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KUMARASWAMY LINDLEY-POISSON DISTRIBUTION: THEORY
AND APPLICATIONS

MAVIS PARARAI, BRODERICK O. OLUYEDE AND GAYAN WARAHENA-LIYANAGE

Abstract. The Kumaraswamy Lindley-Poisson (KLP) distribution which is an ex-
tension of the Lindley-Poisson Distribution [21] is introduced and its properties are
explored. This new distribution represents a more flexible model for the lifetime data.
Some statistical properties of the proposed distribution including the shapes of the
density and hazard rate functions are explored. Moments, entropy measures and the
distribution of the order statistics are given. The maximum likelihood estimation
technique is used to estimate the model parameters and a simulation study is con-
ducted to investigate the performance of the maximum likelihood estimates. Finally
some applications of the model with real data sets are presented to illustrate the
usefulness of the proposed distribution.

1. Introduction

Lindley distribution [16], studied by Lindley in the context of fiducial and Bayesian
statistics, is very useful for modeling failure time data. This distribution accommodates
hazard rate functions that are increasing, decreasing or constant. However, models with
complex hazard rate shapes such as unimodal, bathtub and other shapes are desirable
in reliability analysis, human mortality studies and related areas. Ghitany et al. [11]
proposed and studied the power Lindley distribution. Properties and applications of
the Lindley distribution have been studied in the context of reliability analysis by
several authors including Ghitany et al. [10], Sankaran [26] and Asgharzadeh et al.
[1]. Nadarajah et al. [20] proposed and developed the mathematical properties of
the generalized Lindley distribution. Properties of the exponentiated Power Lindley
distribution were studied by Warahena-Liyanage and Pararai [35].

Several new families of distributions have been derived by compounding the Poisson
distribution with many other continuous distributions to provide more flexible distribu-
tions for modeling lifetime data. Kuş [15] studied the exponential-Poisson distribution.
Lu and Shi [17] derived and studied the Weibull-Poisson distribution. The exponen-
tiated Weibull-Poisson distribution which generalizes the Weibull-Poisson was studied
by Mahmoudi and Sepahdar [18], and the beta Weibull-Poisson was introduced and
studied by Percontini et al.[23]. Barreto-Souza and Cribari-Neto [3] studied the ex-
ponentiated exponential-Poisson distribution. The two parameter Poisson-exponential
distribution with an increasing failure rate was studied by Cancho et al.[5]. Recently,
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Pararai et al. [21] studied the properties of the exponentiated power Lindley-Poisson
distribution, thereby generalizing the Lindley-Poisson distribution.

The properties of Kumaraswamy [14] distribution were explored in detail by Jones
[13]. The author contrasted the Kumaraswamy distribution with the beta distribution.
Some of the good properties of the Kumaraswamy distribution include a simple nor-
malizing constant, closed form solutions of the distribution and quantile functions as
well as simple formulas for the moments. Cordeiro et al. [7] studied the Kumaraswamy-
Weibull distribution and applied the model to some failure data.

Motivated by the advantages of the generalized distribution with respect to having a
hazard function that exhibits increasing, decreasing and bathtub shapes, as well as the
versatility and flexibility of compounding Lindley and Poisson distributions in model-
ing lifetime data, we propose and study a new distribution called the Kumaraswamy
Lindley-Poisson (KLP) distribution, which inherits these desirable properties that also
cover the shapes of quite a large number of models.

We are also motivated to study the KLP distribution because of the wide and ex-
tensive usage of Lindley distribution and the fact that the current generalization still
provides a useful means for its continuous extension to more complex situations. An
important and positive point of the current generalization is that the Lindley distribu-
tion is a basic model or exemplar of the proposed KLP distribution.

This paper is organized as follows. In section 2, the Kumaraswamy-G distribution
(see Cordeiro and de Castro[8] for additional details), the model, its sub-models and
some statistical properties including expansion of density function, quantile function,
hazard function are presented. In section 3, we present the moments. Section 4 contains
the distribution of the order statistics and Rényi entropy. Mean deviations, Bonfer-
onni and Lorenz curves are presented in section 5. Maximum likelihood estimates of
the model parameters and asymptotic confidence intervals are given in section 6. A
simulation study is also presented in section 6. Section 7 contains applications of the
proposed model to real data, followed by concluding remarks in section 8.

2. The Model, Sub-models and Properties

The probability density function (pdf) and the corresponding cumulative distribution
function (cdf) of the one-parameter Lindley distribution [16] are given by

(2.1) f(x; β) =
β2

β + 1
(1 + x)e−βx, x > 0, β > 0,

and

F (x) = 1−
(

1 +
βx

β + 1

)
e−βx,(2.2)

for x > 0, α, β > 0, respectively.
Suppose that the random variable X has the Lindley distribution where its pdf and

cdf are given in equations (2.1) and (2.2). Given N, let X1, ..., XN be independent
and identically distributed random variables from Lindley distribution. Let N be
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distributed according to the zero truncated Poisson distribution [6] with pdf

P (N = n) =
θne−θ

n!(1− e−θ)
, n = 1, 2, ..., θ > 0.

Let X=max(Y1, ..., YN), then the cdf of X|N = n is given by

GX|N=n(x) =

[
1−

(
1 +

βx

β + 1

)
e−βx

]n
, x > 0, β > 0, θ > 0,

which is the exponentiated Lindley distribution. The Lindley-Poisson (LP) distribution
denoted by LP(β, θ) is defined by the marginal cdf of X, that is,

GLP (x; β, θ) =

1− exp

{
θ

[
1−

(
1 + βx

β+1

)
e−βx

]}
1− eθ

(2.3)

for x > 0, β > 0, θ > 0. The LP density function is given by

(2.4) gLP (x; β, θ) =

θβ2(1 + x)e−βx exp

{
θ

[
1−

(
1 + βx

β+1

)
e−βx

]}
(β + 1)(eθ − 1)

,

for x > 0, β > 0, θ > 0.

