View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by Georgia Southern University: Digital Commons@Georgia Southern

Georgia Southern University

Digital Commons@Georgia Southern

Mathematical Sciences Faculty Publications Mathematical Sciences, Department of
12-2015

Extended Lindley Poisson Distribution

Mavis Pararai

Indiana University of Pennsylvania

Gayan Warahena-Liyanage

Indiana University of Pennsylvania

Broderick O. Oluyede
Georgia Southern University, boluyede@georgiasouthern.edu

Follow this and additional works at: https://digitalcommons.georgiasouthern.edu/math-sci-facpubs
b Part of the Mathematics Commons

Recommended Citation

Pararai, Mavis, Gayan Warahena-Liyanage, Broderick O. Oluyede. 2015. "Extended Lindley Poisson Distribution.” Journal of
Mathematics and Statistical Science, 1 (5): 167-198. source: http://www.ss-pub.org/wp-content/uploads/2015/12/
JMSS15071301.pdf

https://digitalcommons.georgiasouthern.edu/math-sci-facpubs/357

This article is brought to you for free and open access by the Mathematical Sciences, Department of at Digital Commons@Georgia Southern. It has
been accepted for inclusion in Mathematical Sciences Faculty Publications by an authorized administrator of Digital Commons@Georgia Southern.

For more information, please contact digitalcommons@georgiasouthern.edu.


https://core.ac.uk/display/229105697?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://digitalcommons.georgiasouthern.edu?utm_source=digitalcommons.georgiasouthern.edu%2Fmath-sci-facpubs%2F357&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.georgiasouthern.edu/math-sci-facpubs?utm_source=digitalcommons.georgiasouthern.edu%2Fmath-sci-facpubs%2F357&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.georgiasouthern.edu/math-sci?utm_source=digitalcommons.georgiasouthern.edu%2Fmath-sci-facpubs%2F357&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.georgiasouthern.edu/math-sci-facpubs?utm_source=digitalcommons.georgiasouthern.edu%2Fmath-sci-facpubs%2F357&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/174?utm_source=digitalcommons.georgiasouthern.edu%2Fmath-sci-facpubs%2F357&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.georgiasouthern.edu/math-sci-facpubs/357?utm_source=digitalcommons.georgiasouthern.edu%2Fmath-sci-facpubs%2F357&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@georgiasouthern.edu

"Science Stays True Here" S S PU b <

Journal of Mathematics and Statistical Science, Volume 2015, 167-198 | Science Signpost Publishing

An Extended Lindley Poisson Distribution with
Applications
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Gayan Warahena-Liyanage
Department of Mathematics, Indiana University of Pennsylvania, Indiana, PA, 15705, USA.
Broderick O. Oluyede

Department of Mathematical Sciences, Georgia Southern University, Statesboro, GA, 30460, USA.

Abstract

The Extended Lindley Poisson (ELP) distribution which is an extension of the extended
Lindley distribution [2] is introduced and its properties are explored. This new distribution
represents a more flexible model for the lifetime data. Some statistical properties of the
proposed distribution including the shapes of the density, hazard rate functions, moments,
Bonferroni and Lorenz curves are explored. Entropy measures and the distribution of the order
statistics are given. The maximum likelihood estimation technique is used to estimate the
model parameters and a simulation study is conducted to investigate the performance of the
maximum likelihood estimates. Finally, we present applications of the model with a real data
set to illustrate the usefulness of the proposed distribution.

Keywords: Lindley distribution, Lindley Poisson distribution, Lifetime data, Maximum

likelihood estimation.

1. Introduction

Lindley [10] developed Lindley distribution in the context of fiducial and Bayesian statistics.
Properties, extensions and applications of the Lindley distribution have been studied in the context of

reliability analysis by Ghitany et al. [8], Zakerzadeh and Dolati [25], and Warahena-Liyanage and Pararai
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[24]. Several authors including Sankaran [20], Asgharzadeh et al. [1] and Nadarajah et al. [15] proposed
and developed the mathematical properties of various generalized Lindley distributions. Pararai et al. [18]
studied the properties of the beta exponentiated power Lindley distribution which is a generalization of the
beta generalized Lindley distribution by Oluyede and Tiantin [16]. Using the transformation X =Yy"*,
Ghitany et al. [9] developed and studied the properties of the power Lindley distribution.

The cumulative distribution function (cdf) and the corresponding probability density function (pdf) of

the one-parameter Lindley distribution [10] are given by

F(x;/i):l—(mje‘“, (1.1)
A+1
and
/12
f(x;A) = (1+x)e ™, (1.2)
A+1

for x>0, 1>0, respectively. The Lindley distribution has been compounded with other distributions
such as geometric, Poisson and logarithmic to develop new families of continuous lifetime distributions.
The transmuted Lindley-geometric distribution was studied by Merovcei and Elbatai, [11].
Warahena-Liyanage and Pararai [24] studied the Lindley-logarithmic distribution and its properties in
detail. The Lindley-Poisson which is a submodel of the exponentiated power Lindley Poisson distribution
was studied by Pararai et al. [18]. The Lindley-geometric distribution was studied by Zakerzadeh and
Mahmoudi [26]. Bakouch et al. [2] derived and studied the properties of the extended Lindley distribution
by considering a particular exponentiation. The cdf and pdf of the three-parameter extended Lindley

distribution are given by

F(xia, B.2) =1—(”j%“] e (1.3)
and
f(xa,p,A)= Ad Zi Xj‘)a_ [ B+ A+ Ax)(Ax)"" —a |e ™, (1.4)

for x>0,aeR U{0,1},A>0, and f#>0. When a=p=1, the extended Lindley distribution (EL)

becomes the Lindley distribution.
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Motivated by the advantages of the Lindley distribution with respect to having a hazard function that
exhibits increasing, decreasing and bathtub shapes, as well as the versatility and flexibility of
compounding Lindley with other distributions such as geometric, logarithmic and Poisson distributions in
modeling lifetime data, we propose and study a new distribution called the extended Lindley-Poisson
(ELP) distribution, which inherits these desirable properties that also cover the shapes of quite a large
number of models.

