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Soowary 

Post-Buckling Behaviour of 

Bi-axially Loaded Plates 

William J. Supple* and Philip J. Wicks ** 

The post-buckling behaviour of thin plates in bi-axial in-plane 
compression is investigated. It is found that the addition of the 
transverse load to the uniaxial loading case has a profound effect not 
only on the critical loads but also on the post-buckling modes and mode 
interaction. 

1. Introduction 

The classic work of KOlTER (3) has shown the need for an under-
standing of the behaviour of a structure in its post-classical buckling 
range since it may exhibit an actual buckling load quite different from 
that predicted from a theoretical linear eigenvalue analysis. It is 
well known however, that thin plates loaded in in-plane compression have 
load-bearing capabilities at loads in excess of the classical buckling stress. 
SUPPLE (9) however has demonstrated that the feasibility of allowing a 
plate to function in this post-buckling range is governed by the presence 
of secondary bifurcation points at which the stable, symmetric equilibrium 
path may bifurcate into a coupled path. Further, in the presence of certain 
combinations of initial geometric imperfections the plate may modify its 
waveform violently by means of a limit point on the equilibrium path. 
These findings were demonstrated experimentally (6). Working in the 
context of generalised coordinates after THOMPSON (10), SUPPLE (7) has also 
shown the types of coupled equilibrium path possible for ideal two degree 
of freedom structural systems and later (8) how the configurations of these 
paths coupled with the presence of initial imperfections in the form of the 
generalised coordinates affect the behaviour in the post-buckling range. 
From these two complementary studies in generalised coordinates and discrete 
mechanics the uniaxially loaded plate was shown to fall into the hyperbolic 
coupled category, the coupled path seen to be rising from a bifurcation 
point on the secondary uncoupled path. 

The present work demonstrates the coupled equilibrium configurations 
for the plate when an extra orthogonal in-plane stress is applied and any 
modification this.stress may have thereon. The results -'although of a 
fundamental study in their own right - have a direct bearing on thin walled 
structures, particularly thin-plate assemblages. 

* Reader in Structural Engineering, Department of Civil Engineering 
University of Surrey, U.K. 

** Lecturer in Structural Engineering, Space Structures Research Centre, 
University of Surrey, U.K. 
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2. Equations and Boundary Conditions 

We consider the problem of a thin rectangular plate loaded in-plane 
as shown in figure 1. The support is simple at the boundaries and is such 
that there are no out-of-plane displacements, the edges translating as 
straight lines. 

These conditions may be expressed as follows:-

i) (W) =0 = 0 x ,a 
ii) (W)y=o,b - 0 

iii) (W + vW ) 'xx 'yy x-o,a 
• 0 

iv) (W + vW ) 'yy 'xx y-o,b 
... 0 

v) (U)xcO,a = constant 

vi) (V)y=o,b .. constant. 

where (iii) and ~v) express the condition that the tangential moment vectors 
at the plate boundaries must be zero for simple support, and where a comma 
followed by subscripts represents partial differentiation with respect to 
each subscripted variable in turn. 

The Von Karman large deflection equations in the absence of initial 
geometric imperfections may be written in terms of w(the displacement in 
the z-direction) and a stress function 41 as follows (11): 

4 2 VcjI-E(W, -W, .W,) xy xx yy .... ... (2 .1) 

c!( W -2 W D cjI'yy 'xx cjI,xy,xy + 41, w, ) ...... (2.2) 
xx yy 

W being the total out-of-plane displacement 
configuration, cjI being defined by:-

from the perfectly flat 

N N 
cjI'yy = ~ .. .. - ...:t.. • e t ex' '1', xx t y' 

.... .• (2.3) 

e and e bein! normal and t tangential shear, in-plane, mid-surface 
s~ressesYand V is the bihar~nic operator: 

a4 2a4 a4 
-- + -- +-
dX4 ax2ay2 ay4 

D is the flexural stiffness: 

Et3 

12(1-v2) 
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3. Solution of Equations 

3.1 Solution for stress-function <p : 

We assume a form for the buckling deflection w as the sum of two 
eigenvectors of the linearized buckling problem, having amplitudes At 
and Bt:-

w = sin !l (At sin n~x + Bt sin ~) 
b a a 

this satisfies the boundary conditions 

i) to iv) of section 2. 