2.1. Kumaraswamy Lindley Poisson Distribution. In this sub-section, we present
the Kumaraswamy Lindley-Poisson (KLP) distribution and derive some of its proper-
ties including the cdf, pdf, expansion of the density, hazard function, quantile function
and sub-models.

Consider G(x) to be an arbitrary baseline cdf in the interval (0, 1). The cdf G(x),
referred to as Kumaraswamy-G distribution [8] has cdf

F (x; a, b) = 1− (1−G(x)a)b,

where a and b are shape parameters. The pdf of the Kumaraswamy-G distribution is
given by

f(x; a, b) = abg(x)[G(x)]a−1[1−G(x)a]b−1, a > 0, b > 0,(2.5)

where g(x) = dG(x)
dx

is the pdf corresponding to the baseline cdf.
By taking G(x) as the cdf of the Lindley-Poisson (LP) distribution in equation (2.5),

we obtain the Kumaraswamy Lindley-Poisson (KLP) distribution with a broad class of
distributions that may be applicable in a wide range of day to day situations including
applications in medicine, reliability and ecology. The cdf of the four-parameter KLP
distribution is given by

FKLP (x) = 1−

1−

1− exp

{
θ

[
1−

(
1 + βx

β+1

)
e−βx

]}
1− eθ


a

b

,(2.6)
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for x > 0, θ > 0, β > 0, a > 0, b > 0. The corresponding KLP pdf is given by

fKLP (x) =

abθβ2(1 + x)e−βx exp

{
θ

[
1−

(
1 + βx

β+1

)
e−βx

]}
(β + 1)(eθ − 1)

×

1− exp

{
θ

[
1−

(
1 + βx

β+1

)
e−βx

]}
1− eθ


a−1

×

1−

1− exp

{
θ

[
1−

(
1 + βx

β+1

)
e−βx

]}
1− eθ


a

b−1

(2.7)

for x > 0, β > 0, θ > 0, a > 0, b > 0.
Plots of the pdf of KLP distribution for several values of β, θ, a and b are given in

Figures 2.1 and 2.2, respectively. The plots show that the KLP distribution is right
skewed and can be decreasing (L shaped).
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Figure 2.1. Plot of the PDF for different values of β, θ, a and b



6 PARARAI, OLUYEDE AND WARAHENA-LIYANAGE

Figure 2.2. Plot of the PDF for different values of β, θ, a and b

Using the substitution λ = λ(x) = θ

[
1 −

(
1 +

βx

β + 1

)
e−βx

]
, we can write the pdf

of the KLP distribution as

f
KLP

(x) =
abθβ2(1 + x)e−βxeλ

(β + 1)(eθ − 1)

(
1− eλ

1− eθ

)a−1[
1−

(
1− eλ

1− eθ

)a]b−1
.

2.2. Expansion of the Density Function. The expansion of the pdf of KLP distri-
bution is presented in this sub-section. For b > 0 a real non-integer, we use the series
representation

(1− [GLP (x)]a)b−1 =
∞∑
j=0

(
b− 1

j

)
(−1)j [GLP (x)]aj,

where

GLP (x) = GLP (x; β, θ) =

exp

{
θ

[
1−

(
1 +

βx

β + 1

)
e−βx

]}
− 1

eθ − 1
.
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We can rewrite the density of the KLP distribution as

fKLP (x) =
∞∑
j=0

(−1)j
(
b− 1

j

)
abgLP (x)[GLP (x)]aj+a−1

=

abθβ2(1 + x)e−βx exp

{
θ

[
1−

(
1 + βx

β+1

)
e−βx

]}
(β + 1)(eθ − 1)

×
∞∑
j=0

(−1)j
(
b− 1

j

)1− exp

{
θ

[
1−

(
1 + βx

β+1

)
e−βx

]}
1− eθ


aj+a−1

=
∞∑

j,k=0

(−1)aj+a+j+k−1ab
(
b−1
j

)(
aj+a−1

k

)
[eθ(k+1) − 1]

(eθ − 1)(k + 1)

×
θβ2(1 + x)e−βx exp

{
θ(k + 1)

[
1−

(
1 +

βx

β + 1

)
e−βx

]}
(β + 1)[eθ(k+1) − 1]

=
∞∑

j,k=0

ωj,kg(x; β, θ(k + 1)),

where

(2.8) ωj,k = ωj,k(θ, a, b) =
(−1)aj+a+j+k−1ab

(
b−1
j

)(
aj+a−1

k

)
[eθ(k+1) − 1]

(eθ − 1)(k + 1)

and g(x; β, θ(k+1)) is the Lindley-Poisson pdf with parameters β > 0 and θ(k+1) > 0.
This shows that the KLP distribution can be written as a linear combination of Lindley-
Poisson density functions. Hence mathematical properties of the KLP distribution can
be obtained from those of the LP properties.

