View metadata, citation and similar papers at core.ac.uk brought to you by X{'CORE

provided by Georgia Southern University: Digital Commons@Georgia Southern

Georgia Southern University

Digital Commons@Georgia Southern

Mathematical Sciences Faculty Publications Mathematical Sciences, Department of

4-1-2012

Generalized Borcea-Voisin Construction

Jimmy Dillies
Georgia Southern University, jdillies@georgiasouthern.edu

Follow this and additional works at: https://digitalcommons.georgiasouthern.edu/math-sci-facpubs
b Part of the Mathematics Commons

Recommended Citation

Jimmy Dillies. "Generalized Borcea-Voisin Construction” Letters in Mathematical Physics 100.1 (2012): 77-96.
doi:10.1007/s11005-011-0528-3

source:http://arxiv.org/abs/1008.2207

Available at: http://works.bepress.com/jimmy_dillies/2

This article is brought to you for free and open access by the Mathematical Sciences, Department of at Digital Commons@Georgia Southern. It has
been accepted for inclusion in Mathematical Sciences Faculty Publications by an authorized administrator of Digital Commons@Georgia Southern.

For more information, please contact digitalcommons@georgiasouthern.edu.


https://core.ac.uk/display/229105465?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://digitalcommons.georgiasouthern.edu?utm_source=digitalcommons.georgiasouthern.edu%2Fmath-sci-facpubs%2F475&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.georgiasouthern.edu/math-sci-facpubs?utm_source=digitalcommons.georgiasouthern.edu%2Fmath-sci-facpubs%2F475&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.georgiasouthern.edu/math-sci?utm_source=digitalcommons.georgiasouthern.edu%2Fmath-sci-facpubs%2F475&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.georgiasouthern.edu/math-sci-facpubs?utm_source=digitalcommons.georgiasouthern.edu%2Fmath-sci-facpubs%2F475&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/174?utm_source=digitalcommons.georgiasouthern.edu%2Fmath-sci-facpubs%2F475&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@georgiasouthern.edu

1008.2207v2 [math.AG] 14 Jul 2011

arxiv

GENERALIZED BORCEA-VOISIN CONSTRUCTION

JIMMY DILLIES

ABSTRACT. C. Voisin and C. Borcea have constructed mirror pairs of families of Calabi-Yau
threefolds by taking the quotient of the product of an elliptic curve with a K3 surface endowed
with a non-symplectic involution. In this paper, we generalize the construction of Borcea and
Voisin to any prime order and build three and four dimensional Calabi-Yau orbifolds. We classify
the topological types that are obtained and show that, in dimension 4, orbifolds built with an
involution admit a crepant resolution and come in topological mirror pairs. We show that for odd
primes, there are generically no minimal resolutions and the mirror pairing is lost.
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1. INTRODUCTION

The first family of mirror varieties which were neither toric, nor complete intersections, was

introduced independently by Borcea [5] and Voisin [24]. They construct Calabi-Yau threefolds and
fourfolds by taking the quotient by an appropriate involution of the product of lower dimensional
Calabi-Yau varieties (with Z/27Z symmetry, or larger symmetry in the case of Borcea). Their
construction and the closedness under ther mirror map of the manifolds they build, rely on the
duality between K3 surfaces endowed with a non-symplectic involution, which was discovered by
Nikulin [16].
The Borcea-Voisin construction is actually similar to the one of Vafa and Witten [23] who take the
quotient of the product of three tori by a group of automorphisms which preserve the volume form
to study interesting physical models. In both cases, the procedure consists of taking as building
blocks varieties X1, ..., X,, each endowed with a unique volume form, and then taking the quotient
of their product by some subgroup of the product of automorphism groups consisting of symmetries
preserving the total volume form. This approach has given rise to semi-realistic heterotic models
whose study was pioneered by Dixon, Harvey, Vafa and Witten in [10]. All possible varieties
obtained as quotients of products of tori were classified by Donagi and Faraggi [11], Donagi and
Wendland [12], and Dillies [9].

2000 Mathematics Subject Classification. Primary 14J38; Secondary 14J32, 14J30, 14J35 .
Key words and phrases. Calabi-Yau, Borcea-Voisin construction, non-symplectic automorphism.
The author would like to thank Professor Ron Donagi for informing him of the existence of references [4] and [19],
Max Pumperla for pointing out a typo in an earlier version and the anonymous referees for thoughtful suggestions.
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In this paper, we study and classify the Calabi-Yaus obtained through the construction of Borcea
and Voisin in two directions. First, we allow cyclic groups of arbitrary prime order, that is, any
prime less than or equal to 19, as shown in [16]. Second, we construct both three and fourfolds. Our
aim is, first, to find new mirror manifolds, second, to illustrate what could go wrong in constructing
mirror maps when using higher order automorphisms.