This paper is organized as follows: In section 2; the ELP model, its sub-models and some statistical
properties such as quantile function and hazard function are presented. In section 3; we present the
moments. Section 4 contains the distribution of the order statistics and entropy measures. Mean deviations,
Bonferonni and Lorenz curves are presented in section 5. Maximum likelihood estimates of the model
parameters and asymptotic confidence intervals are given in section 6. A simulation study is also presented
in section 6. Section 7 contains applications of the proposed model to real data, followed by concluding

remarks in section 8.

2. The Model, Sub-Models and Some Properties

Suppose that the random variable X has the extended Lindley distribution where its cdf and pdf are

given in equations (1.3) and (1.4). Given N, let X .., X, be independent and identically distributed

b

random variables from Lindley distribution. Let N be distributed according to the zero truncated

Poisson distribution [5] with pdf

g"e™’

PN =m = e

, n=12,..,0>0.

Let X =max (v,..Yy), thenthecdfof X|N=n isgivenby

1+ A+ Ax Y o
G S| AEAL ) e )
X\N:n(‘x) |: ( 1+ﬂ, ) e :|

for x>0, aeR U{0,1}, 1>0, F>0, which is the exponentiated extended Lindley distribution. The

extended Lindley-Poisson (ELP) distribution denoted by ELP (a, 3, 4,0) is defined by the marginal cdf
of X, thatis,
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a  _(x)f
1—exp {«9[1 — (—”ﬁ{“ ) () }}
GELP(x;avﬂv/lae): 1—39 ’ (21)
for x>0, aeR U{0,1}, A2>0, >0 and B>0.Plots of the cdf for the ELP distribution for
several values of the parameters «, #, A and @ are given in Figure 2.1.
1r em=z
_-d"-.-' ‘f’.—:':.. -
',*" ‘,:f/ -
0.8} . ,// 1
) /}/ — 1=0.5, i=1.2, A=1.5, 6=0.8
N V4 = = =-1.6, f=2.0, A=0.5, 8=1.2
N Y S A ETEEE 0=-3.0, B=0.5, A=1.9, B=1.5
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Figure 2.1. Plot of the CDF for different values of «, f, A and &
The pdf of the ELP distribution is given by
OA(1+ A+ )™ _ _
_ A - ) [ B+ A+ Ax)(Ax)" —a e ™
1+ A)%(e” -1)
(2.2)

gELP(x’aaﬂﬁﬂ’ae)
1+/1+/1xja e_(lx)ﬂ:| ,

xexps0|1-
P { ( 1+4
A>0, 0>0 and B>0. Plots for the pdf of ELP distribution for several

for x>0, aeR U{0,1},
values of the parameters 4, ¢, a and S are given Figure 2.2.
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Figure 2.2. Plot of the PDF for different valuesof A, 8, o and f3

2.1 Sub-models
Some sub-models of the ELP distribution are presented in this section.

When « = =1, we get the Lindley-Poisson (LP) distribution, (Pararai et. al, [17]) distribution

whose cdf is
1 — exp 9 1 _ (Mj e_lx
1+ 4

(4

G(x)=
l-e
When o =0, we obtain the Weibull-Poisson (WP), (Lu and Shi [14]) distribution whose cdf is given

by
-explo[1-e" ]

G(x) =
(x) o
When « =0, and B =1, we obtain the exponential Poisson (EP), (Tahmasbi and Rezaei [23]),

whose cdf is given by
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e When =0, and S =2, we obtain the Rayleigh-Poisson (RP) distribution whose cdf is given by

1—exp {9 [1 — e’ ]}

1-¢’

G(x) =
e When a¢=p4=1, and 8 — 0", we obtain the Lindley (L) distribution [10].

2.2 Quantile Function

The quantile function is the solution of the equation

1—exp {6? [1 - ( akalen )a o }}

7 =P,

6x,)= l-e

where 0<p<1.

Thus, we have
/B
1+A+Ax
o =] L[ LEARAY, 3
A 1+A(1-¢q)

—p(l—e?
where g = w and p is uniformly distributed on the interval (0,1).

2.3 Hazard and Reverse Hazard Functions

The survival function for the ELP distribution is given by,
G(x;A4,0,a, B)=1-G(x;1,0,a, B)
exp{H[l—(”ﬁl’“)a e’ }} N (2.4)

1-¢’

The hazard and reverse hazard functions are given by
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g(x;4,0,a,B)
/1 ;1707 ) ==
G(x a ﬁ) G(X;;t,@,a,ﬂ)
OA(1+ A+ Ax) [ B+ A+ Ax)(Ax)" ™ —a e ™

(1+2)” l:ee _ eg[l‘(”ifif‘)a e(mﬁq

X eXp {9 |:1 _( l+/){:11x )a e—(ix)ﬁ j|} ’

and
g(x;4,0,a, )
;2‘9 99 ) =
Folx “h) G(x;4,0,a,B)
OA(1+ A+ Ax) 7 [ B+ A+ Ax)(Ax)" ™ —a e

REC

X exp {9 [1 (M) e }} :

respectively. Plots of the hazard function are given below:

3 T T T L T T oadeeer
P a=-1.5, =0.5, A=1.2, B=1.5
2.5 Rl — = 0=0.9, =0.8, 1=0.9, 6=2.0
N R a=-2.0, f=1.2, A=1.5, =1.2
: = g=-5.0, f=0.8, 4=0.7, #=3.0
a=0.2, p=4.0, A=0.2, 6=0.3

3%

hix)

Figure 2.3. Plot of the hazard function for different values of 1,6, and g
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The graphs of the hazard function for four combinations of the values of the model parameters show
various shapes including monotonically increasing, monotonically decreasing, uni-modal, bathtub, and
upside down bathtub shapes with four combinations of the values of the parameters. This attractive
flexibility makes the ELP hazard rate function useful and suitable for non-monotone empirical hazard

behaviors which are more likely to be encountered or observed in real life situations.

