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Numerical Simulations of Solid and Slotted Cold-Formed 
Steel Channels with Different Boundary Conditions in Shear 

 
Vitaliy V. Degtyarev1 and Natalia V. Degtyareva2 

 
Abstract 
 
This paper presents results of a numerical study on the shear strength of cold-
formed steel channels with solid and slotted webs. The effects of four different 
boundary conditions—test setup, realistic, and simply supported with free and 
restrained ends—on the elastic shear buckling load and the ultimate shear 
strength were considered. The study was performed on finite element models 
developed in ANSYS and validated against test data. The obtained results 
showed that the elastic shear buckling loads and the ultimate shear strengths of 
the slotted channels are more sensitive to the boundary conditions when 
compared with the solid channels. The simply supported boundary conditions 
can reasonably well simulate the test setup boundary conditions of the solid 
channels but not the slotted channels. The realistic boundary conditions cannot 
be accurately simulated by the simply supported boundary conditions for the 
solid and slotted channels. 
 
Introduction 
 
Cold-formed steel (CFS) studs and purlins with slotted webs have been 
developed and used to reduce thermal bridging and to make the CFS framing 
thermally efficient (AISI/Steel Framing Alliance 2002b, Höglund and 
Burstrand 1998, and Liptak-Varadi 2010). AISI/Steel Framing Alliance 
(2002a), Kesti (2000), and Salhab and Wang (2008) studied the effects of the 
slotted webs on the strength and behavior of CFS channels in compression and 
bending.  
 
Degtyareva and Degtyarev (2016) experimentally investigated the shear 
strength of the slotted channels and found that the ultimate shear strength was 
greatly affected by web perforations. Tentative equations for the shear capacity 
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of the slotted channels with and without tension field action were proposed. 
The proposed equations can only be used for the channels with the perforation 
pattern tested in the study. Additional investigations are required to determine 
the effects of different slot sizes and patterns on the shear strength of CFS 
channels.  
 
Keerthan and Mahendran (2010b, 2015), LaBoube and Yu (1978), and Pham 
and Hancock (2012) demonstrated that the ultimate shear strength of CFS 
channels with solid webs depended on the test setup and support conditions. 
Based on results of numerical simulations, Degtyarev and Degtyareva (2016) 
showed that the shear strength of the slotted channels is more affected by the 
boundary conditions than the strength of the solid channels.  
 
The objectives of this study were to numerically investigate the effects of 
different boundary conditions on the elastic shear buckling load and the 
ultimate shear strength of CFS channels with solid and slotted webs and to 
determine whether or not simplified boundary conditions can simulate the test 
setup and realistic boundary conditions with acceptable accuracy. The 
simplified boundary conditions are attractive for the use in numerical 
parametric studies because they can be modeled more easily than the tests setup 
and realistic boundary conditions.  
 
The study by Degtyarev and Degtyareva (2016) was expanded in this work to 
include solid and slotted CFS channels with simply supported boundary 
conditions. Two simply supported boundary conditions were considered: with 
coupled and with uncoupled translations of the nodes at the supported web 
edge in the direction parallel to the channel length. Those boundary conditions 
are referenced in this paper as simply supported boundary conditions with the 
restrained and free ends, respectively. 
  
The studies were performed on non-linear finite element (FE) models 
developed in ANSYS and validated against test data. The FE method has 
proven to be an effective and powerful tool for analysis of CFS members in 
shear and for predicting their shear strength and behavior (Degtyarev and 
Degtyareva 2016, Keerthan and Mahendran 2010a, 2011a, 2011b, 2013a, 
2013b, 2014, and 2015, Pham and Hancock 2010, 2012, and 2015, and Pham et 
al. 2014).  
 
Numerical study program 
 
The CFS channels with solid and slotted webs experimentally studied by 
Degtyareva and Degtyarev (2016) were modeled in ANSYS. The tested 
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boundary conditions. The initial geometric imperfection of h/150 was used 
(Degtyarev and Degtyareva 2016). 
 
The FE analysis was performed in two steps. First, the elastic buckling analysis 
was run to obtain the elastic shear buckling loads and modes. Afterwards, the 
nonlinear static analysis was performed to obtain the ultimate shear strength 
and the failure mode of the model. The lowest elastic shear buckling mode was 
used in the nonlinear analysis for modeling the initial geometric imperfections. 
The effects of large deformations and material yielding were taken into 
consideration in the nonlinear analysis. The L2-norm (square root sum of the 
squares) with the tolerance values of 0.05 and 0.005 for moments and forces, 
respectively, was used for the convergence criterion. The sparse direct equation 
solver and the automatic load stepping were specified. 
 
