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Analyses of thin-walled sections under localised loading for 
general end boundary conditions – Part 1: Pre-buckling 

 
Van Vinh Nguyen1, Gregory J Hancock2 and Cao Hung Pham3 

 
Abstract 
 
The Semi-Analytical Finite Strip Method (SAFSM) for pre-buckling analysis of 
thin-walled sections under localised loading has been developed for general end 
boundary conditions. For different boundary conditions at supports and loading 
point, different displacement functions are required for both flexural and 
membrane displacements. As the stresses are not uniform along the member due 
to localised loading, the pre-buckling analysis also requires multiple series terms 
with orthogonal functions. 
 
This paper briefly summaries the displacement functions used for different 
boundary conditions.  In addition, the theory of the SAFSM for pre-buckling 
analysis of thin-walled sections under localised loading with general end 
boundary conditions is developed. The analysis is benchmarked against the 
Finite Element Method (FEM) using software package ABAQUS/Standard. The 
results from this pre-buckling analysis are deflections (pre-buckling modes) and 
membrane stresses which are used for the buckling analysis described in Part 2 - 
Buckling in the companion paper. 
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1. Introduction 
 
In order to carry out a buckling analysis of a thin-walled member under localised 
loading, it is necessary to compute the pre-buckling membrane stresses in the 
member. The Part 1 - Pre-buckling analysis described in this paper is an 
important step which provides stresses for conducting the buckling analysis 
described in Part 2 in the companion paper. 
 
The analysis of structural members can be performed by a variety of methods. 
Two of the most popular numerical methods are the Finite Element Method 
(FEM) and Finite Strip Method (FSM). While the FEM allows the analysis of 
structural members with all kinds of geometry and general boundary conditions, 
the FSM provides analysis of structural members with complex geometry in 
their section, but simple along the length. For particular types of structures such 
as thin-walled sections, the FSM can be extremely competitive in terms of 
computational efficiency due to the simplicity of displacement functions and the 
decrease in number of degrees of freedom. 
 
The first application of the SAFSM was presented by Cheung (1976). This 
method was first used for buckling analysis by Przemieniecki (1973) to study 
the initial local buckling stresses of plates and plate assemblies under biaxial 
compression. Bradford and Azhari (1995) used two sets of displacement 
functions in the buckling analysis of plates for different ends boundary 
conditions using the SAFSM. Their first basic functions were derived from the 
solution of the beam vibration differential equations employed by Cheung 
(1976) to study plate vibration. However, in static analyses of structural 
members under localised loading for some boundary conditions such as the 
Clamped-Clamped case, the shear stress at the ends of the structural member is 
equal to zero. It is an impossible situation in a beam as there is no reaction to 
resist the applied load at the supports. The second basic functions used by 
Bradford and Azhari are trigonometric functions, and satisfy the boundary 
conditions. However, in the Clamped-Clamped case, the displacement functions 
are fairly complex with the product of two sine functions which cause difficulty 
in solving the integrations in both pre-buckling and buckling analyses. 
 
In this Part 1 - Pre-buckling, the paper summaries the displacement functions for 
different end boundary conditions of structural members. The theory of the 
SAFSM for pre-buckling analysis of thin walled sections under localised loading 
for general end boundary conditions is given as also built into the THIN-WALL-
2 program developed by the authors (Nguyen, Hancock, & Pham, 2015). 
Numerical examples have been performed using the THIN-WALL-2 program 
and compared with the results from the analyses by the FEM using ABAQUS 
(ABAQUS/Standard Version 6.13, 2013) to validate the accuracy of the SAFSM 
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against the FEM. The results from the pre-buckling analysis step are membrane 
stresses and deflections of the structural member which are used for the buckling 
analysis described in Part 2 – Buckling in the companion paper. A convergence 
study of deflections and stresses with the number of series terms is also provided 
in this paper. 
 