Note that some of the examples which appear in our classification were known before. For
example, Borcea [5, 6] constructs several examples of Calabi-Yau varieties in higher dimension. In
[1], Mitsuko and Masamichi consider threefolds and fourfolds which can be studied through toric
geometry. They obtain a small subset of the classification which we obtain hereunder. Cynk and
Hulek [8] construct and study examples of threefolds and fourfolds using involutions and higher
order automorphisms and prove modularity for classes with complex multiplication. In [21], Rohde
studies, among others, Calabi-Yau threefolds obtained by taking the quotient of the product of an
elliptic curve and a K3 surface by an automorphism of order 3 fixing only points or rational curves
on the K3 surface. Garbagnati and van Geemen [14] study explicitly the Picard-Fuchs equation
of a certain familiy constructed by Rohde. Finally, in [13], Garbagnati constructs examples of
Calabi-Yau threefolds by using automorphisms of order 4.

2. PLAN

After giving a brief description of the notation in Section 3, we will start by an overview of
the results in Section 4. In Section 5, we describe the generalized construction of Borcea-Voisin
orbifolds. In Section 6, we compute the orbifold cohomology of our varieties and in Section 7
we list all possible topological types of Borcea-Voisin spaces which we obtain and describe their
fundamental group. Finally, in Section 8, we discuss how much of the mirror map established for
Borcea-Voisin threefolds in [6, 24] remains true for our construction.

The appendix synthesizes the results about non-symplectic automorphisms of prime order on K3
surfaces which are needed for the classification.

3. NOTATION

In this paper, we will denote by X the product of the Calabi-Yau manifolds X; and X5. The
surface X; is endowed with a non-symplectic automorphism p; of order p that fixes a curve of
genus ¢, l; rational curves, and p; isolated points.!. These points will be further characterized by
the linearized form of p along their tangent space. We will call n; the number of points of type
%(z’ +1,p—1). Each surface X; will be characterized by a triple (p,r;, a;) where p is the order of the

non-symplectic automorphism p;, r; the rank of the invariant part S of H?(X;) and det(S) = p%.

Moreover, A; will be a shorthand notation for 23:?. Also, at times, we will use the symbol « as
defined in [3] or in Table 3.
4. RESULTS

Using the recent classification of non-symplectic automorphisms of prime order on K3 surfaces
(see [3], or Appendix A for a working synopsis) we construct families of generalized Calabi-Yau
orbifolds in dimensions 3 and 4. We classify all topological families and see that for p odd, distinct
pairs of K3 surfaces yield distinct Calabi-Yau orbifolds.

In dimension 4, the family attached to the prime 2 consists of orbifolds admitting crepant resolutions
and the set of Calabi-Yau manifolds which we obtain is closed under the topological mirror map,
i.e. for each X in our family, there exists another variety X such that h?4(X) = h?P4(X).

1 g% When a K3 surface has no fixed points, we will set g = 0 and, following the convention of [3], [ = —1.
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For the other primes, we show that except in two cases, there is no crepant resolution, and that
these Calabi-Yau orbifolds do not come in mirror pairs.

5. CONSTRUCTION

Consider two pairs (X7, p1) and (X2, p2) each consisting of a Calabi-Yau manifold and a primitive
non-symplectic automorphism of order p. Pick a volume form w; on each surface. Without loss
of generality, we can assume that the characters induced by the action on the volume forms are
identical, i.e. pjwi = (w1 and pswe = (pwo, for the same p™ root of unity Cp- On the product
variety X = X1 x Xo, we get an induced action of Z/pZ x Z/pZ and a character map

X Z/PZ x Z/pZ — C* : (pl, ph) > G
which determines the action on the volume form of X. Let G = Z/pZ be the kernel of .

Definition 5.1. Given two pairs (X1, p1) and (X2, p2) as above, we call X/G the associated Borcea-

—~—

Voisin orbifold. If a crepant resolution X/G of the quotient exists, we call it the associated Borcea-
Voisin manifold.

The case where p = 2, dim X; = 1 and dim X5 = 2 is the classical Borcea-Voisin construction.
Note that since G consists of automorphisms preserving the volume form of the product, the
quotient still has a volume form. Moreover, all singularities are Gorenstein, thus, by the work of
Roan [20], we can conclude that if the codimension of each component of the fixed locus of (p1, p2)
has codimension strictly less than 4, then such a resolution exists. In particular, this is the case
when dim X < 3.

