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A NEW CLASS OF GENERALIZED POWER LINDLEY DISTRIBUTION
WITH APPLICATION TO LIFETIME DATA

BRODERICK O. OLUYEDE, TIANTIAN YANG AND BOIKANYO MAKUBATE

Abstract. In this paper, a new class of generalized distribution called the Kumaraswamy

Power Lindley (KPL) distribution is proposed and studied. This class of distributions con-

tains the Kumaraswamy Lindley (KL), exponentiated power Lindley (EPL), power Lindley

(PL), generalized or exponentiated Lindley (GL), and Lindley (L) distributions as special

cases. Series expansion of the density is obtained. Statistical properties of this class of

distributions, including hazard function, reverse hazard function, monotonicity property,

shapes, moments, reliability, quantile function, mean deviations, Bonferroni and Lorenz

curves, entropy and Fisher information are derived. Method of maximum likelihood is used

to estimate the parameters of this new class of distributions. Finally, a real data example

is discussed to illustrate the applicability of this class of distribution.

1. Introduction

Lindley [11] used a mixture of exponential and length-biased exponential distributions to

illustrate the difference between fiducial and posterior distributions. This mixture is called

the Lindley (L) distribution. Ghitany et al. [7] studied the statistical properties of the

Lindley distribution. Sankaran [14] obtained and studied the Poisson-Lindley distribution.

Jones [9] explored the background and genesis of the Kumaraswamy (Kum) distribution

(Kumaraswamy [10]) and, more importantly, made clear some similarities and differences

between the beta and Kum distributions. Among the advantages are: simple normalizing

constant; the distribution and quantile functions have simple explicit formula which do not

involve special functions; explicit formula for moments of order statistics and L-moments.

However, compared to Kum distribution, the beta distribution has the following advantages:

simpler formula for moments and moment generating function (mgf); a one-parameter sub-

family of symmetric distributions; simpler moment estimation and more ways of generating

the distribution via physical processes. Gupta and Kundu [8] provided a review and recent

developments on the exponentiated exponential distribution. Cordeiro et al. [4] studied the

Kumaraswamy Weibull (KW) distribution and applied it to failure time data.

Motivated by the advantages of the generalized or exponentiated Lindley distribution with

respect to having a hazard function that exhibits increasing, decreasing and bathtub shapes,

Key words and phrases. Generalized Distribution; Lindley Distribution; Kumaraswamy Distribution;

Power Lindley Distribution.
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as well as the versatility and flexibility of the Kum distribution in modeling lifetime data,

we propose and study a new class of distributions that inherit these very important and

desirable properties, and also contains several sub-models with quite a number of shapes.

In this article, we propose a new distribution, called Kumaraswamy Power Lindley (KPL)

distribution. We discuss some structural properties of this distribution, derive the Fisher

information matrix and estimate the parameters via the method of maximum likelihood. In

section 2, we present some generalized Lindley distributions including the power Lindley dis-

tribution, Kum distribution, Kum-G distribution, and the corresponding probability density

functions (pdf). Section 3 contains results on the generalized and KPL distributions, includ-

ing the hazard and reverse hazard functions, monotonicity property, and the sub-models. In

section 4, we present the moment of the KPL distribution. Reliability and quantile func-

tion are given in sections 5 and 6, respectively. Mean deviations are presented in section

7. Section 8 contains results on Bonferroni and Lorenz curves. Measures of uncertainty,

Fisher information and distribution of order statistics are presented in section 9. Maximum

likelihood estimates of the model parameters and asymptotic confidence intervals are given

in section 10. Section 11 contains an application of the proposed model to real data, followed

by concluding remarks in section 12.

2. Some Generalized Lindley Distributions

In this section, some recent generalizations of the Lindley distribution are given. The

Kumaraswamy-G distribution is also presented. A useful series representation is given below.

For |ω| < 1 and b > 0 a real non-integer, we have the series representation

(1− ω)b−1 =
∞∑
j=0

(−1)j
(
b− 1

j

)
ωj.

The one parameter cdf of the Lindley distribution [11] is given by

(1) GL(x;λ) = 1− 1 + λ+ λx

1 + λ
e−λx, for x > 0, and λ > 0.

The corresponding Lindley pdf is given by

(2) gL(x;λ) =
λ2(1 + x)

1 + λ
e−λx, for x > 0, and λ > 0.

Lindley distribution is a mixture of exponential and gamma distributions, that is f(x;λ) =

(1 − p)fG(x;λ) + pfE(x;λ) with p = λ
1+λ

, where fG(x;λ) ≡ GAM(2, λ), and fE(x;λ) ≡
EXP (λ). Now, let Y1 and Y2 be two independently gamma distributed random variables

with parameters (α, λ) and (α + 1, λ), respectively. For γ > 0, let X = Y1 with probability
λ

λ+γ
and X = Y2 with probability γ

λ+γ
, then the pdf of X (see Zakerzadeh and Dolati [16])

is given by

fGL(x;α, λ, γ) =
λ2(λx)α−1(α + γx)e−λx

(λ+ γ)Γ(α + 1)
,
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for x > 0, λ > 0, α > 0, γ > 0. Note that when α = γ = 1, we obtain the Lindley pdf given

in equation (2). When γ = 0 we have the gamma pdf with parameters α and λ. If α = 1

and γ = 0 the resulting pdf is the exponential pdf with parameter λ.

2.1. Generalized Lindley Distributions. Nadarajah et al. [12] studied the mathematical

and statistical properties of the generalized Lindley (GL) distribution. The cumulative

distribution function (cdf) of the GL distribution is given by

(3) GGL(x;α, λ) =

[
1− 1 + λ+ λx

1 + λ
exp(−λx)

]α
,

and the corresponding GL probability density function (pdf) is given by

(4) gGL(x;α, λ) =
αλ2

1 + λ
(1 + x)

[
1− 1 + λ+ λx

1 + λ
exp(−λx)

]α−1
exp(−λx),

for x > 0, λ > 0, α > 0. This distribution is essentially the exponentiated Lindley dis-

tribution. Zakerzadeh and Dolati [16] presented and studied another generalization of the

Lindley distribution. These generalizations of the Lindley distribution are considered to be

useful life distributions and are suitable for modeling data with different types of hazard rate

functions: increasing, decreasing, bathtub and unimodal. These models constitute flexible

family of distributions in terms of the varieties of shapes and hazard functions.

2.2. Power Lindley Distribution. Ghitany et al. [6] presented results on a two-parameter

Lindley distribution and referred to model as the power Lindley distribution. Considering

the power transformation X = T 1/α, the cdf and pdf of the power Lindley (PL) distribution

are given by

(5) GPL(x;α, λ) = 1− 1 + λ+ λxα

1 + λ
e−λx

α

,

and

(6) gPL(x;α, λ) =
αλ2

1 + λ
(1 + xα)xα−1e−λx

α

,

for x > 0, α > 0, λ > 0, respectively.

2.3. Kumaraswamy-Generalized Distribution. Kumaraswamy [10] in his paper pro-

posed a two-parameter distribution (Kum distribution) defined in (0, 1). Its cdf and pdf are

given by:

F (x; a, b) = 1− (1− xa)b , and f(x; a, b) = abxa−1(1− xa)b−1,

respectively, for x ∈ (0, 1), a > 0, b > 0. The parameters a and b are the shape parameters.

Let G(x), be an arbitrary baseline cdf in the interval (0, 1). The Kum-G cdf F (x; a, b) and

pdf f(x; a, b) are defined by

(7) F (x; a, b) = 1− (1− [G(x)]a)b,
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and

(8) f(x; a, b) = abg(x)[G(x)]a−1(1− [G(x)]a)b−1 for a > 0, b > 0,

respectively, where g(x) = dG(x)
dx

is the pdf corresponding to the baseline cdf G(x).

3. Kumaraswamy Power Lindley Distribution

Now, with the choice of G(x) in the Kumaraswamy generalized distribution as the power

Lindley distribution, we obtain the Kumaraswamy Power Lindley (KPL) distribution. The

four-parameter KPL cdf and pdf are given by

(9) FKPL(x;α, λ, a, b) = 1−
{

1−
[
1− 1 + λ+ λxα

1 + λ
exp(−λxα)

]a}b
,

and

fKPL(x;α, λ, a, b) = ab[GPL(x)]a−1[1− [GPL(x)]a]b−1gPL(x)(10)

=
abαλ2

1 + λ
(1 + xα)xα−1 exp(−λxα)

×
[
1− 1 + λ+ λxα

1 + λ
exp(−λxα)

]a−1
×

{
1−

[
1− 1 + λ+ λxα

1 + λ
exp(−λxα)

]a}b−1
,(11)

for x > 0, α > 0, λ > 0, a > 0, b > 0, respectively. Figure 1 illustrates some possible shapes

of the pdf of the KPL distribution.