2. Displacement functions 
 
2.1. Choice of displacement functions 
 
In the Finite Strip Method (FSM), it is seen that the choice of suitable 
displacement functions for a strip is the most important stage of the analysis, and 
great care must be exercised at such a stage. An incorrectly chosen displacement 
function may lead to results which converge to incorrect answers for 
successively refined meshes. The FSM can be considered as a special form of 
the FEM procedure using the displacement approach. Unlike the standard FEM 
which uses the polynomial displacement functions in all directions, the FSM 
calls the use of simple polynomials in the transverse direction and continuously 
differentiable smooth series in the longitudinal direction, with the stipulation 
that such series should satisfy the boundary conditions at the ends of the strips. 
The displacements of a strip are a combination of the flexural displacements 
perpendicular to the strip and membrane displacements in the plane of the strip. 
Generally, the form of the displacement function is given as a product of 
polynomials and smooth series.  
 
2.2. The flexural displacement functions of a strip 
 
An isometric view of flexural displacements of a strip is shown in Fig.1  

 
Figure 1: Flexural displacements of a strip with both ends simply supported  
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The flexural deformations w of a strip can be described by the summation over μ 
series terms as: 

1 1
1

( ) ( )m m
m

w f y X x
µ

=

= ∑  
 

(1) 

where: 
 µ is the number of series terms of the harmonic longitudinal function 

1 ( )mX x  is the curve for longitudinal variation 

1 ( )mf y  is a polynomial for transverse variation. This function for the mth 
series term is given by: 

2 3

1 1 2 3 4( )m Fm Fm Fm Fm
y y yf y
b b b

α α α α     = + + +     
     

 
 
 

(2) 

{ }Fmα  are the vector polynomial coefficients for the mth series term which 
depend on the nodal line flexural deformations of the strip 

{ } [ ]1 2 3 4
T

Fm Fm Fm Fm Fmα α α α α=  
b and L are the strip width and length respectively. 
 

2.3. The membrane displacement functions of a strip 
 
An isometric view of membrane displacements of a strip is shown in Fig.2  

 
Figure 2: Membrane displacements of a strip with both ends simply supported  

 
The membrane deformations in the longitudinal and transverse directions of a 
strip can be described by the summation over μ series terms as: 
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( ) ( )um m
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where: 
1 2( ) and ( )m mX x X x are the longitudinal variation curves for the membrane 

transverse v and longitudinal u deformations respectively 
( ) and ( )vm umf y f y  are the transverse variations. These functions for the mth 

series term are given by: 

1 2( )vm Mm Mm
yf y
b

α α  = +  
 

 
 

(5) 

3 4( )um Mm Mm
yf y
b

α α  = +  
 

 
 

(6) 

{ }Mmα is the vector of polynomial coefficients for the mth series term which 
depends on the nodal line membrane deformations of the strips 

{ } [ ]1 2 3 4
T

Mm Mm Mm Mm Mmα α α α α=  
 

2.4. Available displacement functions for different boundary conditions 
 
2.4.1. Both ends simply supported (SS) 
 
The displacement functions by Cheung (1976) are:  

1 ( ) sinm
m xX x

L
π =  

 
 

 

(7) 

2 ( ) cosm
m xX x

L
π =  

 
 

 

(8) 

 
2.4.2. One end simply supported and the other end clamped (SC) 
 
The displacement functions by Cheung (1976) are:  

1 ( ) sin sinhm m
m m

x xX x
L L

µ µα   = −   
   

 
 

(9) 

2 ( ) cos coshm m
m m

x xX x
L L

µ µα   = −   
   

 
 

(10) 

 with  4 13.9266,7.0685,10.2102,....,
4m

mµ π+
=  

   sin1,2,3,...,  and 
sinh

m
m

m

m µα
µ

= ∞ =  

 
2.4.3. One end simply supported and the other end free (SF) 
 
The displacement functions by Cheung (1976) are:  
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Case 1: 11 and 1m µ= =  

11 21( )  and  ( ) 1xX x X x
L

= =  
 

(11) 

Case 2: 

 
sin2,3,4,5,...,  and 
sinh

m
m

m

m µα
µ

= ∞ =  

      4 33.9266,7.0685,10.2102,13.3520,...,
4m

mµ π−
=

 