6. ORBIFOLD COHOMOLOGY

We start from the orbifold cohomology formula of Chen and Ruan [7]

(6.1) Ho(X/G) = @ @) Hrronenn) (n)C
g€Conj(G) AeP(g)

where ®(g) is the set of irreducible components fixed by g, and (g, A) is the age of g at a point of
A. Since the group G is cyclic of prime order, we can pick a generator vy and the formula simplifies
to

p—1 _ .
Hop (X/Q) = B (X)T @ D a0 0D @),
AED(v) i=1

To linearize the notation we will make use of Hodge polynomials, i.e. h(X)(s,t) is an integral
polynomial whose coefficient of bi-degree (i, j) is the dimension dim H*7(X). Hence, what we need
to determine, for each orbifold X, is the following Hodge polynomial:

p—1 _
(6.2) ho (X/G)(s5,) = W(X)% (s,6) + > > (st)" 0N (A) (s,1).

A€®(y) =1

In the following sections we will compute individually each summand. We will start by the invariant

part and then focus on the contribution coming from the fixed components together with their

associated weight (st)”WvA). Fixed components will be separated according to their codimension.
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6.1. G-invariant part.

Lemma 6.1. Given p, assume that the K3 surface X; is defined by the pair (r;,a;) and let
\i = 25:{”. If X; is an elliptic curve, p € {2,3} and X; is unique.
o When both X;’s are K3 surfaces, the G-invariant part, h(X)%(s,t), decomposes as
(6.3)

1+ (st) st (stP +15%) (A + Ao —2) + (st+(st)3) (11 +79) + (1) 2(4—2( M + X))+ 712+ (p—1) A A2)

when p is odd, and as
(6.4) 14(st) 51+t 4+ (st34+153) (A +do—4) +(st+(s51)>) (r14+72) +(51)2(8—2( A1 +A2) +7r1m9+ A Ag)

when p = 2.
o When Xy is a K3 surface and X is an elliptic curve, the G-invariant part, h(X)%(s,t),
decomposes as

(6.5) L+ (st)> 4+ 53+ 13+ (r + 1) (st + (s)?) + (A — 1)(st? + s%t).

Proof. By Kiinneth’s formula one can decompose the G-invariant cohomology of X as

[y

h(X)%(s,1) = > h(XD)[G(s,8) x h(X2)[G] (s,t)
where H(X;)[(] is the ( eigenspace associated to the action of G; = Z/pZ, generated by p;. When
X; is a K3 surface, we define \; ; = dim(H > (X;) N H(Xi)[gf]). Since the trace of (* is integral, we
conclude that for £ > 0, \j1 =--- = Xjp_1 = \j = 25:{”. Therefore, if p > 2,

L h(X3)[1(s,t) = (1+ (st)?) + st

2. h(X)[C](s,t) = h(X;)[CPY(t, ) = s% + (\; — 1)st, and

3. h(X)[CY(s,t) = Nist for 2 < £ < p—2
while, if p =2

L h(X;)[1(s,t) = (1 + (st)?) + ryst,

2. h(X;)[—1](s,t) = h(X)[CPY(t,s) = 82 + (\; — 2)st + 2.
When X; is an elliptic curve, we only need to deal with p = 3 as this is the only possible prime
order of complex multiplication besides 2. In that case,

1. h(X;)[1](s,t) = 1+ st,

2. W(X)[C](s.t) = h(X)[CP(t,s) = 5.

The final result follows from a direct computation. O

k=3

Il
o

6.2. Contribution of fixed locus. Since the codimension of the fixed locus contributes to a
difference in grading in the contribution to cohomology, we will split the fixed locus accordingly.
For threefolds, we will have codimension 2 and 3 fixed loci and for fourfolds, we will have fixed loci
of codimension 2,3 or 4. Before we proceed with our analysis, we will begin by a short study of the
possible ages along the fixed components.

6.2.1. Preamble on age. Let p be an automorphism of X which fixes a point P. If we diagonalize
the linearization of the action of p at P as

e27rik1 0 0



with 0 < k; < 1, then we define the age of p along the fixed component A containing P as

k(p,A) = Z k;.
i=1

Lemma 6.2. The age of an element and its inverse at a given point are related by r(p, A) +
k(p~t, A) = codim(A, X).

