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Abstract

A new five parameter gamma-generalized modified Weibull (GGMW) distribution
which includes exponential, Rayleigh, Weibull, modified Weibull, gamma-modified Weibull,
gamma-modified Rayleigh, gamma-modified exponential, gamma-Weibull, gamma-Rayleigh,
gamma-linear failure rate and gamma-exponential distributions as special cases is pro-
posed and studied. Some mathematical properties of the new class of distributions in-
cluding hazard function, quantile function, moments, distribution of the order statistics
and Rényi entropy are presented. Maximum likelihood estimation technique is used to
estimate the model parameters and applications to real datasets in order to illustrate the
usefulness of the proposed class of models are presented.

Keywords: Gamma distribution, Modified Weibull distribution, Maximum likelihood estima-
tion.

1. Introduction

Weibull distribution has been widely used for modeling data in a wide variety of areas includ-
ing reliability, engineering, stochastic processes, survival analysis and renewal theory. In this
paper, we present and study the mathematical properties of the gamma-generalized modified
Weibull distribution. This class of distributions is flexible in accommodating all forms of
hazard rate functions and contains several well known and new sub-models such as Weibull,
Rayleigh, exponential, modified Weibull, gamma-modified Weibull, gamma-modified expo-
nential, gamma-Weibull, gamma-Rayleigh, gamma-linear failure rate, gamma-extreme value,
gamma-additive exponential and gamma-exponential distributions.

There are several extensions of the Weibull distribution and its sub-models including the expo-
nentiated Weibull (Mudholkar, Srivastava, and Kollia 1996), which is a special case of the beta
Weibull distribution proposed by (Lee, Famoye, and Olumolade 2007), generalized Rayleigh
(Kundu and Rakab 2005), exponentiated exponential (Gupta and Kundu 1999), (Gupta and
Kundu 2001), modified Weibull (Mudholkar, Srivastava, and Friemer 1995), exponentiated
modified Weibull (Sarhan and Zaindin 2009), and a host of other distributions, some of which
are presented in section 2 of this paper. Additional generalizations of Weibull distribution in-
clude (Famoye, Lee, and Olumolade 2005) where the authors discussed and presented results
on the beta-Weibull distribution. (Nadarajah 2005) presented results on the modified Weibull
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distribution. A host of researchers have also developed several parameter Weibull, modified
Weibull and flexible Weibull distributions over the years. The two parameter Weibull exten-
sions include (Bebbington, Lai, and Zitikis 2007), (Zhang and Xie 2011). The three parameter
Weibull extensions include (Marshall and Olkin 1997), (Xie, Tang, and Goh 2002), (Nadara-
jah and Kotz 2005). Some of these extensions enable the accommodation of bathtub shape
hazard rate function. (Carrasco, Ortega, and Cordeiro 2008) generalized the modified Weibull
distribution of (Lai, Moore, and Xie 1998) to obtain the exponentiated modified Weibull dis-
tribution. The four parameter generalizations include the additive Weibull distribution of
(Xie and Lai 1995), modified Weibull (Sarhan and Zaindin 2009), beta-Weibull proposed by
(Famoye et al. 2005) and Kumaraswamy Weibull by (Cordeiro, Ortega, and Nadarajah 2010).
The five parameter modified Weibull distribution include those introduced by (Phani 1987),
beta modified Weibull by (Silva, Ortega, and Cordeiro 2010) and (Nadarajah, Cordeiro, and
Ortega 2011). Additional results on the generalization of the Weibull distribution include work
by (Singha, Jain, and Kumar 2012), as well as (Almalki and Yuan 2013) where results on a
new modified Weibull distribution was presented. (Barlow and Campo 1975) discussed total
time on test processes with application to failure data analysis. (Choudhury 2005) presented
moments of the exponentiated Weibull distribution. The exponentiated Weibull distribution
was also studied by (Nassar and Eissa 2003). (Haupt and Schabe 1992) presented a model
for bathtub shaped failure rate function. (Hjorth 1980) studied a reliability function with
increasing, decreasing and bathtub shaped failure rate functions, and (Rajarshi and Rajarshi
1988) gave a comprehensive review of bathtub shaped distributions.

For any continuous baseline cdf F (x), and x ∈ R, (Zografos and Balakrishnan 2009) defined
the distribution (when ψ = 1 in equation (1)) with pdf g(x) and cdf G(x) (for δ > 0) as
follows:

g(x) =
1

Γ (δ)ψδ
[− log(F (x))]δ−1(1− F (x))1/ψ−1f(x), (1)

and

G(x) =
1

Γ (δ)ψδ

∫ − log(F (x))

0
tδ−1e−t/ψdt =

γ(δ,−ψ−1 log(F (x)))

Γ (δ)
, (2)

respectively, where g(x) = dG(x)/dx, Γ (δ) =
∫∞
0 tδ−1e−tdt is the gamma function, and

γ(z, δ) =
∫ z
0 t

δ−1e−tdt is the incomplete gamma function. The corresponding hazard rate
function (hrf) is

hG(x) =
[− log(1− F (x))]δ−1f(x)(1− F (x))1/ψ−1

ψδ(Γ (δ)− γ(−ψ−1 log(1− F (x)), δ))
. (3)

When ψ = 1, this distribution is referred to as the ZB-G family of distributions. Also, (when
ψ = 1), (Ristić and Balakrishnan 2011) proposed an alternative gamma-generator defined by
the cdf and pdf

G2(x) = 1− 1

Γ (δ)ψδ

∫ − logF (x)

0
tδ−1e−t/ψdt, x ∈ R, δ > 0, (4)

and

g2(x) =
1

Γ (δ)ψδ
[− log(F (x))]δ−1(F (x))1/ψ−1f(x), (5)

respectively. Note that if ψ = 1 and δ = n + 1, in equations (1) and (2), we obtain the cdf
and pdf of the upper record values U given by

GU (u) =
1

n!

∫ − log(1−F (u))

0
yne−ydy, (6)

and

gU (u) = f(u)[− log(1− F (u))]n/n!. (7)
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Similarly, from equations (4) and (5), the pdf of the lower record values T is given by

gL(t) = f(t)[− log(F (t))]n/n!. (8)

In this paper, we will consider and present a generalization of the generalized modified Weibull
distribution via the family of distributions given in equation (5). (Zografos and Balakrishnan
2009) motivated the ZB-G model as follows. Let X(1), X(2), ......, X(n) be upper record values
from a sequence of independent and identically distributed (i.i.d.) random variables from a
population with pdf f(x). Then, the pdf of the nth upper record value is given by equation
(1) when ψ = 1. A logarithmic transformation of the parent distribution F transforms the
random variable X with density (1) to a gamma distribution. That is, if X has the density
(1), then the random variable Y = − log[1−F (X)] has a gamma distribution GAM(δ; 1) with
density k(y; δ) = 1

Γ (δ)y
δ−1e−y, y > 0. The opposite is also true, if Y has a gamma GAM(δ; 1)

distribution, then the random variable X = G−1(1 − e−Y ) has a ZB-G distribution. In
addition to the motivations provided by (Zografos and Balakrishnan 2009), we are interested
in the generalization of the generalized modified Weibull distribution via the gamma-generator
and establishing the relationship between weighted distributions and equations (1) and (5),
respectively.