A detailed validation of the developed FE models with the test setup boundary 
conditions against the test data is presented in Degtyarev and Degtyareva 
(2016). Good agreements between the experimental and simulated ultimate 
shear strengths can also be seen in Table 1. 
 
Numerical simulations results and discussion 
 
Elastic shear buckling load 
 
 

Table 2 shows the elastic shear buckling loads of the analyzed channels with 
different boundary conditions obtained from the FE analyses. Typical lowest 
buckling modes of the solid and slotted channels are shown in Figs. 3 and 4, 
respectively.  
 
For the slotted channels, the Vcr-TS/Vcr-R ratios ranged from 1.04 to 2.07 with a 
mean value of 1.52 and a coefficient of variation of 0.233, which indicates that 
the realistic boundary conditions resulted in smaller elastic shear buckling 
loads when compared with those for the test setup boundary conditions. The 
difference in the elastic shear buckling loads increased as the web slenderness 
increased. These results show that the realistic boundary conditions do not 
provide the same restraint for the slotted channels as the test setup boundary 
conditions. 
 
For the solid channels, the Vcr-TS/Vcr-R ratios ranged from 0.70 to 1.49 with a 
mean value of 1.01 and a coefficient of variation of 0.286. In other words, the 
elastic shear buckling loads of solid channels with the test setup boundary 
conditions were either higher or smaller than those for the solid channels with 
the realistic boundary conditions depending on the web slenderness. On 
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average, the elastic shear buckling loads of the studied solid channels with both 
boundary conditions were approximately the same. The obtained results show 
that the elastic shear buckling loads of the solid channels are less sensitive to 
the change in the boundary conditions when compared with the slotted 
channels. 
 
Table 1 
Experimental and calculated ultimate shear capacities of solid and slotted channels 

Specimen Vtest 
(kip) 

VFEA-TS 
(kip) 

VFEA-R 
(kip) 

VFEA-SF 
(kip) 

VFEA-SR 
(kip) 

Vtest/ 
VFEA-TS

VFEA-TS/
VFEA-SF

VFEA-TS/
VFEA-SR

VFEA-R/ 
VFEA-SF 

VFEA-R/ 
VFEA-SR 

C-150-0.9-1 2.579 2.574 2.298 2.529 3.111 1.00 1.02 0.83 0.91 0.74 
C-150-0.9-2 2.534 2.624 2.246 2.525 3.116 0.97 1.04 0.84 0.89 0.72 
C-150-1.5-1 6.708 7.126 7.270 6.623 7.450 0.94 1.08 0.96 1.10 0.98 
C-150-1.5-2 5.706 6.866 7.264 6.598 7.430 0.83 1.04 0.92 1.10 0.98 
C-200-0.9-1 2.241 2.428 2.754 2.531 3.019 0.92 0.96 0.80 1.09 0.91 
C-200-1.5-1 6.666 7.115 7.951 6.596 7.565 0.94 1.08 0.94 1.21 1.05 
C-200-1.5-2 6.202 7.736 7.866 6.911 7.951 0.80 1.12 0.97 1.14 0.99 

CS-150-1.5-1 7.259 7.626 7.117 6.879 7.727 0.95 1.11 0.99 1.03 0.92 
CS-150-2-1 9.930 11.443 9.932 10.274 11.270 0.87 1.11 1.02 0.97 0.88 

CS-245-1.5-2 8.813 9.822 8.140 8.304 10.031 0.90 1.18 0.98 0.98 0.81 
PC-150-0.9-1 1.014 0.969 0.753 0.553 1.144 1.05 1.75 0.85 1.36 0.66 
PC-150-0.9-2 0.928 0.895 0.753 0.515 1.054 1.04 1.74 0.85 1.46 0.71 
PC-150-1.5-1 1.994 1.828 1.407 1.189 2.221 1.09 1.54 0.82 1.18 0.63 
PC-150-1.5-2 1.558 1.720 1.441 1.104 2.012 0.91 1.56 0.85 1.31 0.72 
PC-200-0.9-1 1.129 1.322 0.883 0.663 1.167 0.85 1.99 1.13 1.33 0.76 
PC-200-0.9-2 0.863 1.054 0.767 0.486 0.917 0.82 2.17 1.15 1.58 0.84 
PC-200-1.5-1 2.758 2.983 2.271 1.481 2.727 0.93 2.01 1.09 1.53 0.83 
PC-200-1.5-2 2.419 2.810 1.673 1.544 2.756 0.86 1.82 1.02 1.08 0.61 