3.1. Expansion of Density. In this section, the series expansion of the KPL pdf is pre-

sented. When b > 0 is real non-integer, we use the series representation

[1− [GPL(x)]a]b−1 =
∞∑
i=0

(−1)i
(
b− 1

i

)
[GPL(x)]ai,

where GPL(x;λ) = 1 − 1+λ+λxα

1+λ
e−λx

α
. If a is an integer, from the above expansion and

equation (10), we can write the KPL density as

fKPL(x;α, λ, a, b) = abgPL(x)
∞∑
i=0

(−1)i
(
b− 1

i

)
[GPL(x)]a(1+i)−1(12)
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Figure 1. Plots of the pdf of KPL distribution for selected values of the parameters

= ab
αλ2

1 + λ
(1 + xα)xα−1 exp(−λxα)

×
∞∑
i=0

(−1)i
(
b− 1

i

)[
1− 1 + λ+ λxα

1 + λ
exp(−λxα)

]a(1+i)−1
=

αλ2

1 + λ
(1 + xα)xα−1 exp(−λxα)

×
∞∑
i=0

di

[
1− 1 + λ+ λxα

1 + λ
exp(−λxα)

]a(1+i)−1
,(13)

where the coefficients di are

di = di(a, b) = (−1)iab

(
b− 1

i

)
,

and
∑∞

i=0 di = 1, for x > 0, α > 0, λ > 0, a > 0, b > 0.

If a is real non-integer, we can expand [GPL(x)]a(1+i)−1 as follows

[GPL(x)]a(1+i)−1 = {1− [1−GPL(x)]}a(1+i)−1

=
∞∑
j=0

(−1)j
(
a(1 + i)− 1

j

)
[1−GPL(x)]j,

with

[1−GPL(x)]j =

j∑
r=0

(−1)r
(
j

r

)
[GPL(x)]r,
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so that

[GPL(x)]a(1+i)−1 =
∞∑
j=0

j∑
r=0

(−1)j+r
(
a(1 + i)− 1

j

)(
j

r

)
[GPL(x)]r.(14)

From equations (12) and (14), the KPL density can be rearranged in the form

fKPL(x;α, λ, a, b) = gPL(x)
∞∑

i,j=0

j∑
r=0

di,j,r[GPL(x)]r(15)

=
αλ2

1 + λ
(1 + xα)xα−1 exp(−λxα)

∞∑
i,j=0

j∑
r=0

di,j,r

×
[
1− 1 + λ+ λxα

1 + λ
exp(−λxα)

]r
,(16)

where the coefficient di,j,r is

di,j,r = di,j,r(a, b) = (−1)i+j+rab

(
a(1 + i)− 1

j

)(
b− 1

i

)(
j

r

)
,

and
∑∞

i,j=0

∑j
r=0 di,j,r = 1, for x > 0, α > 0, λ > 0, a > 0, b > 0. Hence, for any real

non-integer a, the KPL density is given by three (two infinite and one finite) weighted power

series sums of the baseline cdf GPL(x). By changing
∑∞

j=0

∑j
r=0 to

∑∞
r=0

∑∞
j=r in equation

(16), we obtain

fKPL(x;α, λ, a, b) = gPL(x)
∞∑

i,r=0

ci[GPL(x)]r

=
αλ2

1 + λ
(1 + xα)xα−1 exp(−λxα)

×
∞∑

i,r=0

ci

[
1− 1 + λ+ λxα

1 + λ
exp(−λxα)

]r
,(17)

where the coefficient ci is

ci = ci(a, b) = (−1)iab

(
b− 1

i

)
er(a(1 + i)− 1),

with

er = er(a(1 + i)− 1) =
∞∑
j=r

(−1)j+r
(
a(1 + i)− 1

j

)(
j

r

)
,

for x > 0, α > 0, λ > 0, a > 0, b > 0, respectively. Note that the KPL density is given

by three infinite weighted power series sums of the baseline distribution function GPL(x).

When b > 0 is an integer, the index i in the previous series representation stops at b− 1.
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3.2. Some Sub-models of KPL Distribution. In this section, we present the sub-models

of KPL distribution for selected values of the parameters α, a, and b.

(1) b = 1

If b = 1, this is the exponentiated power Lindley (EPL) distribution with cdf and

pdf given by

FEPL(x;α, λ, a) =

[
1− 1 + λ+ λxα

1 + λ
exp(−λxα)

]a
,

and

fEPL(x;α, λ, a) =
aαλ2

1 + λ
(1 + xα)xα−1 exp(−λxα)

×
[
1− 1 + λ+ λxα

1 + λ
exp(−λxα)

]a−1
,

for x > 0, α > 0, λ > 0, a > 0, respectively.

(2) a = 1

If a = 1, the KPL cdf and pdf reduce to:

FKPL(x;α, λ, b) = 1−
[

1 + λ+ λxα

1 + λ
exp(−λxα)

]b
,

and

fKPL(x;α, λ, b) =
bαλ2

1 + λ
(1 + xα)xα−1 exp(−λxα)

×
[

1 + λ+ λxα

1 + λ
exp(−λxα)

]b−1
,

for x > 0, α > 0, λ > 0, b > 0, respectively.

(3) a = b = 1

If a = b = 1, this is the power Lindley (PL) distribution given by equation (7).

(4) α = 1

If α = 1, this is the Kum Lindley (KL) distribution with cdf and pdf given by

FKL(x;λ, a, b) = 1−
{

1−
[
1− 1 + λ+ λx

1 + λ
exp(−λx)

]a}b
,

and

fKL(x;λ, a, b) =
abλ2

1 + λ
(1 + x) exp(−λx)

×
[
1− 1 + λ+ λx

1 + λ
exp(−λx)

]a−1
×

{
1−

[
1− 1 + λ+ λx

1 + λ
exp(−λx)

]a}b−1
,

for x > 0, λ > 0, a > 0, b > 0, respectively.
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(5) α = a = 1

If α = a = 1, then the KL cdf and pdf are given by

FKL(x;λ, b) = 1−
[

1 + λ+ λx

1 + λ
exp(−λx)

]b
,

and

fKL(x;λ, b) =
bλ2

1 + λ
(1 + x) exp(−λx)

[
1 + λ+ λx

1 + λ
exp(−λx)

]b−1
,

for x > 0, λ > 0, b > 0, respectively.

(6) α = b = 1

If α = b = 1, this is the generalized Lindley (GL) or exponentiated Lindley (EL)

distribution (Nadarajah et al. [12]) given by equation (1).

(7) α = a = b = 1

If α = a = b = 1, this is the Lindley (L) distribution (Lindley [11]). The Lindley cdf

and pdf are given by

FL(x;λ) = 1− 1 + λ+ λx

1 + λ
exp(−λx),

and

fL(x;λ) =
λ2

1 + λ
(1 + x) exp(−λx),

for x > 0, λ > 0, respectively.

(8) a = b = 1, α = 2

If a = b = 1, α = 2, then the KPL cdf and pdf reduce to:

FPL(x;λ) = 1− 1 + λ+ λx2

1 + λ
e−λx

2

,

and

fPL(x;λ) =
2λ2

1 + λ
(1 + x2)xe−λx

2

,

for x > 0, λ > 0, respectively.

(9) a = 1, α = 2

If a = 1, α = 2, then the KPL cdf and pdf reduces to:

FKPL(x;λ, b) = 1−
[

1 + λ+ λx2

1 + λ
exp(−λx2)

]b
,

and

fKPL(x;λ, b) =
2bλ2

1 + λ
(1 + x2)x exp(−λx2)

×
[

1 + λ+ λx2

1 + λ
exp(−λx2)

]b−1
,

for x > 0, λ > 0, b > 0, respectively.
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(10) b = 1, α = 2

If b = 1, α = 2, then the EPL cdf and pdf are given by

FEPL(x;λ, a) =

[
1− 1 + λ+ λx2

1 + λ
exp(−λx2)

]a
,

and

fEPL(x;λ, a) =
2aλ2

1 + λ
(1 + x2)x exp(−λx2)

×
[
1− 1 + λ+ λx2

1 + λ
exp(−λx2)

]a−1
,

for x > 0, λ > 0, a > 0, respectively.

3.3. Hazard and Reverse Hazard Functions. In this section, the hazard and reverse

hazard functions of the KPL distribution are presented. Graphs of these functions for selected

values of the parameters α, λ, a, and b are also presented. The hazard and reverse hazard

functions of the KPL distribution are given by

h
KPL

(x;α, λ, a, b) =
fKPL(x;α, λ, a, b)

F̄KPL(x;α, λ, a, b)

=
abαλ2

1 + λ
(1 + xα)xα−1 exp(−λxα)

×
[
1− 1 + λ+ λxα

1 + λ
exp(−λxα)

]a−1
×

{
1−

[
1− 1 + λ+ λxα

1 + λ
exp(−λxα)

]a}−1
,

and

τ
KPL

(x;α, λ, a, b) =
fKPL(x;α, λ, a, b)

FKPL(x;α, λ, a, b)

=
abαλ2

1 + λ
(1 + xα)xα−1 exp(−λxα)

×
[
1− 1 + λ+ λxα

1 + λ
exp(−λxα)

]a−1
×

{
1−

[
1− 1 + λ+ λxα

1 + λ
exp(−λxα)

]a}b−1
×

{
1−

{
1−

[
1− 1 + λ+ λxα

1 + λ
exp(−λxα)

]a}b}−1
,

for x > 0, α > 0, λ > 0, a > 0, b > 0, respectively. The graphs of hazard function of KPL

distribution are shown in Figure 2. These graphs show the variety of shapes for the KPL

hazard function including bathtub, upside down bathtub, deceasing, and increasing hazard
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rate functions. This attractive flexibility makes the KPL hazard rate function useful and de-

sirable for non-monotonic empirical hazard behaviors that are more likely to be encountered

in real life or practice.