Weighted distributions applies to a variety of areas and provides an approach to dealing with
model specification and data interpretation problems. It adjusts the probabilities of actual
occurrence of events to arrive at a specification of the probabilities when those events are
recorded. (Fisher 1934) introduced the concept of weighted distribution, in order to study
the effect of ascertainment upon estimation of frequencies. (Patil and Rao 1978) used weighted
distribution as stochastic models in the study of harvesting and predation. (Rao 1965) unified
concept of weighted distribution and use it to identify various sampling situations. The use-
fulness and applications of weighted distribution to biased samples in various areas including
medicine, ecology, reliability, and branching processes can also be seen in (Nanda and Jain
1999), (Gupta and Keating 1985), (Oluyede 1999) and in references therein. Let Y be a
non-negative random variable with its natural pdf f(y; θ), where θ is a vector of parameters,
then the pdf of the weighted random variable Y w is given by:

fw(y; θ, β) =
w(y, β)f(y; θ)

ω
, (9)

where the weight function w(y, β) is a non-negative function, that may depend on the vector
of parameters β, and 0 < ω = E(w(Y, β)) <∞ is a normalizing constant. In general, consider
the weight function w(y) defined as follows:

w(y) = ykelyF i(y)F
j
(y). (10)

Setting k = 0; k = j = i = 0; l = i = j = 0; k = l = 0; i → i − 1; j = n − i; k = l = i = 0
and k = l = j = 0 in this weight function, one at a time, implies probability weighted
moments, moment-generating functions, moments, order statistics, proportional hazards and
proportional reversed hazards, respectively, where F (y) = P (Y ≤ y) and F (y) = 1−F (y). If
w(y) = y, then Y ∗ = Y w is called the size-biased version of Y .

(Ristić and Balakrishnan 2011) provided motivations for the family of distributions given in
equation (4) when ψ = 1, that is for n ∈ N, equation (4) is the pdf of the nth lower record value
of a sequence of i.i.d. variables from a population with density f(x). (Ristić and Balakrishnan
2011) used the exponentiated exponential (EE) distribution with cdf F (x) = (1 − e−βx)α,
where α > 0 and β > 0, to obtained and study the gamma-exponentiated exponential (GEE)
model. See references therein for additional results on the GEE model. In this note, we
obtain a natural extension of the generalized modified Weibull distribution, which we refer to
as gamma-generalized modified Weibull (GGMW) distribution.

In section 2, some basic results, the gamma-generalized modified Weibull (GGMW) distri-
bution, series expansion and its sub-models, quantile function, hazard and reverse hazard
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functions are presented. Moments and moment generating function are given in section 3.
Section 4 contains some additional useful results on the distribution of order statistics and
Rényi entropy. In section 5, results on the estimation of the parameters of the GGMW dis-
tribution via the method of maximum likelihood are presented. Applications are given in
section 6, and concluding remarks in section 7.

2. GGMW distribution, series expansion and sub-models

In this section, the GGMW distribution and some of its sub-models are presented. First
consider the generalized modified Weibull (GMW) distribution (Sarhan and Zaindin 2009)
given by

FGMW (x, α, β, θ, λ) = 1− exp(−αx− βxθeλx), x ≥ 0, α, β, θ, λ ≥ 0. (11)

We note that in (Sarhan and Zaindin 2009) paper, the parameter λ was taken to be zero. The
parameters α and β control the scale of the distribution, θ controls the shape, whereas λ can
be considered to be an accelerating factor in the imperfection time and a factor of fragility
in the survival of the individual as time increases. By inserting the GMW distribution in
equation (4), the survival function GGGMW (x) = 1−GGGMW (x) of the GGMW distribution
is obtained as follows:

GGGMW (x) =
1

Γ (δ)ψδ

∫ − log(1−e−αx−βxθeλx )

0
tδ−1e−t/ψdt

=
γ(−ψ−1 log(1− e−αx−βxθeλx), δ)

Γ (δ)
, (12)

where x > 0, α, β, θ, λ ≥ 0, δ > 0, ψ > 0, and γ(x, δ) =
∫ x
0 t

δ−1e−tdt is the lower incomplete
gamma function. The corresponding pdf is given by

gGGMW (x) =
1

Γ (δ)ψδ
[− log(1− e−αx−βxθeλx)]δ−1

× (α+ βxθ−1eλx[θ + λx])e−αx−βx
θeλx

× [1− e−αx−βxθeλx ](1/ψ)−1. (13)

If F (x) = [1−e−αxη−βxθeλx ]φ, then the corresponding generalized gamma-generalized modified
Weibull pdf is given by

gGGMW (x) =
φ

Γ (δ)ψδ
[− log(1− e−αxη−βxθeλx)φ]δ−1

× (αηxη−1 + βxθ−1eλx[θ + λx])e−αx
η−βxθeλx

× [1− e−αxη−βxθeλx ]φ+(1/ψ)−2. (14)

In this note, we take φ = η = ψ = 1. The pdf in equation (14) is now given by

gGGMW (x) =
1

Γ (δ)
[− log(1− e−αx−βxθeλx)]δ−1

× (α+ βxθ−1eλx[θ + λx])e−αx−βx
θeλx . (15)

If a random variable X has the GGMW density given in equation (15), we write X ∼
GGMW (α, β, θ, λ, δ). The parameter δ is an extra shape parameter in the GGMW distri-

bution. Let y = e−αx−βx
θeλx , 0 < y < 1, α, β, θ, δ > 0, and λ ≥ 0, then using the series

representation − log(1− y) =
∑∞

i=0
yi+1

i+1 , we have[
− log(1− y)

]δ−1
= yδ−1

[ ∞∑
m=0

(
δ − 1

m

)
ym
( ∞∑
s=0

ys

s+ 2

)m]
.
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Applying the result on power series raised to a positive integer, with as = (s+ 2)−1, that is,( ∞∑
s=0

asy
s

)m
=
∞∑
s=0

bs,my
s, (16)

where bs,m = (sa0)
−1∑s

l=1[m(l + 1) − s]albs−l,m, and b0,m = am0 , (Gradshteyn and Ryzhik
2000), the GGMW pdf can be written as

gGGMW (x) =
1

Γ (δ)

∞∑
m=0

∞∑
s=0

(
δ − 1

m

)
bs,my

m+s+δ(α+ βxθ−1eλx[θ + λx])

=
1

Γ (δ)

∞∑
m=0

∞∑
s=0

(
δ − 1

m

)
bs,me

−α(m+s+δ)x−β(m+s+δ)xθeλx

× m+ s+ δ

m+ s+ δ
(α+ βxθ−1eλx[θ + λx])

=
∞∑
m=0

∞∑
s=0

(
δ − 1

m

)
bs,m

Γ (δ)(m+ s+ δ)
g∗(x;α(m+ s+ δ), β(m+ s+ δ), θ, λ),

where g∗(x;α(m + s + δ), β(m + s + δ), θ, λ) is the generalized modified Weibull pdf with
parameters α(m + s + δ) > 0, β(m + s + δ) > 0, θ > 0, and λ ≥ 0. Let C = {(m, s) ∈ Z2

+},
then the weights in the GGMW pdf above are

wν =

(
δ − 1

m

)
bs,m

(m+ s+ δ)Γ (δ)
,

and

gGGMW (x) =
∑
ν∈C

wνg∗(x;α(m+ s+ δ), β(m+ s+ δ), θ, λ), (17)

for x > 0, δ > 0, α(m + s + δ), β(m + s + δ), θ > 0, and λ ≥ 0. It follows therefore that
the GGMW density is linear combination of the generalized modified Weibull (GMW) densi-
ties. The statistical and mathematical properties of the GGMW distribution can be readily
obtained from those of the generalized modified Weibull distribution.

For the convergence of equations (16) and (17), as well as elsewhere in this paper, note that
for δ > 0,

[− log(1− y)]δ−1 =

[
y

(
1 + y

∞∑
s=0

ys

s+ 2

)]δ−1
so that [

1 + y

∞∑
k=0

yk

k + 2

]δ−1
=

∞∑
k=0

(
δ − 1

k

)
yk
( ∞∑
s=0

ys

s+ 2

)k

is convergent if and only if 0 <

(
y
∑∞

k=0
yk

k+2

)k
< 1 ∀y ∈ (0, 1), since 0 < y = e−αx−βx

θeλx <

1, for x > 0, α, β, θ > 0, and λ ≥ 0. Now, y
∑∞

k=0
yk

k+2 = − log(1−y)
y − 1, so we must have

0 < − log(1−y)
y − 1 < 1. This leads to 1 − y > exp(−2y), and on the other hand exp(−y) =∑∞

k=0
(−1)kyk

k! > 1 − y. Thus, we have the system of inequalities 1 − y > exp(−2y) and
exp(−y) > 1−y, which is satisfied ∀y ∈ (0, 0.7968). The implication here is that the inequality

0 <

(
y
∑∞

k=0
yk

k+2

)k
< 1 is not valid for all values of 0 < y = e−αx−βx

θeλx < 1, and equations

(16) and (17), and elsewhere in this paper are convergent only ∀y ∈ (0, 0.7968). The series
in equations (16) and (17), and elsewhere in this paper are not valid for all values of 0 <
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Figure 1: Graphs of GGMW pdf

y = e−αx−βx
θeλx < 1, but are convergent ∀y ∈ (0, 0.7968), and not valid (convergent) for

y > 0.7986.

