

Scholars' Mine

Masters Theses

Student Theses and Dissertations

Spring 2017

Sentiment analytics: Lexicons construction and analysis

Bo Yuan

Follow this and additional works at: https://scholarsmine.mst.edu/masters_theses

Part of the Technology and Innovation Commons

Department:

Recommended Citation

Yuan, Bo, "Sentiment analytics: Lexicons construction and analysis" (2017). Masters Theses. 7668. https://scholarsmine.mst.edu/masters_theses/7668

This thesis is brought to you by Scholars' Mine, a service of the Missouri S&T Library and Learning Resources. This work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the permission of the copyright holder. For more information, please contact scholarsmine@mst.edu.

SENTIMENT ANALYTICS: LEXICONS CONSTRUCTION AND ANALYSIS

by

BO YUAN

A THESIS

Presented to the Faculty of the Graduate School of the

MISSOURI UNIVERSITY OF SCIENCE AND TECHNOLOGY

In Partial Fulfillment of the Requirements for the Degree

MASTER OF SCIENCE IN INFORMATION SCIENCE AND TECHNOLOGY

2017

Approved by

Keng Siau, Advisor Fiona Nah Michael Gene Hilgers Pei Yin

ABSTRACT

With the increasing amount of text data, sentiment analysis (SA) is becoming more and more important. An automated approach is needed to parse the online reviews and comments, and analyze their sentiments. Since lexicon is the most important component in SA, enhancing the quality of lexicons will improve the efficiency and accuracy of sentiment analysis. In this research, the effect of coupling a general lexicon with a specialized lexicon (for a specific domain) and its impact on sentiment analysis was presented. Two special domains and one general domain were studied. The two special domains are the petroleum domain and the biology domain. The general domain is the social network domain. The specialized lexicon for the petroleum domain was created as part of this research. The results, as expected, show that coupling a general lexicon with a specialized lexicon improves the sentiment analysis. However, coupling a general lexicon with another general lexicon does not improve the sentiment analysis.

ACKNOWLEDGMENTS

I would like to express the deepest appreciation to my advisor, Professor Keng Siau, who has the attitude and the substance of a genius: he continually and convincingly conveyed a spirit of adventure in regard to research and scholarship and an excitement in regard to teaching. Without his guidance and persistent help, this thesis would not have been possible.

I would like to thank my committee members, Professor Fiona Nah, Professor Michael Gene Hilgers, and Professor Pei Yin. They helped me in this journey and are concerned about my research progress and my well-being.

Finally, I would like to thank all my friends, IST staff, and my families for helping me survive all the stress during the last two years and not letting me give up.

TABLE OF CONTENTS

	Page
ABSTRACT	iii
ACKNOWLEDGMENTS	iv
LIST OF ILLUSTRATIONS	vi
LIST OF TABLES	vii
NOMENCLATURE	viii
SECTION	
1. INTRODUCTION	1
1.1. SENTIMENT ANALYSIS	1
1.2. SENTIMENT LEXICON	1
1.3. DESIGN SCIENCE	2
2. LITERATURE REVIEW	4
2.1. SENTIMENT ANALYSIS	4
2.2. LEXICON	14
2.3. APPLICATIONS OF SA	15
3. METHODOLOGY	20
3.1. IDENTIFY THE PROBLEM	20
3.2. SOLUTIONS	20
3.2.1. Original Data Extraction	20
3.2.2. LDA Model and NLP	21
3.2.3. The Calculation of Polarity Scores	21
4. EVALUATION AND COMPARISON	22
4.1. METHOD	22
4.2. PETROLEXICON, BIOLEXICON AND SOCIALSENT LEXICON	22
4.3. RESULTS	23
5. DISCUSSIONS	25
6. CONTRIBUTIONS AND FUTURE RESEARCH	26
BIBLIOGRAPHY	27
VITA	32

LIST OF ILLUSTRATIONS

Figure	Page
1.1. SA Lexicon Network	2
2.1. Sentiment Analysis Techniques	5
2.2. Commonly Used Sentiment Analysis Methods	9
2.3. Applications of Sentiment Analysis	16
4.1. Analysis Procedure	22

LIST OF TABLES

Table	Page
2.1. Sentiment Analysis Techniques	5
2.2. Commonly Used Sentiment Analysis Methods	10
2.3. Applications of Sentiment Anakysis	16
4.1. Results for Petrolexicon	23
4.2. Results for Biolexicon	24
4.3 Results for SocialSent	24

NOMENCLATURE

Symbol	Description
β	Dirichlet priori
θ	a multinomial distribution
φ	a multinomial distribution

1. INTRODUCTION

1.1. SENTIMENT ANALYSIS

Generally, data mining is the process of analyzing data in order to gain some goals and integrate it into useful information (Palace, 1996). Text mining is to use various mining algorithms to process useful information from the text (Text Mining, 2015). After text mining, sentiment analysis came out with more advanced technology for more accurate text mining. Sentiment analysis is to recognize and extract meaningful information using natural language processing (NLP) and computational linguistics from data. The application of sentiment analysis is happening in marketing, customer service, education and even energy fields (Sentiment analysis, 2015). Sentiment analysis is, undoubtedly, the advanced method in text mining, especially online social media data. As the Internet is developing rapidly, it is common to find reviews or comments of products, services, events, and brand names online (Matheus Araújo; Pollyanna Gonçalves; Meeyoung Cha; Fabrício Benevenuto, 2014). The goal of sentiment analysis is to identify the attitude of customers according to the polarity of the reviews and comments that they left online. Obviously, sentiment analysis created a new type of data. Data will be never only numerical digits but reviews and comments. It makes the contribution to gain what people think about the subject. This information may be from tweets, blogs, and new articles. A huge amount of sentences, conversations, product reviews and posts on social media are produced every second. They are all data which can be analyzed and provide much information to people. People here can refer to those in companies, costumers or users who experienced some products.

1.2. SENTIMENT LEXICON

Lexicon is an important part after cleaning data and before feature selection in sentiment analysis. So lexicon/corpus construction is generally viewed as a prerequisite for sentiment analysis. Since the middle of 20th century, many lexicons were built and developed such as Harvard Inquirer, Linguistic Inquiry and Word Counts, MPQA Subjectivity Lexicon, Bing Liu's Opinion Lexicon and SentiWordNet (Matheus Araújo; Pollyanna Gonçalves; Meeyoung Cha; Fabrício Benevenuto, 2014).