Proof. If p linearizes to diag(1,...,1, e2mikiv1 ,62”““”), then, with respect to the same basis, p~!

takes the form diag(1,...,1, e2mil=kjt1) ,ezm(l_k”)), where j = dim(A) and k; > 0 for [ > 5. O

Corollary 6.3. Let G be a group acting faithfully on a manifold X of dimension n > 3, and whose
tangent action at a fived point lies in the special linear group. Take g an element different from the
identity, and A an irreducible component of the fized locus of g. We have:

1. k(g,A) =1 if A is of codimension 2.

2. k(g,N) € {1,2} if A is of codimension 3.

3. k(g,A) € {1,2,3} if A is of codimension 4.

Proof. Note that when g € G is a finite subgroup of SL, the age of g is an integer. Since g is
different from the identity and the action is faithful, x(g,.) > 1. The rest follows from the previous
lemma. ]

6.3. Threefolds. Given that the only possible prime orders for complex multiplication are 2 and 3,
in this section we will only make use of K3 surfaces endowed with non-symplectic automorphisms of
order 3. Also recall that an elliptic curve with complex multiplication of order 3 is defined uniquely.
Moreover, the automorphism fixes 3 isolated points.

6.3.1. Codimension 2.
Lemma 6.4. The contribution to the cohomology from the fized curves on X is
(6.6) h(S)(s,t) =3((1+st)(l1 + 1)+ (s+1t)g1)

Proof. We know from [2] that for p = 3 there is at most one curve of non-zero genus. Recalling
that there are 3 fixed points on the elliptic curve, the result is immediate. O

From Lemma 6.2, we know that the age of any element along a fixed curve is 1 and this polynomial
is thus weighted by (p — 1)st.

6.3.2. Codimension 3. In this case, we are dealing with points and the Hodge polynomial for each
fixed point is equal to 1. Counting them all, we get a contribution of

h(P)(s,t) = 3p1.

Moreover, since we are in codimension 3, Lemma 6.2 tells us that if an element has age 1 at a point
P, its inverse will have age 2. The weight of the contribution of the fixed points is thus
st + (st)?

(bh—1)—

6.4. Fourfolds.



6.4.1. Codimension 2. The dimension 2 part of the fixed locus on X consists of the product of
the fixed curves on each X;. The fixed curves on X; have as total Hodge polynomial h(C;)(s,t) =
(14 st)(l; + 1)+ (s +t)(g;). From Kiinneth’s formula we get directly:

Lemma 6.5. The contribution to the cohomology from the fized surfaces on X is
(6.7)
h(S)(s,t) = (1+(st)?)(l1+1) (la+1)+(s+t+s2t+28) [(14+11) ga+ (1+19) g1 ] +2st[(14+11) (14+12) + g1 g2].-

Moreover, we know from Corollary 6.3 that x(.,S) is identically equal to 1 and thus the above
polynomial is weighted by (p — 1)(st).

6.4.2. Codimension 3.
Lemma 6.6. The contribution to the cohomology from the fized curves on X is

(6.8) h(S)(s,t) = (1 +st) ((I1 + V)p2 + (2 + 1)p1) + (s + 1) (9102 + g2p1) -

Proof. The result follows once again from Kiinneth’s formula:

2

h(C)(S,t) = Zh(cz)(s’t) X h(P3—i)(Svt)'

i=1
O

Since x(g,C) = 3—x(g~",C) (Corollary 6.3), the above polynomial is weighted by (p—l)M.

6.4.3. Codimension 4. In this case, we are dealing with points and the Hodge polynomial for each
fixed point is trivial:

h(P)(s,t) = 1.

On the other hand, it is not automatic to deduce the weight coming from the age of the powers of
the generator at a given point. In this section, given a variety X, we will determine the integers
N;(p), which are the number of times a power of the group generator has an age of i € {1,2,3} at
an isolated fixed point. The contribution to the cohomology will then be of

3

(6.9) > Ni(p)(st)'.

i=1

From Lemma 6.2 and Corollary 6.3, we know that we only need to determine the number of times
a point comes with a shift of 2. Indeed, we have the relations

Ni(p) = Ns(p)

and
ZNi(p) = (p — 1) x #{fixed points}.

Lemma 6.7. The number of shifts of 2 given by powers of a generator v at a fixed point of X of
type %(Ch +1,—q1) % %(qz + 1, —q2) is given by the entry (q1,q2) of the matriz Pa(p):

6 4 4
Pa(3) = (2), 772(5)=<;L Z) Po(7) = i (23 2

6
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Proof. The computations are long and tedious but trivial. For example, one can notice that along
a diagonal, an element will always have a linearization of the form (n; +1,p —n;,p —n; —1,n;) and
that the age will always be 2. Therefore, any element different from the identity in G will have the
same age at such a point. O

Definition 6.8. Given a non-symplectic automorphism of order p acting on a K38 surface defined
by the pair (r,a), we define vy(r) to be the % dimensional Tow vector of natural numbers whose
it™" entry is the number of fized points of type %(z +1,—1).