2.3. Survival and Hazard Rate Functions. The hazard function for the KLP dis-
tribution will be presented in this sub-section. Using some selected values of β, θ, a,
and b, some plots of the hazard function are presented. The hazard function of the
KLP are given respectively by

hKLP (x) =
fKLP (x; β, θ, a, b)

1− FKLP (x; β, θ, a, b)

=
abθβ2(1 + x)e−βxeλ

(β + 1)(eθ − 1)

(
1− eλ

1− eθ

)a−1[
1−

(
1− eλ

1− eθ

)a]−1
for x > 0, β > 0, θ > 0, a > 0 and b > 0, where λ = θ

[
1 −

(
1 +

βx

β + 1

)
e−βx

]
. The

graph of the hazard function for various values of the parameters β, θ, a and b are given
in Figures 2.3 and 2.4, respectively. These graphs show that the KLP distribution is
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suitable for monotonic and non-monotonic hazard behaviors which are more likely to
be encountered in real life situations.

Figure 2.3. Plot of the Hazard Function for different values of β, θ, a
and b



KUMARASWAMY LINDLEY-POISSON DISTRIBUTION 9

Figure 2.4. Plot of the Hazard Function for different values of β, θ, a
and b

The graph of the hazard function for different values of the parameters exhibits
various shapes such as monotonically increasing and bathtub shapes.

2.4. Some sub-models of the KLP distribution. In this sub-section, some sub-
models of the KLP distribution for selected values of the parameters β, θ, a and b are
presented.

• When a = b = 1, we obtain the Lindley Poisson (LP) distribution whose cdf
and pdf are given in equations (2.3) and (2.4).
• When b = 1, we obtain the exponentiated Lindley Poisson (ELP) distribution

which belongs to the resilience parameter family.
• When a = b = 1 and θ → 0+, the Lindley, (L) distribution becomes a limiting

form of the KLP distribution.
• When b = 1 and θ → 0+, we get the exponentiated Lindley (EL) distribution.
• When a = 1, we get the new lifetime distribution belonging to the frailty

parameter family
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2.5. Quantile Function. The quantile function of the KLP distribution is obtained
by solving the equation F (Q(p)) = p, where 0 < p < 1. We therefore have

1−

1−

1− exp

{
θ

[
1−

(
1 + βQ(p)

β+1

)
e−βQ(p)

]}
1− eθ


a

b

= p.

Using Z(p) = −1− β − βQ(p), we have

1−

1−

1− exp

{
θ

[
1 +

(
Z(p)
β+1

)
exp(Z(p) + 1 + β)

]}
1− eθ


a

b

= p,

so that

Z(p) exp{Z(p)} =
−(β + 1)

exp(1 + β)

{
1− 1

θ
ln

[
1− (1− eθ)(1− (1− p)1/b)1/a

]}
,

thus,

Z(p) = W

(
−(β + 1)

exp(1 + β)

{
1− 1

θ
ln

[
1− (1− eθ)(1− (1− p)1/b)1/a

]})
.

for 0 < p < 1, where W (.) is the Lambert W function [9]. The quantile function of the
KLP distribution is obtained by solving for Q(p) in the above equation to obtain

Q(p) = −1− 1

β
− 1

β
W

(
−(β + 1)

exp(1 + β)

{
1− 1

θ
ln

[
1− (1− eθ)(1− (1− p)1/b)1/a

]})
.

(2.9)

3. Moments

In this section, we present the moments of the KLP distribution. Moments are
necessary and important in any statistical analysis, especially in applications. They
can be used to study the most important features and characteristics of a distribution
(e.g., tendency, dispersion, skewness and kurtosis).

The rth moment of a random variable X following the KLP distribution, denoted by
µ′r is

µ′r = E(Xr)

=
∞∑

j,k=0

ωj,kθβ
2

(β + 1)[eθ(k+1) − 1]

∫ ∞
0

xr(1 + x)e−βx

× exp

{
θ(k + 1)

[
1−

(
1 +

βx

β + 1

)
e−βx

]}
dx,(3.1)

where ωj,k is defined in equation (2.8). In order to find the moments, consider the
following lemma:
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Lemma 1. Let

L1(β, θ(k + 1), a, b, r) =

∫ ∞
0

xr(1 + x)e−βx exp

{
θ(k + 1)

[
1−

(
1 +

βx

β + 1

)
e−βx

]}
dx

,

then

L1(β, θ(k + 1), a, b, r) =
∞∑
m=0

m∑
p=0

p∑
q=0

q+1∑
s=0

(
m

p

)(
p

q

)(
q + 1

s

)
(−1)pθm(k + 1)mβq

m!(β + 1)p

× Γ(r + s+ 1)

[β(p+ 1)]r+s+1
.

Proof. Using the series expansion, ez =
∞∑
p=0

zp

p!
, we can rewrite the above integral as

L1(β, θ(k + 1), a, b, r) =
∞∑
m=0

θm(k + 1)m

m!

∫ ∞
0

xr(1 + x)e−βx
[
1−

(
1 +

βx

β + 1

)
e−βx

]m
dx

=
∞∑
m=0

m∑
p=0

p∑
q=0

q+1∑
s=0

(
m

p

)(
p

q

)(
q + 1

s

)
(−1)pθm(k + 1)mβq

m!(β + 1)p

×
∫ ∞
0

xr+se−β(p+1)xdx.

By letting u = β(p+ 1)x, we have x = u
β(p+1)

and dx = du
β(p+1)

. Thus∫ ∞
0

xr+se−βx(p+1)dx =
Γ(r + s+ 1)

[β(p+ 1)]r+s+1
.

