archetype used in the NEES-CFS project (Madsen, Nakata, 
Schafer, 2011) was adopted as a reference in this research. The NEES building 
was redesigned by the authors to employ the CFS shear walls with corrugated 
steel sheathing. The hypothetical office buildings were assumed to be located in 
Orange County, California which has a total plan layout of 49.75ft×23ft (15.2m
×7m). Site Class D was chosen as is typical for sites in the vicinity of this 
project. For the office occupancy chosen, IE = 1.0 was used. The seismic force 
modification factors were based on wood light-frame shear wall systems with 
wood structural panel (ASCE/SCE 7-10), and were set at R = 6.5 and Ω= 3.0. 

OpenSees Building Modeling 

The nonlinear dynamic analysis software OpenSees (McKenna, 2015) was used 
in the FE analysis. The length and distribution of shear wall were re-assigned 
based on the test data since the sheathing material has changed from OSB to 
corrugated steel sheet. Figure1 illustrates the schematic drawings of FE models 
used in OpenSees (McKenna, 2015). 

 
1a - 2-story building 

 
1b - 5-story building 

Figure 1 - OpenSees models 
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Modeling of Shear Walls 

The shear walls were simulated in OpenSees (McKenna, 2015) as two diagonal 
truss elements and elastic frame boundary elements as illustrated in Figure 2. 
Rigid connection method was used since linear static analysis results showed 
that the diagonal bracing stiffness greatly exceeded the small moment stiffness 
of the stud-to-track connection. In order to achieve the pinching effect, the 
strength degradation as well as the stiffness degradation of the shear wall, 
pinching4 uniaxial hysteretic material was used for the diagonal truss elements. 
To obtain the backbone curve of pinching4 material, the horizontal load V vs. 
deflection Δ was first converted to stress-strain relationship according some 
derivation of basic equilibrium and geometry: 

The axial force in the diagonal bracing F can be expressed as: 

/ (2cos  )F V θ=  

The stress and strain in the diagonal bracing can be obtained as: 

/ / (2 cos )F A V Aσ θ= =  

/ ( cos ) /d l lε θ= = ∆  

Where 2 2cos /b b hθ = + , 2 2l b h= + . Herein b, h is the width and height of the 
shear wall respectively. 

 

    Figure 2 - Shear wall Modeling         Figure 3 - Simulation of shear wall 

The OpenSees result was compared to the test result in Figure 3. It can be seen 
that the model has a good agreement with the test result and the model was able 
to simulate the post-peak behavior of the shear wall.  
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Modeling of Bearing Walls 

In the building model, the bearing walls were designed to have the same 
sheathing material as the shear walls. Shear resistance of the bearing walls was 
considered in the FE analysis. The modeling technique of bearing walls was 
same as the shear walls.  

The backbone curve and perimeters of pinching4 material of shear walls and 
bearing walls were according to the test results in Zhang et al. (2016). Aspect 
ratio adjustment recommended in AISI S213 (2012) was performed when the 
width of the wall in the building was different from the width of test specimen. 
As for the small bearing walls at the opening positions (windows and doors), 
ABAQUS model was first created for each height of wall and then aspect ratio 
adjustment was performed. The ABAQUS modeling technique was according to 
Mahdavian et al. (2016). 

Modeling of Diaphragm 

Rigid diaphragm was used in the model by a built-in element in OpenSees 
(McKenna, 2015). The rigid diaphragm element requires a master-slave 
relationship of nodes in the same plane. Lateral displacement in two directions 
and rotation about the vertical axis is defined at the master node.  

Seismic Mass and Gravity load 

Total seismic mass was set to the value from the design narrative (Madsen, 
Nakata, Schafer, 2011) and the mass of each story was divided equally and 
lumped to the four corners. Gravity load of the building should be added 
separately since seismic mass is only related to the mass matrix in the FE 
formulation. The weight applied herein was the product of seismic mass and the 
acceleration of gravity g. P-delta effect was included since large displacement 
might arise. 