3. Moments, Moment Generating Function and Related Measures

In this section, moments and related measures including coefficients of variation, skewness and
kurtosis are presented. A table of values for mean,standard deviation, coefficient of variation (CV),

coefficient of skewness (CS) and coefficient of kurtosis (CK) is also presented.

3.1 Moments

The 7" moment of the ELP distribution is given by E(X")= [3x"g(x)dx. Thus,

E(X")= J-OOO x"g(x)dx

ii J (Do’
J\k) (1+ )™ (" = 1) !
o 3.1)
ak+a ak+a-p q p+B-1 [ _r+p+p-1_—(k+1)(Ax)’ (
X ﬂ;( J(l+/1) A _[O X e dx
—a (0{ ta— IJ(I l)akﬂz q- l/qu- r+q —(k+1)(/1x)ﬁd
q=0
Let u=(k+1)(Ax)’, then du=B(k+1)A’x"'dx and x =—2—_ Consider
A(k+1)?
ﬂlerﬁ—lJ-Ooererrﬂ—le—(kJrl)(lx)ﬂdx _ A J‘ e —(k+1)(Ax)?
0 k+1
x Bk +1)A" x"dx
—1 I u” e du. (3.2)
//Li+l (k 1) ﬂ =
(r+p+1)

k417
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Similarly,

waqwe—(kﬂ)ux)ﬁdx _ ﬁ 1 J'wxr+q—ﬂ+1e—(k+1)(/1x)/"
0 LA (k+1)70

xB(k+ 1A x"dx

_ 1 ro u’ (3.3)
LA (k+1) 70 ir+q*/3+1(k+1)%+l‘l
F(r+q+l)

BATT (k1) T

Thus the " moment is given by

© : lk¢9j+1/1
E(X) = ZZ( )(H;)ak)m(g_

3 koo ;!
o (ak+a\(1+ )™ T +1
x| ST a+4 G+ (3.4)
part q r+p "
Ak +1) P

r+p+l

© k+oa—1 1+ A ak+a—q—11—~ THp+l
—“Z(a a J( ) =)
q=0 q

AT (k+1) #

The mean, variance, coefficient of variation (CV), coefficient of skewness (CS) and coefficient of

kurtosis (CK) are given by

L ) ] ( l)kgjﬂ/l
:u_lul_jzzo( j(l+ﬂ)ak+a(ﬁ_

Dj!

o (ak+a ) (1+ )™ T +1
§ Z(a a}( ) rfp ) (3.5)
_ +1
mon A 22(k+1) #
© ak+0{—1 (1+/1)ak+a7q711—~(q7+2)
—aZ[ q j D)
- PAT(k+1) 7
o’ = w41, (3.6)
o ,U’ _,U2 /,l’
2
CV=—=32 "= [F2_| (3.7)
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E((X-m)'] i =3u 240

CS = =8 : (3.8)
[Ex -] =)
and
E((X-m)'] g —duud + 6054, =348
CK = | = A , (3.9)
[ E(X—p) ] (1, — 1)
respectively.

Table 3.1 lists the first six moments of the ELP distribution for selected values of the parameters by

fixing #=1.5 and A =0.5. These values can be determined numerically using R and MATLAB.

3.2 Moment Generating Function

The moment generating function of the ELP dustribution is given by

b

l;(eLY :E:E__l;()(h
=0 b!
S55(1)_cyo:
0 k=0 b=0 (1+ )™ (e’ —1)j1b!
A 3[R A+ D)™ TS A1) (3.10)
por " b+p 4
AP k+1) 7

(ak+a lj (1+ﬂ)ak+a q- lr(b+p+1)
-
q=

b+p+1

ﬂ/»{qubH(k + 1) B

3.3 Distribution of Order Statistics
Order Statistics play a vital role in probability and statistics. In this section, we present the

distribution of the order statistics for the EPL distribution. The pdf of the i” order statistic is given by:



gin(x) =

n!lg(x)
(i-Dl(n-i)!

_ nlg(x)
(=DM (n—-i)!:=
_ nlg(x)
C(-Dl(n—)!
__ nlg(x)
=D (n-i)!
e >'<n—z)'
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[G()] ' 1=-G(x)]"

Z( )( G

—i {1—exp{0[l (e )" e_w)ﬁ}}rl
o]

zm(

z ( )r+s

( ](Hr 1]exp{¢9s[ (Hfﬂj e_(w}}}

Ky [1 _ eg :|1+r—1

s i+r=1) OA(1+ A+ Ax)""
e X (A e

r,s=0

x| B+ 2+ 020" —a e exp {49(s +1) [1 - (1+%]a e }}

(-Dln-)! 1)'(n

Z( 1)s+1,( j(wr lj A1+ A+ Ax)"

;szo N (1+i)a|:e¢9_1:| £

o B t
x[ B+ A+ Ax)(Ax)" " —a Je ™ 0" (s +1) [1 (142 ] e }

y A0 (s+ D) (1+ A+ Ax)™ !

n!

(i=Dli(n=0)!,,

26" (s + 1) (14 A+ Ax)™" !

il i(i+r=1)\(t¢
DG o e

(1 + ﬂ()ai»\/

n!