�

By using Lemma 1, the rth moment of the KLP distribution is

µ′r =
∞∑
j=0

∞∑
k=0

θβ2ωj,k
(β + 1)[eθ(k+1) − 1]

L1(β, θ(k + 1), a, b, r),

4. Order Statistics and Rényi Entropy

In this section, the distribution of order statistics and Rényi entropy for the KLP
distribution are presented. The concept of entropy plays a vital role in information the-
ory. The entropy of a random variable is defined in terms of its probability distribution
and can be shown to be a good measure of randomness or uncertainty.
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4.1. Order Statistics and Entropy. Suppose that X1, · · · , Xn is a random sample
of size n from a continuous pdf, f(x). Let X1:n < X2:n < · · · < Xn:n denote the cor-
responding order statistics. If X1, · · · , Xn is a random sample from KLP distribution,
it follows from equations (2.6) and (2.7) that the pdf of the kth order statistic, say
Yk = Xk:n is given by

fk(yk) =
n!fKLP (x)

(k − 1)!(n− k)!

n−k∑
j=0

(
n− k
j

)
(−1)j[FKLP (x)]j+k−1

=
n!

(k − 1)!(n− k)!

n−k∑
j=0

j+k−1∑
m=0

∞∑
p,q=0

(
n− k
j

)(
j + k − 1

m

)(
bm+ b− 1

p

)

×
(
ap+ a− 1

q

)
(−1)j+m+p+q+ap+a−1ab[eθ(q+1) − 1]

(eθ − 1)ap+p(q + 1)

× θ(q + 1)β2(1 + x)e−βxeλ(q+1)

(β + 1)[eθ(q+1) − 1]

=
∞∑

j,m,p,q=0

ϕj,m,p,q(β, θ, a, b)g(x; β, θ(q + 1)),

where

ϕj,m,p,q(β, θ, a, b) =
n!

(k − 1)!(n− k)!

∞∑
j,m,p=0

∞∑
q=0

(
n− k
j

)(
j + k − 1

m

)(
bm+ b− 1

p

)

×
(
ap+ a− 1

q

)
(−1)j+m+p+q+ap+a−1ab[eθ(q+1) − 1]

(eθ − 1)ap+p(q + 1)
,

and g(x; β, θ(q+ 1)) is the LP pdf with parameters β > 0 and θ(q+ 1)) > 0. Thus, the
distribution of the kth order statistic is a linear combination of the LP distribution.

4.2. Rényi Entropy. Rényi entropy [24][25] is an extension of Shannon entropy [29][30].

Rényi entropy is defined to be Hv(fKLP (x; β, θ, a, b)) =
log(

∫∞
0 fvKLP (x;β,θ,a,b)dx)

1−v , where
v > 0, and v 6= 1. Rényi entropy tends to Shannon entropy as v → 1. We therefore
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have

Hv(fKLP ) =
1

1− v

[
log

(∫ ∞
0

f vKLP (x)dx

)]
=

∞∑
i,j,k=0

k∑
m=0

m∑
p=0

p+v∑
q=0

(
bv − v
i

)(
av + ai− v

j

)(
k

m

)(
m

p

)(
p+ v

q

)

× (−1)i+av+ai−v+j+m[θ(j + v)]kβp

(β + 1)mk!(eθ − 1)av+ai−v

∫ ∞
0

xqe−β(v+k)xdx

]
=

1

1− v
log

[ ∞∑
i,j,k=0

k∑
m=0

m∑
p=0

p+v∑
q=0

(
bv − v
i

)(
av + ai− v

j

)

×
(
k

m

)(
m

p

)(
p+ v

q

)
(−1)v−av+k+p[θ(v + k]mβq

(eθ − 1)j+av−v(β + 1)pm!

×
(

abθβ2

(β + 1)(eθ − 1)

)v
Γ(q + 1)

[β(v + k)]q+1

]
,

for v > 0, v 6= 1.

5. Mean Deviations, Bonferroni and Lorenz Curves

Deviations from the mean and median help in giving a sense of the amount of spread
in a population. The mean deviation about the mean and mean deviation about the
median of the KLP distribution are given by

D(µ) = 2µFKPL(µ)− 2µ+
∞∑

j,k=0

θβ2ωj,k
(β + 1)[eθ(k+1) − 1]

L2(β, θ(k + 1), a, b, 1, µ)

and

D(M) = −µ+
∞∑

j,k=0

θβ2ωj,k
(β + 1)[eθ(k+1) − 1]

L2(β, θ(k + 1), a, b, 1,M).

Consequently, Lorenz and Bonferroni curves are given by

L(F
KLP

(x)) =

∫ y
0
tf

KLP
(t)dt

E(X)
, and B(F

KLP
(x)) =

L(F
KLP

(x))

F
KLP

(x)
,

or

L(p) =
1

µ

∫ q

0

tf
KLP

(t)dt, and B(p) =
1

pµ

∫ q

0

tf
KLP

(t)dt,

respectively, where q = F−1
KLP

(p).
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6. Maximum Likelihood Estimation

Let x1, · · · , xn be a random sample from the KLP distribution. The log-likelihood
function is given by

L = n log(a) + n log(b) + n log(θ) + 2n log(β)− n log(β + 1)

+
n∑
i=1

log(1 + xi)− β
n∑
i=0

xi +
n∑
i=1

λi + (a− 1)
n∑
i=1

log(eλi − 1)

+ (b− 1)
n∑
i=1

log

[
(eθ − 1)a − (eλi − 1)a

]
− nab log(eθ − 1).

