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A FINITE ELEMENT METHOD FOR DISTORTIONAL 
BUCKLING ANALYSIS OF THIN-WALLED MEMBERS 

Sheng Jin*,a,b, Xiao Jiana, Rui Chenga,b, Shidong Niea,b, Mingyue Chenga 

(a. College of Civil Engineering, Chongqing University, Chongqing 400045, 
China; b. Key Laboratory of New Technology for Construction of Cities in 

Mountain Area ( Chongqing University ), Ministry of Education, Chongqing 
400030, China) 

Abstract 

This paper presents a method for distortional buckling analysis of 
thin-walled members without assuming longitudinal shape of buckling modes. 
In this method, the pure distortional elastic buckling loads and deformation 
modes are achieved by performing a linear buckling analysis of a specially 
constrained finite element model of the thin-walled member in ANSYS. The 
constraints on each cross-section are applied independently and can be divided 
into two parts. The first part, by which distortional buckling can be distinguished 
from local buckling, depicts the transvers deformation of a cross-section, while 
the second part originated from longitudinal displacement patterns of 
distortional modes is used to distinguish this type of buckling from global 
buckling. Transverse membrane extensions are permitted in the proposed 
distortional buckling mode. A numerical example is given to demonstrate the 
method. 

1. Introduction  

Global or local buckled thin-walled members deform in flexural-torsional 
or local deformation modes respectively. These deformation modes are both 
familiar to us: flexural-torsional deformation is a mode where the member 
deforms without any distortion of the cross-section, while local deformation is 
characterized by the deformation of individual plate elements and no relative 
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translation of the fold-lines. 

With the developments in cold-formed section technology, such as the 
reduction in thickness inspired by higher strength steels and the more complex 
sections with more folds and rolls in stiffeners, distortional buckling plays a 
more important role in failure of thin-walled members. This buckling mode 
takes place as a consequence of distortion of the cross-section. In cold-formed 
sections, it is characterized by relative translations of the fold-lines. 

Distortional buckling mode used to be considered as coupled mode of 
global and local buckling modes, whereas its particularity is demonstrated by 
Generalized Beam Theory[14]: distortional deformation mode is proved to be 
orthogonal to flexural-torsional and local deformations. The typical mechanical 
properties of distortional deformation which are different from the other modes 
make distortional buckling individual. 

The approach of modern design specifications to calculate the design 
stability capacity associated with distortional buckling, such as NAS 2007[1] and 
AS/NZS 2005[2], is to calculate the corresponding linear critical force first, then 
to consider the modification about post-buckling reserves, various kinds of 
imperfections and coupling with other buckling modes. 

It is common to use GBT and FSM[6] to analyze linear distortional buckling 
of thin-walled members. The normal approach is to examine the minimum 
points of buckling curves, and the critical force of distortional buckling is 
determined by the minimum point at particular half-wave-length. However, that 
kind of point does not always exist[3], and even if it does exist, the buckling 
mode of that point contains not only distortional but also local/global 
deformation. Actually, the linear buckling totally in accordance with distortional 
deformation mode deduced by Generalized Beam Theory does not exist in 
common load conditions, and distortional deformation mode is usually coupled 
with global and especially local deformation modes. 

Some researchers hold the point that the critical forces of pure deformation 
modes by artificial constraints in linear buckling analysis have more advantages 
to be used in stability capacity calculation. 