However, there are few specialized lexicons for specialized domains. The two specialized lexicons are biolexicon and socialsent. As part of this research, a specialized lexicon, petrolexicon, was developed for the petroleum industry. The idea is to establish a SA lexicon network. The network where its center is SentiWordNet and SentiWordNet can be coupled with other domain lexicons such as business domain lexicon and petroleum domain lexicon. (Figure 1.1).

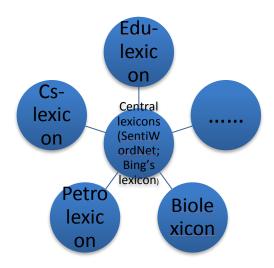


Figure 1.1. SA Lexicon Network

1.3. DESIGN SCIENCE

Design science research (DSR) focuses on exploring new methods for problems known or unknown (Alan R. Hevner, Salvatore T. March, Jinsoo Park, Sudha Ram, 2004). In this research, design science method will be used to structure methodology. The differences between DSR and widespread qualitative and quantitative methods have two key points: 1) DSR is trying to solve a generic problem and considered as an activity for testing hypothesis for future research. 2) The latter aims to explore real-life situations and come up with a theory that explains the current or past problems (Alan R. Hevner, Salvatore T. March, Jinsoo Park, Sudha Ram, 2004). Meanwhile, there are several steps to be followed if design science is used: 1) Start a specific space and find a solution. 2)

Generalize the problem and solution when moving to the generic space. (Alan R. Hevner, Salvatore T. March, Jinsoo Park, Sudha Ram, 2004).

In this paper, the design science method was used to guide the research. After a thorough literature review, the specialized lexicon, petrolexicon, was constructed for the petroleum industry. This is followed by an analysis of the three lexicons -- petrolexicon, biolexicon, and socialsent -- in text analysis. Finally, the suggestions on how to improve lexicon creation and the future research directions for sentiment analysis were presented.

2. LITERATURE REVIEW

2.1. SENTIMENT ANALYSIS

There are some main sentiment analysis techniques and methods such as machine learning, lexical dictionaries, natural language processing, psychometric scale, imagematics, and cloud-based technique (Matheus Araújo; Pollyanna Gonçalves; Meeyoung Cha; Fabrício Benevenuto, 2014). The machine learning needs a huge data resource due to the training part. Linguistic method is much easier than machine learning in the terms of operation and comprehension. Nowadays, these two methods are usually combined with each other. For example, in 'Sentiment Analysis-A Study on Product Features' (Meng, 2012), unsupervised and supervised machine learning include many linguistic rules and constraints that could improve the accuracy of calculations and classifications. Psychometric scale method is a more specific area. It mainly analyzes the mood of people and introduces the new smile or cry index as a formalized measure of societal happiness and sadness. Therefore, it is sometimes combined with lexical dictionaries. Lexical dictionary method is a development of lexical affinity and linguistic method to some extent. The simple method can be easy to operate if you are a beginner. It does not require too many data resources or calculations. Natural language processing is a technique that can implement the interaction between the human and computer. It can help us analyze the polarity of texts. SenticNet is based on the techniques. It is an approach that classifies texts as positive or negative (Matheus Araújo; Pollyanna Gonçalves; Meeyoung Cha; Fabrício Benevenuto, 2014).

Sentiment analysis techniques can be broadly classified into two categories – Machine Learning and Linguistic Method (as shown in Figure 2.1). Table 2.1 lists some papers in these two categories.

Machine learning is the most popular method right now in sentiment analysis area. In machine learning, there are also many techniques such as Support Vector Machine, Decision Tree, Neural Network Learning and so on. Also supervised machine learning and unsupervised machine learning are also playing an important role in machine learning.

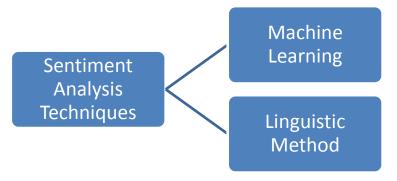


Figure 2.1. Sentiment Analysis Techniques

Table 2.1. Sentiment Analysis Techniques

	Paper Title	Techniques Used
	A Novel Hybrid HDP-LDA	This paper proposes a novel hybrid
	Model for Sentiment Analysis	Hierarchical Dirichlet Process-Latent
	(Wanying Ding, Xiaoli Song,	Dirichlet Allocation (HDP-LDA)
	Lifan Guo, Zunyan Xiong,	model. This model can automatically
	Xiaohua Hu, 2013)	determine the number of aspects,
		distinguish factual words from
		opinioned words, and effectively
Machine		extracts the aspect specific sentiment
Learning		words.
	Deep Learning for the Web	Deep learning is a machine learning
	(Kyomin Jung, Byoung-Tak	technology that automatically extracts
	Zhang, Prasenjit Mitra, 2015)	higher-level representations from raw
		data by stacking multiple layers of
		neuron-like units. The stacking allows
		for extracting representations of
		increasingly complex features without
		time-consuming, offline feature
		engineering.

Table 2.1. Sentiment Analysis Techniques (Cont.)

	Paper Title	Techniques Used
	iFeel: A Web System that Compares and Combines Sentiment Analysis Methods (Matheus Araújo; Pollyanna Gonçalves; Meeyoung Cha; Fabrício Benevenuto, 2014) A Comparative Study of	iFeel, a Web application system is introduced in this paper. iFeel can access seven existing sentiment analysis methods: Happiness Index, SentiWordNet, PANAS-t, Sentic-Net, and SentiStrength, SASA, Emoticons. iFeel can combine these methods to achieve high F-measure. In this paper, machine learning based
Machine Learning	Machine Learning Techniques for Sentiment Analysis (Anuj Sharma, Shubhamoy Dey, 2012)	on Naïve Bayes, Support Vector Machine, Maximum Entropy, Decision Tree, K-Nearest Neighbor, Winnow, and Adaboost is applied.
	Sentence-based Plot Classification for Online Review Comments (Hidenari IWAI, Yoshinori HIJIKATA, Kaori IKEDA, Shogo NISHIDA, 2014)	Many shopping sites provide functions to submit a user review for a purchased item. Reviews of items, including stories such as novels and movies sometimes contain spoilers (undesired and revealing plot descriptions) along with the opinions of the review author. A system was proposed. Users see reviews without seeing plot descriptions. This system classifies each sentence in a user review as plotreviews. Five common machine-learning algorithms were tested to ascertain the appropriate algorithm to address this problem.

Table 2.1. Sentiment Analysis Techniques (Cont.)