This vector can be read from Table 3 in the Appendix. Given Pa(p) and wvy(r;), it is easy to
determine the number of times an element acts at a fixed point of X with a given age:

Lemma 6.9. The number of shifts by 2 is equal to
No(p) = v (r1)Pa(p)vp (r2)’
Let «; be as in Table 3. We obtain as a direct consequence:

Corollary 6.10. Given a pair of K3 surfaces defined by (ri,a1) and (rq,a2), we define «; as in
Table 2. The number of shifts by 2 on the product is

7. TOPOLOGICAL TYPES

In this section, we give the Hodge diamonds of the generalized Borcea-Voisin orbifolds. We write
down a formula for the Euler characteristic and give the range of values that are taken. All possible
values that can be taken for (r1,a;) and (72, az) are listed in Appendix A.

7.1. Dimension 3.



p Na(p) 2N1(p) = 2N3(p)

3 2(0[1 + 3)(0&2 + 3) 0

5 281 o + 38y + 38as + 52 8ayavg + 101 + 100y + 12
7 1101 g + 701 + 70cs + 46 20y + 8 + 4001 avg + 200y
11 36 + 138as + 1381 + 5700 o 4 4+ 4209 + 4201 + 24001 oy

13 28 — 1540[2 — 154041 + 10120&10&2 20 — 1100[2 — 1100&1 + 4400[1042
17 248001 g + 11502 + 11501 4+ 536 530ae + 11201 g + 5300y + 248
19 314 4 1054 + 1054cn + 357001 v 476001 + 4762 + 136 + 1632001 cvg

TABLE 1. Number of isolated points with an action of a given weight.

7.1.1. Order 3.
1 0 0 1
i1i— 0 7+4r—3a 43—2r—3a O
i—1,7—1 _
(WX G)) ot caimx 1 = | 0 43— 27 —3a T+dr—3a 0
1 0 0 1
x=-T2+12r
7.2. Dimension 4. The Hodge diamond of the Borcea-Voisin orbifold has the form
10 0 01
0 a d e O
0 d b do
0 e da O
10 0 0 1

where a, ..., f are defined below:

7.2.1. Order 2. For p = 2, unless (r;,a;) = (10, 10) for either value of ¢, then
rir2  Triag  airy | aiaz | 3ri ap | 3rz  ap

4 4 4 4 2 2 2 2
= 648 + ajay — 30ry — 3011 — 12a9 — 12a1 + 3rira
d = 22— % + _a12a2 + 5ry — 6ag + 511 — 6ay
riaz ajazx  Tire  aire  13rg 13r; 1la;  1lag
= 161 _ _
‘ Ol =+ 1 2 2 2 2

X = 888 — 60ry — 6071 + 67172
Moreover, —92 < y < 888 and the smallest values of x in absolute value are —6, 0 and 18.

a = 1+

Remark. For p = 2, we have two special cases which correspond to either (r;,a;) being either
equal to (10,8) or (10, 10).
1. If (r1,a1) = (10, 10), then S = U(2) @ Es(2) and the automorphism acts without fixed points.
In that case, only the first summand in Formula 6.2 contributes to the cohomology, and the
Hodge diamond simplifies to

1 0 0 0
0 10+ 0 30—r72
0 0 204 0

0 30—m 0 10+ 172
1 0 0 0
8

_ o O O =



X = 288
Note that in this case, when ry = 10, the Hodge diamond is completely symmetric and the
mirror pairing is preserved as this topological class maps to itself.

2. If (r1,a1) = (10,8), then S = U & Eg(2), and the fixed locus consists of two disjoint genus 1
curves. However, Table 2 and the genus formula A.1 tell us that the fixed locus consists of a
genus 2 curve and an isolated rational curve. This discrepancy between the prediction made
by the formula and the actual fixed locus is however totally harmless for our calculations:
the total Hodge diamond in both cases is the same

23

and our final results are not altered.