(~Dln-0)!,

[IB (14 2+ Ax)(Ax)" - a] g

[eg _ l]iw /

(1 + A)OH»V

g

S
ﬂi(av; a](l + /I)awafd (ix)ﬂﬂi—l

[ee _ l]iw f

1 ,
_az(mf +f0€ j (L+ )™ eI /lx)f:| o ()

The m™ moment of the "

order statistic is given by

177

(3.11)
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" —n—! N 1Syl n—i i+7"—1 t
worer=em, 2 L)

AT s+ (14 A+ Ax)
(1 + ﬂ)a+v[€6 _1]i+rt!

. 1" ( m+d+ﬂ)
av+a av+a— (312)
X Z[ d j(l—i—ﬂ') ‘ m+5+/3
d=0 B m+1
(v+1) A
e (vt or—1 o
_az(av a ] (14 2)or ( ffmﬂ)
£=0 f '

B+1) £ !

4. Mean Deviations, Lorenz and Bonferroni Curves

In this section, we present the mean deviation about the mean, the mean deviation about the median,
Lorenz and Bonferroni curves. Bonferroni and Lorenz curves are income inequality measures that are also
useful and applicable to other areas including reliability, demography, medicine and insurance. The mean

deviation about the mean and mean deviation about the median are defined by
D(u)=[ |x=u|g()dr, DIM)= | |x=M|g(x)dx, (4.1)

respectively, where 1= E(X) and M = Median(X)=G'(1/2) is the median of G.
These measures D(x) and D(M) can be calculated using the relationships:
S u
D(p) = 241G (1) =21+ 2[ xg(x)dx = 2uG(u) = 2] xg(x)elx, (42)

and

DM)=—u+ ZI;xg(x)dx =Uu- ZIfxg(x)dx. (4.3)

In order to calculate these, we consider the following lemma:
Lemma 1

Let
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j (_l)k 9j+ll
“\ k) A+ )"’ =1) !

= (ak+a
x ﬂZ( ) j(l_i_ﬁ)ak-#a—p /'Lp+ﬂ—lpr+ﬂ—1+ae—(k+l)(ﬂ.x)ﬂdx

0

L(1,0,a,p,a,t)

[l
Ms
s

> (ak+oa-—1 .
- aZ(a “ j(l + A)hramat Z"J‘x““e’(k“)”)‘)ﬁ dx}.
p

0

then,

0w ] (_l)kej-%-li
L(4,0,a,p,a,t)=
3 pra.l) ;;(lej(hri)“’”“(eg—l)j!

. ﬂi[akmjm aysas g 7p+ Bra)] B Gk + D)) 44)

ﬂﬁ,lﬂ'ﬁﬂl (k + 1)(p+ﬂ+a)/ﬂ

akrag1 10 V(g +at D/ B (k+ ()"
ﬁ/quraH (k + 1)(q+a+1)/ﬂ :

p=0

>

q=0

(akJra—lJ
1+4)
q

Proof. Consider,

t

_ _ V4
.[Xp+,3 l+ae (k+1)(Ax) dx.
0

118
_ s du _ xr! ==
Let u=(k+1)(Ax)”, then o Plk+1DA"Xx"" and x |:(k+1),1ﬂ} :

The above integral can be rewritten by using the lower incomplete gamma function

y(b.s)=[p e dy as,

e e 7P+ B+a)| B (k+ 1))
ﬁﬂ/ﬁﬁﬂl (k+1)(p+ﬁ+a)/ﬁ - ﬂl/ﬂrﬂﬂl (k+1)(ﬂ+ﬂ+a)/ﬂ

0

Now consider,

t

_ Vi
J‘xq+ae (k+1)(Ax) dx.
0

Again the above integral can be rewritten as,
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(k) s = g +a+D)/ B, (k+1)(tx)")
'B/quraJrl (k + 1)(q+a+1)/ﬂ ﬁZquaJrl (k + ].)(q+a+1)/ﬁ

0

Consequently,

J (-Dre’*'a
1+ )™’ =1) ;!

. » (ak+a akta—p 7 p+pl 7((p+ﬁ+a)/ﬂ,(k+l)(tx)ﬂ)
ﬂZ( ) j(l-i_j’) A ﬂ/lp+ﬂ+a(k+1)(p+ﬁ+a)/ﬁ

akrag-t 10 Vg +a+)/ B, (k+ D(x)”)
ﬂquraH (k + 1)(q+a+l)/ﬁ

+a—1j
(1+4)
q

Using Lemma 1, we have

D(u) =2uG(1) -2L,(4,0,a, f,1, 1),
and
DM)=pu-2L(4,0,a,B,1,M).
Lorenz and Bonferroni curves are given by
LGy B and (G - LEED,
or

L(c) =ljdrg(z)dz, and B(c)=—— [‘tg(0yr,
I cps?

(4.4)

(4.5)

(4.7)

(4.8)

respectively, where d = G™'(c). Applying Lemma 1, we can re-write the Lorenz and Bonferroni curves as

B(c) = i [(1g()dr = i [ xg(@)x

B(C)=-11,(4,0,a,8,1,d)
cu

and
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L(c)=— [‘1g(tyar = 1 [ xg(o)dx
I o

L(C)= iLl(/l, 0,a,p3,1,d).
U

5. Some Measures of Uncertainty

In this section, we present Shannon entropy [21], [22], as well as the Renyi entropy [19] for the EPL
distribution. The concept of entropy plays a vital role in information theory. The entropy of a random
variable is defined in terms of its probability distribution and can be shown to be a good measure of

randomness or uncertainty.