Note that in general, gGGMW (x) is a weighted pdf with the weight function

w(x) = [− log(1− F (x))]δ−1[1− F (x)]
1
ψ
−1
, (18)

that is,

gGGMW (x) =
[− log(1− F (x))]δ−1[1− F (x)]

1
ψ
−1

ψδΓ (δ)
f(x)

=
w(x)f(x)

EF (w(X))
, (19)

where 0 < EF {[− log(1−F (x))]δ−1[1−F (x)]
1
ψ
−1} = ψδΓ (δ) <∞, is the normalizing constant.

Graphs of the pdf of GGMW distribution are given in the Figure 1 for selected values of the
parameters. The plots show that the GGMW pdf can be decreasing or right skewed among
several other possible shapes as seen in Figure 1. The distribution has positive asymmetry.

2.1. Quantile function

The quantile function of the GGMW distribution is given by the solution of the nonlinear
equation

γ(− log[1− e−αx−βxθeλx ], δ)

Γ (δ)
= 1− u. (20)

That is, − log[1− e−αx−βxθeλx ] = γ−1((1− u)Γ (δ), δ) and

αx+ βxθeλx = − log(1− exp(−γ−1((1− u)Γ (δ), δ))). (21)

We can simulate from the GGMW by solving the nonlinear equation

αx+ βxθeλx + log(1− exp(−γ−1((1− u)Γ (δ), δ))) = 0, (22)

where u is a uniformly distributed random variable on the interval [0, 1]. The inverse in-
complete gamma function can be implemented by using numerical methods. Consequently,
random numbers can be generated based the equation above. Table 1 lists the quantile for
selected parameter values of the GGMW distribution.
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Table 1: GGMW quantile for selected values

(α, β, θ, λ, δ)
u (1,1,1,1,1) (2,1,2,1,1) (6,4,3,6,1) (5,3,3,5,6) (0.1,0.3,0.4,0.2,0.3)

0.1 0.05132855 0.0512954 0.01755608 0.00001875 1.20674200
0.2 0.1056817 0.1053998 0.03714788 0.00007372 2.59472200
0.3 0.1637671 0.1627524 0.05924798 0.00018145 3.82692100
0.4 0.226598 0.2240198 0.08447059 0.00037058 4.95229000
0.5 0.2957024 0.2902609 0.11359275 0.00069065 6.01905300
0.6 0.3735554 0.3632644 0.14752769 0.00123419 7.07161000
0.7 0.4646056 0.4463389 0.18721167 0.00219605 8.16167800
0.8 0.5783069 0.5466338 0.23367423 0.00407477 9.37370000
0.9 0.7424909 0.6853097 0.29044828 0.00874208 10.92629700

2.2. Some sub-models of the GGMW distribution

The proposed model has several new and well known sub-models. Some of the sub-models
of the GGMW distribution are listed in Table 2. They include the gamma-generalized modi-
fied Rayleigh (GGMR), gamma-generalized modified exponential (GGME), gamma-modified
Weibull (GMW), gamma-modified exponential (GME), gamma-additive exponential (GAE),
gamma-extreme value (GEV), gamma-Weibull (GW), modified Weibull (MW), Sardin and
Zaindin modified Weibull (S-ZMW), modified Rayleigh (MR), modified exponential (ME),
gamma-linear failure rate (GLFR), linear failure rate (LFR), extreme value (EV), Weibull
(W) and exponential (E) distributions.

2.3. Hazard and reverse hazard functions

In this section, we present the hazard and reverse hazard functions, as well as graphs of
the hazard function for selected values of the model parameters. Let X be a continuous
random variable with distribution function G, and probability density function (pdf) g, then
the hazard function, reverse hazard function and mean residual life functions are given by
hG(x) = g(x)/G(x), τG(x) = g(x)/G(x), and δG(x) =

∫∞
x G(u)du/G(x), respectively. The

functions λG(x), δG(x), and G(x) are equivalent. (Shaked and Shanthikumar 1994). The
hazard and reverse hazard functions are of the GGMW distribution are given by

hG(x) =
{− log(1− e−αx−βxθeλx)}δ−1e−αx−βxθeλx(α+ βxθ−1eλx[θ + λx])

γ(− log(1− e−αx−βxθeλx), δ)
, (23)

and

τG(x) =
{− log(1− e−αx−βxθeλx)}δ−1e−αx−βxθeλx(α+ βxθ−1eλx[θ + λx])

Γ (δ)− γ(− log(1− e−αx−βxθeλx), δ)
, (24)

respectively. Plots of the hazard rate function for different combinations of the parameter
values are given in Figure 2. The plot shows various shapes including monotonically increas-
ing, monotonically increasing and bathtub shapes for five combinations of the values of the
parameters. This flexibility makes the GGMW hazard rate function suitable for both mono-
tonic and non-monotonic empirical hazard behaviors that are likely to be encountered in real
life situations.

3. Moments and moment generating function

In this section, we obtain moments and moment generating function of the GGMW distribu-
tion. Let X ∼ GGMW (α, β, θ, λ, δ), and Y ∼ GMW (α, β, θ, λ). Note that the rth moment
of the random variable Y is obtained as follows. By Taylor series expansion of the functions
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Table 2: Sub-models of the gamma generalized modified Weibull distribution

Model α β θ λ δ G(x) Reference

GGMR - - 2 - - γ(− log[1−e−αx−βx2eλx ],δ)
Γ (δ) New

GGME - - 1 - - γ(− log[1−e−αx−βxeλx ],δ)
Γ (δ) New

GMW 0 - - - - γ(− log[1−e−βxθeλx ],δ)
Γ (δ) New

GME 0 - 1 - - γ(− log[1−e−βxeλx ],δ)
Γ (δ) New

GAE - - 1 0 - γ(− log[1−eαx−βx],δ)
Γ (δ) New

GEV 0 1 0 - - γ(− log[1−e−eλx ],δ)
Γ (δ) New

GW 0 - - 0 - γ(− log[1−e−βxθ ],δ)
Γ (δ) Pinho, Cordeiro, and Nobre (2012)

MW 0 - - - 1 1− e−βxθeλx Lai, Xie, and Murthy (2003)

S-ZMW - - - - 1 1− e−αx−βxθeλx Sarhan and Zaindin (2009)

LFR - - 2 0 1 1− e−αx−βx2 Bain (1974)

EV 0 1 0 - 1 1− e−eλx Bain (1974)

Weibull 0 - - 0 1 1− e−βxθ Weibull (1951)

Exponential - 0 0 0 1 1− e−αx Bain (1974)

Figure 2: Graphs of GGMW hazard function
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e−βx
θeλx and ekλx, we have:

E(Y r) =

∫ ∞
0

yrd(1− e−αy−βxθeλy)

=

∫ ∞
0

ryr−1e−αy−βy
θeλydy

=
∞∑

k,n=0

r(−β)n(nλ)k

k!n!