The elements of the score vector are given by

∂L

∂a
=

n

a
+

n∑
i=1

log(eλi − 1)− nb log(eθ − 1)

+ (b− 1)
n∑
i=1

(eθ − 1)a log(eθ − 1)− (eλi − 1)a log(eλi − 1)

(eθ − 1)a − (eλi − 1)a
,

∂L

∂b
=
n

b
+

n∑
i=1

log

[
(eθ − 1)a − (eλi − 1)a

]
− na log(eθ − 1),

∂L

∂β
=

2n

β
− n

β + 1
−

n∑
i=1

xi +
n∑
i=1

∂λi
∂β

+ (a− 1)
n∑
i=1

∂λi
∂β
eλi

eλi − 1

− a(b− 1)
n∑
i=1

eλi(eλi − 1)a−1 ∂λi
∂β

(eθ − 1)a − (eλi − 1)a

and

∂L

∂θ
=

n

θ
+

n∑
i=1

V (xi) +
n∑
i=1

V (xi)e
λi

eλi − 1
− nabeθ

eθ − 1

+ a(b− 1)
n∑
i=1

eθ(eθ − 1)a−1 − V (xi)e
λi(eλi − 1)a−1

(eθ − 1)a − (eλi − 1)a
,

respectively. Note that since λ = θ

[
1−

(
1 +

βx

β + 1

)
e−βx

]
, we have

∂λ

∂β
= θe−βx

[(
1 +

βx

β + 1

)
− 1

(β + 1)2

]
and

∂λ

∂θ
=

[
1−

(
1 +

βx

β + 1

)
e−βx

]
= V (x).

The maximum likelihood estimates, ∆̂ of ∆ = (β, θ, a, b) are obtained by solving the
nonlinear equations ∂l

∂β
= 0, ∂l

∂θ
= 0, ∂l

∂a
= 0, and ∂l

∂b
= 0. These equations are not in
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closed form and the values of the parameters β, θ, a and b must be found by using
iterative methods.

We maximize the likelihood function using NLmixed procedure in SAS as well as
the function nlm in R ([32]). These functions were applied and executed for a wide
range of initial values. This process often results or leads to more than one maximum,
however, in these cases, we take the MLEs corresponding to the largest value of the
maxima. In a few cases, no maximum was identified for the selected initial values. In
these cases, a new initial value was tried in order to obtain a maximum.

The issues of existence and uniqueness of the MLEs are of theoretical interest and
have been studied by several authors for different distributions including [28], [27], [34],
and [33]. At this point we are not able to address the theoretical aspects (existence,
uniqueness) of the MLE of the parameters of the KLP distribution.

Note that the KLP density fKLP (·; ∆) has second derivatives with respect to the
parameters, so that Fisher information matrix (FIM), Iij(∆) can be expressed as

Iij(∆) = E∆

[
∂2 log(fKLP (X; ∆))

∂δi∂δj

]
, i, j = 1, 2, 3, 4.

Elements of the FIM can be numerically obtained by MATLAB or MAPLE software.
The total FIM In(∆) can be approximated by

Jn(∆̂) ≈
[
− ∂2 logL

∂δi∂δj

∣∣∣∣
∆=∆̂

]
4×4

, i, j = 1, 2, 3, 4.(6.1)

For real data, the matrix given in equation (6.1) is obtained after the convergence

of the Newton-Raphson procedure in MATLAB or R software. Let ∆̂ = (β̂, θ̂, â, b̂)
be the maximum likelihood estimate of ∆ = (β, θ, a, b). Under the usual regularity
conditions and that the parameters are in the interior of the parameter space, but not

on the boundary, we have:
√
n(∆̂−∆)

d−→ N4(0, I
−1(∆)), where I(∆) is the expected

Fisher information matrix. The asymptotic behavior is still valid if I(∆) is replaced

by the observed information matrix evaluated at ∆̂, that is J(∆̂). The multivariate
normal distribution with mean vector 0 = (0, 0, 0, 0)T and covariance matrix I−1(∆)
can be used to construct confidence intervals for the model parameters. That is, the
approximate 100(1− η)% two-sided confidence intervals for β, θ, a and b are given by

β̂ ± Zη/2
√

I−1ββ (∆̂), θ̂ ± Zη/2
√

I−1θθ (∆̂), â± Zη/2
√

I−1aa (∆̂),

and b̂ ± Zη/2

√
I−1bb (∆̂), respectively, where I−1ββ (∆̂), I−1θθ (∆̂), I−1aa (∆̂) and I−1bb (∆̂) are

diagonal elements of I−1n (∆̂) = (nI(∆̂))−1 and Zη/2 is the upper (η/2)th percentile of a
standard normal distribution.

We can use the likelihood ratio (LR) test to compare the fit of the KLP distribution
with its sub-models for a given data set. For example, to test a = b = 1, the LR statistic
is ω∗ = 2[ln(L(β̂, θ̂, â, b̂)) − ln(L(β̃, θ̃, 1, 1))], where β̂, θ̂, â and b̂ are the unrestricted

estimates, and β̃ and θ̃ are the restricted estimates. The LR test rejects the null
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hypothesis if ω∗ > χ2
ε
, where χ2

ε
denote the upper 100ε% point of the χ2 distribution

with 2 degrees of freedom.

6.1. Monte Carlo Simulation Study. In this sub-section, we study the perfor-
mance of the maximum likelihood method for estimating the KLP model parame-
ters by conducting simulations for different sample sizes and different parameter val-
ues. Equation in (2.9) was used to generate random data from the KLP distribu-
tion. The simulation study was repeated N = 1, 000 times each with samples of size
n = 100, 200, 400, 800, 1000 and parameter values I : β = 0.5, θ = 0.4, a = 0.3, b = 0.5
and II : β = 2.0, θ = 2.0, a = 0.5, b = 0.5. Four quantities were computed in this
simulation study:

(a) Average bias of the MLE ϑ̂ of the parameter ϑ = β, θ, a, b :

1

N

N∑
i=1

(ϑ̂− ϑ).