Writing this for brevity as: 

w = S (At S + Bt S ) 
y nx my 

to simplify presentation of ensuing work, where 

S. = Sin .!2!l. ly 
b 

S. ,. Sin j~x 
JX a 

C • Cos r1fy 
ry b 

C = COS S1fX 
SX a 

etc. 

••••• (3.1) 

•••••• (3.2) 

S9 

and making the necessary substitutions the partial differential equation 
(2.1) appears as:-

1744l = Et2[1f2 • C! (~ Cnx + Bm~ Cmx )2 

b2 a a 

( An2~2 • S + Bi~2 • Smx)'
-2- nx 2 

a a 

(A. Snx + B Smx) }] ••••.• (3.3) 

This may be solved exactly for the stress function to give: 

4l = EA2t 2 ~ n2b2 C -- -- 2y 
32 a2 

+ ElABt2 j C(n+m)x 

4b 2 l (n+m)2 

+ a2 C f 
22 2nx 

nb 

C 
- (n-m)x 

(n-m) 2 
••••• continued •• 
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2 2 2 ~. t 
-Ea b ABt .C2y I aC(n+m)x + aC(n.m)x ~ 

4 

-A 2 J... (2x-a) 

Bat 

AX (2y_b)2 

8bt 

where 

2 (n+m) 

.... (3.4) 

a (n-m) 2 
2 2 2 2 {(n+m) b +4a } 

2 2 2 2 {(n-m) b +4a } 

and A ,A represent total applied loads in the x and y directions 
x. y 

respect~ve~y, i.e. 

A =fb N dy x x 
o 

Deriving the midsurface stress resultants from the stress function and 
using the strain-displacement relations and generalised Hooke's law, 
expressions may be obtained for u and v, the displacements in the x and 
y directions. With this done it is found that boundary conditions 
v) and vi) are satisfied with no restriction on n or m. 

3.2 Ritz-Galerkin Procedure: 

We may substitute $ and w, after appropriate differentiations, 
into the equilibrium equation (2.2). In general this equation is not 
exactly satisfied due to the approximate nature of the chosen w but 
will have a residual R, say. Equating to zero the excess virtual 
energy defined as: 

foa fbo R.w.dy dx 

we obtain two approximate equations of post-buckling equilibrium. 

Carrying out these operations the latter equations appear as: 
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[ 
2 2 21 4 2 2 2 2} 3(l-v ) ~ (~+ l)A + (nam4 + 4K) B 

l6n2 a 4 b4 

222 2 
+ a b (n + l) - (AXb + A a) 

4n2 -:1 b2 + n 

1 lA = 0 

41[20J 

...... (3.Si) 

= 0 

(3.SH) 

where 

K = 1 + ~ (n-m)2 + ~ (n+m)2 

~4 4 4 

We now specify that the average applied normal stresses on the y-facing 
boundaries are some factor \l times the average applied normal stresses 
on the x-facing boundaries i.e. 

and for convenience we introduce the notation 

A = A 
x 

A 
y =~) A 

b 
The loading terms in equations (3.Si) and (3.Sii) then appear 
as: 

and 

respectively. 
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3.3 Post-Buckling Solutions 

There are three solutions of the equilibrium equations (3.5} 
cheracterized by 

i) A = 0, B ; ° 
ii) A; 0, B = ° 

iii) A; 0, B ; ° 
the first two define the uncoupled buckling modes, the latter the coupled 
mode. 

3.3.1 Uncoupled modes: 

Putting A ; 0, B '" ° and A = 0, B ; ° into equations (3.5) yield 
the uncoupled modes: 

A (b + lla2 )= 3(1-~2) a2b2 (n4 + 1. ) A2 

41T2D bn2 l6n2 ~ b4 

2 
• • ••• (3.6i) 

I\. Ila 
2 

41T2n (b+ bm2) 

••••• (3.6ii) 

noting that with Il = 0 the above reduce to the corresponding equations 
for the uniaxial case (7). 