Static Pushover Analysis 

Pushover analysis is performed in order to obtain the ductility parameter and 
system over-strength factor. The displacement ductility factor is defined as

u
T

y

δµ
δ

= , where δu is the displacement at peak load and δy is the displacement at 

yield. Over-strength factor is defined as max
0

design

V
V

Ω =  , where Vmax is the maximum 

base shear in actual behavior and Vdesign is base shear at design level. The 
displacement ductility factor and over-strength factor are listed in Table 1. 
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Table 1 - Pushover results 

 Ω0 µT 
2-story building 8.69 2.07 
5-story building 3.84 1.92 

 

Incremental Dynamic Analysis  

Nonlinear time history analysis lies in the core of the Incremental Dynamic 
Analysis method (IDA), where the structure is subjected to a suite of ground 
motion records. Every record is scaled to multiple levels of intensity until a 
designated DM limit for collapse is reached, producing the structure's capacity 
curve in terms of structure damage measure (DM) versus an intensity measure 
(IM). Story drift is a typical DM and the spectral acceleration of the first natural 
period of the structure is a typical IM.  

To avoid bias, a specified set of ground motion records should be utilized as 
excitations. FEMA P695 (2009) recommends two sets of ground motion records 
for collapse assessment using nonlinear dynamic analysis: Far-Field record and 
Near-Field record set. The Far-Field record set includes twenty-two component 
pairs of horizontal ground motions from sites located greater than or equal to 10 
km from fault rupture. The record sets do not include the vertical component of 
ground motion since this direction of earthquake shaking is not considered of 
primary importance for collapse evaluation, and is not required by the 
Methodology for nonlinear dynamic analysis. The Near-Field record set is only 
for supplemental information and is used in special studies to evaluate potential 
differences in the CMR for SDC E structures. As a result, the Far-Field record 
set was chosen and horizontal components of ground motion were used. 

Figure 4 indicates the IDA curves and Figure 5 indicates collapse fragility 
curves of the two building models. The median collapse intensity, SCT, is 
defined as the spectral acceleration causing 50% collapse probability. The ratio 
between the median collapse intensity (SCT) and the Maximum Considered 
Earthquake (MCE) intensity (SMT) is the collapse margin ratio (CMR). CMR is 
the primary parameter used to evaluate the collapse safety of the building 
design. 
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4a - 2-story building 

 

4b - 5-story building 

Figure 4 - IDA curves 
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5a - 2-story building 

 

5b - 5-story building 

Figure 5: Collapse fragility curves 

 

Building Performance Evaluation 
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structure, 𝛽𝛽𝑀𝑀𝐷𝐷𝐿𝐿. FEMA P695 (2009) quantifies each of these uncertainties based 
on the following scale: (A) superior, β = 0.10; (B) good, β = 0.20; (C) fair, β = 
0.35; and (D) poor, β = 0.50. The total system collapse uncertainty, 𝛽𝛽𝑇𝑇𝑂𝑂𝑇𝑇, is 
calculated based on these four uncertainties: 2 2 2 2

TOT RTR DR TD MDLβ β β β β= + + + .To 
account for the effects of the frequency content (spectral shape) of the applied 
earthquake record set, the CMR was adjusted using the spectral shape factor, 
SSF. For each archetype building, the adjusted collapse margin ratio, ACMR 
was calculated by multiplying the CMR by SSF (spectral shape factor). 

Table 2 summarizes the aforementioned data, specifically, the median collapse 
intensity, SCT, the collapse margin ratio, CMR, the adjusted collapse margin 
ratio, ACMR, and is compared with the reference value given in FEMA P695 
(2009).The Record-to-record collapse uncertainty is calculated based on 
0.2 ≤ βRTR = 0.1 + 0.1µT ≤ 0.4 ( µT ≤ 3 ). The design requirements-related 
uncertainty, the test data related uncertainty and modeling of structure related 
uncertainty were taken as good. Results in Table 2 show that the collapse 
probability well passed the FEMA requirements, which improved that the design 
method, including the seismic force modification factors of R=6.5 and Ωo = 3.0, 
is appropriate for shear wall systems with corrugated steel sheet sheathings. 

Table 2 - IDA results 

 SCT CMR SSF ACMR 𝜷𝜷𝑻𝑻𝑻𝑻𝑻𝑻 ACMR20% 
2-story building 3.84 2.76 1.134 3.130 0.463 1.476 
5-story building 3.69 2.65 1.125 2.981 0.453 1.464 
 

Conclusion 

Seismic fragility analysis was performed on one 2-story and one 5-story office 
building using CFS framed walls sheathed by corrugated steel sheathing. The 
finite element analysis program OpenSees was used and IDA was adopted for 
the nonlinear time history analysis. The results show that the current seismic 
performance factors for light wood framed structures seem appropriate for the 
new shear wall type. The modeling techniques described in this paper is 
appropriate for future more comprehensive seismic analysis on CFS buildings. 
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