1 ( ) sin sinhm m
m m

x xX x
L L

µ µα   = +   
   

 
 

(12) 

2 ( ) cos coshm m
m m

x xX x
L L

µ µα   = +   
   

 
 

(13) 

 
2.4.4. Both ends clamped (CC) 
 
The displacement functions by Cheung (1976) are:  

1 ( ) sinm
m xX x

L
π =  

 
 

 

(14) 

( )
2

1
( ) sinm

m x
X x

L
π +

=  
 

 
 

(15) 

These functions were selected by Cheung (1976) in Chapter 3 to satisfy 
equilibrium at the ends. 
 
2.4.5. One end clamped and the other end free (CF) 
 
The displacement functions by Bradford and Azhari (1995) are: 

1
1( ) 1 cos
2m

xX x m
L

π  = − −    
 

 

(16) 

2
2 1 1( ) sin

2 2m
m xX x m

m L
π −   = −        

 
 

(17) 

These functions have been chosen as they are simpler to implement in Part 2 - 
Buckling described later. 
 
2.4.6. Both ends free (FF) 
 
The new displacement functions which are used in this paper are:  
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Case 1: 1m =    

11 21( ) 1 and ( ) 0X x X x= =  (18) 
Case 2: 2m =    

12 22
2 1( ) 1  and ( )xX x X x
L π

= − = −  (19) 

Case 3: 3m ≥   
( )

1

2 5
( ) 1 2sinm

m x
X x

L
π −

= −  
 

 
 

(20) 

( )
2

2 52 5( ) 2 cosm

m xmX x
m L

π −− = −   
   

 
 

(21) 

These functions have been chosen as they are simpler to implement in Part 2 - 
Buckling described later. 
 
3. Load vector 
 
The localised load applied on the structural member is assumed to be line loads 
as shown in the Fig.3. The loads may be applied in different directions and at 
any position along the structural member. 

 
Figure 3: Localised loading applied on a strip 

The deformation of the nodal line u,v,w in Z,X,Y directions is given by: 

1 1 ( )m mv V X Z=  

1 1 ( )m mw W X Z=  

1 2 ( )m mu U X Z=  

 

 
(22) 

where: 

Y,

Z,

X,

b

L

L2

L1

v

u

w

F  (Z)  is the line load by X directionX

F  (Z)  is the line load by Y directionY

F  (Z)  is the line load by Z directionZ

M  (Z)  is the moment by Z directionZ

F (z)
F (z)

F (z)Z

X

Y
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1 ( )mX x is the longitudinal variation curve for the membrane transverse 
deformation (v), also for the flexural deformation 

2 ( )mX x  is the longitudinal variation curve for the membrane longitudinal 
deformation (u) 

1 1 1, ,m m mU V W are amplitude deformations of the loaded nodal line for the mth 
series term 

 
The terms in the load vector can be derived from the potential energy of the 
external forces to be: 

2 2

1 1

2 2

1 1

1 1

2 1

( ) ( )  ;  ( ) ( )

( ) ( )  ; ( ) ( )

L L

Xm X m Ym Y m
L L

L L

Zm Z m Mm Z m
L L

W F Z X Z dZ W F Z X Z dZ

W F Z X Z dZ W M Z X Z dZ

= =

= =

∫ ∫

∫ ∫

 

 

 
 

(23) 

where: 
L1 and L2 are the starting and ending points of the line loads respectively as 
shown in Fig.3  

( ), ( ), ( ) and ( )X Y Z ZF Z F Z F Z M Z are the distributed lines load in the X, Y, Z 
directions. These loads may be constant or vary with Z 

, ,  and Xm Ym Zm MmW W W W are the X,Y,Z and M components of the load 
vector for each nodal line for the mth series terms. 

 
4. Strain energy and potential energy 
 
In order to compute the stiffness matrix of a strip according to conventional 
finite strip theory (Cheung, 1976), it is necessary to define the strain energy in 
the strip under deformation and the potential energy of the external forces. 
 