Putting A = 0 in (3.6i) and B '" 0 in (3.6ii) the loads at which two 
uncoupled equilibrium paths bifurcate from the load axis are obtained. 
We designate these modes as the primary and secondary uncoupled modes, 
the former occuring at the lower branching load. Both loads are given 
by the expression 

I\. = in 
--2 
b+lla 

( 2') 
bn 

• • • • •• (3.7) 



BI-AXIALLY LOADED PLATES 

where we may select two distinct values of n representing our m, n 
values in the analysi.s. 

Dividing b0th sides by bt gives: 

• rr2E t 2 ( 2, 2 2 a 
( n :x + 1') cr ---2 - ) 2 2 

12(1-" ) b (n + lJY ) ...... (3.8) 

where y is the aspect ratio of the plate alb. 
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The latter part of equation (3.8) corresponds to a buckling stress 
coefficient K' defined by: 

c 

K' -c 
••••••• (3.9) 

which is in agreement with the linear solution by BULSON (2) after 
BRYAN (1), for here we have assumed the plate buckles in one half 
s ine-wave in the y--direction. 

BULSON also shows that K' minimizes at a value of aspect ratio given 
by: c 

l' R n/y11-2lJ (lJ < 0.5) 

giving K' a ~inimum value of 
c 

(K')min - 4(1-lJ) (lJ < 0.5) 
c 

and that, 

1 
lim K' a (lJ ~ 0.5) 
Y -+ "'c lJ 

Further by inspection of equation (3.9) K' is seen to be discontinuous 
c 

at 
y - nf v=-ii". 

I t can be shown by equating express ions for K' that coinciden t buck ling 
in n and m half-sine-waves occurs at a value 5f y given by: 

2 
l' lJ(n2+m2) +"\l2(n2+m2)2 +4(1-2\l)m2n2 

2 (l-2\l) •••... (3.10) 
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which with '\1=0 reduces to the well-known expression for coincident 
buckling in the uniaxial case, _ r.:;; 

Y "vDll 

Figure 2 shows plots of K' agains t plate aspect ratio Y for various 
values of w~ve number n add orthogonal stress ratio \I. 

3. 3.2 Coupled Modes: 

Elimination of the load term between equations (3.5i) and~.5ii) 
gives the projection of the coupled mode onto the A-B plane as: 

[ n4+y4 _ n2m2+K' ] A2 fn2m2+K' _ m:+y42] B2 
2 2 2 2 +L2 2 

n +\lY m +\lY n +\lY m +\lY 

4 [ (i+//. (n2+/)2] 
---2 2 2 2 2 
3(1-v) m +\lY n +\lY 

(3.11) 

where 
4a 4K K' = 

Thus it is of the form: 

K A2 2 
.. K3 (3.12) 1 + K2B ....... 

and is the equation of a general conic representing a number of forms 
depending on the signs Kl , K2 and K3• 

For fixed values of n and m these coefficients may be represented 
in \I - Y - K. space as surfaces. We are in teres ted in the curves of 

1 
intersection with the \I - Y plane since it is across these that the 
signs of the coefficients will change. 

By inspection of the coefficient of equation (3.11) we further 
note that all the K. surfaces have discontinuities on the \I - Y plane 
defined by the curv~s. 

2 
\I = -n 

-2 
Y 

2 
\I" -m 

i •• (3.13) 

Equating each of the K. coefficients to zero in turn and solving for \I 
the curves of in tersection appear as: 

I 2K' 2 4 \I n - my 
Kl=O 2 4 4 2 2 

Y (n +Y -n m -K') 

2 4 2 
n Y - m K' 

2 2 2 4 4 
Y (n m +K'-m -Y ) 

4 2 2 I - m n 
222 Y (n +2y +m ) 

•••••• (3.l4i) 

• • • • •• (3. l4ii) 

•••••• (3.l4iii) 
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the latter equation being a re-statement of the condition for coincident 
buckling given previously by equation (3.10) 

By superposition of all these curves we may establish sets of 
~,y for given n,m within which a particular corubination of signs and 
hence a particular form of coupled mode for equation (3.12) will occur. 
A plot of these curves on the ~-y plane is shown in figure 3. 