2 Tools for research and developments into buckling phenomena 

2.1 Generalized Beam Theory (GBT) 

GBT[8][9][16][17][18] is important in pure distortional buckling mode research, 
for extracting distortional mode from deformations and providing with tools for 
analyzing mechanical properties of this kind of mode. Based on GBT, we can 
analyze linear buckling of any kind of deformation mode and proportions of 
pure modes in any deformation pattern. 
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2.2 Constrained Finite Strip Method (cFSM) 

S. Ádány [3][4][10] introduced GBT’s definitions of deformation modes into 
FSM and proposed cFSM. Constraints of pure modes and deformation modal 
decomposition of arbitrary buckling pattern are implemented. The ability to take 
into account transverse membrane extensions and shear deformations was 
developed, and corresponding deformation and buckling modes are proposed. A 
design approach has been proposed in which the elastic buckling results from 
pure mode cFSM are employed in the Direct Strength Method[14][19] for strength 
prediction 

2.3 Finite Element Method (FEM) 

FEM models have high adaptability of boundary conditions, and the 
stress-strain relation can be defined more precisely. Pure buckling mode analysis 
of thin-walled members cannot be performed by general-purpose FEM without 
definitions of pure deformation modes, therefore researchers have been studying 
in following fields. 

S. Ádány et al. [11] translated the deformation mode defined in cFSM into 
FEM, then analyzed buckling modes calculated by FEM and figured out the 
percentage of participation of each mode (local, distortional, global, etc.). Thus 
modal identification and decomposition were achieved. They developed modal 
analyses with the benefit of FEM and discussed[12]: i)column with semi-rigid 
ends; ii) members with holes and irregular FEM mesh, iii) members undergoing 
thermal gradients; iv) nonlinear analysis. 

Casafont M[5] derived the relation of fundamental modes, based on the 
deformation modes defined by GBT. In shell finite element analyses of 
thin-walled members, they draw the conclusion about linear buckling of pure 
deformation mode, where the deformation relation is defined by constraint 
equations. 

Nedelcu M[13] presented a method based on GBT capable to identify the 
fundamental deformation modes of global, distortional or local nature, in general 
buckling modes provided by the shell finite element analyses of isotropic 
thin-walled members. By this method the participation of each fundamental 
buckling mode can be calculated. 

2.4 The method proposed in this paper 

All the buckling mode analysis methods listed above are based on results of 
GBT cross-section analysis, and longitudinal curve shapes of deformation 
modes have to be designated in most of them.  

A new finite element procedure to carry out linear distortional buckling 
analysis of thin-walled members is developed in the next section. GBT 
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cross-section analysis and longitudinal curve shapes of deformation modes are 
not required in this procedure, which is convenient for simplifying the process 
of linear buckling analysis. 

3. Constraining a finite element mesh 

3.1 Notation for the thin-walled members 

A thin-walled open-section member is shown in Fig. 1: u, v, w are the 
displacements expressed in the local plate systems, the x–y–z coordinate 
systems; U–V–W and θ are the displacements corresponding to the global 
coordinate system, the X-Y-Z system. 

As depicted in Fig. 1, the member consists of n thin rectangular plate walls, 
the width and thickness of plate □r  among them are b□r  and t□r . Consequently, 
the mid-line of the cross-section comprises n segments, the intersection points 
and the end points of the segments are both designated as “main nodes” here. Of 
all the m main nodes, the two end points of the □r -th segment are numbered i 
and j, for example. 

 

Fig. 1  A thin-walled open-profile member 

 

3.2 Constraint equations to preclude torsional-flexural deformations 

In GBT, the individual deformation modes are determined through a 
cross-section analysis process, involving mainly the constitution and solving of 
an eigenvalue problem containing two matrices. The purpose of this paper is to 
distinguish distortional mode from other deformation modes, instead of 
separating different distortional modes. As the result, the GBT cross-section 
analysis process is not required here. Nevertheless, the identification method of 
distortional buckling from global buckling, which is the orthogonality of 
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longitudinal displacements, is adopted in this paper, with the assumption that 
longitudinal membrane displacements on a cross-section distribute lineally over 
the plate width and continuously at intersection points. 

The orthogonality between distortional and torsional-flexural deformation 
is represented as: 

 0d 0
A
V X A   (1) 

 0d 0
A
V Z A   (2) 

 0d 0
A
V A   (3) 

where V is the longitudinal displacement of a point in distortional mode; X0 and 
Z0 are the coordinates of this point in the principal centroidal coordinate system; 
ω0 is the principal sectorial coordinates of this point.  