PCS-150-1.5-1 2.169 2.219 1.583 1.308 2.048 0.98 1.69 1.08 1.21 0.77 
PCS-150-1.5-2 1.888 2.120 1.349 1.209 1.868 0.89 1.75 1.13 1.11 0.72 
PCS-150-2-1 2.853 3.392 2.426 2.187 3.172 0.84 1.55 1.07 1.11 0.76 
PCS-150-2-2 2.743 3.170 2.017 1.987 2.752 0.87 1.59 1.15 1.01 0.73 

PCS-245-1.5-1 3.811 3.995 3.275 2.979 3.993 0.95 1.34 1.00 1.10 0.82 
PCS-245-1.5-2 3.415 3.846 2.772 2.648 3.482 0.89 1.45 1.10 1.05 0.80 
PCS-245-2-1 4.159 3.968 2.646 2.806 3.628 1.05 1.41 1.09 0.94 0.73 

  All channels MIN 0.80 0.96 0.80 0.89 0.61 
     MAX 1.09 2.17 1.15 1.58 1.05 
     MEAN 0.93 1.45 0.99 1.15 0.80 
     COV 0.084 0.249 0.117 0.162 0.145 
  Solid channels MIN 0.80 0.96 0.80 0.89 0.72 
     MAX 1.00 1.18 1.02 1.21 1.05 
     MEAN 0.91 1.07 0.92 1.04 0.90 
     COV 0.068 0.058 0.080 0.099 0.123 
  Slotted channels MIN 0.82 1.34 0.82 0.94 0.61 
     MAX 1.09 2.17 1.15 1.58 0.84 
     MEAN 0.93 1.69 1.03 1.23 0.74 
     COV 0.093 0.140 0.119 0.159 0.093 

Specimen label: W-D-T-N, where W = channel web type (C = solid unstiffened web, CS = solid stiffened web, PC 
= perforated unstiffened web, PCS = perforated stiffened web); D = nominal channel depth in mm (150, 200, and 
245); T = nominal base steel thickness of channel in mm (0.9, 1.5, and 2); and N = specimen number. 
 

208



 
 

Table 2 
Calculated elastic shear buckling loads of solid and slotted channels 

Specimen Vcr-TS 
(kip) 

Vcr-R 
(kip) 

Vcr-SF 
(kip) 

Vcr-SR 
(kip) 

Vcr-TS/ 
Vcr-R 

Vcr-TS/ 
Vcr-SF 

Vcr-TS/ 
Vcr-SR 

Vcr-R/  
Vcr-SF 

Vcr-R/  
Vcr-SR 

C-150-0.9-1 1.920 1.306 1.659 1.767 1.47 1.16 1.09 0.79 0.74 
C-150-0.9-2 1.933 1.295 1.664 1.767 1.49 1.16 1.09 0.78 0.73 
C-150-1.5-1 7.756 8.282 6.825 7.273 0.94 1.14 1.07 1.21 1.14 
C-150-1.5-2 7.623 8.248 6.756 7.250 0.92 1.13 1.05 1.22 1.14 
C-200-0.9-1 1.045 0.818 0.944 0.996 1.28 1.11 1.05 0.87 0.82 
C-200-1.5-1 5.130 5.883 4.804 4.984 0.87 1.07 1.03 1.22 1.18 
C-200-1.5-2 5.546 6.519 5.123 5.350 0.85 1.08 1.04 1.27 1.22 

CS-150-1.5-1 17.719 25.273 16.937 17.701 0.70 1.05 1.00 1.49 1.43 
CS-150-2-1 42.934 55.793 40.533 42.568 0.77 1.06 1.01 1.38 1.31 

CS-245-1.5-2 10.200 12.077 9.775 11.425 0.84 1.04 0.89 1.24 1.06 
PC-150-0.9-1 0.540 0.261 0.407 0.443 2.07 1.32 1.21 0.64 0.59 
PC-150-0.9-2 0.474 0.250 0.384 0.420 1.90 1.23 1.13 0.65 0.59 
PC-150-1.5-1 2.127 1.585 1.659 1.783 1.34 1.28 1.19 0.96 0.89 
PC-150-1.5-2 1.891 1.571 1.571 1.695 1.20 1.20 1.12 1.00 0.93 
PC-200-0.9-1 0.481 0.238 0.353 0.414 2.01 1.36 1.16 0.68 0.58 
PC-200-0.9-2 0.346 0.211 0.283 0.337 1.63 1.22 1.03 0.75 0.63 
PC-200-1.5-1 2.232 1.565 1.632 1.958 1.43 1.37 1.14 0.96 0.80 
PC-200-1.5-2 2.010 1.342 1.803 2.014 1.50 1.12 1.00 0.75 0.67 