∫ ∞
0

ryr+nθ+k−1e−αydy

=

∞∑
k,n=0

r(−β)n(nλ)k

k!n!
α−(r+θn+k)Γ (r + θn+ k). (25)

Consequently, that the rth raw moment of GGMW distribution is given by:

µ′r = E(Xr) =
∑
ν∈C

wνE(Y r),

where Y ∼ GMW (α(m + s + δ), β(m + s + δ), θ, λ). Note that, since
∑∞

r=0
tr

r!x
rgGGMW (x)

converges and each term is integrable for all t close to zero, say (for |t| < 1), the moment
generating function (MGF) of the GGMW distribution is given by:

MX(t) =
∑
ν∈C

∞∑
j=0

wν
tj

j!
E(Y j)

=
∑
ν∈C

∞∑
k,n,j=0

wν
tjj(−β(k + s+ δ))n(nλ)k

k!n!j!(α(k + s+ δ))(j+θn+k)
Γ (j + θn+ k), (26)

where Γ (a) = ba
∫∞
0 ta−1e−tdt is the gamma function, and r = 1, 2, .......

Table 3 lists the first six moments for selected parameter values of GGMW distribution, where

V ariance = E(Y 2)− E(Y )2, Skewness = E(Y 3)−3E(Y )σ2−E(Y )3

σ3 , and Kurtosis = E(Y 4)
σ4 − 3.

Theorem 3.1.

E{[− log(1− F (X))]r[(1− F (X))s]} =
ψr+δΓ (r + δ)

(sψ + 1)δψδΓ (δ)
. (27)

Proof:

E{[− log(1− F (X))]r[(1− F (X))s]} =

∫ ∞
0

f(x)

ψδΓ (δ)
[− log(1− F (x))]r+δ−1

× [1− F (x)]s+(1/ψ)−1dx

=
ψr+δΓ (r + δ)

(sψ + 1)δψδΓ (δ)
. (28)

If s = 0 in equation (28), then we have

E[− log(1− F (X))r] =
ψr+δΓ (r + δ)

ψδΓ (δ)
. (29)

Let ψ∗ = s+ 1
ψ , then with r = 0 in equation (28), we obtain

E[(1− F (X))s] =

(
1

ψψ∗

)δ ∫ ∞
0

(ψ∗)δf(x)

Γ (δ)
[− log(1− F (x))]δ−1

× [1− F (x)]ψ
∗−1dx

= [sψ + 1]−δ. (30)
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Table 3: GGMW moments for selected values

(α, β, θ, λ, δ)
Moments (1,2,0.5,0.5,1) (1,2,0.5,1.5,2) (1,4,2,1,6) (1,1.5,2,1,2.5) (2,0.9,1,1,3)

E(Y ) 0.1798084 0.0360182 0.0130699 0.1442460 0.0502597
E(Y 2) 0.0883142 0.0050822 0.0007539 0.0394158 0.0071370
E(Y 3) 0.0649863 0.0011492 0.0000767 0.0142427 0.0016577
E(Y 4) 0.0608936 0.0003385 0.0000107 0.0060942 0.0005210
E(Y 5) 0.0674815 0.0001191 0.0000018 0.0029347 0.0002021
E(Y 6) 0.0848496 0.0000477 0.0000004 0.0015457 0.0000917

Variance 0.0559832 0.0037849 0.0005831 0.0186089 0.0046110
Skewness 2.1873821 2.9781690 3.6632310 1.2561066 2.6683440
Kurtosis 16.4292658 20.6287000 28.4321500 14.5986436 21.5064600

4. Order statistics and Rényi entropy

Order statistics play an important role in probability and statistics. The concept of entropy
plays a vital role in information theory. The entropy of a random variable is defined in
terms of its probability distribution and can be shown to be a good measure of randomness
or uncertainty. In this section, we present Rényi entropy and the distribution of the order
statistics for the GGMW distribution.

4.1. Rényi entropy

Rényi entropy is an extension of Shannon entropy. Rényi entropy is defined to be

IR(v) =
1

1− v
log

(∫ ∞
0

[gGGMW (x;α, β, θ, λ, δ)]vdx

)
, v 6= 1, v > 0. (31)

Rényi entropy tends to Shannon entropy as v → 1. Note that

∫ ∞
0

gv
GGMW

(x)dx =

(
1

Γ (δ)

)v ∫ ∞
0

((α+ βxθ−1eλx[θ + λx])e−αx−βx
θeλx)v

× [− log(1− e−αx−βxθeλx)]v(δ−1)dx. (32)

Let 0 < y = e−αx−βx
θeλx < 0.7968. Note that

((α+ βxθ−1eλx[θ + λx]))v =

v∑
j=0

(
v

j

)
αv−jβjxjθ−j

∞∑
n=0

(
j

r

)
(jλx)n

n!

j∑
r=0

θj−r(λx)r

=
v∑
j=0

j∑
r=0

∞∑
n=0

(
v

j

)(
j

r

)
αv−jβjθj−rλr

(jλ)n

n!
xn+r+jθ−j .

Now, for 0 < e−vβx
θeλx < 1, v > 0, and applying Taylor series expansion, we have

e−vβx
θeλx =

∞∑
l=0

∞∑
w=0

(−1)l(vβ)l(lλ)w

l!w!
xlθ+w, (33)
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so that,

gv(x) = [Γ (δ)]−v
v∑
j=0

j∑
r=0

∞∑
n,l,w,m,s=0

(−1)l
(
v

j

)(
j

r

)(
δ(v − 1)

m

)

× αv−jβjθj−rλr
(jλ)n

n!

(vβ)l

l!

(lλ)w

w!
bs,m

× xn+r+jθ−j+lθ+we−(m+s+vδ−v)αx−(m+s+vδ−v)βxθeλxe−vαx

= [Γ (δ)]−v
v∑
j=0

j∑
r=0

∞∑
n,l,w,m,s,k,i=0

(−1)l+k
(
v

j

)(
j

r

)(
δ(v − 1)

m

)
bs,m

× αv−jβj+lθj−rλr+n+w
(j)n(v)l(l)w

n!l!w!

× (m+ s+ vδ − v)kβk(kλ)i

k!i!
xn+r+jθ−j+lθ+w+kθ+ie−(m+s+vδ)αx.

Using the fact that
∫∞
0 ta−1e−tdt = Γ (a)

ba , we have∫ ∞
0

gv
GGMW

(x)dx = [Γ (δ)]−v
v∑
j=0

j∑
r=0

∞∑
n,l,w,m,s,k,i=0

(−1)l+k
(
v

j

)(
j

r

)(
δ(v − 1)

m

)
bs,m

× αv−jβj+l+θj−rλr+n+w+i
(j)n(v)l(l)wki(m+ s+ vδ − v)k

n!l!w!k!i!

× Γ (n+ r + w + i+ θ(j + l + k)− j + 1)

(m+ s+ vδ)n+r+w+i+θ(j+l+k)−j+1
,

for v > 0, v 6= 1. Consequently, Rényi entropy for the GGMW distribution is given by

IR(v) =
1

1− v
log

[
[Γ (δ)]−v

v∑
j=0

j∑
r=0

∞∑
n,l,w,m,s,k,i=0

(−1)l+k
(
v

j

)(
j

r

)(
δ(v − 1)

m

)
bs,m

× αv−jβj+l+θj−rλr+n+w+i
(j)n(v)l(l)wki(m+ s+ vδ − v)k

n!l!w!k!i!

× Γ (n+ r + w + i+ θ(j + l + k)− j + 1)

(m+ s+ vδ)n+r+w+i+θ(j+l+k)−j+1

]
, for v > 0, v 6= 1.