Figure 2. Plots of the hazard function of KPL distribution for selected values

of the parameters

3.4. Monotonicity Property. In this section, we discuss the monotonicity properties of

the KPL distribution. Let

(18) W (x) = GPL(x;α, λ) = 1− 1 + λ+ λxα

1 + λ
exp(−λxα),

then from equation (11), we can rewrite KPL pdf as

fKPL(x;α, λ, a, b) =
abαλ2

1 + λ
(1 + xα)xα−1 exp(−λxα)

× [W (x)]a−1 {1− [W (x)]a}b−1 ,

for x > 0, α > 0, λ > 0, a > 0, b > 0. It follows that

log fKPL(x) = log

(
abαλ2

1 + λ

)
+ log (1 + xα) + (α− 1) log x− λxα

+ (a− 1) log W (x) + (b− 1) log [1− [W (x)]a],(19)
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and

d log fKPL(x)

dx
=

αxα−1

1 + xα
+
α− 1

x
− λαxα−1

+ (a− 1)
W ′(x)

W (x)
+ a(1− b) [W (x)]a−1W ′(x)

1− [W (x)]a

=
(1− λ)αxα−1 − λαx2α−1

1 + xα
+
α− 1

x

+ (a− 1)
W ′(x)

W (x)
+ a(1− b) [W (x)]a−1W ′(x)

1− [W (x)]a
,(20)

where W ′(x) = dW (x)
dx

= λ2α
1+λ

(1 + xα)xα−1 exp(−λxα).

Analysis: We know that x > 0, α > 0, λ > 0, a > 0, and b > 0, so that

W ′(x) =
dW (x)

dx
=

λ2α

1 + λ
(1 + xα)xα−1 exp(−λxα) > 0,∀x > 0.

If x→ 0,

W (x) = 1− 1 + λ+ λxα

1 + λ
exp(−λxα)→ 0.

If x→∞,

W (x) = 1− 1 + λ+ λxα

1 + λ
exp(−λxα)→ 1,

since

lim
x→∞

1 + λ+ λxα

(1 + λ) exp(λxα)
= lim

x→∞

λαxα−1

(1 + λ) exp(λxα)(λαxα−1)
= 0.

Thus, W (x) is monotonically increasing from 0 to 1. Now, since 0 < W (x) < 1, 0 <

[W (x)]a < 1,∀ a > 0, [W (x)]a−1 > 0,∀ a > 0, 0 < 1− [W (x)]a < 1,∀ a > 0, and W ′(x) > 0.

Then we have W ′(x)
W (x)

> 0, and [W (x)]a−1W ′(x)
1−[W (x)]a

> 0. Also, from x > 0, we have xα−1 > 0 and

x2α−1 > 0.

If λ > 1, α < 1, a < 1, and b > 1, we get d log fKPL(x)
dx

< 0, since (1−λ)αxα−1−λαx2α−1 < 0.

In this case, fKPL(x;α, λ, a, b) is monotonically decreasing for all x.

If λ ≤ 1, fKPL(x;α, λ, a, b) could attain a maximum, a minimum or a point of inflection

according to whether

d2 log fKPL(x)

dx2
< 0,

d2 log fKPL(x)

dx2
> 0, or

d2 log fKPL(x)

dx2
= 0,

respectively.
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3.5. Shape of Hazard Function. Note that if x → ∞, then 1+λ+λxα

1+λ
exp(−λxα) → 0.

Also, [
1− 1 + λ+ λxα

1 + λ
exp(−λxα)

]a−1
=

∞∑
i=0

(
a− 1

i

)

×
[
−1 + λ+ λxα

1 + λ
exp(−λxα)

]i
≈ 1− (a− 1)

1 + λ+ λxα

1 + λ
exp(−λxα).

Consequently,

fKPL(x;α, λ, a, b) ∼ abbαλb+1

(1 + λ)b
x(b+1)α−1 exp(−λbxα).(21)

If x→ 0, then

fKPL(x;α, λ, a, b) ∼ abαλ2a

(1 + λ)a
x(a+1)α−1.(22)

The cdf of KPL distribution is

FKPL(x;α, λ, a, b) = 1−
{

1−
[
1− 1 + λ+ λxα

1 + λ
exp(−λxα)

]a}b
,

for x > 0, α > 0, λ > 0, a > 0, b > 0.

If x→∞, then 1+λ+λxα

1+λ
exp(−λxα)→ 0. Also,[

1− 1 + λ+ λxα

1 + λ
exp(−λxα)

]a
=

∞∑
i=0

(
a

i

)[
−1 + λ+ λxα

1 + λ
exp(−λxα)

]i
≈ 1− a1 + λ+ λxα

1 + λ
exp(−λxα),

so that

FKPL(x;α, λ, a, b) ≈ 1−
[
a

1 + λ+ λxα

1 + λ
exp(−λxα)

]b
.

Also,

1− FKPL(x;α, λ, a, b) ≈
[
a

1 + λ+ λxα

1 + λ
exp(−λxα)

]b
=

ab

(1 + λ)b
(1 + λ+ λxα)b exp(−λbxα)

∼ abλb

(1 + λ)b
xbα exp(−λbxα).(23)

If x→ 0, then 1+λ+λxα

1+λ
exp(−λxα)→ 1, and 1− 1+λ+λxα

1+λ
exp(−λxα)→ 0, so that[

1− 1 + λ+ λxα

1 + λ
exp(−λxα)

]a
→ 0.
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Thus,

FKPL(x;α, λ, a, b) ≈ 1−
{

1− b
[
1− 1 + λ+ λxα

1 + λ
exp(−λxα)

]a}
= b

[
1− 1 + λ+ λxα

1 + λ
exp(−λxα)

]a
≈ b

[
1− 1 + λ+ λx

1 + λ
(1− λxα)

]a
= b

(
λ2xα + λ2x2α

1 + λ

)a
∼ bλ2a

(1 + λ)a
xaα.(24)

The hazard functions of KPL is given by

hKPL(x;α, λ, a, b) =
fKPL(x;α, λ, a, b)

F̄KPL(x;α, λ, a, b)
=

fKPL(x;α, λ, a, b)

1− FKPL(x;α, λ, a, b)
,(25)

for x > 0, α > 0, λ > 0, a > 0, b > 0. If x → ∞, with equations (21) and (23) in equation

(25), we get

hKPL(x;α, λ, a, b) ∼ abbαλb+1x(b+1)α−1 exp(−λbxα)/(1 + λ)b

abλbxbα exp(−λbxα)/(1 + λ)b

= bαλxα−1.

If x→ 0, with equations (22) and (24) in equation (25), we get

hKPL(x;α, λ, a, b) ∼ abαλ2ax(a+1)α−1/(1 + λ)a

1− bλ2axaα/(1 + λ)a

∼ abαλ2a

(1 + λ)a
x(a+1)α−1,

since bλ2a

(1+λ)a
xaα → 0, as x→ 0.

4. Moments of KPL Distribution

In this section, moments of the KPL distribution are presented. The following lemma is

proved by using the result given by Nadarajah et al. [12].

Lemma 1

Let

K(m,n, p, q) =

∫ ∞
0

xp(1 + x)

[
1− 1 + n+ nx

1 + n
exp(−nx)

]m−1
exp(−qx) dx.

1. If m is non-integer, we have

K(m,n, p, q) =
∞∑
l=0

l∑
k=0

k+1∑
w=0

(
m− 1

l

)(
l

k

)(
k + 1

w

)
(−1)lnkΓ(p+ w + 1)

(1 + n)l(nl + q)p+w+1
.
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2. If m is an integer, we have

K(m,n, p, q) =
m−1∑
l=0

l∑
k=0

k+1∑
w=0

(
m− 1

l

)(
l

k

)(
k + 1

w

)
(−1)lnkΓ(p+ w + 1)

(1 + n)l(nl + q)p+w+1
.

Proof. (1) If m is non-integer, then[
1− 1 + n+ nx

1 + n
exp(−nx)

]m−1
=

∞∑
l=0

(
m− 1

l

)
(−1)l

×
(

1 + n+ nx

1 + n
exp(−nx)

)l
,

and

K(m,n, p, q) =
∞∑
l=0

(
m− 1

l

)
(−1)l

(1 + n)l

×
∫ ∞
0

xp(1 + x)(1 + n+ nx)l exp[−(nl + q)x] dx.