4.1. Strain energy of a strip 
 
The flexural strain energy UF is given by: 

2 2 2

2 2
0 0

1 2
2

L b

F x y xy
w w wU M M M dydx

x y x y
 ∂ ∂ ∂

= − − + ∂ ∂ ∂ ∂ 
∫ ∫  

 

(24) 

 { } { }
1 10 0

1
2

L b
T

F Fm Fn
m n

U dydx
µ µ

σ
= =

= ∈∑∑∫ ∫  
 

(25) 

where { } { } and Fm Fnσ ∈ are the flexural stress and strain vectors respectively 
The membrane strain energy UM is given by: 
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( )
0 0

1
2

L b

M x x y y xy xyU tdydxσ σ τ γ= ∈ + ∈ +∫ ∫  
 

(26) 

 { } { }
1 10 0

1
2

L b
T

M Mm Mn
m n

U tdydx
µ µ

σ
= =

= ∈∑∑∫ ∫  
 

(27) 

where { } { } and Mm Mnσ ∈ are the membrane stress and strain vectors respectively 
 
4.2. Potential energy of the external forces 
 
The potential energy of the external forces is given by: 

0

( ) ( )
L

W mV F Z X Z dZ= −∫  
 

(28) 

where ( )F Z  and ( )mX Z  are the line load and displacement functions 
respectively for different directions. 
 
5. Stiffness matrix 
 
The flexural strain energy UF from equation (25) is rewritten as given: 

{ } [ ]{ }T
F Fm Fmn FnU kδ δ=  

 

(29) 
where [ ]Fmnk is the flexural stiffness matrix corresponding to the mth and nth 

series terms and [ ]Fnδ  is the flexural displacement vector of a strip 

corresponding to the nth series term. The matrix [ ]Fmnk is given in the Research 
Report 958 (Nguyen, Hancock, & Pham, 2016). The coefficients I1F, I2F, I3F, I4F, 
I5F in the report have been evaluated exactly for the displacement functions 
satisfying the different boundary conditions described in 2.4 
 
The membrane strain energy UM from equation (27) is rewritten as: 

{ } [ ]{ }T
M Mn Mmn MnU kδ δ=  

 

(30) 
where [ ]Mmnk is the membrane stiffness matrix corresponding to the mth and nth 

series terms and [ ]Mnδ  is the membrane displacement vector of a strip 

corresponding to the nth series term. The matrix [ ]Mmnk is given in the Research 
Report 958 (Nguyen et al., 2016). The coefficients I1M, I2M, I3M, I4M, I5M, I6M, I7M, 
I8M  in the report have been evaluated exactly for the displacement functions 
satisfying the different boundary conditions described in 2.4. 
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The stiffness matrix of a strip is assembled from both the flexural stiffness 
matrix and the membrane stiffness matrix in local coordinates. These matrices 
are transformed to global coordinates by a multiplication with transformation 
matrices. The stiffness matrix of the whole section for each series term is 
assembled from the stiffness matrices of individual strip. Finally, the complete 
stiffness matrix of the whole section is assembled from the stiffness matrices 
taken over the series terms, thus the size of this matrix is 4 times the node 
number and times the number of series terms. 
 
6. Pre-buckling analysis 
 
The total potential energy is the sum of the elastic strain energy stored in a strip 
and the potential energy of the external loads, thus: 

WU Vφ = +  (31) 
The principle of minimum total potential energy requires that: 

{ } { }0
p

φ
δ

 ∂  = 
∂  

 
 
 

(32) 

Thus, we have: 
[ ]{ } { }pK Wδ =  

 

(33) 

where [ ]K  is the system stiffness matrix based on a strip subdivision of a thin-

walled section, { }pδ are the nodal line displacements (pre-buckling modes) of 

strips in the global X,Y,Z axes, and{ }W  are the nodal line forces (line loads) 
given by Eq.(23).   
 