For the member in Fig. 1, Eq. (1), (2) and (3) can be written as follows: 
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i jr r r r
r

t b V t b V
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         
     

  (6) 

In each cross-section, Eq. (4), (5) and (6) compose an equation set about 
longitudinal displacements of main nodes: 
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


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 (7) 

According to Eq. (15), we can arbitrarily select three non-collinear main 
nodes, Node 1, 2 and 3 for example in this cross-section, and regard their 
longitudinal displacements as dependency displacements determined by 
longitudinal displacements of other main nodes, which is: 
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 (8) 

Constraint equations precluding global buckling can be defined according 
to Eq. (8). There are three equations for each cross-section. 

3.3 Constraint equations to preclude local deformation 

Although the plate walls bend in their out-of-plane direction in both local 
and distortional deformation modes, the two types of out-of-plane deformations 
are different and even orthogonal to each other. In order to shorten the 
calculation process correlate to such orthogonality, GBT and cFSM neglected 
the effects of longitudinal out-of-plane bending and its coupling with transverse 
bending, resulting in more simplified orthogonality of cross-sectional transverse 
deformation. 

Cross-section of the thin-walled member is depicted in Fig. 2, which can 
also be looked on as an equivalent beam system: each beam’s length and the 
depth of its cross-section are the width and thickness of corresponding plate, 
respectively, while their cross-section widths are the same, say, 1. 

             

   Fig. 2 Equivalent beam system           Fig. 3 Sub-divided beam □r  

 

The cross-sectional transverse deformations of the thin-walled member’s 
local mode can be simulated by the beam system under arbitrary loads with all 
the intersection points pined. For the beam system, other deformation patterns 
orthogonal to that should be under concentrated forces applied arbitrarily on the 
intersection points. Consequently, the latter can be looked on as the 
cross-sectional transverse deformations in distortional mode of the thin-walled 
member. 

In order to provide enough degree of freedom for the orthogonal analysis of 
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the beam system’s deformations, the beams is divided further with subordinate 
nodes. The sub-divided beam □r  is depicted in Fig. 3, where the length of its 
segment k is b□r k and the nodes at both ends are Node □r k and Node □r k+1. 

In GBT, the membrane transverse extensions of distortional mode are 
prescribed to be 0, but in shell elements, constraints on membrane transverse 
strains may result in undesired membrane longitudinal stresses. For that sake, a 
different way from cFSM is chosen in this paper, in which membrane transverse 
extensions are not constrained. In doing so, axial deformation functions of all 
elements are excluded in the analyses of the equivalent beam system. 

Bending equations of segment k in beam □r  are: 
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 (9) 

Synchronizing Eq. (9)s of all elements in the equivalent beam system, 
resulting in the global bending equations: 

 
   

   
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Q w
K

M θ
 (10) 

where w and θ are the deflections and rotation angles of all nodes; Q and M are 
the corresponding nodal forces. 

Separate deflections on intersection nodes of beams, wIN, from those of 
other nodes, wNN, Eq. (10) can be rewritten as: 

 

1 2IN IN

NN NN
3 4

    
         

        

K KQ w

Q w
K K

M θ

 (11) 

The QNN and M are zeroes in distortional deformation mode, which lead to: 

 
NN 1

4 3 IN
 

  
 

w
K K w

θ
  (12) 
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For any node, the deflection, w, can be determined by that node’s 
translation in X-axis and Z-axis, U and W. For example: 

 cos sin
r k r r k r r k

w U W      (13) 

where α□r  is the angle between x-axis of Plate □r  and X-axis of the global 
coordinate system, as depicted in Fig. 1. By substituting Eq. (13) into Eq. (12), 
the constraint equations precluding local deformation mode from distortional 
mode can be expressed as Eq. (14) and (15): 

 
IN

NN NN NN NN 1
IN

cos sin
 

    
 

U
α U α W D

W
  (14) 

 
IN

2
IN

 
  

 

U
θ D

W
  (15) 

Eq. (14) is transplacement constraints of all non-intersection nodes in 
normal direction of plane, and Eq. (15) is the constraints of all nodes’ rotation 
angle about Y-axis. They are determined by transverse displacements of 
intersection nodes in their same cross-section. 