Furthermore, l is an integer, so that

(1 + n+ nx)l =
l∑

k=0

(
l

k

)
(n+ nx)k =

l∑
k=0

(
l

k

)
nk(1 + x)k,

and

K(m,n, p, q) =
∞∑
l=0

(
m− 1

l

)
(−1)l

(1 + n)l

l∑
k=0

(
l

k

)
nk

×
∫ ∞
0

xp(1 + x)k+1 exp[−(nl + q)x] dx.

Now, k is an integer, so that

(1 + x)k+1 =
k+1∑
w=0

(
k + 1

w

)
xw,

and

K(m,n, p, q) =
∞∑
l=0

(
m− 1

l

)
(−1)l

(1 + n)l

l∑
k=0

(
l

k

)
nk

k+1∑
w=0

(
k + 1

w

)
×

∫ ∞
0

xp+w exp[−(nl + q)x] dx

=
∞∑
l=0

l∑
k=0

k+1∑
w=0

(
m− 1

l

)(
l

k

)(
k + 1

w

)
(−1)lnkΓ(p+ w + 1)

(1 + n)l(nl + q)p+w+1
.

(26)
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(2) If m is an integer, the index l in equation (26) stops at m− 1, so that

K(m,n, p, q) =
m−1∑
l=0

l∑
k=0

k+1∑
w=0

(
m− 1

l

)(
l

k

)(
k + 1

w

)
(−1)lnkΓ(p+ w + 1)

(1 + n)l(nl + q)p+w+1
.

�

The sth moment of the KPL distribution, say µ′s, is given by

µ′s =

∫ ∞
0

xsfKPL(x;α, λ, a, b) dx.

Let b > 0 and a > 0 be real non-integer, then from equation (16), we obtain

µ′s =
abαλ2

1 + λ

∞∑
i,j=0

j∑
r=0

(−1)i+j+r
(
a(1 + i)− 1

j

)(
b− 1

i

)(
j

r

)

×
∫ ∞
0

(1 + xα)xs+α−1 exp(−λxα)

[
1− 1 + λ+ λxα

1 + λ
exp(−λxα)

]r
dx

=
abλ2

1 + λ

∞∑
i,j=0

j∑
r=0

(−1)i+j+r
(
a(1 + i)− 1

j

)(
b− 1

i

)(
j

r

)

×
∫ ∞
0

(1 + xα)xs exp(−λxα)

[
1− 1 + λ+ λxα

1 + λ
exp(−λxα)

]r
dxα.(27)

Let y = xα, then equation (27) changes to

µ′s =
abλ2

1 + λ

∞∑
i,j=0

j∑
r=0

(−1)i+j+r
(
a(1 + i)− 1

j

)(
b− 1

i

)(
j

r

)

×
∫ ∞
0

(1 + y)y
s
α exp(−λy)

[
1− 1 + λ+ λy

1 + λ
exp(−λy)

]r
dy.

Applying Lemma 1, with m = r + 1, n = λ, p = s
α
, q = λ, we have

µ′s =
abλ2

1 + λ

∞∑
i,j=0

j∑
r=0

(−1)i+j+r
(
a(1 + i)− 1

j

)(
b− 1

i

)(
j

r

)
× K

(
r + 1, λ,

s

α
, λ
)
.(28)

As r is integer, then r + 1 is integer, then the sth moment of the KPL is given by

µ′s = ab

∞∑
i,j=0

j∑
r=0

r∑
l=0

l∑
k=0

k+1∑
w=0

(
a(1 + i)− 1

j

)(
b− 1

i

)(
j

r

)(
r

l

)(
l

k

)(
k + 1

w

)

×
(−1)i+j+r+lΓ( s

α
+ w + 1)

(1 + λ)l+1λ
s
α
+w−k−1(1 + l)

s
α
+w+1

.(29)

Note here that we have considered the case when b > 0 and a > 0 are non-integer, however

the other cases can be similarly derived.
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5. Reliability

In reliability and related areas, the stress-strength model describes the life of a component

with random strength X, that is subjected to a random stress Y. The component will fail at

the instant that the applied stress exceeds the strength, and the component will function sat-

isfactorily whenever X > Y. We derive R = P (X > Y ), a measure of component reliability,

when X and Y have independent KPL(α1, λ1, a1, b1) and KPL(α2, λ2, a2, b2) distributions,

respectively. Note from equations (9) and (11) that

R = P (X > Y )

=

∫ ∞
0

fX(x;α1, λ1, a1, b1)FY (x;α2, λ2, a2, b2) dx

=

∫ ∞
0

a1b1α1λ
2
1

1 + λ1
(1 + xα1)xα1−1 exp(−λ1xα1)

×
[
1− 1 + λ1 + λ1x

α1

1 + λ1
exp(−λ1xα1)

]a1−1
×

{
1−

[
1− 1 + λ1 + λ1x

α1

1 + λ1
exp(−λ1xα1)

]a1}b1−1
dx

−
∫ ∞
0

a1b1α1λ
2
1

1 + λ1
(1 + xα1)xα1−1 exp(−λ1xα1)

×
[
1− 1 + λ1 + λ1x

α1

1 + λ1
exp(−λ1xα1)

]a1−1
×

{
1−

[
1− 1 + λ1 + λ1x

α1

1 + λ1
exp(−λ1xα1)

]a1}b1−1
×

{
1−

[
1− 1 + λ2 + λ2x

α2

1 + λ2
exp(−λ2xα2)

]a2}b2
dx.(30)

Applying the series expansions[
1− 1 + λ1 + λ1x

α1

1 + λ1
exp(−λ1xα1)

]a1−1
=

∞∑
k=0

k∑
m=0

(
a1 − 1

k

)(
k

m

)
× (−1)kλm1 x

mα1 exp(−λ1kxα1)

(1 + λ1)m
,

(31)

{
1−

[
1− 1 + λ1 + λ1x

α1

1 + λ1
exp(−λ1xα1)

]a1}b1−1
=

∞∑
l,p=0

p∑
n=0

(
b1 − 1

l

)(
a1l

p

)(
p

n

)

× (−1)l+pλn1x
nα1 exp(−λ1pxα1)

(1 + λ1)n
,(32)
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1−

[
1− 1 + λ2 + λ2x

α2

1 + λ2
exp(−λ2xα2)

]a2}b2
=

∞∑
q,t=0

t∑
h=0

(
b2
q

)(
a2q

t

)(
t

h

)
(−1)q+tλh2x

hα2 exp(−λ2txα2)

(1 + λ2)h
,(33)

and substituting equations (31), (32), and (33) into equation (30), we get

R = a1b1α1

∞∑
k,l,p=0

k∑
m=0

p∑
n=0

(
a1 − 1

k

)(
k

m

)(
b1 − 1

l

)(
a1l

p

)(
p

n

)

× (−1)k+l+pλm+n+2
1

(1 + λ1)m+n+1

∫ ∞
0

(1 + xα1)x(m+n+1)α1−1 exp(−λ1(k + p+ 1)xα1) dx

− a1b1α1

∞∑
k,l,p,q,t=0

k∑
m=0

p∑
n=0

t∑
h=0

(
a1 − 1

k

)(
k

m

)(
b1 − 1

l

)(
a1l

p

)(
p

n

)(
b2
q

)

×
(
a2q

t

)(
t

h

)
(−1)k+l+p+q+tλm+n+2

1 λh2
(1 + λ1)m+n+1(1 + λ2)h

×
∫ ∞
0

(1 + xα1)x(m+n+1)α1+hα2−1 exp(−λ1(k + p+ 1)xα1 − λ2txα2) dx.(34)

Note that

∫ ∞
0

(1 + xα1)x(m+n+1)α1−1 exp(−λ1(k + p+ 1)xα1) dx

=
1

α1

∫ ∞
0

x(m+n)α1 exp(−λ1(k + p+ 1)xα1) dxα1

+
1

α1

∫ ∞
0

x(m+n+1)α1 exp(−λ1(k + p+ 1)xα1) dxα1

=
1

α1

∫ ∞
0

ym+n exp(−λ1(k + p+ 1)y) dy

+
1

α1

∫ ∞
0

ym+n+1 exp(−λ1(k + p+ 1)y) dy

=
Γ(m+ n+ 1)

α1[λ1(1 + k + p)]m+n+1
+

Γ(m+ n+ 2)

α1[λ1(1 + k + p)]m+n+2

=
(m+ n)!

α1[λ1(1 + k + p)]m+n+1

[
1 +

m+ n+ 1

λ1(1 + k + p)

]
,(35)
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where we let y = xα1 . Also, by using exp(−λ2txα2) =
∑∞

i=0
(−1)iλi2tixiα2

i!
, we get

∫ ∞
0

(1 + xα1)x(m+n+1)α1+hα2−1 exp(−λ1(k + p+ 1)xα1 − λ2txα2) dx

=

∫ ∞
0

x(m+n+1)α1+hα2−1 exp(−λ1(k + p+ 1)xα1 − λ2txα2) dx

+

∫ ∞
0

x(m+n+2)α1+hα2−1 exp(−λ1(k + p+ 1)xα1 − λ2txα2) dx

=
∞∑
i=0

(−1)iλi2t
i

i!