7.2.2. Order 3. For p = 3,

N 3 97’1 97‘2 37‘17’2 r1a2 aire a1as
a = 3 + 1 ay + 1 az + 3 5 5 5
b = 328 — 147 — 13as — 14r, — 13a1 + 3172 — Tl—;‘Q - % + 2010z
13&2 13a1 r17ro9 ri1as airy
= 22 — — — — —
d + 57‘2 + 57’1 B B 4 4 + ajag
o airy a1an 137‘1 11a1 137‘2 11a2 ri1as r17T9 161
“ 1 2 4 2 4 2 4 8§ 2

x = 408 — 3679 — 3671 + 61179

Moreover, there are 299 distinct topological families with —144 < x < 1368 and the values of y
which are the closest to 0 are —48, 0 and 24.

7.2.3. Order 5. For p =5,

15 25 25 11
a = Z + 87'1 —2a1 + % — 2a9 Iérz —Tria2 — a172 + aias
3 3
b = 172 — 47‘2 — 15&2 — 47‘1 — 15CL1 + 47’17‘2 — T‘;ag - a;T2 + 4a1a2
o 15&2 15(11 r1re9 37’1&2 3&17‘2
d = 22+5ry 5 + 571 5 5 1 1 + 2aq a9
airy + 137‘1 11a1 137‘2 11a2 ri1as r17T9 157
e = — aiag — — — — —
4 2R 2 8 2 4 16 ' 4

15
X =174 —21ry — 217 + 77"17‘2
Moreover, there are 28 distinct topological families with 24 < y < 1848.
7.2.4. Order 7. For p =17,

97 1397‘1 1397‘2 737’17‘2 37’1@2 3(117’2 3a1a2
= — -3 —3 — _
¢ 836 " T3 0T 2 2 2
1112 107‘2 107‘1 477‘17’2 57’1&2 5&17‘2
b = —+—=—17ap + — — 17 — — 6
9 + 9 az + 9 al + 9 5 5 + 6ajas
17 17 ) )
d = 22+45ry— — 02 45y - 200 TT2 OMG2 002 L g, 0,
2 2 4 4
e — airo 3(11(12 _ 137’1 _ 11&1 B 137’2 _ 11&2 r1a9 r1ro E
4 2 12 2 12 2 4 24 2

9



X—3 32 31 312

Moreover, there are 15 distinct topological families 144 < yx < 2064.

7.2.5. Order 11. For p =11,

. 83 217’1 217’2 677‘17’2 57‘1(12 5&17‘2 5(11&2
a = E+ 1 — ba; + 1 — dag + 0 2 3 9
456 427‘2 427‘1 397‘17‘2 97‘1(12 9&17‘2
b = — 4+ —=-21 — 21 — — 10
5 + 5 as + 5 a1 + 5 9 5 + 10ajaz
21 21 9 9
d = 22+5r— 2 45 =21 Iz G2 FUR L 546
2 2 4 4
e — airo 5(11(12 _ 137’1 _ 11&1 B 137’2 _ 11&2 r1a9 r1ro @
4 2 20 2 20 2 4 40 2
264 12 12 n 66
= — — —T9 — —T —_—nrir
X 5 52 51 5 172

Moreover, there are 6 distinct topological families satisfying 96 < y < 1896.

7.2.6. Order 135.

1 0 0 0 1
0 404 0 0 0
0 0 1372 0 0
0 0 0 404 0
1 0 0 0 1

Y = 2184

7.2.7. Order 17.

1 0 0 0 1
0 264 0 0 0
0 0 844 0 0
0 0 0 264 0
1 0 0 0 1

x = 1376

7.2.8. Order 19.

1 0 0 0 1
0 184 0 0 0
0 0 564 0 0
0 0 0 184 0
1 0 0 0 1

x = 936

7.3. Fundamental groups. It follows from the argument in [10] that the fundamental group of
our orbifolds is isomorphic to the quotient of G by the subgroup generated by elements fixing at
least a point. Since G is cyclic of prime order, either the fundamental group will be trivial, or it
will be cyclic of order p. Actually, all orbifolds will be simply connected except for p = 2 when at
least one of the surfaces is defined by (r = 10,a = 10), in which case there are no fixed points and

the fundamental group is Z/27Z.
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8. ON THE MIRROR MAP

Voisin [24] and Borcea [6] show how the Calabi-Yau threefolds which they construct come in
topological mirror pairs. It is easy to check from the above data that their result extends to
fourfolds. Generalized Borcea-Voisin orbifolds with p = 2 admit crepant resolutions and come in
topological mirror pairs.