4.2. Order statistics

In this section, the pdf of the ith order statistic and the corresponding moments are presented.
Let X1, X2, ...., Xn be independent and identically distributed GGMW random variables. The
pdf of of the ith order statistic for a random sample of size n for any gamma−G family with
density (5) can be expressed as an infinite weighted sum of gamma−G densities. The pdf of
the ith order statistic from the GGMW pdf gGGMW (x) is given by

gi:n(x) =
n!g(x)

(i− 1)!(n− i)!
[G(x)]i−1[1−G(x)]n−i

=
n!g(x)

(i− 1)!(n− i)!

i−1∑
j=0

(−1)j
(
i− 1

j

)
[G(x)]n−i+j

=
n!g(x)

(i− 1)!(n− i)!

i−1∑
j=0

(−1)j
(
i− 1

j

)[
γ(− log(1− e−αx−βxθeλx))

Γ (δ)

]n−i+j
.

where 0 < y = e−αx−βx
θeλx < 0.7968, x > 0, α, β, θ, δ > 0, and λ ≥ 0. Using the fact that

γ(x, δ) =
∑∞

m=0
(−1)mxm+δ

(m+δ)m! , and setting cm = (−1)m/((m+ δ)m!), we can write the pdf of the



56 A New Class of Generalized Modified Weibull Distribution with Applications

ith order statistic from the GGMW distribution as follows:

gi:n(x) =
n!g(x)

(i− 1)!(n− i)!

i−1∑
j=0

(
i− 1

j

)
(−1)j

[Γ (δ)]n−i+j
[− log(1− e−αx−βxθeλx)]δ(n−i+j)

×
[ ∞∑
m=0

(−1)m(log(1− e−αx−βxθeλx))m

(m+ δ)m!

]n−i+j
=

n!g(x)

(i− 1)!(n− i)!

i−1∑
j=0

(
i− 1

j

)
(−1)j

[Γ (δ)]n−i+j
[− log(1− e−αx−βxθeλx)]δ(n−i+j)

×
∞∑
m=0

dm,n−i+j(− log(1− e−αx−βxθeλx))m,

where d0 = c
(n−i+j)
0 , dm,n−i+j = (mc0)

−1∑m
l=1[(n− i+ j)l−m+ l]cldm−l,n−i+j . We note that

gi:n(x) =
n!g(x)

(i− 1)!(n− i)!

i−1∑
j=0

∞∑
m=0

(
n− i
j

)
(−1)jdm,i+j−1

[Γ (δ)]n−i+j
[− log(1− e−αx−βxθeλx)]δ(n−i+j)+m

=
n![− log(1− e−αx−βxθeλx)]δ−1f(x)

(i− 1)!(n− i)!Γ (δ)

i−1∑
j=0

∞∑
m=0

(
n− i
j

)
(−1)jdm,n−i+j

[Γ (δ)]n−i+j

× [− log(1− e−αx−βxθeλx)]δ(n−i+j)+m

=
n!

(i− 1)!(n− i)!

i−1∑
j=0

∞∑
m=0

(
i− 1

j

)
(−1)jdm,n−i+j

[Γ (δ)]n−i+j

× Γ (δ(n− i+ j) +m+ δ)

Γ (δ(n− i+ j) +m+ δ)

[− log(1− e−αx−βxθeλx)]δ(n−i+j)+m+δ−1

Γ (δ)

× (α+ βxθ−1eλx[θ + λx])e−αx−βx
θeλx

=
n!

(i− 1)!(n− i)!

i−1∑
j=0

∞∑
m=0

(
i− 1

j

)

× (−1)jdm,n−i+jΓ (δ(n− i+ j) +m+ δ)

[Γ (δ)]n−i+j+1
fGGMW (x),

where

fGGMW (x) =
1

Γ (δ(n− i+ j) +m+ δ)
[− log(1− e−αx−βxθeλx)]δ(n−i+j)+m+δ−1

× (α+ βxθ−1eλx[θ + λx])e−αx−βx
θeλx (34)

is the GGMW pdf with parameters α, β, θ > 0, λ ≥ 0, and shape parameter δ∗ = δ(n − i +
j) +m+ δ > 0. It follows therefore that the rth moment is given by

E(Xj
i:n) =

∑
ν∈C

i−1∑
j=0

∞∑
m,k,n=0

wν`i,j,m
r(−β)n(k + s+ δ∗)(nλ)k

k!n![α(k + s+ δ∗)r+nθ+k]
Γ (r + nθ + k),

where `i,j,m = n!
(i−1)!(n−i)!

(−1)jdm,n−i+jΓ (δ(n−i+j)+m+δ)
[Γ (δ)]n−i+j+1 , and δ∗ = δ(n− i+ j) +m+ δ > 0. We

note that these moments are often used in several areas including reliability, survival analysis,
biometry, engineering, insurance and quality control for the prediction of future failures times
from a set of past or previous failures.
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5. Maximum likelihood estimation

Let X ∼ GGMW (α, β, θ, λ, δ) and ∆ = (α, β, θ, λ, δ)T be the parameter vector. The log-
likelihood for a single observation x of X is given by

` = `(∆) = (δ − 1) log(− log(1− e−αx−βxθeλx)) + log(α+ βxθ−1eλx[θ + λx])

− αx− βxθeλx − log(Γ (δ)). (35)

The first derivative of the log-likelihood function with respect to the parameters ∆ = (α, β, θ, λ, δ)T

are given by

∂`

∂α
=

x(δ − 1)e−αx−βx
θeλx

(1− e−αx−βxθeλx) log(1− e−αx−βxθeλx)
+

1

α+ βxθ−1eλx[θ + λx]
− x, (36)

∂`

∂β
=

xθeλx(δ − 1)e−αx−βx
θeλx

(1− e−αx−βxθeλx) log(1− e−αx−βxθeλx)
+

xθ−1eλx(θ + λx)

α+ βxθ−1eλx[θ + λx]
− xθeλx, (37)

∂`

∂θ
=

(δ − 1)xθ log(x)βeλxe−αx−βx
θeλx

(1− e−αx−βxθeλx) log(1− e−αx−βxθeλx)
+
βxθ−1eλx[(θ + λx) log(x) + 1]

α+ βxθ−1eλx[θ + λx]

− βxθeλx log(x), (38)

∂`

∂λ
=

(δ − 1)xθ+1βeλxe−αx−βx
θeλx

(1− e−αx−βxθeλx) log(1− e−αx−βxθeλx)
+

βxθeλx(θ + λx+ 1)

α+ βxθ−1eλx[θ + λx]
− βxθ+1eλx, (39)

and
∂`

∂δ
= log(− log(1− e−αx−βxθeλx))− Γ ′(δ)

Γ (δ)
. (40)

The total log-likelihood function based on a random sample of n observations: x1, x2, ...., xn
drawn from the GGMW distribution is given by `n = `(∆) =

∑n
i=1 `i(∆), where `i(∆),

i = 1, 2, ....., n is given by equation (35). The equations obtained by setting the above partial
derivatives to zero are not in closed form and the values of the parameters α, β, θ, λ, δ must
be found by using iterative methods. The maximum likelihood estimates of the parameters,
denoted by ∆̂ is obtained by solving the nonlinear equations ( ∂`∂α ,

∂`
∂β ,

∂`
∂θ ,

∂`
∂λ ,

∂`
∂δ )T = 0. It is

convenient to apply or use nonlinear optimization algorithm such as quasi-Newton algorithm
to numerically maximize the log-likelihood function.

We maximize the likelihood function using NLmixed in SAS as well as the function nlm in
R (The R Development Core Team (2011)). These functions were applied and executed for
wide range of initial values. This process often results or lead to more than one maximum,
however, in these cases, we take the MLEs corresponding to the largest value of the maxima.
In a few cases, no maximum was identified for the selected initial values. In these cases, a
new initial value was tried in order to obtain a maximum.

The issues of existence and uniqueness of the MLEs are theoretical interest and has been
studied by several authors for different distributions including Seregin (2010), Santos Silva
and Tenreyro (2010), Zhou (2009), and Xia, Mi, and Zhou (2009). At this point we are not
able to address the theoretical aspects (existence, uniqueness) of the MLE of the parameters
of the GGMW distribution.