∫ ∞
0

x(m+n+1)α1+(h+i)α2−1 exp(−λ1(k + p+ 1)xα1) dx

+
∞∑
i=0

(−1)iλi2t
i

i!

∫ ∞
0

x(m+n+2)α1+(h+i)α2−1 exp(−λ1(k + p+ 1)xα1) dx

=
∞∑
i=0

(−1)iλi2t
i

i!α1

∫ ∞
0

x(m+n)α1+(h+i)α2 exp(−λ1(k + p+ 1)xα1) dxα1

+
∞∑
i=0

(−1)iλi2t
i

i!α1

∫ ∞
0

x(m+n+1)α1+(h+i)α2 exp(−λ1(k + p+ 1)xα1) dxα1

=
∞∑
i=0

(−1)iλi2t
i

i!α1

∫ ∞
0

y
m+n+(h+i)

α2
α1 exp(−λ1(k + p+ 1)y) dy

+
∞∑
i=0

(−1)iλi2t
i

i!α1

∫ ∞
0

y
m+n+1+(h+i)

α2
α1 exp(−λ1(k + p+ 1)y) dy

=
∞∑
i=0

(−1)iλi2t
i

i!α1

×

{
Γ(m+ n+ 1 + (h+ i)α2

α1
)

[λ1(1 + k + p)]
m+n+1+(h+i)

α2
α1

+
Γ(m+ n+ 2 + (h+ i)α2

α1
)

[λ1(1 + k + p)]
m+n+2+(h+i)

α2
α1

}
,(36)

where we let y = xα1 . Substituting equations (35) and (36) into equation (34) to get

R = a1b1

∞∑
k,l,p=0

k∑
m=0

p∑
n=0

(
a1 − 1

k

)(
k

m

)(
b1 − 1

l

)(
a1l

p

)(
p

n

)

× (−1)k+l+pλ1(m+ n)!

(1 + λ1)m+n+1(1 + k + p)m+n+1

[
1 +

m+ n+ 1

λ1(1 + k + p)

]
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− a1b1

∞∑
k,l,p,q,t,i=0

k∑
m=0

p∑
n=0

t∑
h=0

(
a1 − 1

k

)(
k

m

)(
b1 − 1

l

)(
a1l

p

)(
p

n

)(
b2
q

)

×
(
a2q

t

)(
t

h

)
(−1)k+l+p+q+t+iλ

1−(h+i)α2
α1

1 λh+i2 ti

(1 + λ1)m+n+1(1 + λ2)h(1 + k + p)
m+n+1+(h+i)

α2
α1 i!

×
{

Γ

(
m+ n+ 1 + (h+ i)

α2

α1

)
+

Γ(m+ n+ 2 + (h+ i)α2

α1
)

1 + k + p

}
.

6. Quantile Function

The quantile function, say Q(p), is defined by F (Q(p)) = p. Now, from the cdf of the KPL

distribution, we have

FKPL(Q(p)) = 1−
{

1−
[
1− 1 + λ+ λ[Q(p)]α

1 + λ
exp(−λ[Q(p)]α)

]a}b
= p,

and we can obtain Q(p) as the root of the following equation

(37) −1 + λ+ λ[Q(p)]α

1 + λ
exp(−λ[Q(p)]α) =

[
1− (1− p)

1
b

] 1
a − 1,

for 0 < p < 1. Substituting Z(p) = −(1 + λ+ λ[Q(p)]α), we can rewrite equation (37) as

Z(p)

1 + λ
exp(1 + λ+ Z(p)) =

[
1− (1− p)

1
b

] 1
a − 1,

so that

Z(p) exp(Z(p)) = (1 + λ) exp(−1− λ)

{[
1− (1− p)

1
b

] 1
a − 1

}
,

for 0 < p < 1.As the defining equation for Lambert W functionW (x) is x = W (x) exp(W (x)),

we get

Z(p) = W

(
(1 + λ) exp(−1− λ)

{[
1− (1− p)

1
b

] 1
a − 1

})
,

for 0 < p < 1. Then, we obtain

Q(p) =

−1− λ−W
(

(1 + λ) exp(−1− λ)

{[
1− (1− p) 1

b

] 1
a − 1

})
λ


1
α

,

for 0 < p < 1.
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7. Mean Deviations

The mean deviation about the mean and the mean deviation about the median are defined

by

δ1(X) =

∫ ∞
0

|x− µ|f(x) dx, and δ2(X) =

∫ ∞
0

|x−M |f(x) dx,

respectively, where µ = E(X), and M = Median(X) denotes the median. The measures

δ1(X) and δ2(X) can be calculated as follows:

δ1(X) = 2µF (µ)− 2µ+ 2

∫ ∞
µ

xf(x) dx,(38)

and

δ2(X) = −µ+ 2

∫ ∞
M

xf(x) dx,(39)

respectively. By using the moments for KPL distribution and the results in Lemma 2

(Nadarajah et al. [12]), we can calculate equations (38) and (39). Note that

K(m,n, p, q) =

∫ ∞
0

xp(1 + x)

[
1− 1 + n+ nx

1 + n
exp(−nx)

]m−1
exp(−qx) dx,

and

L(m,n, p, q, t) =

∫ ∞
t

xp(1 + x)

[
1− 1 + n+ nx

1 + n
exp(−nx)

]m−1
exp(−qx) dx.

We consider the case when b is real non-integer and a is non-integer. From equation (28)

and Lemma 2 (Nadarajah et al. [12]), we know that

µ =
abλ2

1 + λ

∞∑
i,j=0

j∑
r=0

(−1)i+j+r
(
a(1 + i)− 1

j

)(
b− 1

i

)(
j

r

)

× K

(
r + 1, λ,

1

α
, λ

)
,(40)

∫ ∞
µ

xf(x) dx =
abλ2

1 + λ

∞∑
i,j=0

j∑
r=0

(−1)i+j+r
(
a(1 + i)− 1

j

)(
b− 1

i

)(
j

r

)

× L

(
r + 1, λ,

1

α
, λ, µ

)
,(41)

and ∫ ∞
M

xf(x) dx =
abλ2

1 + λ

∞∑
i,j=0

j∑
r=0

(−1)i+j+r
(
a(1 + i)− 1

j

)(
b− 1

i

)(
j

r

)

× L

(
r + 1, λ,

1

α
, λ,M

)
,
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so that

δ1(X) = 2µF (µ)− 2µ+
2abλ2

1 + λ

∞∑
i,j=0

j∑
r=0

(−1)i+j+r
(
a(1 + i)− 1

j

)(
b− 1

i

)(
j

r

)

× L

(
r + 1, λ,

1

α
, λ, µ

)
,

and

δ2(X) = −µ+
2abλ2

1 + λ

∞∑
i,j=0

j∑
r=0

(−1)i+j+r
(
a(1 + i)− 1

j

)(
b− 1

i

)(
j

r

)

× L

(
r + 1, λ,

1

α
, λ,M

)
.

Note here that we have considered the case when a and b are non-integer, however the

other cases can be similarly derived.

8. Bonferroni and Lorenz Curves

Bonferroni and Lorenz curves are defined by

B(p) =
1

pµ

∫ q

0

xf(x) dx, and L(p) =
1

µ

∫ q

0

xf(x) dx,

respectively, where µ = E(X), and q = F−1(p). Now, we obtain Bonferroni and Lorenz

curves for KPL distribution as follows: If b is real non-integer and a is non-integer, then

from equations (40) and (41), we have

∫ ∞
q

xf(x) dx =
abλ2

1 + λ

∞∑
i,j=0

j∑
r=0

(−1)i+j+r
(
a(1 + i)− 1

j

)(
b− 1

i

)(
j

r

)

× L

(
r + 1, λ,

1

α
, λ, q

)
,

so that Bonferroni and Lorenz curves are

B(p) =
1

pµ

[∫ ∞
0

xf(x) dx−
∫ ∞
q

xf(x) dx

]

=
1

p
− abλ2

pµ(1 + λ)

∞∑
i,j=0

j∑
r=0

(−1)i+j+r
(
a(1 + i)− 1

j

)(
b− 1

i

)(
j

r

)

× L

(
r + 1, λ,

1

α
, λ, q

)
,
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and

L(p) = 1− abλ2

µ(1 + λ)

∞∑
i,j=0

j∑
r=0

(−1)i+j+r
(
a(1 + i)− 1

j

)(
b− 1

i

)(
j

r

)

× L

(
r + 1, λ,

1

α
, λ, q

)
,

respectively.

Note here that we have considered the case when a and b are non-integer, however the

other cases can be similarly derived.

9. Order Statistics, Measures of Uncertainty, and Information

In this section, the distribution of the kth order statistic, measures of uncertainty, and

information for the KPL distribution are presented. The concept of entropy plays a vital role

in information theory. The entropy of a random variable is defined in terms of its probability

distribution and can be shown to be a good measure of randomness or uncertainty.