Proposition 8.1. The Borcea-Voisin fourfolds X and X defined respectively by (ri,a1,72,a2) and
(20 — 71, a1,20 — 19, ag) for p =2 are topological mirrors, i.e.

hP9(X) = BP9 X)

Moreover, from the Euler characteristic formulas for the Borcea-Voisin orbifolds, one deduces
immediately that the above does not hold anymore for p odd? Indeed, it is easy to check that
there is no integral constant m such that the map (r1,72) — (m — r1,m — r9) leaves the Euler
characteristic invariant. Therefore, we can abandon any hope of finding a mirror map between
Borcea-Voisin orbifolds for p > 2 in dimension 4. Similarly, one checks readily that for p = 3,
Borcea-Voisin threefolds do not come in mirror pairs; there is no involution on the set of pairs (7, a)
which sends a Hodge diamond to its reflection.

The non-closedness of the Borcea-Voisin family under mirror symmetry has several possible
explanations. We enumerate here the three main obstacles.

1. For p > 5, there is no more symmetry of the type r <> 20 — r between the possible pairs
(r,a) defining K3 surfaces with an order p non-symplectic automorphism. See e.g. Figure
1. For p = 3 or 5, one can find an axis of symmetry (up to a few elements) among the pairs
(r,a) but one can check that there is no topological relation binding the orbifolds which are
based on symmetric pairs.

2. Mirror symmetry is predicted to exist for Calabi-Yau manifolds near a large complex structure
point. For the threefold case, p = 3, the elliptic curve is rigid. It is the quotient of the complex
plane by the lattice generated by 1 and a primitive sixth root of unity. One can not endow
it with a large complex structure. For p = 2, the involution exists for any complex curve of
genus 1 and there is thus no obstruction to deforming the complex structure.

3. For the fourfolds, except when p = 2, the fixed locus contains isolated fixed points and there
is, for that reason, no guaranteed crepant resolution. Actually, we can show that most of the
orbifolds which we construct have no crepant resolution:

Proposition 8.2. Let p > 2 and X be the Borcea-Voisin orbifold defined by (r1,a1,72,a2),
then X does not have a crepant resolution except when p =3 and r1 = ro = 2.

Proof. If X has a fixed point of type %(2, p—1,1,p —2), we know from Batyrev-Dais [4] and
Reid [19] that there does not exist a crepant resolution. Such points exist as soon as both
surfaces involved in the construction have a fixed point of type %(2, p—1). Indeed, the product

point will have a linearized action under the product element in G of (2,p—1)x (2,p—1)"! =
(2,p—1,p—2,1).

From Table 3, we see that for p € {3,5,7,11}, any K3 surface admitting a non-symplectic
automorphism of order p has a fixed point of type %(2,]3 — 1) except for the surfaces where
p =3 and r = 2. In the latter case, there are only fixed curves on each K3 surface and the
associated Borcea-Voisin orbifolds admit a crepant resolution. ]

2For p = 3, one notices however that if two threefolds (resp. fourfolds) are based on the data (r,a) and (12 — 7, a)
(resp. (ri,a1,72,a2) and (12 — r1,a1,12 — r2,a2)), their Euler characteristics are opposite (resp. identical).
11



The above indices lead us to the belief that the mirrors of generalized Borcea-Voisin
orbifolds with p > 3 will not come under this form. It would be interesting to see if they
could be englobed into a larger construction.
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APPENDIX A. POSSIBLE NON-SYMPLECTIC ACTIONS ON K3 SURFACES

We enumerate hereunder (A.1) all possible primes p for which there exists a non-symplectic
Z/pZ action on a K3 surface. Also, we enumerate all pairs (7, a) which determine the lattice of the
K3 surfaces admitting such an action. The integer r gives the rank of the invariant part S of the
cohomology under the group action and a is defined as det(S) = p®. For p = 2, a third invariant
d € {0,1} is needed. The elements corresponding to 6 = 0 have been marked with a * in the list.

The importance of r and a is that these two natural numbers completely determine the fixed
locus of the group action. Theorem A.1 hereunder, due to Artebani, Sarti and Taki, gives an
overview of the state of the art. It encompasses the classification of involutions, done by Nikulin
[16], of automorphisms of order 3, done by Artebani-Sarti [2] and Taki [22], of automorphisms of
order 5 and 7, done by Artebani-Sarti-Taki [3], of automorphisms of order 11, done by Oguiso-
Zhang [17], and of automorphisms of order 13, 17 and 19 done by Vorontsov [25], Kondo [15] and
by Oguiso-Zhang [18].