5.1 Shannon Entropy

Shannon entropy is defined to be

H[g(X;a,,0,2)]= E[-log(g(X; e, 5,0, 2))]. (5.1)

Taking the negative logarithm of the ELP pdf gives

—log[g(x)]=log {(69_%#} —(a-Dlog(l+ A+ Ax)+ (ix)ﬁ
~log| A1+ A+ Ax)(Ax)"" —a ] (5.2)

> 1_(1+/1+/1xj“ |
1+4

Note that, for |x|<1 , using the identity

k+1 k
log(1+x) = Z - l)k (5.3)
we have,
log[l+ A+ Ax] = i DA+ 0]
0]
(5.4)

0 0 1w+lﬂa) m
DRI

w=1m=0
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Also, using the above identity we have
log[ B(1+ A+ Ax)(Ax)"" —a |
= log [1 +{ B+ A+ Ax)(Ax)" = (1+ a)}}

D[ B+ A+ A0 —(+a) ||

a=1 a
_ ig[zj (1) (i ray a2 ] 65
w o b ab b b 2 (b
_ zz(z] (=)™ (1+a) : B (Ax) Z(h] 1+ 2 ()
) i i i [Z J (Zj D A+a) ™ B (1 A ¢ DB
a=1 b=0 h=0 a

Notice that

(1 + A+ Ax ) S _ i (=D (Ax)? (1+ A+ Ax)”
cl(1+ 1)~

B o ® ( 1) ﬂc/ﬁ-d cf+d
—ZZ( j cl(1+ 2)°

c=0 d=0

(5.6)

By using equation (5.1), the Shannon entropy is given by
Hlg(X)]= E[-log(g(X))]

o [ 1)(1+/1) } l)zz(mJ( M ACE(X™)

()]

FAE(X") - ii [aj(bJ( D' (14 @)™ AP (1 4 1y (5.7)

ot oo o \D )\ h a

oo & (6 ) () AT ELY )
i }—0{1—Zz[dj i+ 2 }

c=0 d=0

All the expected values can be obtained by substituting r=m,B,b(f-1)+h, and cf+d into

th

equation (3.4) which gives the »” moment.

5.2 Renyi Entropy

Renyi entropy is an extension of Shannon entropy. Renyi entropy is defined to be
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I,(v)= 1Llog(j:[gm(x;og, B, 0,1)]de), ye1v>0. (5.8)
-y

Renyi entropy tends to Shannon entropy as v — 1. Notice that

(1+2)* (e’ -

xe " exp {HV l:l - (—1 +j +1/”txj e }}
+

[g(x)]" = { o1 1)} 1+ A+ A" [ B+ A+ Ax)(Ax) " —a |

(5.9)

Consider

(HA+AX) ™[ BU+A+AX) ()" —a |

xe " exp {HV {1 - ( Hjiij Pl ]}

S () (=D (v ak+av-v
ZZ{;( J—j!(l )" (1+A+1x)

j=0 k

x[ B+ A+ AX)(Ax)" " —a | e (5.10)

()" (6v) (=a)"™"
B ZZ( j( j 1A+ 2™

J,k=0 m=0

XIBm (;{,x)m(ﬂ_l) [1 i l+ﬂx]ak+av+m—v e_(wj)(ﬂx)ﬂ

oIS ak+av+m—v)(-1)f (ev) (—a)'™
10 8 S

w

X(l + /fl)ak+av+m—v—Wﬁm (//Lx)m(,b’—lﬂwe—(v+_/’)(ﬁ.x)ﬂ

1

Let u=(v+ j)(Ax)’, then du=B(v+ j)A’x"'dx and x=—uf T
A(v+j)#
We have
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wamﬁ—nz+»ve—(v+_j)(lx)ﬂ dx mp—p—-m+w+l

1 IOO

=—| x

: B+ A7l
xe DA By 4 )AL dx

= ! (5.11)

mf+w-m+1

ﬂ/lmﬂ+w—m+1 (V"‘j) B

oo mPBtw-m+l -1
X .[ u * edu
0

mpB+w—m+1
F'C*=5)
mf+w—m+1

ﬂ/lmﬁ+w—m+l (V + ]) 7

Thus the Renyi entropy is given by

o o ® ; k _
L= ZSI e

(=D (0w (@)

j!
m—1 av+m—v—w mpf+w—m+1 5.12
BN 1+ 2) r{ﬁT} (5.12)

mp+w—m+1

AN+

X ¢ V v#L v>0
1+ -D| | ’ )

X

X

6. Maximum Likelihood Estimation

In this section, the maximum likelihood estimates of the ELP parameters 1,0, and fS are

presented. The log-likelihood, L, from the ELP distribution is given by
L =nlog(8)+nlog(1)—anlog(l+A)—nlog(e’ 1)

+(0!—l)ilog(1+l+lxi)+zn:10g[,3(l+/1+,1xl_)(ixl_)ﬂ—1 —a] 6.1)
—i(ﬂx)ﬁ +0i p(nﬂja o= |
i=1 l i=1 A+1

The partial derivatives of L with respect to the parameters 1,0, and g are:
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oL n ne’ 4 ax, \ 5
=_C_ WU [ g e 6.2
00 0 &' -1 Z[ ( z+1j ] 62)

—=-nlog(1+ )+ _log(1+ A+ Ax,)

i=1

=3 log[ A1+ A+ Ax)(Ax) —a] (6.3)

g 1+/1+/1x 1+ A+ Ax,
-0 —(4Ax;)? 1 L
z 144 o8 1+ 1

GL Z:(l+/1+/1x)(/1x)ﬂ'[[5’log(/1x)+1]
) ﬂ(l+l+lxi)(/1xi)ﬂ '—a

) (6.4)
-3 () log(Ax,) + 92[ “"J () e log(Ax),
-1 in1 +
and
8L n u 1+x, u
- Y A
A A 1+ A )Zl+/1+/1 h Zx
n 1+ A+ Ax)—x |(Ax)2

= B+ A+Ax)Ax)  —a  (1+A)"

Y x(1+ A+ Ax,) " e [ B+ A+ Ax)(Ax,)"! _%}
+

i=l1

The maximum likelihood estimates, A of A=(a,pB,A,0) are obtained by solving the nonlinear

equations £2-=0, g—2=0, £=0 and & =0, where /=Y L. These equations are not in closed

form and must be solved via iterative methods such as Newton-Raphson method.