PCS-150-1.5-1 1.891 1.637 1.464 2.127 1.16 1.29 0.89 1.12 0.77 
PCS-150-1.5-2 1.677 1.522 1.493 2.124 1.10 1.12 0.79 1.02 0.72 
PCS-150-2-1 5.681 5.146 4.422 6.481 1.10 1.28 0.88 1.16 0.79 
PCS-150-2-2 4.905 4.707 4.483 6.423 1.04 1.09 0.76 1.05 0.73 

PCS-245-1.5-1 3.264 1.796 2.480 2.266 1.82 1.32 1.44 0.72 0.79 
PCS-245-1.5-2 2.884 1.578 2.468 2.275 1.83 1.17 1.27 0.64 0.69 
PCS-245-2-1 6.715 3.912 5.991 5.535 1.72 1.12 1.21 0.65 0.71 

  All channels MIN 0.70 1.04 0.76 0.64 0.58 
    MAX 2.07 1.37 1.44 1.49 1.43 
    MEAN 1.32 1.18 1.06 0.97 0.87 
    COV 0.312 0.086 0.142 0.267 0.280 
  Solid channels MIN 0.70 1.04 0.89 0.78 0.73 
    MAX 1.49 1.16 1.09 1.49 1.43 
    MEAN 1.01 1.10 1.03 1.15 1.08 
    COV 0.286 0.041 0.056 0.217 0.222 
  Slotted channels MIN 1.04 1.09 0.76 0.64 0.58 
    MAX 2.07 1.37 1.44 1.16 0.93 
    MEAN 1.52 1.23 1.08 0.85 0.73 
    COV 0.233 0.075 0.175 0.227 0.146 

 
For the solid and slotted channels, the simply supported boundary conditions 
with the free end resulted in smaller elastic shear buckling loads when compared 
with those for the test setup boundary conditions. The mean value of the  
Vcr-TS/Vcr-SF ratios and their coefficient of variation were smaller for the solid 
channels (1.10 and 0.041 for the solid channels vs. 1.23 and 0.075 for the slotted 
channels). These results indicate that the simply supported boundary conditions 
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The mean values and the coefficients of variation of the Vcr-R/Vcr-SR ratios were 
1.08 and 0.222 for the solid channels and 0.73 and 0.146 for the slotted 
channels. These results are similar to those for the simplified boundary 
conditions with the free end. The additional restraint at the channel end caused 
an increase in the elastic shear buckling loads. The mean value of the  
Vcr-R/Vcr-SR ratios was close to unity for the solid channels but their coefficient 
of variation was relatively high.     
 
The obtained results demonstrate that analyses with the simplified boundary 
conditions cannot accurately predict the elastic shear buckling loads of the 
slotted channels with the test setup and realistic boundary conditions. The 
simply supported boundary conditions with the restrained end appear to be 
capable of simulating the test setup boundary conditions of the solid channels 
for the purpose of determining the elastic shear buckling load. 
 
The buckling modes of the solid unstiffened channels with the test setup and 
simply supported boundary conditions were typical for the shear loading (see 
Fig. 3). In the solid stiffened channels, only one vertical flat portion of the web 
buckled. The slender solid webs of the channels with the realistic boundary 
conditions buckled in a combination of shear buckling and web crippling, 
which caused reductions in the elastic shear buckling loads. The stocky webs 
demonstrated shear buckling only. 
 
The lowest buckling mode of the slotted channels with the test setup and 
simply supported boundary conditions was local buckling of the channel web 
near the slots within the shear span (see Fig. 4). For the realistic boundary 
conditions, the slotted channels with slender webs demonstrated a combination 
of local buckling within the shear span and web crippling at the support, 
whereas the slotted channels with stocky webs buckled locally near the holes 
within the shear span similarly to the slotted channels with the test setup and 
simply supported boundary conditions. 
 