	Paper Title	Techniques Used
	Sentiment analysis in twitter	The twitter posts about electronic
	using machine learning	products like mobiles, laptops and so
	techniques (Neethu M S,	on are analyzed by machine learning.
	Rajasree R, 2013)	
	Sentiment analysis of	This paper uses Naïve Bayes Classifier
	Facebook statuses using	to pattern the educational process and
	Naive Bayes classifier for	experimental results.
	language learning (Christos	
	Troussas, Maria Virvou, Kurt	
	Junshean Espinosa, Kevin	
Machine	Llaguno, Jaime Caro, 2013)	
Learning	Resolving Inconsistent	852,071 ratings and reviews from the
	Ratings and Reviews on	Taobao website are the dataset. The
	Commercial Webs Based on	support vector machine is used to
	Support Vector Machines	solving inconsistent ratings and
	(Xiaojing Shi, Xun Liang,	reviews.
	2015)	
	Sentiment Word Identification	The maximum-entropy classification
	Using the Maximum Entropy	model is constructed to detect
	Model (Xiaoxu Fei, Huizhen	sentiment words in an opinion
	Wang, Jingbo Zhu, 2010)	sentence.

Table 2.1. Sentiment Analysis Techniques (Cont.)

	Paper Title	Techniques Used
	Sentiment Analysis of	Dataset was preprocessed first, after
	Twitter Data Using Machine	that extracted the adjective from the
	Learning Approaches and	dataset that has some meaning which is
	Semantic Analysis (Geetika	called feature vector, then selected the
Machine	Gautam, Divakar yadav,	feature vector list and thereafter SVM,
Learning	2014)	Naive Bayes, Maximum entropy
		corporation with WordNet are used to
		extract synonyms for the content
		feature.
	Pathways for irony detection	After observing the general data
	in tweets (Larissa A. de	obtained and a corpus constituted by
	Freitas, Aline A. Vanin,	tweets, a set of patterns that might
	Denise N. Hogetop, Marco	suggest ironic/sarcastic statements are
	N. Bochernitsan, Renata	proposed. The extracted texts for each
	Vieira, 2014)	pattern were analyzed by a judge in
		order to classify whether those texts
Linguistic		represent ironic/sarcastic statements or
Method		not.
	Big Data Sentiment Analysis	Sentiment Analysis on Big Data is
	using Hadoop (Ramesh R,	achieved by collaborating Big Data
	Divya G, Divya D, Merin K	with hadoop. The proposed approach
	Kurian, Vishnuprabha V,	is to identify texts into positive,
	2015)	negative and neutral position with
		Hadoop, which is a dictionary-based
		technique.

Figure 2.2 depicts the commonly used sentiment analysis methods. Representative papers are listed in Table 2.2.

As seen below, commonly used sentiment analysis methods are machine learning, lexical dictionaries, natural language processing, and psychometric scale. Natural language processing is not only applied to the big data area but also statistics and finance. It is useful to help researchers to recognize words, sentences, and paragraphs through computers. It has some popular tools here: OpenNLP, FudanNLP, Language Technology Platform (LTP). There are some difficult points during applying NLP. How to recognize every word is the first difficult. Since there are more than one meaning for many words. How to recognize the meaning of every word is another difficult.

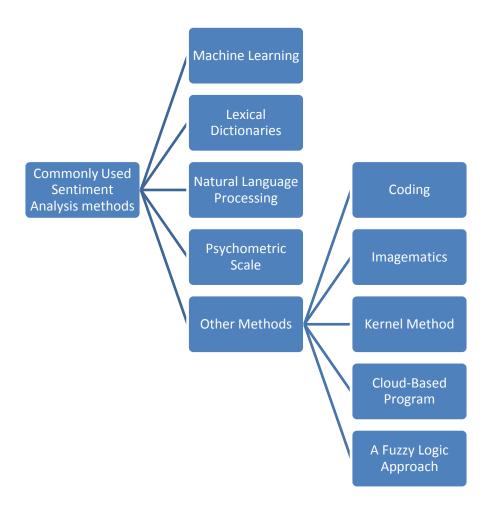


Figure 2.2. Commonly Used Sentiment Analysis Methods

Table 2.2. Commonly Used Sentiment Analysis Methods

	Paper Title	Techniques Used
Machine	Same as those in Table 2.1.	
Learning		
	Big Data Sentiment	Sentiment Analysis on Big Data is
	Analysis using Hadoop	achieved by collaborating Big Data
	(Ramesh R, Divya G, Divya	with hadoop. The focus of this
	D, Merin K Kurian,	research was to device an approach
	Vishnuprabha V, 2015)	that can perform Sentiment Analysis
		quicker because vast amount of data
		needs to be analyzed. Also, it had to
		ensure that accuracy is not compromised too much while
		focusing on speed.
Lexical		rocusing on speed.
Dictionaries	Microblogging sentiment	There are two main methods, which
	analysis with lexical based	are lexical based machine learning
	and machine learning	and model based. This research is
	approaches (Maharani,	trying to classify tweets using those
	2013)	two methods.
	Chinese sentiment	The neural network models based on
	classification using a neural	word2vec is constructed to learn the
	network tool — Word2vec	
	(Zengcai Su, Hua Xu,	dimension.
	Dongwen Zhang, Yunfeng	
	Xu, 2014)	

Table 2.2. Commonly Used Sentiment Analysis Methods (Cont.)

	Paper Title	Techniques Used
	Analysing market	A lexicon-based approach to analyze
	sentiment in financial news	financial news.
	using lexical approach (Tan	
	Li Im, Phang Wai San,	
	Chin Kim On, Rayner,	
Lexical	Patricia Anthony, 2013)	
Dictionaries	Emotions on Facebook A	Emoticons are the newly-developing
	Content Analysis of	language for sentiment analysis. It is
	Mexico's Starbucks Page	simple to detect the polarity. But it is a
	(Anatoliy Gruzd, Jenna	huge project to establish a good-
	Jacobson, Philip Mai,	running emoticon-dictionary.
	Barry Wellman, 2015)	
	iFeel: A Web System that	iFeel, a Web application system is
	Compares and Combines	introduced in this paper. iFeel can
	Sentiment Analysis	access to seven existing sentiment
	Methods (Matheus Araújo;	analysis methods: Happiness Index,
	Pollyanna Gonçalves;	SentiWordNet, PANAS-t, Sentic-Net,
	Meeyoung Cha; Fabrício	and SentiStrength, SASA, Emoticons.
Natural	Benevenuto, 2014)	iFeel can combine these methods to
Language		achieve high F-measure.
Processing	A.T. 11 (1 m 11 (2)	A . 11'. C
	A Localization Toolkit for	A toolkit for creating non-English
	Sentic Net (Yunqing Xia,	versions of SenticNet in a time- and
	Xiaoyu Li, Erik Cambria,	cost-effective way is proposed.
	Amir Hussain, 2014)	

Table 2.2. Commonly Used Sentiment Analysis Methods (Cont.)