9.1. Distribution of Order Statistics. Suppose that X1, · · · , Xn is a random sample of

size n from a continuous pdf, f(x). Let X1:n < X2:n < · · · < Xn:n denote the corresponding

order statistics. If X1, · · · , Xn is a random sample from KPL distribution, it follows from

the equations (9) and (11) that the pdf of the kth order statistic, say Yk = Xk:n, is given by

fk(yk) =
n!

(k − 1)!(n− k)!

n−k∑
l=0

(
n− k
l

)
(−1)l[FKPL(yk)]

k−1+lfKPL(yk)

=
abαλ2n!(1 + yαk )yα−1k exp(−λyαk )

(1 + λ)(k − 1)!(n− k)!

n−k∑
l=0

k−1+l∑
p=0

∞∑
q,i,j=0

j∑
r=0

×
(
n− k
l

)(
k − 1 + l

p

)(
bp

q

)(
a(1 + i)− 1

j

)(
b− 1

i

)(
j

r

)
× (−1)l+p+q+i+j+r[W (yk)]

aq+r,

where W (yk) = GPL(yk;α, λ) = 1− 1+λ+λyαk
1+λ

exp(−λyαk ). The corresponding cdf of Yk is

Fk(yk) =
n∑
j=k

n−j∑
l=0

j+l∑
p=0

∞∑
q=0

(
n

j

)(
n− j
l

)(
j + l

p

)(
bp

q

)
(−1)l+p+q[W (yk)]

aq.



A NEW CLASS OF GENERALIZED POWER LINDLEY DISTRIBUTION 23

The sth moment of the kth order statistic Yk from KPL distribution is obtained as follows:

If b is real non-integer and a is non-integer, then

E(Y s
k ) =

∫ ∞
0

yskfk(yk;α, λ, a, b) dyk

=
abαλ2n!(−1)l+p+q+i+j+r

(1 + λ)(k − 1)!(n− k)!

n−k∑
l=0

k−1+l∑
p=0

∞∑
q,i,j=0

j∑
r=0

(
n− k
l

)(
k − 1 + l

p

)

×
(
bp

q

)(
a(1 + i)− 1

j

)(
b− 1

i

)(
j

r

)
×

∫ ∞
0

(1 + yαk )ys+α−1k exp(−λyαk )[W (yk)]
aq+r dyk

=
abαλ2n!(−1)l+p+q+i+j+r

(1 + λ)(k − 1)!(n− k)!

n−k∑
l=0

k−1+l∑
p=0

∞∑
q,i,j=0

j∑
r=0

(
n− k
l

)(
k − 1 + l

p

)

×
(
bp

q

)(
a(1 + i)− 1

j

)(
b− 1

i

)(
j

r

)
× 1

α

∫ ∞
0

(1 + yαk )ysk exp(−λyαk )

[
1− 1 + λ+ λyαk

1 + λ
exp(−λyαk )

]aq+r
dyαk

=
abλ2n!(−1)l+p+q+i+j+r

(1 + λ)(k − 1)!(n− k)!

n−k∑
l=0

k−1+l∑
p=0

∞∑
q,i,j=0

j∑
r=0

(
n− k
l

)(
k − 1 + l

p

)

×
(
bp

q

)(
a(1 + i)− 1

j

)(
b− 1

i

)(
j

r

)
×

∫ ∞
0

(1 + t)t
s
α exp(−λt)

[
1− 1 + λ+ λt

1 + λ
exp(−λt)

]aq+r
dt

=
abλ2n!(−1)l+p+q+i+j+r

(1 + λ)(k − 1)!(n− k)!

n−k∑
l=0

k−1+l∑
p=0

∞∑
q,i,j=0

j∑
r=0

(
n− k
l

)(
k − 1 + l

p

)

×
(
bp

q

)(
a(1 + i)− 1

j

)(
b− 1

i

)(
j

r

)
× K

(
aq + r + 1, λ,

s

α
, λ
)
,

where we let t = yαk .

Note here that we have considered the case when a and b are non-integer, however the

other cases can be similarly derived.

9.2. Renyi Entropy. Renyi entropy [13] is an extension of Shannon entropy. Renyi entropy

is defined to be Hγ(fKPL(x)) = Hγ(fKPL(x;α, λ, a, b)) =
log(

∫∞
0 fγKPL(x;α,λ,a,b) dx)

1−γ , where γ > 0,
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and γ 6= 1. Renyi entropy tends to Shannon entropy as γ → 1. Now,∫ ∞
0

fγKPL(x) dx =

(
abαλ2

1 + λ

)γ
×

∫ ∞
0

(1 + xα)γxγ(α−1) exp(−λγxα)

× [W (x)]aγ−γ[1− [W (x)]a]bγ−γ dx.

(42)

Note that

[W (x)]aγ−γ =

[
1− 1 + λ+ λxα

1 + λ
exp(−λxα)

]aγ−γ
=

∞∑
k=0

(−1)k
(
aγ − γ
k

)∑k
j=0

(
k
j

)
λj(1 + xα)j

(1 + λ)k
exp(−λkxα),(43)

and

[1− [W (x)]a]bγ−γ =
∞∑
m=0

(−1)m
(
bγ − γ
m

) ∞∑
n=0

(−1)n
(
am

n

)

×
∑n

t=0

(
n
t

)
λt(1 + xα)t

(1 + λ)n
exp(−λnxα).(44)

Substituting equations (43) and (44) into equation (42), we get∫ ∞
0

fγKPL(x) dx =

(
abαλ2

1 + λ

)γ ∞∑
k,m,n=0

k∑
j=0

n∑
t=0

×
(
aγ − γ
k

)(
k

j

)(
bγ − γ
m

)(
am

n

)(
n

t

)
(−1)k+m+nλj+t

(1 + λ)k+n

×
∫ ∞
0

(1 + xα)γ+j+txγ(α−1) exp(−λ(γ + k + n)xα) dx.

(45)

By using (1 + xα)γ+j+t =
∑∞

i=0

(
γ+j+t
i

)
xiα in equation (45), we get∫ ∞

0

(1 + xα)γ+j+txγ(α−1) exp(−λ(γ + k + n)xα) dx

=
1

α

∞∑
i=0

(
γ + j + t

i

)∫ ∞
0

x(i+γ−1)α−γ+1 exp(−λ(γ + k + n)xα) dxα

=
1

α

∞∑
i=0

(
γ + j + t

i

)∫ ∞
0

yi+γ−1+
1−γ
α exp(−λ(γ + k + n)y) dy

=
1

α

∞∑
i=0

(
γ + j + t

i

)
Γ(i+ γ + 1−γ

α
)

[λ(γ + k + n)]i+γ+
1−γ
α

,
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where we let y = xα. Now, equation (45) simplifies to

∫ ∞
0

fγKPL(x) dx = (ab)γαγ−1
∞∑

k,m,n,i=0

k∑
j=0

n∑
t=0

(
aγ − γ
k

)(
k

j

)

×
(
bγ − γ
m

)(
am

n

)(
n

t

)(
γ + j + t

i

)
×

(−1)k+m+nΓ(i+ γ + 1−γ
α

)

(1 + λ)γ+k+nλi−γ−j−t+
1−γ
α (γ + k + n)i+γ+

1−γ
α

.(46)

Consequently, Renyi entropy for KPL distribution reduces to :

Hγ(fKPL(x)) =
1

1− γ
log((ab)γαγ−1)

+
1

1− γ
log

{ ∞∑
k,m,n,i=0

k∑
j=0

n∑
t=0

(
aγ − γ
k

)(
k

j

)

×
(
bγ − γ
m

)(
am

n

)(
n

t

)(
γ + j + t

i

)
×

(−1)k+m+nΓ(i+ γ + 1−γ
α

)

(1 + λ)γ+k+nλi−γ−j−t+
1−γ
α (γ + k + n)i+γ+

1−γ
α

}
,

for γ > 0, and γ 6= 1.

Note here that we have considered the case when a and b are non-integer, however the

other cases can be similarly derived.

9.3. s-Entropy. The s-entropy for KPL distribution is defined by

Hs(fKPL(x;α, λ, a, b)) =

 1
s−1 [1−

∫∞
0
f sKPL(x;α, λ, a, b) dx] if s 6= 1, s > 0,

E[− log f(X)] if s = 1.

Consequently, if s 6= 1, s > 0, then from equation (46), we have

Hs(fKPL(x;α, λ, a, b)) =
1

s− 1
− (ab)sαs−1

s− 1

∞∑
k,m,n,i=0

k∑
j=0

n∑
t=0

(
as− s
k

)(
k

j

)

×
(
bs− s
m

)(
am

n

)(
n

t

)(
s+ j + t

i

)
×

(−1)k+m+nΓ(i+ s+ 1−s
α

)

(1 + λ)s+k+nλi−s−j−t+
1−s
α (s+ k + n)i+s+

1−s
α

.