The amplitude of the pre-buckling displacements is obtained from Equation 
(33). These values are multiplied with the displacement functions to get the pre-
buckling deformations for all sections along the structural member. 
The membrane stresses of a strip are given by: 

{ } [ ]{ }Mm M MmDσ = ∈  
 

(34) 

where{ }Mm∈  is the membrane strain vector:    

{ } [ ]{ }Mm Mm MmB α∈ =  
 

(35) 
The summation can be taken over the m series terms at any longitudinal position 
to get the membrane stresses for all sections: 

{ } { }
1

M Mm
m

µ

σ σ
=

= ∑  
 

(36) 
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7. Numerical example 
 
A pre-buckling analysis has been performed for a lipped channel section with 
rounded corners and lips under localised loading using the THIN-WALL-2 
program. The geometry of the beam and the loading are shown in Fig.4. The 
beam is analysed with different boundary conditions for the web and the flanges 
of the end sections. In addition, lateral restraints are applied along the beam at 
Nodal Lines 11 and 35 to avoid twisting caused by eccentric loading. The results 
from the pre-buckling analysis of the beam under localised loading include 
deflections and stresses. The stress and deflection values are obtained from 
Nodal Line 23 in the middle of the section for all sections along the beam.  
 
The beam has also been analysed using a pre-buckling analysis by ABAQUS 
with an equivalent loading and boundary conditions. It was meshed into 5mm x 
5mm, except at the section’s corners. The corners were modelled with 1mm x 
5mm mesh to accurately represent the influence of corner radius. The stress and 
deflection values are obtained from a group of nodes at the same positions as the 
nodal lines from THIN-WALL-2. 

 
Figure 4: Lipped channel section under localised loading 
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The comparison between the stresses and deflections from the SAFSM and the 
FEM are shown in Table 1 and Table 2 for the Clamped - Free (CF) case which 
uses the Bradford and Azhari (1995) displacement functions. The results for 
other boundary conditions can be seen in the Research Report 958 (Nguyen et 
al, 2016).  The comparison demonstrates the accuracy of the SAFSM when 15 
series terms are used particularly for the transverse and shear stresses. There is a 
small difference in the local peak of the longitudinal stress at the centre but this 
is unlikely to have an effect on the buckling analysis in the companion paper – 
Part 2 - Buckling. 
 

Table 1: Stress comparison for CF case (Nodal Line 23) 
 

  
SAFSM (THIN-WALL-2) 

(15 series terms) 
 

 
FEM (Abaqus) 

 

 
 
 
 

Sx 
(MPa) 

 

 

 

 
 
 
 
 

Sy 
(MPa) 

 

 

 

 

 
 
 
 

Txy 
(MPa) 
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Table 2: Deflection comparison for CF case (Nodal Line 23) 
 

  
SAFSM (THIN-WALL-2) 

(15 series terms) 
 

 
FEM (Abaqus) 

 

 
 
 
 
Mode 

 

 
 

 

 

 
 
 
 

Dx 
(mm) 

 

 
 

 

 
 
 
 
 

Dy 
(mm) 

 

 
 

 

 
 
 
 
 

Dz 
(mm) 
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8. Convergence study 
 
A study has been performed for the lipped channel section in 7 with different 
boundary conditions and different numbers of series terms to find the acceptable 
number of series terms for the pre-buckling analysis. The relationships between 
the longitudinal stress at Nodal Line 23, Section 11 at the middle of the beam 
and the number of series terms are shown in Fig.5 for different boundary 
conditions. There is convergence of the longitudinal stress when the number of 
series terms reaches 25 in comparison with ABAQUS as shown in Table 1. It 
means that about 25 series terms are required to get the converged stresses as 
well as deflections in the pre-buckling analysis for a localised load one tenth the 
length of the member. 
 

  
 

Figure 5: Convergences of longitudinal stress (Sx) 
9. Conclusion 
 
A Semi-Analytical Finite Strip Method of pre-buckling analysis of thin-walled 
section under localised loading has been developed for general end boundary 
conditions. This method has been benchmarked against the Finite Element 
Method. 
 
Suitable displacement functions are used for different support and loading 
conditions for both flexural and membrane displacements. For a load over one-
tenth of the span, about 25 series terms are required in the analysis process to get 
accurate pre-buckling results, particularly stress.  
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