	Paper Title	Techniques Used
	Enhanced SenticNet with	Enhanced SenticNet with Affective
	Affective Labels for	Labels for Concept-Based Opinion
Natural	Concept-Based Opinion	Mining (Soujanya Poria, Alexander
Language	Mining (Soujanya Poria,	Gelbukh, Amir Hussain, Newton
Processing	Alexander Gelbukh,	Howard, Dipankar Das, Sivaji
	Amir Hussain, Newton	Bandyopadhyay, 2013)
	Howard, Dipankar Das,	
	Sivaji Bandyopadhyay,	
	2013)	
	Collective Smile:	This paper introduces the Smile Index
	Measuring Societal	as a standard measurement of general
	Happiness from	happiness in society.
	Geolocated Images	
	(Saeed Abdullah,	
	Elizabeth L. Murnane,	
	Jean M.R. Costa,	
Psychometric	Tanzeem Choudhury,	
Scale	2015)	
	iFeel: A Web System that	iFeel, a Web application system is
	Compares and Combines	introduced in this paper. iFeel can
	Sentiment Analysis	access to seven existing sentiment
	Methods (Matheus	analysis methods: Happiness Index,
	Araújo; Pollyanna	SentiWordNet, PANAS-t, Sentic-Net,
	Gonçalves; Meeyoung	and SentiStrength, SASA, Emoticons.
	Cha; Fabrício	iFeel can combine these methods to
	Benevenuto, 2014)	achieve high F-measure.

Table 2.2. Commonly Used Sentiment Analysis Methods (Cont.)

	Paper Title	Techniques Used	
	Emotions on	Emoticons are the newly-developing	
	Facebook A Content	language for sentiment analysis. It is	
	Analysis of Mexico's	simple to detect the polarity. But it is a	
Psychometric	Starbucks Page (Anatoliy	huge project to establish a good-	
Scale	Gruzd, Jenna Jacobson,	running emoticon-dictionary.	
	Philip Mai, Barry		
	Wellman, 2015)		
	Tweeting Live Shows: A	In terms of the coding schema, each	
	Content Analysis of	tweet was categorized by its Language	
	Live-Tweets from Three	(whether a tweet was written in	
	Entertainment Programs	English), Relevancy (whether it was	
	(Qihao Ji, Danyang	relevant to the show), Nature of Tweet	
	Zhao, 2015)	(whether it was a retweet, a tweet sent	
		to a specific user, or a tweet sent to	
Current New		other users), and Character Name	
Methods		(whether the tweet contained any	
		character's name from the show). Then	
		coding procedure was processed.	
	Towards Social	This paper looks at not only textual but	
	Imagematics: sentiment	visual features in sentiment analysis.	
	analysis in social		
	multimedia (Quanzeng		
	You, Jiebo Luo, 2013)		

Table 2.2. Commonly Used Sentiment Analysis Methods (Cont.)

	Paper Title	Techniques Used	
	Enhanced Factored	A very active line of work focuses on	
	Sequence Kernel for	the application of existing machine	
	Sentiment Classification	learning methods to sentiment analysis	
	(Luis Trindade, Hui	problems, for example support vector	
	Wang, William	machine, which is a popular kernel	
	Blackburn, Philip S.	method for text classification. This	
	Taylor, 2014)	paper focuses on sequence kernels,	
		which have been successfully	
		employed for various natural language	
		processing tasks including sentiment	
Current New		analysis.	
Methods	Tweeting Live Shows: A	For data collection, Discovertext TM , a	
	Content Analysis of	cloud-based program was used.	
	Live-Tweets from Three		
	Entertainment Programs		
	(Qihao Ji, Danyang		
	Zhao, 2015)		
	A Fuzzy Logic Approach	This paper proposes a novel matrix-	
	for Opinion Mining on	based fuzzy algorithm, called the	
	Large Scale Twitter Data	FMM system, to mine the defined	
	(Li Bing, Keith C. C.	multi- layered Twitter data.	
	Chan, 2014)		

2.2. LEXICON

Lexicon, as mentioned above, is an important tool that plays a role in sentiment analysis. Among existing lexicons, SentiWordNet is the most well-known and the most popular. SentiWordNet has three sentiment levels for each opinion word: positivity, negativity, and objectivity (dell'Informazione). SentiWordNet has developed from

version 1.0 to version 3.0. There are some differences between SentiWordNet 1.0 and 3.0: (1) versions of WordNet, (2) algorithms used for annotating WordNet automatically, which now can refine the scores randomly. SentiWordNet 3.0 is trying to the improve part (2) (dell'Informazione).

2.3. APPLICATIONS OF SA

Same argue that sentiment analysis originates from customer products and services. Amazon.com is a representative example. Twitter and Facebook are also a hot and popular sites for many sentiment analysis applications.

The applications for sentiment analysis are many. Thousands of text documents can be processed by sentiment analysis in minutes, compared to the hours it would take a team of people to manually complete. The data can be words, sentences, or paragraphs. In China, sentiment analysis is called feeling analysis directly. It suggests that what feelings or mood people have can be analyzed. Digital numbers, on the other hand, cannot tell us what people feel. They can only tell us sales volume or the marketing distribution. Because SA can be efficient and can produce relatively high and reliable accuracy, many businesses and researchers are adopting text and sentiment analysis and combining them into their own research processes.

In business, the most widely used applications are in financial and sale marketing. For example, the Stock Sonar (www. Thestocksonar.com). It is a sentiment system where positive and negative assessments for each stock are updated every minute. In China, Yun Ma, Alibaba's CEO just created a miracle on Nov. 11th. There was a nation-wide shopping holiday on Taobao, Alibaba's shopping website, the biggest online shopping in China. There was 100 billion RMB sales volume in one minute after the online shopping holiday opened. Every product there has customer reviews and the customer reviews have already been summarized and separated into different groups: good product, bad product, nice looking, useful, and bad quality...customers can check them more easily than amazon. Because there are only raw data on Amazon, it is not easy for customers to find if there are some bad reviews. Sentiment applications in health care almost and mainly focus on reviews of drugs or health care service from patients. Figure and table 2.3 depicts some of the application areas for sentiment analysis.