(b) Root mean squared error (RMSE) of the MLE ϑ̂ of the parameter ϑ = β, θ, a, b :√√√√ 1

N

N∑
i=1

(ϑ̂− ϑ)2.

(c) Coverage probability (CP) of 95% confidence intervals of the parameter ϑ =
β, θ, a, b, i.e., the percentage of intervals that contain the true value of the
parameter ϑ.

(d) Average width (AW) of 95% confidence intervals of the parameter ϑ = β, θ, a, b.

Table 6.1 presents the Average Bias, RMSE, CP and AW values of the parameters
β, θ, a and b for different sample sizes. According to the results, it can be concluded
that as the sample size n increases, the RMSEs decay toward zero. We also observe
that for all the parameters, the biases decrease as the sample size n increases. Also,
the results show that the coverage probabilities of the confidence intervals are quite
close to the nominal level of 95% and that the average confidence widths decrease as
the sample size increases.



KUMARASWAMY LINDLEY-POISSON DISTRIBUTION 17

Table 6.1. Monte Carlo Simulation Results: Average Bias, RMSE, CP
and AW

I II

Parameter n Average Bias RMSE CP AW Average Bias RMSE CP AW

β 100 -0.00501 0.24462 0.9510 1.51624 -0.10803 0.87209 0.9410 5.20699
200 -0.00295 0.23610 0.9490 1.13275 -0.03140 0.76234 0.9530 4.25096
400 -0.00043 0.20765 0.9480 0.91630 -0.02458 0.64276 0.9580 3.24892
800 -0.00027 0.18282 0.9450 0.70245 -0.01504 0.49704 0.9550 2.38966

1000 -0.00019 0.16592 0.9550 0.66421 -0.00511 0.45924 0.9580 2.08619

θ 100 0.88197 2.34717 0.9610 9.92480 0.84490 1.69587 0.9520 7.14813
200 0.65401 1.90481 0.9520 7.38017 0.40583 1.08716 0.9480 4.51975
400 0.61498 1.35036 0.9490 5.00112 0.18632 0.74348 0.9450 3.01703
800 0.47330 0.96665 0.9460 3.40629 0.07429 0.49949 0.9520 2.02828

1000 0.38674 0.79037 0.9510 2.87423 0.05577 0.45991 0.9490 1.80380

a 100 0.00487 0.05577 0.9480 0.29526 -0.00084 0.13179 0.9370 0.59255
200 0.00189 0.04795 0.9490 0.21880 -0.00056 0.10147 0.9420 0.43481
400 0.00046 0.03968 0.9530 0.16529 -0.00019 0.08019 0.9450 0.31945
800 0.00037 0.03462 0.9610 0.12181 -0.00013 0.05631 0.9480 0.22884

1000 0.00016 0.02995 0.9530 0.11095 -0.00103 0.05113 0.9530 0.20353

b 100 0.89313 1.65094 0.9450 10.26548 0.77219 1.75168 0.9640 10.59793
200 0.88861 1.54050 0.9490 7.79171 0.48749 1.11044 0.9540 5.20265
400 0.60264 1.13678 0.9510 4.38831 0.29611 0.72701 0.9480 2.79117
800 0.42173 0.75993 0.9420 2.50884 0.13845 0.34273 0.9560 1.21017

1000 0.31041 0.56817 0.9480 1.84970 0.12892 0.30152 0.9510 1.03431

7. Applications

In this section, the KLP distribution is applied to real data sets in order to illus-
trate the usefulness and applicability of the model. We fit the density functions of the
Kumaraswamy Lindley-Poisson (KLP), Lindley-Poisson (LP) and Lindley (L) distri-
butions. For comparison purposes, we also fit the beta exponentiated Lindley (BEL)
distribution [22] which is also a 4 parameter model comparable to the KLP distribution.
The pdf of the BEL distribution is given by

fBEL(x; β, θ, a, b) =
β2θ

B(a, b)(β + 1)
(1 + x)e−βx

×
[
1−

(
1 +

βx

β + 1

)
e−βx

]θa−1
×

{
1−

[
1−

(
1 +

βx

β + 1

)
e−βx

]θ}b−1

for x > 0, β > 0, θ > 0, a > 0, b > 0. Estimates of the parameters of the distributions,
standard errors (in parentheses), Akaike Information Criterion (AIC = 2p− 2 log(L̂)),

Consistent Akaike Information Criterion (AICC = AIC + 2p(p+1)
n−p−1 ), Bayesian Infor-

mation Criterion (BIC = p log(n) − 2 log(L̂)), where L̂ = L(∆̂) is the value of the
likelihood function evaluated at the parameter estimates, n is the number of observa-
tions, and p is the number of estimated parameters are obtained.

The first data set consists of 119 observations on fracture toughness of Alumina
(Al2O3)(in the units of MPa m1/2). This data was studied by Nadarajah and Kotz
[19]. The data is available at and taken from the following web-site:
http://www.ceramics.nist.gov/.srd/summary/ftmain.htm.
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The second data set gives failure times of a sample of n = 101 aluminum specimens
of type 6061-T6 obtained by Birnbaum and Saunders [4]. These specimens were cut
parallel to the direction of rolling and oscillating at 18 cycles per seconds and they were
exposed to a pressure with maximum stress of 31,000 pounds per square inch (psi).
The specimens were tested until failure.