Theorem A.1l. [3, Theorem 0.1] Let S be a hyperbolic p-elementary lattice (p prime) of rank r
with det(S) = p®. Then S is isometric to the invariant lattice of a non-symplectic automorphism o
of order p on a K3 surface if and only if

2—r—(p—1)ae2(p—1)Z>o
Moreover, if o is such automorphism, then its fixed locus X7 is the disjoint union of smooth curves
and isolated points, and has the following form:
0 ifS =2 U(2) ® Es(2)
X7 =< EyUE, ifS = U & Eg(2)
CURU...URU{p1,...,pn} otherwise

where F; is a smooth elliptic curve, R; is a smooth rational curve, p; is a an isolated point, C is a
curve of genus

22—r—(p—1a

(A1)
2(p - 1)
and
p 2 3,5,7 11 13 17 19
—2+(p—2) 2+9
0 T d o 9 7 5
—a 24r—(p—Da  —24r—10
ko=t g(p—l) - ot 1000
TABLE 2. Number of fixed points and rational curves
with the convention that X7 contains no fixed curves if k = —1.

To determine the topological type of our Borcea-Voisin orbifolds, we also need to characterize
the fixed points of each action. Namely, given a prime p, an isolated fixed point of a non-symplectic
automorphism will be called of type %(z +1,p— )2 € {0,...,p — 2}), if the action can locally be

linearized as )
(% ¢
1
0 ¢

We will denote by n; the number of such points. Artebani, Sarti and Taki [3] give us a complete
list of the number of such points in Table 3.

13



p o ni n2 n3 nq ns e nr ng g p

2 r—10 0

3 52 a+3 a+3
5 =% 2043 1+a 3o+ 4
7T 2 2042 1420 « Sac+3
11 52 1420 20 22 1422 « 9or + 2
13 % 1+2a¢ 1420 200 2a0—1 2a0—2 a—1 11lae — 2
17 L 20 20 20 20 2a+1 20+2 20+3 a+1 150+ 7
19 =t 2a 2a 20 2a+1 20+2 2a+1 2a+1 20 o 17Ta+5

b—
oo

TABLE 3. Types of isolated fixed points

A.1. Enumeration of cases.

A.L1. Order 2. (64 cases) (2,0)* (2,2)* (3,1) (3,3) (4,2) (4,4) (5,3) (5,5) (6,2)* (6,4)* (6,6) (7,3)
(7,5) (.7) (8.2) (8.4) (8.6) (8:8) (9,1) (9,3) (9,5) (9,7) (9.9) (10,0)* (10,2)* (10,4)* (10,6)* (10,8)**
(10,1004 (11,1) (11,3) (11,5) (11,7) (11,9) (11,11) (12,2) (1 ,4) (12,6) (12,8) (12,10) (13,3) (13,5)
(13,7) (13,9) (14,2)* (14,4)* (14,6)* (14,8) (15,3) (15,5) (15,7) (16,2) (16,4) (16,6) (17,1) (17,3)
(17,5) (18,0)* (18,2)* (18,4)* (19,1) (19,3) (20,2)

4)

A12. Order 3. (24 cases) (2,0) (2,4) (4,1) (4,3) (6,2) (6,4) (8,1) (8,3) (8,5) (8,7) (10,0) (10,2)
(10,4) (10,6) (12,1) (12,3) (12,5) (14,2) (14,4) (16,1) (16,3) (18,0) (18,2) (20,1)

A.13. Order 5. (7 cases) (2,1) (6,2) (6,4) (10,1) (10,3) (14,2) (18,1)
A.1.4. Order 7. (5 cases) (4,1) (4,3) (10,0) (10,2) (16,1)

A.15. Order 11. (3 cases) (2,0) (2,2) (12,1)

A.1.6. Order 13. (1 case) (10,1)

A.1.7. Order 17. (1 case) (6,1)

A.1.8. Order 19. (1 case) (4,1)

Alternatively, all cases are displayed on Figure 1 for p = 2 and Figure 2 for p > 2.

® L a
oo -
eoeo - 10
e0oe0 =
eeooo =

®@s0000 —
o000 00O0 -
t00600000 —
e0o000Q0QO0OO® =
00000000 —

X X e (1
T 20 10 0
e 0=1

¢ 0=0

FIGURE 1. All possible pairs (r,a) for p = 2

3Fixed locus consists of two disjoint genus 1 curves.
4Pixed locus is empty.
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®
®
o o 5
e o =m
e eDeo o@
e m_o ®m
ele @Ue oD 1

T 18 10 0
e p=3
O p=>5 @) p=11
o p=T
p=13 & p=19
e p=17

FIGURE 2. All possible pairs (r,a) for p > 2
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