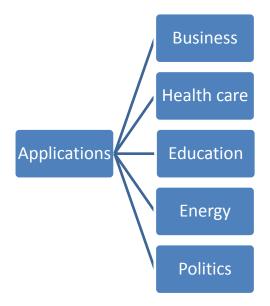


Figure 2.3. Applications of Sentiment Analysis

Table 2.3. Applications of Sentiment Analysis

	Paper Title	Applications
	A Large-Scale Sentiment	This paper uses a sentiment extraction
	Analysis for Yahoo! Answers	tool to investigate the information like
	(Onur Kucuktunc, B. Barla	gender, education level, and age in a
	Cambazoglu, Ingmar Weber,	large online question-answering site.
	Hakan Ferhatosmanoglu,	Analyzing what can affect the mood of
	2012)	customers will be applied in
Business		advertisement, recommendation, and
		search.
	Emotions on Facebook A	Emoticons are the newly-developing
	Content Analysis of Mexico's	language for sentiment analysis. It is
	Starbucks Page (Anatoliy	simple to detect the polarity. But it is a
	Gruzd, Jenna Jacobson, Philip	huge project to establish a good-
	Mai, Barry Wellman, 2015)	running emoticon-dictionary.

Table 2.3. Applications of Sentiment Analysis (Cont.)

	Paper Title	Applications	
	Tweeting Live Shows: A	In terms of the coding schema, each	
	Content Analysis of Live-	tweet was categorized by its Language	
	Tweets from Three	(whether a tweet was written in	
	Entertainment Programs English), Relevancy (whether it was		
	(Qihao Ji, Danyang Zhao,	relevant to the show), Nature of Tweet	
	2015)	(whether it was a retweet, a tweet sent	
		to a specific user, or a tweet sent to	
Business		other users), and Character Name	
		(whether the tweet contained any	
		character's name from the show).	
		Then coding procedure was	
		processed. From this process, this	
		paper explores whether live-tweets	
		vary across different entertainment	
	television programs in terms of the		
		tweets' content.	
	Tweet Analysis for User	Data analysis of social media can	
	Health Monitoring (Ranjitha	provide a wealth of information about	
	2 1/	• '	
	2014)	across groups, and even access to	
		healthy food choices in	
Health		neighborhoods. The purpose of the	
Care	analysis includes individually targeted		
		healthcare personalization;	
		determining health disparities,	
		discover health access limitations,	
		advertising, and public health	
		monitoring.	

Table 2.3. Applications of Sentiment Analysis (Cont.)

	Paper Title	Applications			
	Network-Based Modeling and	Network-Based Modeling and			
	Intelligent Data Mining of	Intelligent Data Mining of Social			
	Social Media for Improving	Media for Improving Care (Altug			
	Care (Altug Akay, Andrei	Akay, Andrei Dragomir, Bj¨orn-Erik			
	Dragomir, Bj"orn-Erik	Erlandsson, 2014)			
Health	Erlandsson, 2014)				
Care	Extracting Sentiment from	Extracting Sentiment from Healthcare			
	Healthcare Survey Data: an	Survey Data: an Evaluation of			
	Evaluation of Sentiment	Sentiment Analysis Tools (Despo			
	Analysis Tools (Despo	Georgiou, Andrew MacFarlane, Tony			
	Georgiou, Andrew	Russell-Rose, 2015)			
	MacFarlane, Tony Russell-				
	Rose, 2015)				
	Crude Oil- a Quick Market	This blog presents data plots from			
	Sentiment Analysis (favresse, crude oil and oil price sentiment of				
	2015)	the millions of articles from news			
		websites and social media.			
	Production Estimation for	In this paper, to obtain data that			
Energy	Shale Wells with Sentiment-	describe the subsurface more exactly,			
	based Features from Geology	information, including phrases that			
	Reports (Bin Tong, Hiroaki	indicate possible bearing oil or gas			
	Ozaki, Makoto Iwayama,	and rock colors, is extracted from			
	Yoshiyuki Kobayashi, Sahu	geology reports. Sentiments of the			
	Anshuman, Vennelakanti phrases are identified by s				
	Ravigopal) analysis.				

Table 2.3. Applications of Sentiment Analysis (Cont.)

	Paper Title	Applications		
	Analysis of Unstructured	This paper gives us ideas about how to		
	Data: Applications of text	extract meaningful customer		
Energy	analytics and Sentiment	intelligence to develop business		
	Mining (Chakraborty)	operations and performance.		
	SA-E: Sentiment Analysis for			
	Education (Nabeela			
	Altrabsheh, Mohamed Medhat	mains to improve education levels		
	Gaber, Mihaela Cocea, 2013)	through detecting students		
		performance and how is students'		
		study in real time. Students' feedback		
		can be gained from some student		
		response systems such as clickers and		
Education		SMS, and social media.		
	Potential Applications of	To be honest, SA in education is an		
	Sentiment Analysis in	underdeveloped area. In this paper,		
	Educational Research and	researchers explored some potential		
	Practice – Is SITE the	uses for SA in education. And there is		
	Friendliest Conference?	a sample study that is using SA to		
	(Matthew Koehler, Spencer	compare the "friendliness" of two		
	Greenhalgh, Andrea Zellner,	educational technology conferences		
	2015)	and use these data to answer "Is SITE		
		the friendliest conference?		
	Politics Sentiment (Politics	It is just a project in 2012. Collecting		
	Sentiment, 2012)	data about 2012 US presidential		
Politics		election from twitter and do SA are the		
		main tasks in this project. The purpose		
		is to predict the results of that election.		

3. METHODOLOGY

In this research, design science approach is used -i.e., design and evaluation.

3.1. IDENTIFY THE PROBLEM

This research aims to study the impact of coupling a general lexicon with a specialized lexicon. Researchers focus on the petroleum industry in this research and developed a petrolexicon.

3.2. SOLUTIONS

There are three main steps for the construction of petrolexicon.

3.2.1. Original Data Extraction. Raw data comes mainly from two resources, Amazon engine oil product reviews and Onepetro database article. Nowadays, sentiment analysis in the petroleum industry has two main applications, analyzing user satisfaction for petroleum products and analyzing author's opinion in an article. Therefore, selecting those two data resources may make a contribution to improving lexicon's efficiency in the petroleum industry.

The technique used for data extraction is web crawler. Traditional search engines like AltaVista, Yahoo!, and Google can also complete tasks which web crawler does. However, there are some limitations for these traditional search engines to complete crawler's work (BAIKE, 2010): 1) many non-relative or less-relative webpages searched by traditional ones come out when different users may have different search goals and needs. 2) traditional search engines cannot afford some structured data. 3) traditional ones can only search according to key words, but not semantic information.