6.1 Fisher Information Matrix

A measure of the amount of information is presented in this section. This is the information that cab
be used when obtaining bounds on the variance of estimators and as well as approximate the sampling
distribution of an estimator obtained from a large sample. We can also use it to obtain an approximate

confidence interval in the case of large sample.

Let X be a random variable with the ELP pdf f, ,(sA), where A=(5,6,,5,,0,) =(a,3,2,0)".

Then, Fisher information matrix (FIM) is the 4x4 symmetric matrix with elements:
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o3, a5,

1

L)<, {8log(f5u> (X:A)) dlog( fr (X A))}

If the density f,,(;A) has a second derivative of all i and j, then an alternative expression for

I;(A) is

Since all second derivatives exist for the ELP; the formula above is therefore appropriate and

significantly simplifies the computations. Elements of the FIM can be numerically obtained by MATLAB

or MAPLE software. The total FIM I (A) can be approximated by

_82 logL

J (A) =
L (A) 2505

(6.6)

A=A l4x4
For real data, the matrix given in Equation (6.6) is obtained after the convergence of the

Newton-Raphson procedure in MATLAB or R software.
6.2 Asymptotic Confidence Intervals

In this section, we present the asymptotic confidence intervals for the parameters of the ELP
distribution. Let A=(d,/,1,0) be the maximum likelihood estimate of A=(a,f,A,0). Under the
usual regularity conditions and that the parameters are in the interior of the parameter space, but not on the

R d
boundary, we have: </n(A—A)—N,(0,17'(A)), where I(A) is the expected Fisher information matrix.

The asymptotic behavior is still valid if 7(A) is replaced by the observed information matrix evaluated at

A, that is J(A). The multivariate normal distribution N,(0,J(A)"), where the mean vector

0=(0,0,0,0)", can be used to construct confidence intervals and confidence regions for the individual

model parameters. That is, the approximate 100(1-7)% two-sided confidence intervals for a, £, 4

and @ are given by:

QrZ LAY, BrZIL(A), A£Z,IX(A), and 0+Z,\I (D),

2



An Extended Lindley Poisson Distribution with Applications 187

respectively, where 7% (A), I,,(A), I,,(A), and I,(a) are the diagonal elements of 7.'(A), and Z,

. h . C
is the upper %t percentile of a standard normal distribution.

The likelihood ratio (LR) test can be used to compare the fit of the ELP distribution with its

sub-models for a given data set. In fact, to test a=p4=1, the LR test statistic
® =2[In L(a, ,B,/i,é)—lnL(l,l,i,é)], where &,53,4, and @ are the unrestricted estimates, whereas A

and @ are the restricted estimates is used. This can be used to compare the EL distribution to the ELP

distribution. The LR test rejects the null hypothesis #, if 1> ;(j , where ;(j denotes the upper 1007%

point of the z* distribution with 1 degree of freedom.

7. Simulation Study

In this section, we study the performance and accuracy of maximum likelihood estimates of the ELP
model parameters by conducting various simulations for different sample sizes and different parameter
values. Equation (2.3) is used to generate random data from the ELP distribution. The simulation study is
repeated for N =5,000 times each with sample size n =25, 50, 150, 300, 500 and parameter values
I: a=05 p=10, 6=05 A=10 and II : a=-0.5 =10, =0.5, A1 =0.3. Three quantities

are computed in this simulation study.

(a) Average bias of the MLE @ of the parameter §=q, B0, :

1 .
Ng(g—g).

(b) Root mean squared error (RMSE) of the MLE ¢ of the parameter 9=a,f,0,A :

/1 Noa
ﬁ;(s—m .

(c) Average width (AW) of 95% confidence intervals of the parameter 3=«, 3,0,4 .
Table (7.1) presents the Average Bias, RMSE and AW values of the parameters o, 3,0 and A for
different sample sizes. From the results, we can verify that as the sample size n increases, the RMSEs

decay toward zero. We also observe that for all the parametric values, the biases decrease as the sample



188 An Extended Lindley Poisson Distribution with Applications

size n increases. Also, the table shows that the average confidence widths decrease as the sample size

increases.
Table 7.1. Monte Carlo Simulation Results: Average Bias, RMSE and AW
1 11

Parameter 1 Average Bias RMSE AW Average Bias RMSE AW
(Y 25 -0.57384 2.18048 23.96995 -0.54284 2.21185 15. 79877
50 -0.36661 1.94933 17.28701 -0.49208 1.99506 12.79267
150 -0.28249 1.87608 11.04948 -0.11091 1.86883 10.51284
300 -0.23816 1.71440 8.18401 -0.08676 1.78080 9.31420
500 -0.18954 1.35800 6G.28867 -0.03757 1.62068 7.84569
3 25 0.64174 410281 4.15241 0.57529 4.24467 4.11420
50 0.10856 1.87325 1.93061 0.42333 2.37828 2.18112
150 -0.07511 0.37447 0.91812 -0.11326 0.69649 1.21709
300 -0.06785 0.15346 0.69016 -0.10654 0.26227 0.89936
500 -0.05072 0.11324 0.54766 -0.08277 0.16863 0.75821
7] 25 1.10609 2.04620 11.64127 2.73492 17.45171 34.44374
50 1.05417 1.76991 9.03825 1.61995 4.00652 12.65466
150 0.85854  1.34670 6.90524 1.09477 1.88143 T.82394
300 0.69699 1.18122 5.70376 0.81511 1.4877 5.88105
500 0.55262 1.00443 4.91740 0.62459 1.20327 4.65968
A 25 0.46270 3.63233 18.69358 4.18358 81.68417 109.27790
50 0.43782 1.33186 10.02093 0.80594 8.35183 9.61811
150 0.37098 0.73324 5.51393 0.37230 0.84799 3.26208
300 0.29883 0.65441 3.81555 0.24081 0.61491 1.97089
500 0.21108 0.53428 2.7T6988 0.15427 0.48389 1.29659