If s = 1, then s-entropy is Shannon entropy.
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9.4. Fisher Information Matrix. This section presents a measure for the amount of in-

formation. This information measure can be used to obtain bounds on the variance of

estimators, and as well as approximate the sampling distribution of an estimator obtained

from a large sample. Furthermore, it can used to obtain an approximate confidence interval

in case of large sample.

LetX be a random variable (rv) with the KPL pdf fKPL(.; Θ), where Θ = (θ1, θ2, θ3, θ4)
T =

(α, λ, a, b)T . Then Fisher information matrix (FIM) is the 4× 4 symmetric matrix with ele-

ments:

Iij(Θ) = EΘ

[
∂ log(fKPL(X; Θ))

∂θi

∂ log(fKPL(X; Θ))

∂θj

]
.

If the density fKPL(.; Θ) has second derivative for all i and j, then an alternative expression

for Iij(Θ) is

(47) Iij(Θ) = −EΘ

[
∂2 log(fKPL(X; Θ))

∂θi∂θj

]
.

For the KPL distribution, all second derivatives exist, therefore the formula above is appro-

priate and, most importantly significantly simplifies the computations. The elements of the

observed information matrix of the KPL distribution are given in Appendix A.

10. Maximum Likelihood Estimators

In this section, the maximum likelihood estimates (MLEs) of the parameters α, λ, a,

and b of the KPL distribution are presented. If x1, · · · , xn is a random sample from KPL

distribution, then the log-likelihood function is given by

log(L(α, λ, a, b)) = n log

(
abαλ2

1 + λ

)
+

n∑
i=1

log(1 + xαi ) + (α− 1)
n∑
i=1

log xi

− λ
n∑
i=1

xαi + (a− 1)
n∑
i=1

log(W (xi))

+ (b− 1)
n∑
i=1

log[1− [W (xi)]
a],(48)

where W (xi) = 1− 1+λ+λxαi
1+λ

exp(−λxαi ).

The partial derivatives of logL(α, λ, a, b) with respect to the parameters α, λ, a, and b

are:

∂ logL(α, λ, a, b)

∂a
=

n

a
+

n∑
i=1

log(W (xi)) + (1− b)
n∑
i=1

[W (xi)]
a log(W (xi))

1− [W (xi)]a
,

∂ logL(α, λ, a, b)

∂b
=

n

b
+

n∑
i=1

log[1− [W (xi)]
a],
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∂ logL(α, λ, a, b)

∂α
=

n

α
+

n∑
i=1

xαi log xi
1 + xαi

+
n∑
i=1

log xi − λ
n∑
i=1

xαi log xi

+ (a− 1)
n∑
i=1

∂W (xi)/∂α

W (xi)

+ a(1− b)
n∑
i=1

[W (xi)]
a−1(∂W (xi)/∂α)

1− [W (xi)]a
,

and

∂ logL(α, λ, a, b)

∂λ
=

n(2 + λ)

λ(1 + λ)
−

n∑
i=1

xαi + (a− 1)
n∑
i=1

∂W (xi)/∂λ

W (xi)

+ a(1− b)
n∑
i=1

[W (xi)]
a−1(∂W (xi)/∂λ)

1− [W (xi)]a
,

where
∂W (xi)

∂α
=
λ2(1 + xαi )xαi log xi exp(−λxαi )

1 + λ
,

and

∂W (xi)

∂λ
=

[
1 + λ+ λxαi

1 + λ
− 1

(1 + λ)2

]
xαi exp(−λxαi ).

When all the parameters are unknown, numerical methods must be used to obtain es-

timates of the model parameters since the system does not admit any explicit solution,

therefore the MLE (α̂, λ̂, â, b̂) of (α, λ, a, b) can be obtained only by means of numerical pro-

cedures. The MLEs of the parameters, denoted by Θ̂ is obtained by solving the nonlinear e-

quation (∂ logL
∂α

, ∂ logL
∂λ

, ∂ logL
∂a

, ∂ logL
∂b

)T = 0, using a numerical method such as Newton-Raphson

procedure. The Fisher information matrix given by I(Θ) = [Iθi,θj ]4X4 = E(−∂2 logL
∂θi∂θj

),

i, j = 1, 2, 3, 4, can be numerically obtained by MATLAB or MAPLE software. The to-

tal Fisher information matrix In(Θ) = nI(Θ) can be approximated by

(49) Jn(Θ̂) ≈
[
− ∂2 logL

∂θi∂θj

∣∣∣∣
Θ=Θ̂

]
4X4

, i, j = 1, 2, 3, 4.

For real data, the matrix given in equation (49) is obtained after the convergence of the

Newton-Raphson procedure in MATLAB or R software.

10.1. Asymptotic Confidence Intervals. In this section, we present the asymptotic con-

fidence intervals for the parameters of the KPL distribution. The expectations in the FIM

can be obtained numerically. Let Θ̂ = (α̂, λ̂, â, b̂)T be the MLE of Θ = (α, λ, a, b)T . Under

the conditions that the parameters are in the interior of the parameter space, but not on the

boundary, the asymptotic distribution of
√
n(Θ̂−Θ) is N4(0, I

−1(Θ)).

The multivariate normal distribution with mean vector (0, 0, 0, 0)T and covariance matrix

I−1(Θ) can be used to construct confidence intervals for the model parameters. That is, the
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approximate 100(1− η)% two-sided confidence intervals for α, λ, a and b are given by:

α̂± Z η
2

√
I−1αα(Θ̂), λ̂± Z η

2

√
I−1λλ (Θ̂), â± Z η

2

√
I−1aa (Θ̂), and b̂± Z η

2

√
I−1bb (Θ̂),

respectively, where I−1αα(Θ̂), I−1λλ (Θ̂), I−1aa (Θ̂), and I−1bb (Θ̂) are the diagonal elements of I−1n (Θ̂) =

(nI(Θ̂))−1, and Z η
2

is the upper η
2
th percentile of a standard normal distribution.

11. Application

In this section, application of the KPL distribution including the estimation of the param-

eters via the method of maximum likelihood and likelihood ratio (LR) test for comparison of

the KPL distribution with its sub-models for given sets of data are presented. The examples

illustrate the flexibility of the KPL distribution in contrast to other models including the

Kumaraswamy Lindley (KL), power Lindley (PL), GL, L, Kumaraswamy Weibull (KW),

Weibull (W), and gamma (GAM) distributions for data modeling.

The MLEs of the KPL parameters α, λ, a, and b are computed by maximizing the ob-

jective function via the subroutine NLMIXED in SAS. The estimated values of the parame-

ters (standard error in parenthesis), -2log-likelihood statistic, Akaike Information Criterion,

AIC = 2p− 2 log(L), Bayesian Information Criterion, BIC = p log(n)− 2 log(L), and Con-

sistent Akaike Information Criterion, AICC = AIC + 2 p(p+1)
n−p−1 , where L = L(Θ̂) is the value

of the likelihood function evaluated at the parameter estimates, n is the number of obser-

vations, and p is the number of estimated parameters are presented in Table 3. The KPL

distribution is fitted to the data sets and these fits are compared to the fits using the KL,

PL, GL, L, W, and GAM distributions.

We can use the LR test to compare the fit of the KPL distribution with its sub-models for

a given data set. For example, to test a = b = 1, the LR statistic is ω = 2[ln(L(α̂, λ̂, â, b̂))−
ln(L(α̃, λ̃, 1, 1))], where α̂, λ̂, â, and b̂, are the unrestricted estimates, and α̃, and λ̃ are the

restricted estimates. The LR test rejects the null hypothesis if ω > χ2
d
, where χ2

d
denote the

upper 100d% point of the χ2 distribution with 2 degrees of freedom.

Specifically, we consider a maintainance data set. The set of data is the maintenance data

with 46 observations reported on active repair times (hours) for an airborne communication

transceiver discussed by Alven [1], Chhikara and Folks [3], and Dimitrakopoulou et al. [5].

The data set is given in Table 1. The MLEs of the parameters with standard errors in

parenthesis and the values of the statistics (-2ln(L), AIC, AICC and BIC) are given in Table

3. The starting points of the iterative processes for the data sets for the KPL(α, λ, a, b)

distribution are (1, 0.115, 0.026, 0.1).