Web crawler is an Internet bot which systematically browses the World Wide Web, typically for the purpose of web indexing (Wikipedia, 2016).

Web crawler can extract webpages from the Internet automatically. In this working process, web crawler needs to filter URLs which have no relations to the research according to specific web analysis algorithms, and extract and put useful URLs into a waiting list. Then it continues to extract URLs from the waiting list and downsize the waiting list at the same time until all URLs in the list satisfy web crawler system's aspect that is constructed.

3.2.2. LDA Model and NLP. Applying LDA-based topic modeling method is to extract aspects. For LDA-based topic modeling, each document d ϵ D of an unlabeled training corpus D is determined by a multinomial distribution θ . Given the topic z, a term t is calculated according to the multinomial distribution ϕ , determined by another hyperparameter, a Dirichlet priori, β (Raymond Y.K. Lau, Stephen S.Y. Liao, Chunping Li, 2014).

Applying tf-idf measure is to select the topz most informative topics to represent product aspects. For the experiments reported in this paper, topz = 15 is adopted.

Since aspects have been selected, applying NLP parser is to extract opinion words. The combinations of aspects and sentiments are needed.

3.2.3. The Calculation of Polarity Scores. An amount of consumer reviews is used to establish the relations between sentiments and aspects through learning process. Combining the adjectives (opinion words) with the product aspects is a good step to establish pairs. The calculation is to give the pairs suitable polarity scores to present how good it is and how bad it is. The polarity score of a sentiment-aspect pair sa is defined as follows (Raymond Y.K. Lau, Stephen S.Y. Liao, Chunping Li, 2014):

$$WD(sa) = \tanh \begin{bmatrix} \frac{df(sa)}{\omega_{pos}} \times \Pr(pos|sa) \times \log_{2} \frac{\Pr(pos|sa)}{\Pr(pos)} - \\ \frac{df(sa)}{\omega_{neg}} \times \Pr(neg|sa) \times \log_{2} \frac{\Pr(neg|sa)}{\Pr(neg)} \end{bmatrix}$$

$$polarity_{Ont}(sa) = \begin{cases} \frac{WD(sa) - \omega_{od}}{1 - \omega_{od}} & \text{if } WD(sa) > \omega_{od} \\ -(\frac{|WD(sa)| - \omega_{od}}{1 - \omega_{od}}) & \text{if } WD(sa) < -\omega_{od} \\ 0 & \text{otherwise} \end{cases}$$

$$(1)$$

4. EVALUATION AND COMPARISON

4.1. METHOD

As mentioned above, three domains were selected in this research. One domain is petroleum industry and a Petrolexicon was constructed as part of this research. Another domain is the biology domain and the Biolexicon was used. A SocialSent lexicon was also used for the social network domain. The Petrolexicon and the Biolexicon are regarded as a specialized domain. SocialSent lexicon, on the other hand, is not a very specialized domain and the text used in social media usually does not contain too many technical jargons. Figure 4.1 illustrates the analysis process.

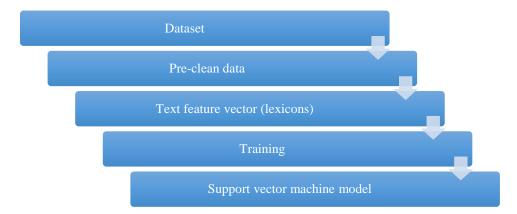


Figure 4.1. Analysis Procedure

4.2. PETROLEXICON, BIOLEXICON AND SOCIALSENT LEXICON

Petrolexicon is constructed using a fuzzy logic method. The items in this lexicon are pairs (aspects + opinion words). There have been 18,000 pairs in petrolexicon. Right now petrolexicon is only a small-scale domain lexicon. In the future, more items would be added to the lexicon. However, petrolexicon in this scale right now can already satisfy researchers' or companies' needs.

Biolexicon are relatively well developed since biostatistics has many welldeveloped techniques. Biolexicon includes over 2.2 M lexical entries and over 1.8 M terminology variants, as well as over 3.3 M semantic relations, including over 2 M synonym relations.

SocialSent is a set of code and datasets for better domain sentiment analysis. Items in this lexicon are mainly oral communication words from online communities.

4.3. RESULTS

The results are shown below for the three lexicons (Tables 4.1, 4.2, and 4.3). For example, for the Petrolexicon, compare the SentiWordNet with the Petrolexicon, and also compared the combination of SentiWordNet + Petrolexicon with SentiWordNet and Petrolexicon.

The results show that specialized lexicons (i.e., Petrolexicon and Biolexicon) seem to be performing better than SentiwordNet. Also, the combination of the central lexicon (i.e., in this case, SentiWordNet) and specialized lexicon seems to produce better results for Petrolexicon. For Biolexicon, the combination of the central lexicon and specialized lexicon produces about the same results as Biolexicon alone. For SocialSent, since it is not a specialized lexicon, there is hardly any difference between SentiWordNet and SocialSent.

Table 4.1. Results for Petrolexicon

Lexicon	Product	Petroleum	Journal Articles
	Reviews	News,	
		Reports,	
		and Blogs	
SentiWordNet	0.7827477	0.7452156	0.6518541
Petrolexicon	0.8025648	0.8758446	0.9025464
SentiWordNet+Petrolexicon	0.8025486	0.9215569	0.9745665

Table 4.2. Results for Biolexicon

Lexicon	Product Reviews	Petroleum News, Reports, and Blogs	Journal Articles
SentiWordNet	0.8518152	0.8364654	0.7615454
BioLexicon	0.9016564	0.9453122	0.9815457
SentiWordNet+Biolexicon	0.9015666	0.9423321	0.9815956

Table 4.3. Results for SocialSent

Lexicon	Product	Petroleum	Journal
	Reviews	News,	Articles
		Reports,	
		and Blogs	
SentiWordNet	0.7648151	0.8084144	0.8186455
SocialSent	0.7695952	0.8448518	0.8318656
SentiWordNet+SocialSent	0.7628494	0.8485265	0.8326451

5. DISCUSSIONS

The extension of the central lexicon with domain specific lexicons on demand is the goal of this research. Since petrolexicon is established and the practicability of the lexicon has been shown, petrolexicon can be a basic tool for sentiment analysis in the petroleum industry (by coupling it with a central lexicon such as SentiWordNet).

As discussed earlier, the combination of petrolexicon and SentiWordNet got a better result than petrolexicon itself. That is because petrolexicon only contains pairs of terminologies. Since the network of central lexicons and domain lexicons can be integrated into SA analysis, petrolexicon do not need to add general words.