Note that shell element in FE analysis may use the method of incompatible 
modes to enhance the accuracy in bending-dominated problems. In the cases 
where the mesh is coarse, incompatible modes may perform incorrectly with the 
constraint equations of rotation angles, which leads to an inaccurate result. 
Therefore the Eq. (14) is applied as constraint equations of distortional mode to 
preclude local mode without Eq. (15). 

4. Numerical example 

A uniformly compressed channel member with the section depicted in Fig. 
4 is considered. The thickness of plates is 2mm, the Young’s modulus is 
206kN/mm2, and the Poisson’s ratio is 0.3. 

 

Fig. 4 Geometry of the cross-section (dimensions in mm) 
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A shell FE buckling analysis of the thin-walled member was performed in 
ANSYS, using SHELL181 element in a rectangular mesh. The full integration 
option of SHELL181 element is applied, for increasing the accuracy of the 
computation of in-plane bending. The cross-section discretization is made with 1, 
3 and 0 intermediate nodes between the corners in the flanges, web and flange 
lips respectively. 

During the process of linear buckling analysis in ANSYS, constraint 
equations (8) and (14) are applied to the model to force the mesh to buckle in 
distortional deformation mode.  

 

 

Fig. 5 Curves of critical stress 

 

The resulting critical stress curve (a) is depicted in Fig. 5 with results of all 
deformation modes (f) and distortional modes (g) calculated by CUFSM[7], both 
in one-half sine wave. 

Several other results are also plotted as curve (b)-(e), using the same 
method and mesh of modal as curve (a) with the differences that: extra axial 
twist constrain equations according to Eq. (15) are included in (b); extra 
constraints of transverse membrane extensions are considered in (c); uniform 
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reduced but not the full integration mode option of shell SHELL181 element is 
applied in (d); relatively well-refine discretization is made in (e), with 3, 9 and 3 
intermediate nodes between the corners in the flanges, web and flange lips, 
respectively. 

Fig. 6 demonstrates that i) result of (b) is much higher than the others, as 
mentioned in last section, and ii) result of (d) is much lower in magnitude than 
the others, due to the errors of SHELL181 element’s reduced integration option 
in coarse mesh. 

 

Fig. 6 Curves of critical stress near the minimum points 

 

Curve (a), (c) and (e) are nearly the same with distortional mode of cFSM. 
These curves near their minimum points are plotted in a larger scale in Fig. 6. It 
shows that the method in this paper can reach sufficiently accurate results even 
with the FE meshed coarsely. In addition, the effects of transverse membrane 
extension constraints on critical loads of distortional mode should not be 
neglected. 

5. Conclusion 

A new method forcing the shell finite element models to deform in 
distortional mode with constraint equations is provided here. The constraints on 
each cross-section are applied independently. They can even be separated into 
two parts, and the constraints of transverse displacements are not coupled with 
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those of longitudinal displacements. This method is not on the basis of GBT 
cross-section analysis procedure, therefore the implement of it is relatively 
convenient. 

The use of shell elements for modeling thin-walled members in FEM is 
common. While the mesh is coarse, options of shell elements should be carefully 
chosen and examined for a more accurate result. 

In order to take into account the impacts of some strains used to be 
neglected, such as transverse membrane extension and shear strain, usual 
solution is to define new deformation modes according to those strains, then to 
consider the coupling of new modes with original modes in buckling analysis. 
Another solution is discussed in this paper: adding those strain into original 
modes such as distortional mode, which is convenient for simplifying the 
process of linear buckling analysis. 
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