8. Application

In this section, we demonstrate the usefulness of the ELP model by fitting some real data set. We fit
the density functions of the extended Lindley (EL) [2], exponentiated Weibull Poisson (EWP) [12],
Weibull-Poisson (WP) [14], exponential Poisson (EP) [23] and Kumaraswamy Weibull (KW) [6]
distributions. Notice that the WP and EP distributions are submodels of the ELP distribution. The density

functions of the EWP and KW distributions are respectively given by

a o=l " o, A LA
fEWP(x):Me—(ﬂx) [l—e"ﬂ” J exp{é’[l—e(ﬁx) } }’ 8.1)

e’ -1

where «a,,4,60>0,

and
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b-1

Siow (X) = abaOx’ e [1 —e T_l [1 — (1 e )a } , (8.2)

for x>0,a>0,0>0,a>0,b>0.

Estimates of the parameters of the distributions, standard errors (in parentheses), Akaike Information

Criterion (AIC), Consistent Akaike Information Criterion (AICC) and Bayesian Information Criterion

( BIC = plog(n)—2log(L)), where L=L(A) is the value of the likelihood function evaluated at the

parameter estimates, n is the number of observations, and p is the number of estimated parameters are
obtained. The goodness-of-fit statistics: Cramer von Mises ("), Anderson-Darling (4"), which are

described in detail by Chen and Balakrishnan [4] and sum of squares (SS) from the probability plots for

the data sets are presented.

Plots of the fitted densities, the histogram of these data and probability plots according to Chambers

[3] are presented in Figure 9.1 and Figure 9.2. For the probability plot, we plotted G, (x4, ﬁ,i,é)

against M,J'ZL 2,---,n, where x

035 ., are the ordered values of the observed data.
n+0.

The data set represents the remission times (in months) of a random sample of 128 bladder cancer

patients reported in [13]. The data is given in the table below.

Table 8.1. Bladder Cancer Patients Data

0.08 2.09 3.48 4.87 6.94 5.66 13.11 23.63 0.20 2.23 52 4198 6.97
9.02 1329 0.40 2.26 3.57 5.06 7.09 9.22 13.80 25.74 50 2.46 3.64
5.09 7.26 9.47 14.24 2582 0.51 2.54 3.70 517 T.28 74 14.76  26.31
0.81 2.62 3.82 5.32 7.32 10.06 14.77 3215 2.64 3.88 32 7.39 10.34
14.83 34.26 0.90 2.69 4.18 5.34 7.59 10.66 15.96 36.66 05 2.69 4.23

5.41 T.62 10.75  16.62 43.01 1.19 2.75 4.26 5.41 T.63
2.83 4.33 5.49 7.66 11.25 17.14 79.05 1.35 2.87 5.62
1.40 3.02 4.34 5.71 7.93 11.79 18.10 1.46 4.40 5.85
1.76 3.25 4.50 6.25 8.37 12.02  2.02 3.31 4.51 6.54
2.02 3.36 6.76 12.07 21.73 2.07 3.36 6.93 8.65 12.63

46.12 1.26
11.64 17.36
11.98 19.13
12.03 20.28

N mnoon = e
15000 G o o
CTho 00 L
=R

o
]
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Table 8.2. Estimates From Bladder Cancer Patients Data

Estimates Statistics

Model & 8 A 6 —2lgL AIC AICC BIC 8§  A* W

ELP -1.2482 05268 02020 52553 8189 8269 827.3 8383 001217 00839 0.0134
(16972) (0.1801) (0.2442) (1.8322)

WP 0 05008 08320 71205 8106 8256 825.8 8341 0.01921 01424 0.0221
- (0.07813) (0.4503)  (2.2962)

EP 0 1 01113 01603 8286 8326 8327 8383 0.01921 07669 0.1283
- (0.0226)  (0.7187)

EL 20287 12242 (0.0445 : 827.1 8331 8333 SALT 017540 0.5241 0.0863

(4.0477)  (0.2637)  (0.0569)
EWP 04307  1.9961 34083 41423 8189 8269 8272 8383 0.01480 0.1166 0.0178
(0.1060) (2.4950) (3.4097)  (2.2430)
i g a b
KW 05305 04011 47755 42949 8212 8292 R829.5 840.6 0.03398 02766 0.0422

(0.8797)  (0.7793)  (11.5400) (20.0657)

For the bladder cancer patients data, the LR test statistic for the hypothesis H, : WP(0,,1,0)
against H_ : ELP(a,f3,4,0), is ®=819.6-818.9=0.7. The p-value is 0.4028 >0.05. We therefore
fail to reject H, and conclude that there is no significant difference between ELP and WP distributions
for this data set. When o =0 and =0, ELP distribution becomes EP distribution. We can test H:
EP(0,1,4,0) against H_: ELP(a,f,4,0), to obtain ®=828.6-818.9=9.7. The p-value is

7.83x107° < 0.05. We reject the null hypothesis of EP distribution and conclude that the ELP distribution

is significantly better than the EP distribution. When the ELP distribution is compared to other 4 parameter

models such as the EWP and KW, it proves to be superior to both of them based on the SS, 4" and W~
values. The ELP yields the smallest values among the 3 models with 4 parameters. The probability plot

shows the ELP distributions is a better fit as compared to all the other models.
The asymptotic covariance matrix of the MLEs of the ELP model parameters, which is the inverse of

the observed Fisher information matrix, FIM, I;I(A) , is given by
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2.8806 0.1966 0.3974 1.0635
0.1966 0.0324 0.0186 —0.1334
0.3974 0.0186 0.0596 0.2609
1.0635 -0.1334 0.2609 3.3568

and the 95% two-sided asymptotic confidence intervals for «,B8,4 and @ are given by
—1.2482+3.3266,0.5268 +.3528,0.2020+£0.4785, and 5.2553+3.5910, respectively. Plots of the fitted

densities and histogram, observed probability versus predicted probability for the bladder cancer patients

data are shown in the figures below.