Biolexicon contains general items and terminology variants. And also there is semantic structure in Biolexicon. Based on these features, biolexicon can be regarded as a well-developed domain lexicon. Petrolexicon can also be developed through this way, which may lead to a better sentiment analysis. Also, petrolexicon can add more terminology pairs to enlarge its scale.

6. CONTRIBUTIONS AND FUTURE RESEARCH

It is hypothesized that coupling a specialized lexicon to a general lexicon, such as SentiWordNet, will produce better results. The results suggest that this hypothesis is supported.

This study is expected to contribute to both academic researchers and practitioners. For academic research, a new stream of research is identifying and many more specialized lexicons can be created. Business or educational domain lexicon may be the next step. Research is also needed to investigate the best ways to couple the lexicons. For practitioners, this research suggests a new way to enhance the quality of sentiment analysis (i.e., coupling the central lexicon with specialized lexicon(s)).

BIBLIOGRAPHY

- [1] Alan R. Hevner, Salvatore T. March, Jinsoo Park, Sudha Ram. (2004). Design Science in Information Systems Research. DIS Quarterly, 75-105.
- [2] Altug Akay, Andrei Dragomir, Bj¨orn-Erik Erlandsson. (2013). Network-Based Modeling and Intelligent Data Mining of Social Media for Improving Care . IEEE Journal of Biomedical and Health Informatics , 210-218.
- [3] Anatoliy Gruzd, Jenna Jacobson, Philip Mai, Barry Wellman. (2015). Emotions on Facebook: a content analysis of Mexico's Starbucks page. The 2015 International Conference on Social Media & Society. ACM.
- [4] Anuj Sharma, Shubhamoy Dey. (2012). A comparative study of feature selection and machine learning techniques for sentiment analysis. The 2012 ACM Research in Applied Computation Symposium (pp. 1-7). ACM.
- [5] BAIKE. (2010). Retrieved from Web Crawler: http://baike.baidu.com/link?url=vRXSRbTINNKhFO4ZlLMYMt1SYDfPCO9niSQ U7U67As2sZGszEb_CDcovVSgHjuUp6U6ko4wji5258pwACRvtwh-J34quXfWXjwmN90TtoXX-PW5grbjNPlJCDkHzPBFw#ref_[1]_284853.
- [6] Bin Tong, Hiroaki Ozaki, Makoto Iwayama, Yoshiyuki Kobayashi, Sahu Anshuman, Vennelakanti Ravigopal. (n.d.). Production Estimation for Shale Wells with. Retrieved from http://sentic.net/sentire/2015/tong.pdf.
- [7] Chakraborty, G. (n.d.). Analysis of Unstructured Data: Applications of Text Analytics and. Retrieved from https://support.sas.com/resources/papers/proceedings14/1288-2014.pdf.
- [8] Christos Troussas, Maria Virvou, Kurt Junshean Espinosa, Kevin Llaguno, Jaime Caro. (2013). Sentiment analysis of Facebook statuses using Naive Bayes classifier for language learning. Information, Intelligence, Systems and Applications (IISA), 2013 Fourth International Conference (pp. 1-6). Piraeus: IEEE.
- [9] dell'Informazione, I. d. (n.d.). SENTIWORDNET 3.0: An Enhanced Lexical Resource. Retrieved from http://www.researchgate.net/profile/Fabrizio_Sebastiani/publication/220746537_Se ntiWordNet_3.0_An_Enhanced_Lexical_Resource_for_Sentiment_Analysis_and_Opinion_Mining/links/545fbcc40cf27487b450aa21.pdf.
- [10] Despo Georgiou, Andrew MacFarlane, Tony Russell-Rose. (2015). Extracting sentiment from healthcare survey data: An evaluation of sentiment analysis tools . Science and Information Conference (SAI) (pp. 352-361). London: IEEE.

- [11] Favresse, j. (2015, 5 20). Crude Oil A quick market sentiment analysis. Retrieved from https://amareos.com/blog/2015/05/20/crude-oil-a-quick-market-sentiment-analysis/.
- [12] Geetika Gautam, Divakar yadav. (2014). Sentiment analysis of twitter data using machine learning approaches and semantic analysis. Contemporary Computing (IC3), 2014 Seventh International Conference (pp. 437-442). Noida: IEEE.
- [13] Hidenari IWAI, Yoshinori HIJIKATA, Kaori IKEDA, Shogo NISHIDA. (2014). Sentence-based Plot Classification for Online Review Comments. Web Intelligence (WI) and Intelligent Agent Technologies (IAT), 2014 IEEE/WIC/ACM International Joint Conferences (pp. 245-253). Warsaw: IEEE.
- [14] Kyomin Jung, Byoung-Tak Zhang, Prasenjit Mitra. (2015). Deep Learning for the Web. the 24th International Conference on World Wide Web (pp. 1525-1526). International World Wide Web Conferences Steering Committee.
- [15] Larissa A. de Freitas, Aline A. Vanin, Denise N. Hogetop, Marco N. Bochernitsan, Renata Vieira. (2014). Pathways for irony detection in tweets. The 29th Annual ACM Symposium on Applied Computing (pp. 628-633). SIGAPP.
- [16] Li Bing, Keith C. C. Chan. (2014). A Fuzzy Logic Approach for Opinion Mining on Large Scale Twitter Data. The 2014 IEEE/ACM 7th International Conference on Utility and Cloud Computing (pp. 652-657). IEEE.
- [17] Luis Trindade, Hui Wang, William Blackburn, Philip S. Taylor. (2014). Enhanced Factored Sequence Kernel for Sentiment Classification. Web Intelligence (WI) and Intelligent Agent Technologies (IAT), 2014 IEEE/WIC/ACM International Joint Conferences (pp. 519-525). Warsaw: IEEE.
- [18] Maharani, W. (2013). Microblogging sentiment analysis with lexical based and machine learning approaches. Information and Communication Technology (ICoICT), 2013 International Conference (pp. 439-443). Bandung: IEEE.
- [19] Matheus Araújo; Pollyanna Gonçalves; Meeyoung Cha; Fabrício Benevenuto. (2014). iFeel: a system that compares and combines sentiment analysis methods. International World Wide Web Conference (p. 1348). Seoul: InternationalWorld Wide Web Conferences Steering Committee, Republic and Canton of Geneva, Switzerland.
- [20] Matthew Koehler, Spencer Greenhalgh, Andrea Zellner. (2015). Potential Applications of Sentiment Analysis in Educational Research and Practice Is SITE the Friendliest Conference? In G. M. D. Slykhuis (Ed.), Proceedings of Society for Information Technology & Teacher Education International Conference (pp. 1348-1354). Las Vegas: Association for the Advancement of Computing in Education (AACE).