Note that for the five parameters of the GGMW distribution, all second order partial deriva-
tives of the log-likelihood function exit, and are given in appendix A. The Fisher information
matrix is given by I(∆) = [Iθi,θj ]5X5 = E(− ∂2`

∂θi∂θj
), i, j = 1, 2, 3, 4, 5, can be numerically
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obtained by MATHLAB, R or MAPLE software. The total Fisher information matrix nI(∆)
can be approximated by

Jn(∆̂) ≈
[
− ∂2`

∂θi∂θj

∣∣∣∣
∆=∆̂

]
5X5

, i, j = 1, 2, 3, 4, 5. (41)

For a given set of observations, the matrix given in equation (41) is obtained after the con-
vergence of the Newton-Raphson procedure in MATHLAB or R software. Elements of the
observed information matrix are given in the appendix.

5.1. Asymptotic confidence intervals

In this section, we present the asymptotic confidence intervals for the parameters of the
GGMW distribution. The expectations in the Fisher Information Matrix (FIM) can be ob-
tained numerically. Let ∆̂ = (α̂, β̂, θ̂, λ̂, δ̂) be the maximum likelihood estimate of ∆ =
(α, β, θ, λ, δ). Under the usual regularity conditions and that the parameters are in the interior

of the parameter space, but not on the boundary, (Ferguson 1996) we have:
√
n(∆̂−∆)

d−→
N5(0, I

−1(∆)), where I(∆) is the expected Fisher information matrix. The asymptotic be-
havior is still valid if I(∆) is replaced by the observed information matrix evaluated at ∆̂,
that is J(∆̂). The multivariate normal distribution N5(0, J(∆̂)−1), where the mean vector
0 = (0, 0, 0, 0, 0)T , can be used to construct confidence intervals and confidence regions for
the individual model parameters and for the survival and hazard rate functions. That is, the
approximate 100(1− η)% two-sided confidence intervals for α, β, θ λ, and δ are given by:

α̂± Z η
2

√
I−1αα (∆̂), β̂ ± Z η

2

√
I−1ββ (∆̂), θ̂ ± Z η

2

√
I−1θθ (∆̂), λ̂± Z η

2

√
I−1λλ (∆̂),

and δ̂±Z η
2

√
I−1δδ (∆̂), respectively, where I−1αα (∆̂), I−1ββ (∆̂), I−1θθ (∆̂), I−1λλ (∆̂) and I−1δδ (∆̂) are

the diagonal elements of I−1n (∆̂), and Z η
2

is the upper η
2
th percentile of a standard normal

distribution.

The maximum likelihood estimates (MLEs) of the GGMW parameters α, β, θ, λ, and δ are
computed by maximizing the objective function via the subroutine NLmixed in SAS and the
function nlm in R. The estimated values of the parameters (standard error in parenthesis),
-2log-likelihood statistic, Akaike Information Criterion, AIC = 2p − 2 ln(L), Bayesian In-
formation Criterion, BIC = p ln(n) − 2 ln(L), and Consistent Akaike Information Criterion,

AICC = AIC + 2 p(p+1)
n−p−1 , where L = L(∆̂) is the value of the likelihood function evaluated at

the parameter estimates, n is the number of observations, and p is the number of estimated
parameters are presented. In order to compare the models, we use the criteria stated above.
Note that for the value of the log-likelihood function at its maximum (`n), larger value is good
and preferred, and for AIC, AICC and BIC, smaller values are preferred. GGMW distribution
is fitted to the data sets and these fits are compared to the fits of the GGME, GGMR, GMW,
GW, beta exponentiated Weibull (BEW) and beta Weibull (BW) distributions.

We can use the likelihood ratio (LR) test to compare the fit of the GGMW distribution with
its sub-models for a given data set. For example, to test λ = 0, δ = 1, the LR statistic is
ω = 2[ln(L(α̂, β̂, θ̂, λ̂, δ̂)) − ln(L(α̃, β̃, θ̃, 0, 1))], where α̂, β̂, λ̂, θ̂ and δ̂, are the unrestricted
estimates, and α̃, β̃, and θ̃ are the restricted estimates. The LR test rejects the null hypothesis
if ω > χ2

ε
, where χ2

ε
denote the upper 100ε% point of the χ2 distribution with 2 degrees of

freedom.

6. Applications

In this section, we present examples to illustrate the flexibility and applicability of the GGMW
distribution and its sub-models for data modeling. The GGMW distribution is also compared
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Table 4: Estimation of GGMW model for waiting times data

Estimates Statistics
Distribution α β θ λ δ -2LogLikelihood AIC AICC BIC SS

GGMW 0.3529 0.05611 1.6133 0.002399 0.1687 637.7 647.7 648.3 660.7 0.0574
(0.01679) (0.02513) (0.1642) (0.01078) (0.01386)

GGME 0.000223 0.4152 1 0.02139 0.1875 640.5 648.5 649 659 0.0929
(0.292) (0.2142) (0.006622) (0.02897)

GMW 0 0.2887 1.3239 0.000107 0.1629 634.8 642.8 643.2 653.2 0.0271
(0.07322) (0.1062) (0.005437) (0.01887)

GME 0 0.3892 1 0.01897 0.2058 640.9 646.9 647.2 654.7 0.1024
(0.09978) (0.006636) (0.03738)

GAE 0.2108 0.1808 1 0 0.2776 647.9 653.9 654.1 661.7 0.3585
(0.09663) (0.09657) (0.141)

GEV 0 1 0 0.09372 0.3111 727.1 731.1 731.2 736.3 1.1924
(0.000906) (0.02987)

GW 0 0.2443 1.3435 0 0.1829 635.3 641.3 641.6 649.2 0.0329
(0.07656) (0.08978) (0.0236)

BW k λ a b
1.2455 2.1348 1.7298 0.1509 634.2 642.2 642.7 652.7 0.0239

(0.1008) (0.4812) (0.5264) (0.01871)
BEW k λ α a b

1.135 2.6752 1.6422 1.3894 0.2681 633.9 643.9 644.6 657 0.0159
(0.2224) (1.4164) (1.3948) (0.7837) (0.2345)

with the non-nested beta exponentiated Weibull (BEW), and beta Weibull (BW) distribu-
tions. The pdf of the BEW distribution (Cordeiro, Gomes, da Silva, and Ortega 2013) is
given by

g(x) =
αkλk

B(a, b)
xk−1e(λx)

k
(1− e(λx)k)aα−1[1− (1− e(λx)k)α]b−1, x > 0. (42)

When α = 1, we have the BW distribution.

The first data set is waiting times (in minutes) of 100 bank customers before service. See
(Ghitany, Atieh, and Nadarajah 2008) for additional details. The second data set is failure
times of a sample of n = 30 devices, see (Meeker and Escobar 1998). The third data set
represent the survival times of 121 patients with breast cancer obtained from a large hospital
in a period from 1929 to 1938, (Lee 1992).

Estimates of the parameters of GGMW distribution (standard error in parentheses), Akaike
Information Criterion (AIC), Consistent Akaike Information Criterion (AICC) and Bayesian
Information Criterion (BIC) are given in Table 4 for the first data set, in Table 5 for the
second data set and in Table 6 for the third data set.

The estimated covariance matrix for the GGMW distribution (Waiting Times Data) is given
by 

0.00028 −0.00110 0.00300 0.00020 0.00054
−0.00110 0.00063 −0.00294 0.00004 −0.00001
0.00300 −0.00294 0.02697 −0.00141 −0.00048
0.00020 0.00004 −0.00141 0.00012 0.00003
0.00054 −0.00001 −0.00048 0.00003 0.00019


The 95% asymptotic confidence intervals for the GGMW model (Waiting Times Data) param-
eters are: α ∈ (0.3200, 0.3529), β ∈ (0.0069, 0.1054), θ ∈ (1.2915, 1.9351), λ ∈ (−0.0187, 0.0235),
and δ ∈ (0.1415, 0.1959), respectively.