The third data set that is fitted to the KLP distribution consists of breaking stress
of carbon fibers which was analyzed by Bader and Priest [2]. The data represent the
tensile strength, measured in GPa, of 69 carbon fibers tested under tension at gauge
lengths of 20 mm.

The fourth data set set consists of 63 observations of the strengths of 1.5 cm glass
fibres, originally obtained by workers at the UK National Physical Laboratory. The
data was also studied by Smith and Naylor [31].

Table 7.1 displays results obtained from analyzing the Silicone Nitride data studied
by Nadarajah and Kotz [19]. Estimates of the parameters of KLP distribution (s-
tandard error in parentheses), Akaike Information Criterion (AIC), Consistent Akaike
Information Criterion (AICC), Bayesian Information Criterion (BIC), Kolmogorov-
Smirnov (K-S) statistic and its p-value are given in the Table 7.1. Plots of the fitted
densities and histogram, and observed probability versus predicted probability for the
Silicone Nitride data are given in Figures 7.1 and 7.2, respectively. For the probability

plot, we plotted FKLP (x(j); β̂, θ̂, â, b̂) against
j − 0.375

n+ 0.25
, j = 1, 2, · · · , n, where x(j) are

the ordered values of the observed data. The measures of closeness are given by the
sum of squares

SS =
n∑
j=1

[
FKLP (x(j))−

(
j − 0.375

n+ 0.25

)]2
.

Table 7.1. Estimates of Models for Silicone Nitride Data

Estimates Statistics
Model β θ a b −2 logL AIC AICC BIC SS K-S p-value

KLP(β, θ, a, b) 0.3310 4.3514 2.2709 108.36 336.9 344.9 345.3 356.0 0.0651 0.063963 0.7150
(0.2214) (5.9017) (2.2192) (339.92)

LP(β, θ, 1, 1) 1.1076 22.9292 1 1 368.3 372.3 372.4 377.8 0.5760 0.142930 0.01547
(0.0623) (4.7641)

L(β,−, 1, 1) 0.3967 - 1 1 534.8 536.8 536.8 539.6 4.9662 0.335270 4.812×10−12

(0.0263)
BEL(β, θ, a, b) 0.2120 6.0217 0.6111 431.95 337.0 345.0 345.4 356.2 0.0784 0.070035 0.6037

(0.1067) (4.6244) (0.4978) (49.4370)

The LR test statistics of the hypotheses H0 : LP against Ha : KLP, H0 : L against
Ha : KLP, and H0 : L against Ha :LP are 27.4 (p-value=1.12×10−6 < 0.001), 197.9 (p-
value=1.20×10−42 < 0.001) and 166.5 (p-value=4.30×10−38 < 0.001). We can therefore
conclude that there is a significant difference between KLP and LP distributions, KLP
and L distributions as well as between LP and L distributions. The values of the
statistics AIC, AICC and BIC are very close for the KLP and the BEL distributions.
However, the KLP distribution has the smallest K-S statistic and the largest p-value
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indicating that KLP distribution provides a better fit among the four models when
fitting the Silicone Nitride data. The KLP yields the smallest value for Sum of Squares
(SS) among all the models.

Table 7.2. Estimates of Models for Aluminum Specimens Data

Estimates Statistics
Model β θ a b −2 logL AIC AICC BIC SS K-S p-value

KLP(β, θ, a, b) 0.0313 6.1948 3.9159 4.3329 904.4 912.4 912.8 922.8 0.0413 0.061896 0.8382
(0.0062) (23.8570) (14.5997) (2.4939)

LP(β, θ, 1, 1) 0.0532 96.3691 1 1 914.7 918.7 918.8 923.9 0.1759 0.100170 0.2682
(0.0033) (32.6069)

L(β,−, 1, 1) 0.0148 - 1 1 1106.3 1108.3 1108.3 1110.9 4.8973 0.400330 2.398×10−14

(0.0011)
BEL(β, θ, a, b) 0.0318 31.6377 0.6532 4.2752 904.9 912.9 912.3 923.3 0.0465 0.067242 0.7565

(0.0068) (98.0430) (2.2797) (6.0065)

Table 7.2 gives the estimates of the model parameters and the statistics AIC, AICC,
BIC, K-S statistic and its p-value for the Aluminum specimen data. The LR test
statistics of the hypothesesH0 : LP againstHa : KLP,H0 : L againstHa : KLP, andH0 :
L against Ha :LP are 10.3 (p-value=5.8×10−3 < 0.01), 201.9 (p-value=1.64×10−43 <
0.001) and 191.6 (p-value=1.42×10−43 < 0.001). We can therefore conclude that there
is a significant difference between KLP and LP distributions, KLP and L distributions
as well as between LP and L distributions. The values of the statistics AIC, AICC
and BIC are very close for the KLP and the BEL distributions. However, the KLP
distribution has the smallest K-S statistic and the largest p-value indicating that KLP
distribution provides a better fit among the four models when fitting the Aluminum
Specimens Data. The KLP yields the smallest value for Sum of Squares (SS) among
all the models. Plots of the fitted densities and histogram, observed probability versus
predicted probability for the Aluminum specimen data are given in Figures 7.3 and
7.4. The plot of the fitted pdf support the conclusion based on Table 6.2. The figures
suggest that both KLP and BEL distributions captures the middle part of the data,
as well as the tails better than the fitted sub-models.

Table 7.3 shows the results obtained from analyzing the carbon fibers data of Bader
and Priest [2].