We observe that for certain combinations of ~ and y the coupled 
mode forms a closed transition path (in the form of an ellipse when 
projected on to the A-B plane in the A-A-B space) between the uncoupled 
buckling modes. This would indicate a change in mode form for the perfect 
plate in the post-buckling range. For other combinations of ~ and y 
either no coupled solution exists or a coupled mode which bifurcates 
from the secondary uncoupled mode. The latter has been shown to have 
importance when imperfections are present (6), (S). 

Writing for brevity: 

4 4 2 2 
K4 =~ KS = n m +K' 

2 2 2 2 
n +~y n +~y 

K6 
1 (2 2 . 2 

K7 • m4+y4 
=-~ 

222 --z--2 
4y n +~y m +~y 

2 2 222 
KS = n m +K' K9 .. 1 (m +y ) 

2 2 -2 -2--2 
m +~y 4y m +~y 

and 

whereupon the coupled equation becomes: 

....... (3.15) 

and the uncoupled modes are: 

2 2 A = 3(1-v ).K4A + K6 

16 i 
..... ( 3.16i) 

- 2 2 A = 3(1-v ).K7B + K9 

16 / 
...... (3.16ii) 
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Elimination of B or A between the two_equatio~s (3.S) yields the 
projections of the coupled mode onto the h-A or h-B planes respectively, 
these being: 

h = 2 
3(1-v) (K4K7-KSKS) A2 + K6K7-KSK9 

16/ 
K7-KS K7-KS 

••••••• (3.l7i) 

;; = 2 (KSKS-K4K7) B2 + K6KS-K4K9 3(l-v ) 

~ KS-K4 KS-K4 
....... (3.l7H) 

These are seen to be parabolic as established for the uniaxial case 
by SUPPLE (9). The secondary bifurcation loads may be established from 
these latter equations, and are simply the constant terms. 

4. Conclusions 

Critical loads and post-buckling paths have been determined 
for thin flat rectangular plates under bi-axial loading. Interest 
has been centred on the coupled buckling interaction between pairs of 
buckling modes. The application of the transverse axial load to the 
uni-axial loading case is seen to modify the value of the plate aspect 
ratio at which simultaneous buckling occurs. Furthermore, the form of 
the coupled post-buckling equilibrium paths are also altered. Under 
certain conditions it is shown that the coupled mode forms a closed 
transition path betweem the uncoupled buckling mode paths and would 
thus produce a mode-switching effect in the post-buckling range. 
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Appendix: 

x, y, z -
u, v, w -
a, b, t -
E, Y 
Y 
D 
N , N , 
AX AY 
x' y' -

(J x' (J 
y 

A, A 
\.I 

n, m 
IP 
A, B 

K' 
c 

K; 
1 

Notation 

FIFTH SPECIALTY CONFERENCE 

coordinate directions. 
displacements. 
plate dimensions 
elastic properties of plate material. 
aspect ratio of plate. 
plate rigidity. 
'loading' parameters in specified 
directions. 

overall loading parameters. 
parameter relating longitudinal and transverse 
loading. 
numbers of half-sine-waves in wave modes. 
stress function . 
wavemode amplitudes as ratios of plate 
thickness. 
buckling stress coefficient . 
coefficients in equations. 
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x 

b 

a 

y 

Figure 1 _ Plate dimensions and loadlng_ 
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PLOTS OF Kl. K2 AND K3-a CURVES N-l. M-2 

1 3 4 

K1·O 

{B} 

{c} 
1.4 

Figure 3. 
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7 

key to coupled buckling 

{ A} branching from secondary _ 

{B} none _ 

{ C } transition ellipse . 
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