The estimated covariance matrix for the GGMW distribution (Meeker Data) is given by
0.000015 −0.000010 0.000399 0.000000 −0.000001
−0.000010 0.000008 −0.000040 −0.000005 0.000002
0.000399 −0.000040 0.007974 −0.000140 −0.000110
0.000000 −0.000005 −0.000140 0.000007 0.000001
−0.000001 0.000002 −0.000110 0.000001 0.000145
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Figure 3: Graphs for waiting times data

Table 5: Estimation of GGMW model for meeker data

Estimates Statistics
Distribution α β θ λ δ -2LogLikelihood AIC AICC BIC SS

GGMW 0.05354 0.004011 0.004549 0.02772 0.06625 345.2 355.2 357.7 362.2 0.1885
(0.00392) (0.002771) (0.0893) (0.002629) (0.01203)

GGME 0.000856 0.02468 1 0.005281 0.009626 418.7 426.7 428.3 432.3 4.7185
(0.008775) (0.002176) (0.000289) (0.001758)

GMW 0 0.5256 0.3819 0.006687 0.06036 355.8 363.8 365.4 369.4 0.2396
(0.06536) (0.05393) (0.000585) (0.01095)

GAE 0.006438 0.002438 1 0 0.677 370.2 376.2 377.1 380.4 0.3430
(0.003377) (0.003435) (0.4661)

GEV 0 1 0 0.01024 0.1007 366.3 370.3 370.7 373.1 0.2661
(0.001629) (0.0484)

GW 0 0.000221 1.453 0 1.7066 368.3 374.3 375.2 378.5 0.3412
(0.001258) (0.672) (2.1364)

BW k λ a b
0.6935 1.8109 1.1725 0.04806 378.7 386.7 388.3 392.3 0.6369

(0.03331) (0.4279) (1.1345) (0.00938)
BEW k λ α a b

0.9895 8.0706 0.7834 0.9181 0.0426 371.2 381.2 383.7 388.2 0.2904
(0.03881) (1.1182) (0.2485) (0.5873) (0.00799)

Figure 4: Graphs for meeker data
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Table 6: Estimation of GGMW model for breast cancer data

Estimates Statistics
Distribution α β θ λ δ -2LogLikelihood AIC AICC BIC SS

GGMW 0.1249 0.002047 0.1573 0.05334 0.1657 1155.3 1165.3 1165.9 1179.3 0.1153
(0.06267) (0.001812) (0.8788) (0.02297) (0.06779)

GGME 0.1293 0.002883 1 0.02348 0.1476 1155.8 1163.8 1164.2 1175.0 0.0927
(0.01342) (0.001374) (0.002869) (0.01646)

GMW 0 0.07926 0.9986 0.003633 0.2248 1157.1 1165.1 1165.4 1176.3 0.0605
(0.1335) (0.1543) (0.002969) (0.3898)

GME 0 0.07876 1 0.00361 0.2253 1157.1 1163.1 1163.3 1171.5 0.0604
(0.1223) (0.001698) (0.3784)

GAE 0.03852 0.03352 1 0 0.3249 1163.3 1169.3 1169.5 1177.7 0.1943
(0.02057) (0.02057) (0.189)

GEV 0 1 0 0.02336 0.2439 1243.4 1247.4 1247.5 1252.9 1.1443
(0.000181) (0.02174)

GW 0 0.002764 1.3964 0 1.3417 1158.0 1164.0 1164.2 1172.4 0.0527
(0.01402) (0.6238) (2.2681)

BW k λ a b
0.7573 1.2899 0.2401 0.06145 1251.7 1259.7 1260.1 1270.9 3.5347

(0.0495) (0.3602) (0.03752) (0.006166)
BEW k λ α a b

0.7958 1.6244 1.2491 0.3575 0.06836 1223.6 1233.6 1234.1 1247.6 2.5138
(0.007401) (0.02646) (0.2518) (0.06094) (0.006678)

Figure 5: Graphs for breast cancer data
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The estimated covariance matrix for the GGMW distribution (Breast Cancer Data) is given
by 

0.003927 0.000059 −0.04903 0.001194 −0.00414
0.000059 3.28E − 06 −0.0009 0.000016 −0.00006
−0.04903 −0.0009 0.7724 −0.01968 0.05052
0.001194 0.000016 −0.01968 0.000528 −0.00122
−0.00414 −0.00006 0.05052 −0.00122 0.004595


Plots of the fitted densities, the histogram of the data are given in Figure 3, Figure 4 and

Figure 5. For the probability plot, we plotted GGGMW (x(j); α̂, β̂, θ̂, λ̂, δ̂) against
j − 0.375

n+ 0.25
, j =

1, 2, · · · , n, where x(j) are the ordered values of the observed data. We also computed a
measure of closeness of each plot to the diagonal line. This measure of closeness is given by
the sum of squares

SS =
n∑
j=1

[
GGGMW (x(j); α̂, β̂, θ̂, λ̂, δ̂)−

(
j − 0.375

n+ 0.25

)]2
.

For waiting times data set, the LR test statistic of the hypothesis H0: GGME against Ha:
GGMW is ω = 2.8. The p-value = 0.094. Therefore, there is no significant difference between
GGMW and GGME distributions at the 5% level. However, there is a significant difference
between GGME and GGMW distributions at the 10% level. The LR statistic of the hypothesis
H0: GEV against Ha: GGMW for waiting times data is ω = 89.4 The p-value < 0.0001, we
can conclude that there is a significance difference between GGMW and GEV distributions.
There is no significant difference between the GGMW and GMW distributions. Also, there is
no significant difference between the GW and GMW distributions. The values of the statistics
AIC, AICC and BIC shows that the sub-model GW is a good fit for this data. Based on these
statistics, the GW distribution could be chosen as the best model among these distributions.
The values of the statistics are comparable to those of the non-nested BW distribution and
those corresponding to the BEW distribution.

For Meeker data set, the LR test statistics of the hypothesis H0: GGME against Ha: GGMW
is ω = 73.5. The p-value < 0.0001. Therefore, there is significant difference between GGMW
and GGME distributions. The LR statistic of the hypothesis H0: GMW against Ha: GGMW
is ω = 10.6. The p-value = 0.0011, we can conclude that there is a significance difference
between GGMW and GMW distributions. The values of the statistics AIC, BIC, and AICC
are smaller for the GGMW distribution. The values of these statistics points to the GGMW
distribution as the “better” fit for Meeker data. Also, the values of AIC, BIC and AICC are
better for the GMW and GGMW distributions when compared to the non-nested BW and
BEW distributions.

For breast cancer data set, there is no significant difference between GGMW, GGME, GMW,
GW and GME distributions based on the corresponding LR tests. The sub-models GME and
GW seem to be the “best” fits for this data. The values of the statistics AIC, BIC and AICC
are smaller for the GME distribution. The values of SS from the probability plots are 0.0604
and 0.0527 for the GME and GW distributions, respectively. The values of these statistics
points to and supports the GW as well as the GME distributions as the better fits among the
nested distributions. Also, the values of the statistics: AIC, BIC and AICC are far better
for the GMW and GGMW distributions when compared to those of the non-nested BW and
BEW distributions.