- [21] Meng, Y. (2012, 4). Dissertations and Theses from the College of Business Administration. Retrieved from University of Nebraska–Lincoln: http://digitalcommons.unl.edu/businessdiss/28/.
- [22] Nabeela Altrabsheh, Mohamed Medhat Gaber, Mihaela Cocea. (2013). SA-E: Sentiment Analysis for Education. In R. Neves-Silva, & R. N.-S. al. (Ed.), Intelligent Decision Technologies (pp. 353-361). Hampshire, UK: IOS Press.
- [23] Neethu M S, Rajasree R, . (2013). Sentiment Analysis in Twitter using Machine. Computing, Communications and Networking Technologies (ICCCNT),2013 Fourth International Conference (pp. 1-5). Tiruchengode: IEEE.
- [24] Onur Kucuktunc, B. Barla Cambazoglu, Ingmar Weber, Hakan Ferhatosmanoglu. (2012). A large-scale sentiment analysis for Yahoo! answers. the fifth ACm international conference on web search and data mining (pp. 633-642). ACM.
- [25] Onur Kucuktunc, B. Barla Cambazoglu, Ingmar Weber, Hakan Ferhatosmanoglu. (2012). A large-scale sentiment analysis for Yahoo! answers. The fifth ACM International Conference on Web Search and Data Mining (pp. 633-642). ACM.
- [26] Palace, B. (1996). Data Mining: What is Data Mining? Retrieved from Data Mining: http://www.anderson.ucla.edu/faculty/jason.frand/teacher/technologies/palace/data mining.htm.
- [27] Petroleum Sentiment Analysis. (2015, 4 23). Retrieved from Sentiment Analysis: http://wenku.google.com/link?url=HkwN82RaHJnLeyig7d7-s3Q6QsbW3JPPse9DaMUqroRUsZ8-JwGB1RaGfacVzHhynew5G1GkGhNWoa-ohlFOG-3rg3OF7q_KNj9WHXv3kky.
- [28] Politics Sentiment. (2012). Retrieved from USC Annenberg Innovation Lab: http://www.annenberglab.com/projects/politics-sentiment.
- [29] Qihao Ji, Danyang Zhao. (2015). Tweeting live shows: a content analysis of live-tweets from three entertainment programs. The 2015 International Conference on Social Media & Society. ACM.
- [30] Quanzeng You, Jiebo Luo. (2013). Towards social imagematics: sentiment analysis in social multimedia. The Thirteenth International Workshop on Multimedia Data Mining. ACM.
- [31] Ramesh R, Divya G, Divya D, Merin K Kurian, Vishnuprabha V. (2015). Big Data Sentiment Analysis using Hadoop. IJIRST –International Journal for Innovative Research in Science & Technology.

- [32] Ranjitha Kashyap, Ani Nahapetian. (2014). Tweet Analysis for User Health Monitoring. Wireless Mobile Communication and Healthcare (Mobihealth), 2014 EAI 4th International Conference (pp. 348-351). Athens: IEEE.
- [33] Raymond Y.K. Lau, Stephen S.Y. Liao, Chunping Li. (2014, 424). Social Analytics: Learning Fuzzy Product Ontologies for Aspect-Oriented Sentiment Analysis. Decision Support Systems.
- [34] Saeed Abdullah, Elizabeth L. Murnane, Jean M.R. Costa, Tanzeem Choudhury. (2015). Collective Smile: Measuring Societal Happiness from Geolocated Images. the 18th ACM Conference on Computer Supported Cooperative Work & Social Computing (pp. 361-374). ACM.
- [35] Sentiment analysis. (2015, November 10). Retrieved from Wikipedia: https://en.wikipedia.org/wiki/Sentiment_analysis.
- [36] Soujanya Poria, Alexander Gelbukh, Amir Hussain, Newton Howard, Dipankar Das, Sivaji Bandyopadhyay. (2013). Enhanced SenticNet with affective labels for concept-based opinion mining. IEEE Intelligent System, 31-38.
- [37] Tan Li Im, Phang Wai San, Chin Kim On, Rayner, Patricia Anthony. (2013). Analysing Market Sentiment in Financial News Using Lexical Approach. Open Systems (ICOS), 2013 IEEE Conference (pp. 145-149). Kuching: IEEE.
- [38] Text Mining. (2015, May 8). Retrieved from Statistics Textbook: http://documents.software.dell.com/Statistics/Textbook/Text-Mining#index.
- [39] Wanying Ding, Xiaoli Song, Lifan Guo, Zunyan Xiong, Xiaohua Hu. (2013). A Novel Hybrid HDP-LDA Model for Sentiment Analysis. Web Intelligence (WI) and Intelligent Agent Technologies (IAT), 2013 IEEE/WIC/ACM International Joint Conferences (pp. 329-336). Atlanta: IEEE.
- [40] Wikipedia. (2016, 11 22). Retrieved from Web crawler: https://en.wikipedia.org/wiki/Web_crawler.
- [41] Xiaojing Shi, Xun Liang. (2015). Resolving inconsistent ratings and reviews on commercial webs based on support vector machines. Service Systems and Service Management (ICSSSM), 12th International Conference (pp. 1-6). Guangzhou: IEEE.
- [42] Xiaoxu Fei, Huizhen Wang, Jingbo Zhu. (2010). Sentiment Word Identification Using the Maximum Entropy Model. Natural Language Processing and Knowledge Engineering (NLP-KE), 2010 International Conference (pp. 1-4). Beijing: IEEE.

- [43] Yunqing Xia, Xiaoyu Li, Erik Cambria, Amir Hussain. (2014). A Localization Toolkit for SenticNet. Data Mining Workshop (ICDMW), 2014 IEEE International Conference (pp. 403-408). Shenzhen: IEEE.
- [44] Zengcai Su, Hua Xu, Dongwen Zhang, Yunfeng Xu, . (2014). Chinese sentiment classification using a neural network tool Word2vec . Multisensor Fusion and Information Integration for Intelligent Systems (MFI), 2014 International Conference (pp. 1-6). Beijing: IEEE.

VITA

Bo Yuan was born in Doongying, China. After finishing high school in 2009, she entered into China University of Petroleum (East China). She studied Geology and Geophysics degree, and Information Science and Technology degree at the Missouri University of Science and Technology between 2013 and 2017. She received a M.S. in Geology & Geophysics in 2015 and a M.S. in Information Science & Technology in May, 2017.