Fitted Densities for Bladder Cancer Data
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Table 8.3. Estimates From Bladder Cancer Patients Data
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The Graph of Observed vs Expected Probability
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Figure 8.2. Graph of Observed vs Expected Probability for Bladder Cancer Data

9. Concluding Remarks

We have proposed and presented results on a new class of distributions called the extended Lindley
Poisson distribution which is a generalization of the extended Lindley distribution. This class of
distributions has applications in lifetime data analysis. Properties of this class of distributions including
moments, hazard function, reverse hazard function, quantile function, income inequality measures such as
Lorenz and Bonferroni curves are derived. Renyi entropy, order statistics, mean and median deviations are

presented. Estimation of the parameters of the models and an application are also given.
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R algorithms

In this section, the R codes to compute cdf, pdf, moments, Renyi entropy, mean deviations, maximum

likelihood estimates and variance-covariance matrix for the ELP distribution are presented.

#Define the pdf of ELP distribution

fl=function (X, alpha, beta, theta, lambda ){theta*lambda*
(1+lambda+lambda*x )*( alpha-1)*exp(-(lambda*x)"beta)
*exp(theta*(1-((1+lambda+lambda*x)/(1+lambda))
~alpha*exp(-(lambda*x )"beta)))*(alpha-beta*lambda”(beta-1)*x"(beta-1)
*(lambda+1)-beta*lambda”(beta )*x”beta)
/((1-exp(theta))*(1+lambda)”alpha)

y=integrate(f, lower=0, upper=Inf, subdivisions=100,

alpha=alpha, beta=beta, theta=theta, lambda=lambda)

return (y )

}

#Define the cdf of ELP distribution

Fl1=function (x, alpha, beta, theta, lambda){
y=(1-exp(theta*(1-(((1+lambda+tlambda*x)/
(1+lambda))”~alpha)*exp(-( lambda*x)"beta))))/(1-exp(theta))
return(y)

}

#Define the moments of ELP distribution
moment=function (alpha, beta, theta, lambda, r){

f=function (x, alpha, beta, theta, lambda, r)
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f(x*r)*(f1(x, alpha, beta, theta, lambda))}
y=integrate(f, lower=0, upper=Inf, subdivisions=100, alpha=alpha
, beta=beta, theta=theta, lambda=lambda, r=r)

return (y)

}

#Define the quantile of ELP distribution

quantile=function (alpha, beta, theta, lambda, u){

f=function (x)f(1-exp(theta*(1-(((1+lambda+lambda*x)
/(1+lambda))*alpha)*exp(-(lambda*x)"beta))))/(1-exp(theta))-u}
rc<-uniroot (f, lower=0, upper=100, tol=1e-9)

result=rc$root

#check

error=F1(result, alpha, beta, theta, lambda)-u

return(list("result"=result, "error"=error))

}

#Define Mean Deviation about the mean of ELP distribution
DU=function (alpha, beta, theta, lambda){

mu=moment (alpha, beta, theta, lambda, 1) $ value
f=function (x, alpha, beta, theta, lambda )

f(abs(x-mu)*f1(x, alpha, beta, theta, lambda)}

y=integrate (f, lower=0,upper=Inf, subdivisions=100

, alpha=alpha, beta=beta, theta=theta, lambda=lambda )

return (y)

}
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#Define Mean Deviation about the median of ELP distribution
DM-=function(alpha, beta, theta, lambda){

M=median (c(X)) #X is the data set

f=function (x, alpha, beta, theta, lambda)

f(abs(x-M)*f1(x, alpha, beta, theta, lambda)}

y=integrate (f, lower=0, upper=Inf, subdivisions=100

, alpha=alpha, beta=beta, the ta=theta, lambda=lambda)

return (y)

}

Define the Renyient ropy of ELP distribution
t=function (alpha, beta, theta, lambda, v){

f=function (x, alpha, beta, theta, lambda, v)

f(fl (x, alpha, beta, theta, lambda))"(v)}

y=integrate (f, lower=0, upper=Inf, subdivisions=100
, alpha=alpha, beta=beta, theta=theta, lambda=lambda) $ value
return (y)

}

Renyi=function (alpha, beta, theta, lambda, v){
y=log (t(alpha, beta, theta, lambd, v))/(1-v )

return (y)

}

#Calculate the maximum likelihood estimators
#of ELP distribution
library ('bbmle")

xvec<-c¢(X) #X is the data set
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In<-function (alpha, beta, theta, lambd){
-sum(log(theta*lambda*(1+lambda+lambda*x )
"(alpha-1)*exp(-(lambda*x)"beta)*exp (theta*
(1-((1+lambda-+lambda*x)/(1+lambda))"alpha*
exp(-(lambda*x)"beta)))*(alpha-beta*lambda”
(beta-1)*x"(beta-1)*(lambda+1)-beta*lambda”(beta)
*x"beta)/((1-exp(theta))*(1+lambda)”alpha)))

h

mle.results1<-mle2(lIn, start=list (alpha=alpha, beta=beta
, theta=theta, lambda=lambda), hessian. opt=TRUE)

summary(mle. results1)

# Variance-covariance matrx of ELP distribution

vcov (mle. results1)
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