Table 7.3. Estimates of Models for Carbon Fibers Data

Estimates Statistics
Model β θ a b −2 logL AIC AICC BIC SS K-S p-value

KLP(β, θ, a, b) 0.7230 0.0348 8.3910 24.7633 97.7 105.7 106.3 114.7 0.0136 0.038759 0.9999
(6.2713) (37.1709) (33.3868) (429.21)

LP(β, θ, 1, 1) 2.3266 67.1553 1 1 107.8 111.8 112.0 116.3 0.1332 0.088736 0.6489
(0.1808) (24.3584)

L(β,−, 1, 1) 0.6545 - 1 1 238.4 240.4 240.4 242.6 3.4678 0.401130 4.547×10−10

(0.05803)
BEL(β, θ, a, b) 1.3696 48.7520 0.3328 7.2260 97.9 105.9 106.5 114.8 0.0161 0.041807 0.9997

(0.4863) (99.3139) (0.5132) (2.0853)
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The LR test statistic of the hypothesis H0 : LP against Ha : KLP, H0 : L a-
gainst Ha : KLP, and H0 : L against Ha :LP are 10.1 (p-value=6.4×10−3, 140.7 (p-
value=2.67×10−30 < 0.001) and 130.6 (p-value=3.03×10−30 < 0.001). We can therefore
conclude that there is a significant difference between KLP and LP distributions, KLP
and L distributions as well as between LP and L distributions. The values of the
statistics AIC, AICC and BIC are very close for the KLP and the BEL distributions.
However, the KLP distribution has the smallest K-S statistic and the largest p-value
indicatiing that KLP distribution provides a better fit among the four models when
fitting the Carbon Fiber data. The KLP yields the smallest value for Sum of Squares
(SS) among all the models.

Plots of the fitted densities and histogram, observed probability versus predicted
probability for the Carbon Fiber data are given in Figures 7.5 and 7.6, respectively.
The plot of the fitted pdf support the conclusion based on Table 7.4. The figures
suggest that both KLP and BEL distributions capture the middle part of the data, as
well as the tails better than the fitted sub-models.

Table 7.4. Estimates of Models for Glass Fibers Data

Estimates Statistics
Model β θ a b −2 logL AIC AICC BIC SS K-S p-value

KLP(β, θ, a, b) 0.7334 11.8621 1.2658 2083.13 28.2 36.2 36.9 44.7 0.1529 0.13306 0.2146
(0.3463) (22.4170) (2.3915) (9883.45)

LP(β, θ, 1, 1) 3.0456 29.3432 1 1 59.3 63.3 63.5 67.6 0.7157 0.21887 0.004783
(0.2338) (8.3871)

L(β,−, 1, 1) 0.9961 - 1 1 162.6 164.6 164.6 166.7 3.3017 0.38642 1.349×10−8

(0.0948)
BEL(β, θ, a, b) 0.4705 8.0340 0.5670 8989.04 29.2 37.2 37.8 45.7 0.1951 0.14755 0.1287

(0.1995) (4.2325) (0.3193) (124.49)

Plots of the fitted densities and histogram and probability plots for the glass fibres
data from Smith and Naylor [31] are given in Figures 7.7 and 7.8 respectively. The
LR test statistic for the test of the hypotheses H0 : LP against Ha : KLP, H0 : L
against Ha : KLP, and H0 : L against Ha :LP are 31.1 (p-value=1.765×10−7, 134.4 (p-
value=6.092×10−29 < 0.0001) and 103.3 (p-value=2.88×10−24 < 0.0001), respectively.
We can therefore conclude that there is a significant difference between KLP and LP
distributions, KLP and L distributions as well as between LP and L distributions.

The values of AIC, AICC and BIC shows that the KLP distribution is a better
model and the SS value is comparatively smaller than the corresponding values for
the LP and L distributions. The values of these statistics (AIC, AICC, BIC) for
the KLP distribution are very competitive when compared to those of the non-nested
BEL distribution. However, the KLP distribution has the smallest K-S statistic and
the largest p-value indicating that KLP distribution provides a better fit among the
four models when fitting the Glass Fiber data. The plot of the fitted pdf support
the conclusion based on Table 7.4. The figures suggest that both KLP and BEL
distributions captures the middle part of the data, as well as the tails better than the
fitted sub-models.
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Figure 7.1. Histogram and Fitted Density for Silicone Nitride Data
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Figure 7.2. Probability Plots for Silicone Nitride Data
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Figure 7.3. Histogram and Fitted Density for Aluminum Specimens Data
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Figure 7.4. Probability Plots for Aluminum Specimens Data
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Figure 7.5. Histogram and Fitted Density for Carbon Fibers Data
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Figure 7.6. Probability Plots for Carbon Fibers Data
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Figure 7.7. Histogram and Fitted Density for Glass Fibers Data



28 PARARAI, OLUYEDE AND WARAHENA-LIYANAGE

Figure 7.8. Probability Plots for Glass Fibers Data

8. Concluding Remarks

We have proposed and presented a new class of lifetime distributions called the Ku-
maraswamy Lindley-Poisson distribution. This class of distributions has applications
in lifetime data analysis. The KLP distribution has the LP, exponentiated Lindley
Poisson and Lindley distributions as special cases. The density of the new distribution
can be expressed as a linear combination of Lindley Poisson distributions. The KLP
distribution has a hazard function that displays flexible behavior. Moments, mean de-
viations, distribution of order statistics and Rényi entropy were derived. The method
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of maximum likelihood was used to estimate the model parameters. Finally, KLP dis-
tribution is fitted to real data sets in order to illustrate the applicability and usefulness
of the distribution.
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