Probability plots (Chambers et al [2]) consists of plots of the observed probabilities against

the probabilities predicted by the fitted model are also presented in Figures 3 and 4. For
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0.2 0.3 0.5 0.5 0.5 0.5 0.6 0.6 0.7 0.7 0.7

0.8 0.8 1.0 1.0 1.0 1.0 1.1 1.3 1.5 1.5 1.5

1.5 2.0 2.0 2.2 2.5 2.7 3.0 3.0 3.3 3.3 4.0

4.0 4.5 4.7 5.0 5.4 5.4 7.0 7.5 8.8 9.0 10.3

22.0 24.5 - - - - - - - - -

Table 1. Maintenance Data [1], [3], [5]

Data set Model α λ a b −2 ln(L) AIC AICC BIC SS

I (n=46) KPL(α, λ, a, b) 0.6679 4.4222 5.6016 0.1488 200.6 208.6 209.6 215.9 0.06484707

(0.05909) (0.8266) (2.7768) (0.02612)

KL(1, λ, a, b) 1 1.6091 1.0576 0.2029 212.7 218.7 219.2 224.2 0.4270972

(0.03375) (0.3385) (0.03180)

PL(α, λ, 1, 1) 0.7581 0.6757 1 1 210.0 214.0 214.3 217.7 0.1185674

(0.07424) (0.1016)

GL(1, λ, a, 1) 1 0.3677 0.6643 1 215.7 219.7 220.0 223.4 0.2635925

(0.06442) (0.1352)

L(1, λ, 1, 1) 1 0.4664 1 1 220.0 222.0 222.1 223.8 0.5676042

(0.04990)

W (α, λ, 1, 1) 0.8986 0.2949 1 1 208.9 212.9 213.2 216.6 0.1156807

(0.09576) (0.05138)

GAM(α, λ) 0.9323 0.2585 - - 209.9 213.9 214.1 217.5 0.1716121

(0.1701) (0.06150)

Table 2. Parameters Estimates, Log-likelihood, AIC, AICC, BIC, and SS

the KPL distribution, we plotted for example,

(50) FKPL(yk; α̂, λ̂, â, b̂) = 1−

1−

[
1− 1 + λ̂+ λ̂yα̂k

1 + λ̂
exp(−λ̂yα̂k )

]â
b̂

,

against k−0.375
n+0.25

, k = 1, 2, · · · , n, where yk are the ordered values of the observed data. A

measure of closeness of the plot to the diagonal line given by the sum of squares

SS =
n∑
k=1

[
FKPL(yk; α̂, λ̂, â, b̂)−

(
k − 0.375

n+ 0.25

)]2
,

was calculated for each plot. The plot with the smallest SS corresponds to the model with

points that are closer to the diagonal line. The KPL model performs very well in this regard.

For the maintenance data, the LR statistics for the test of the hypothesesH0 :KL(1, λ, a, b)

againstHa :KPL(α, λ, a, b), H0 : PL(α, λ, 1, 1) againstHa :KPL(α, λ, a, b), H0 :GL(1, λ, a, 1)

against Ha : KPL(α, λ, a, b), and H0 : L(1, λ, 1, 1) against Ha : KPL(α, λ, a, b) are 12.1

(p− value = 5.04× 10−4 < 0.001), 9.4 (p− value = 9.095× 10−3 < 0.01), 15.1 (p− value =

5.2611 × 10−4 < 0.001), and 19.4 (p − value = 2.2597 × 10−4 < 0.001), respectively. Con-

sequently, we reject the null hypothesis in favor of the KPL distribution and conclude that

the KPL distribution is significantly better than the KL, PL, GL, and L distributions based
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on the LR statistic. The KPL distribution is also better than the Weibull and Gamma dis-

tributions based on the values of the statistics AIC, AICC and BIC. The plots of the fitted

KPL distribution and sub-models are shown in Figure 3.

Figure 3. Fitted densities and probability plots of KPL distribution and

sub-models for maintenance data

Based on the values of these statistics, we conclude that the KPL distribution provides

a better fit than the KL, PL, GL, L, and GAM distributions. For the maintenance data,

KPL distribution is far better than its sub-models, and a pretty good competitor to the KW

distribution. The KPL model can provide better fits than other common multi parameter

lifetime models.

12. Concluding Remarks

A new class of generalized Lindley distribution referred to as Kumaraswamy power Lindley

(KPL) distribution with flexible and desirable properties is proposed. Properties of the

KPL distribution and sub-distributions were presented. The pdf, cdf, moments, hazard

function, reverse hazard function, reliability, quantile function, mean deviations, Bonferroni

and Lorenz curves were presented. Entropy measures including Renyi entropy, s- entropy

as well as Fisher information matrix for KPL distribution were also derived. Estimate of

the model parameters via the method of maximum likelihood obtained and application to

illustrate the usefulness of the model to real data given.
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Appendix Appendix A FIM for KPL distribution

Let ` = L(α, λ, a, b), and W (x) = GPL(x;α, λ) = 1− 1+λ+λxα

1+λ
exp(−λxα). Elements of the

observed information matrix of the KPL distribution are given by

∂2`

∂a2
= − n

a2
+ (1− b)

n∑
i=1

[W (xi)]
a[log(W (xi))]

2

[1− [W (xi)]a]2
,

∂2`

∂a∂b
= −

n∑
i=1

[W (xi)]
a log(W (xi))

1− [W (xi)]a
,

∂2`

∂a∂α
=

n∑
i=1

λ2(1 + xαi )xαi log xi exp(−λxαi )

(1 + λ)W (xi)

+ (1− b)
n∑
i=1

λ2(1 + xαi )xαi log xi exp(−λxαi )

(1 + λ)[1− [W (xi)]a]2

× [W (xi)]
a−1[a logW (xi) + 1− [W (xi)]

a],

∂2`

∂a∂λ
=

n∑
i=1

xαi exp(−λxαi )

W (xi)

[
1 + λ+ λxαi

1 + λ
− 1

(1 + λ)2

]

+ (1− b)
n∑
i=1

xαi exp(−λxαi )[W (xi)]
a−1[a logW (xi) + 1− [W (xi)]

a]

[1− [W (xi)]a]2

×
[

1 + λ+ λxαi
1 + λ

− 1

(1 + λ)2

]
,

∂2`

∂b2
= − n

b2
,

∂2`

∂b∂α
= −aλ2

n∑
i=1

(1 + xαi )xαi log xi exp(−λxαi )[W (xi)]
a−1

(1 + λ)[1− [W (xi)]a]
,

∂2`

∂b∂λ
= −a

n∑
i=1

xαi exp(−λxαi )[W (xi)]
a−1

1− [W (xi)]a

[
1 + λ+ λxαi

1 + λ
− 1

(1 + λ)2

]
,
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∂2`

∂α2
= − n

α2
+

n∑
i=1

xαi (log xi)
2

(1 + xαi )2
− λ

n∑
i=1

xαi (log xi)
2

+ (a− 1)
n∑
i=1

λ2xαi (log xi)
2 exp(−λxαi )

(1 + λ)[W (xi)]2

×
{

[1 + 2xαi − λ(1 + xαi )xαi ]W (xi)−
λ2(1 + xαi )2xαi exp(−λxαi )

1 + λ

}
+ a(1− b)

n∑
i=1

λ2xαi (log xi)
2 exp(−λxαi )[W (xi)]

a−2

(1 + λ)[1− [W (xi)]a]2

×
{

[1 + 2xαi − λ(1 + xαi )xαi ]W (xi)[1− [W (xi)]
a]

+
λ2(1 + xαi )2xαi exp(−λxαi )[a− 1 + [W (xi)]

a]

1 + λ

}
,

∂2`

∂α∂λ
= −

n∑
i=1

xαi log xi

+ (a− 1)
n∑
i=1

λ(1 + xαi )xαi log xi exp(−λxαi )

(1 + λ)W (xi)

[
2 + λ

1 + λ
− λxαi

]

− (a− 1)
n∑
i=1

λ2(1 + xαi )x2αi log xi exp(−2λxαi )

(1 + λ)[W (xi)]2

[
1 + λ+ λxαi

1 + λ
− 1

(1 + λ)2

]

+ a(1− b)
n∑
i=1

λ2(1 + xαi )x2αi log xi exp(−2λxαi )[W (xi)]
a−2

(1 + λ)[1− [W (xi)]a]2

×
[

1 + λ+ λxαi
1 + λ

− 1

(1 + λ)2

]
[a− 1 + [W (xi)]

a]

+ a(1− b)
n∑
i=1

λ(1 + xαi )xαi log xi exp(−λxαi )[W (xi)]
a−1[1− [W (xi)]

a]

(1 + λ)[1− [W (xi)]a]2

×
[

2 + λ

1 + λ
− λxαi

]
,
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and

∂2`

∂λ2
= −nλ

2 + 4λ+ 2

λ2(1 + λ)2

+ (a− 1)
n∑
i=1

xαi exp(−λxαi )

W (xi)

[
2xαi

(1 + λ)2
+

2

(1 + λ)3
− (1 + λ+ λxαi )xαi

1 + λ

]

− (a− 1)
n∑
i=1

x2αi exp(−2λxαi )

[W (xi)]2

[
1 + λ+ λxαi

1 + λ
− 1

(1 + λ)2

]2
+ a(1− b)

n∑
i=1

x2αi exp(−2λxαi )[W (xi)]
a−2

[1− [W (xi)]a]2

×
[

1 + λ+ λxαi
1 + λ

− 1

(1 + λ)2

]2
[a− 1 + [W (xi)]

a]

+ a(1− b)
n∑
i=1

xαi exp(−λxαi )[W (xi)]
a−1

1− [W (xi)]a

×
[

2xαi
(1 + λ)2

+
2

(1 + λ)3
− (1 + λ+ λxαi )xαi

1 + λ

]
.

Note here that we have considered the case when b > 0 and a > 0 are non-integer, however

the other cases can be similarly derived.
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