Ultimate shear strength  
 
The ultimate shear strengths of the analyzed channels with different boundary 
conditions are given in Table 1. Figures 5 and 6 show von Mises stresses in the 
solid and slotted channels, respectively, at the maximum applied load. As was 
discussed in Degtyarev and Degtyareva (2016), the realistic boundary 
conditions resulted in a relatively small (4% on average) reduction in the 
ultimate shear strengths of the solid channels when compared with the test 
setup boundary conditions. The ultimate shear strengths of the slotted channels 
reduced significantly more (39% on average) when the boundary conditions 
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test setup boundary conditions. The mean value of the VFEM-TS/VFEM-SF ratios 
was 1.03 with the coefficient of variation of 0.119.  
 
The analyses of the slotted simply supported channels with the free and 
restrained ends resulted in the average ultimate shear strengths that were 
respectively smaller and larger than the average strength of the channels with 
the realistic boundary conditions. The mean values and the coefficients of 
variations of the VFEA-R/VFEA-SF and the VFEA-R/VFEA-SR ratios were 1.23 and 0.159 
and 0.74 and 0.093, respectively, for the slotted channels. 
 
The obtained results show that analyses with the simplified boundary 
conditions with the free and restrained ends can reasonably well predict the 
ultimate shear strengths of the solid channels with the test setup and realistic 
boundary conditions. Analyses with the simplified boundary conditions with 
the restrained end can predict the ultimate shear strength of the slotted channels 
with the test setup boundary conditions with reasonable accuracy. The realistic 
boundary conditions of the slotted channels cannot be accurately simulated by 
the simply supported boundary conditions. This shows that boundary 
conditions affect the ultimate shear strength of the slotted channels more than 
the strength of the solid channels. 
 
The ultimate shear strengths of the solid channel models C-150-0.9-1, C-200-
0.9-1, and C-200-1.5-1 with all considered boundary conditions shown in Fig. 
5 were higher than the elastic shear buckling loads, which indicates that the 
models failed in elastic or inelastic buckling and exhibited the post-buckling 
strength due to tension field action. The von Mises stress contours clearly show 
the tension field action for those models. The solid channel model CS-150-1.5-
1 failed in shear yielding (see Fig. 5). It is also evident from Fig. 5 that channel 
models C-150-0.9-1and C-200-0.9-1 with the realistic boundary conditions 
failed under a combination of shear buckling and web crippling. 
 
The slotted channel models PC-150-0.9-2, PC-200-0.9-2, and PC-200-1.5-2 
with all considered boundary conditions shown in Fig. 6 failed in either elastic 
or inelastic buckling. They developed the post-buckling strength due to the 
tension field action, which can be seen in the von Mises contours in Fig. 6. The 
slotted channel model PCS-150-1.5-2 failed in shear yielding (see Fig. 6).  
 
Conclusions 
 
The effects of the boundary conditions on the elastic shear buckling loads and 
the ultimate shear strengths of CFS channels with solid and slotted webs were 
investigated numerically using non-linear finite element models developed in 
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ANSYS and validated against test data. The study showed that the elastic shear 
buckling load and the ultimate shear strength of the slotted channels are more 
sensitive to the boundary conditions when compared with the solid channels. 
 
The obtained results demonstrated that the simply supported boundary 
conditions with the free and restrained ends can simulate the test setup 
boundary conditions reasonably well for the solid channels only. The analyses 
using the simply supported boundary conditions with the restrained end can 
reasonably well predict only the ultimate shear strengths of the slotted channels 
with the test setup boundary conditions and the solid channels with the realistic 
boundary conditions. Therefore, the use of the simplified boundary conditions 
is not recommended in the FE simulations of the test setup and realistic 
boundary conditions of the slotted channels and for the simulations of the 
realistic boundary conditions of the solid channels.  
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Notation 
 

Vcr-R and Vcr-TS elastic shear buckling loads for the realistic and test setup boundary 
conditions, respectively. 

Vcr-SF and Vcr-SR elastic shear buckling load for the simply supported boundary 
conditions with the free and restrained ends, respectively. 

VFEA-R and VFEA-TS ultimate shear strength for the realistic and test setup boundary 
conditions, respectively. 

VFEA-SF and VFEA-SR ultimate shear strength for the simply supported boundary 
conditions with the free and restrained ends, respectively. 

Vtest shear strength obtained from tests. 
 

217


	Numerical Simulations of Solid and Slotted Cold-Formed Steel Channels with Different Boundary Conditions in Shear
	Recommended Citation

	Microsoft Word - Degtyarev_Degtyareva_Numerical_Simulations_CFS_Channels_2016-03-07