The conclusions based on the LR tests, fitted pdfs, the histograms of the data, and proba-
bility plots are in agreement with the statistics AIC, AICC and BIC for the selected models.
The GW distribution provides a better fits for the waiting times data, while the GGMW
distribution and GME as well as the GW distributions provides better fits for the Meeker and
Escobar, and breast cancer data, respectively.
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7. Concluding remarks

A new class of generalized modified Weibull distribution called the gamma-generalized mod-
ified Weibull (GGMW) distribution is proposed and studied. The GGMW distribution has
several sub-models such as the GGMR, GGME, GAE, GLFR, LFR, GMW, GME, MW, MR,
ME, Weibull, Raleigh and exponential distributions as special cases. The density of this new
class of distributions can be expressed as a linear combination of GMW density functions.
The GGMW distribution possesses hazard function with flexible behavior. We also obtain
closed form expressions for the moments, distribution of order statistics and Renyi entropy.
Maximum likelihood estimation technique was used to estimate the model parameters. Fi-
nally, the GGMW distribution and its sub-models was fitted to real data sets to illustrate the
applicability and usefulness of this class of distributions.
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APPENDIX

LetA(xi;α, β, θ, λ) = (1−e−αxi−βxθi eλxi ) log(1−e−αxi−βxθi eλxi ), B(xi;α, β, θ, λ) = e−αxi−βx
θ
i e
λxi+

log(1−e−αxi−βxθi eλxi ), and C(xi;α, β, θ, λ) = (1−e−αxi−βxθi eλxi−βxθi eλxi) log(1−e−αxi−βxθi eλxi )−
βxθi e

−(α−λ)xi−βxθi eλxi . Elements of the observed information matrix of the GGMW distribu-
tion are given by

∂2`

∂α2
=

n∑
i=1

(1− δ)x2i e−αxi−βx
θ
i e
λxiB(xi;α, β, θ, λ)

A2(xi;α, β, θ, λ)

−
n∑
i=1

1

[α+ βxθ−1i eλxi(θ + λxi)]2
. (43)

∂2`

∂α∂β
=

n∑
i=1

(1− δ)xθ+1
i e−(α−λ)xi−βx

θ
i e
λxiB(xi;α, β, θ, λ)

A2(xi;α, β, θ, λ)

−
n∑
i=1

xθ−1i eλxi(θ + λxi)

[α+ βxθ−1i eλxi(θ + λxi)]2
. (44)

∂2`

∂α∂θ
=

n∑
i=1

(1− δ)βxθ+1
i e−(α−λ)xi−βx

θ
i e
λxi log(xi)B(xi;α, β, θ, λ)

A2(xi;α, β, θ, λ)

−
n∑
i=1

βxθ−1i eλxi [(θ + λxi) log(xi) + 1]

[α+ βxθ−1i eλxi(θ + λxi)]2
. (45)

∂2`

∂α∂λ
=

n∑
i=1

(1− δ)βxθ+2
i e−(α−λ)xi−βx

θ
i e
λxiB(xi;α, β, θ, λ)

A2(xi;α, β, θ, λ)

−
n∑
i=1

βxθi e
λxi(θ + λxi + 1)

[α+ βxθ−1i eλxi(θ + λxi)]2
. (46)

∂2`

∂α∂δ
=

n∑
i=1

e−αxi−βx
θ
i e
λxixi

A(xi;α, β, θ, λ)
. (47)

∂2`

∂β2
=

n∑
i=1

(1− δ)x2θi e−(α−2λ)xi−βx
θ
i e
λxiB(xi;α, β, θ, λ)

A2(xi;α, β, θ, λ)

−
n∑
i=1

x2θ−2i e2λxi(θ + λxi)
2

[α+ βxθ−1i eλxi(θ + λxi)]2
. (48)

∂2`

∂β∂θ
=

n∑
i=1

(δ − 1)xθi e
−(α−λ)xi−βxθi eλxi log(xi)C(xi;α, β, θ, λ)

A2(xi;α, β, θ, λ)

+
n∑
i=1

xθ−1i eλxi [(θ + λxi) log(xi) + 1]α

[α+ βxθ−1i eλxi(θ + λxi)]2
−

n∑
i=1

xθi e
λxi log(xi). (49)
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∂2`

∂β∂λ
=

n∑
i=1

(δ − 1)xθ+1
i e−(α−λ)xi−βx

θ
i e
λxiC(xi;α, β, θ, λ)

A2(xi;α, β, θ, λ)

+

n∑
i=1

xθi e
λxi(θ + λxi + 1)α

[α+ βxθ−1i eλxi(θ + λxi)]2
−

n∑
i=1

xθ+1
i eλxi . (50)

∂2`

∂β∂δ
=

n∑
i=1

e−(α−λ)xi−βx
θ
i e
λxixθi

A(xi;α, β, θ, λ)
. (51)

∂2`

∂θ2
=

n∑
i=1

(δ − 1)βxθi e
−(α−λ)xi−βxθi eλxi (log(xi))

2C(xi;α, β, θ, λ)

A2(xi;α, β, θ, λ)

+
n∑
i=1

βxθ−1i eλxi
{[

(θ + λxi)(log(xi))
2 + 2 log(xi)

]
α− βxθ−1i eλxi

}
[α+ βxθ−1i eλxi(θ + λxi)]2

− β
n∑
i=1

xθi e
λxi(log(xi))

2. (52)

∂2`

∂θ∂λ
=

n∑
i=1

(δ − 1)βxθ+1
i e−(α−λ)xi−βx

θ
i e
λxi log(xi)C(xi;α, β, θ, λ)

A2(xi;α, β, θ, λ)

+

n∑
i=1

βxθi e
λxi
{

[(θ + λxi + 1) log(xi) + 1]α− βxθ−1i eλxi
}

[α+ βxθ−1i eλxi(θ + λxi)]2

− β

n∑
i=1

xθ+1
i eλxi log(xi). (53)

∂2`

∂θ∂δ
=

n∑
i=1

βe−(α−λ)xi−βx
θ
i e
λxixθi log(xi)

A(xi;α, β, θ, λ)
. (54)

∂2`

∂λ2
=

n∑
i=1

(δ − 1)βxθ+2
i e−(α−λ)xi−βx

θ
i e
λxiC(xi;α, β, θ, λ)

A2(xi;α, β, θ, λ)

+
n∑
i=1

βxθ+1
i eλxi [(θ + λxi + 2)α− βxθ−1i eλxi ]

[α+ βxθ−1i eλxi(θ + λxi)]2
− β

n∑
i=1

xθ+2
i eλxi . (55)

∂2`

∂λ∂δ
=

n∑
i=1

βe−(α−λ)xi−βx
θ
i e
λxixθ+1

i

A(xi;α, β, θ, λ)
. (56)

∂2`

∂δ2
= −nΨ ′(δ), where Ψ(δ) =

d log(Γ (δ))

dδ
=
Γ
′
(δ)

Γ (δ)
. (57)
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## define GGMW pdf

GGMW_pdf <- function(alpha, beta, theta, lambda, delta, x){

(1/gamma(delta)) * ((-log(1-exp(-alpha * x - beta *

(x^theta) * (exp(lambda * x)))))^(delta-1)) *

(alpha + beta * (x^(theta - 1)) * (exp(lambda * x)) *

(theta + lambda * x)) * (exp(-alpha * x - beta *

(x^theta) * (exp(lambda * x))))

}

## define GGMW cdf

GGMW_cdf <- function(alpha, beta, theta, lambda, delta, x){

1 - pgamma(-log(1 - exp(-alpha * x - beta * (x^theta) *

exp(lambda * x))), delta)

}

## define GGMW Hazard

GGMW_hazard <- function(alpha, beta, theta, lambda, delta, x){

GGMW_pdf(alpha, beta, theta, lambda, delta, x) /

(1 - GGMW_cdf(alpha, beta, theta, lambda, delta, x))

}

## define GGMW moments

GGMW_moments <- function(alpha, beta, theta, lambda, delta, k){

f <- function(alpha, beta, theta, lambda, delta, k, x){

(x^k) * (GGMW_pdf(alpha, beta, theta, lambda, delta, x))

}

y <- integrate(f, lower = 0, upper = Inf, subdivisions = 10000,

alpha = alpha, beta = beta, theta = theta,

lambda = lambda, delta = delta, k = k)

return(y)

}

## define GGMW quantile

GGMW_quantile <- function(alpha, beta, theta, lambda, delta, u){

f <- function(x){alpha * x + beta * (x^theta) * (exp(lambda * x)) +

log(1 - exp(-qgamma(1 - u, delta)))

}

rc <- uniroot(f, lower=0, upper=100, tol = 1e-9)

result <- rc$root

# check

error <- GGMW_cdf(alpha, beta, theta, lambda, delta, result) - u

return(list("result" = result, "error" = error))

}
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