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PRIMARY SPACES, MACKEY’S OBSTRUCTION, AND
THE GENERALIZED BARYCENTRIC DECOMPOSITION

PATRICK IGLESIAS-ZEMMOUR AND FRANCOIS ZIEGLER

We call a hamiltonian N-space primary if its moment map is onto a
single coadjoint orbit. The question has long been open whether such
spaces always split as (homogeneous) X (trivial), as an analogy with
representation theory might suggest. For instance, Souriau’s barycen-
tric decomposition theorem asserts just this when N is a Heisenberg
group. For general N, we give explicit examples which do not split,
and show instead that primary spaces are always flat bundles over the
coadjoint orbit. This provides the missing piece for a full “Mackey the-
ory” of hamiltonian G-spaces, where G is an overgroup in which N is
normal.

Il est bien entendu que chaque moment, confondu qu’il est en
tous les autres, demeure pourtant en lui-méme différencié.

—André Breton, Les vases communicants

Introduction

Let G be a finite group and let N be a normal subgroup, so that we have an
exact sequence

l1—-N—G—G/N—1.

Questions about G then often reduce to similar ones about N and G/N. A
classic example is the calculation of the dual Irr(G) = {irreducible unitary
G-modules}/isomorphism. This, as Clifford [C37] showed, boils down in 3
steps to finding Irr(N) and the projective duals of subgroups of G/N:

(1) When restricted to N, every X € Irr(G) decomposes into the irreducibles
belonging to a single G-orbit G(U) C Irr(N). Here the action of G on
Irr(N) is contragredient to its conjugation action on N.

(2) Write G(U) = G/G!. Then we have X = Ind$, X! for some X! € Trr(G?)
whose restriction to N is a multiple of U. Leaving out the superscripts,
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2 PATRICK IGLESIAS-ZEMMOUR AND FRANCOIS ZIEGLER

we are reduced to the primary case where U is G-invariant and X itself
restricts to a multiple of U.

(3) In that case we have a factorization X = U ® T, where the action of G
on each factor is only projective. On U, it uniquely extends the linear
action of N. On T, it comes from a projective action of G/N. Both give
rise to central extensions of G/N by the circle, and these add up to zero
in H2(G/N, S!).

In [M58] Mackey famously extended this analysis to locally compact groups,
and the central extension attached to U & Irr(N)G has since been known as
the Mackey obstruction of U. (For an exposition see [F88, pp. 1263, 1285].)

Now assume that G, N, etc. are Lie groups with Lie algebras g, n, etc. In an
agenda pioneered by Kirillov, Kostant, and Souriau, one expects propositions
about (not only irreducible) unitary G-modules to be reflected by proposi-
tions about hamiltonian G-spaces (i.e., symplectic manifolds on which our
groups act with equivariant moment maps). Thus for instance, one expects
that

— the role of decomposition into irreducibles is played by the decomposition
of the image of the moment map into coadjoint orbits [K62];

— the role of multiplicities (such as T above) is played by Marsden-Weinstein
reduced spaces [M74; G82];

— the role of tensor product is played by the cartesian product of hamiltonian
G-spaces |[WT77, p.32];

— the role of unitary induction is played by the symplectic induction con-
struction of Kazhdan-Kostant-Sternberg [K78, p.498|;

— the role of Mackey’s imprimitivity theorem is played by the symplectic
imprimitivity theorem of [Z96, Thm 2.9; L06, Thm 4]; etc.

Using these ingredients, a complete geometric parallel of steps (1) and (2)
was established in [Z96, Prop 3.8|. This reduces the study of a hamiltonian
G-space X, when G has a closed normal subgroup N, to the primary case
where the moment map for N is onto a single coadjoint orbit U. (We can
think of this case as lying at the opposite end of the spectrum from the
multiplicity-free case of [G84a|, where all reduced spaces are points [G84b,
45.8].)

The purpose of this paper is to unravel the structure of primary spaces
and thereby to complete step (3), which has proved more elusive. Here
the representation theoretic analogy might lead one to expect a splitting
X = U x T where U is homogeneous (a covering of U) and T a trivial
N-space. The earliest results of this kind are those of Souriau [S70], which
can be viewed as asserting just such a splitting when N is a Heisenberg group;
see §4.1 below. The case N = SO(3) was dealt with in [I84; 191, Thm 4.3|,
and further generalizations occur in [L92; L94; Z96, §4], but always under
hypotheses that guarantee a splitting of the above form. To our knowledge,
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the literature contains neither a theory nor in fact a single example of the
non-split situation, which we will see does actually occur.

The paper is divided into four sections. In section 1 we disregard the
role of any ambient group G (or, what amounts to the same, assume that
G = N) and show that while perhaps not split, primary N-spaces over a
given coadjoint orbit U are always flat bundles U xr V associated to a cer-
tain covering of U. (As Alan Weinstein kindly points out, this is a general
property of Poisson maps to symplectic manifolds: [C99, §7.6].) Section 2
shows how the extra structure arising from the hamiltonian action of a group
G normalizing N is encoded in the fiber V. Section 3 then spells out three
corollaries which generalize Souriau’s theorems to an arbitrary Lie group N,
and comprise our symplectic “translation” of the Mackey obstruction step
(3). Finally Section 4 shows that our theory is not empty by exhibiting
examples which indeed do not split.

We conclude this introduction with two remarks of principle. First, while
our notion of primary space arises naturally from the geometrical problem
we set out to solve, one should not overestimate its parallelism with primary
representations. Indeed several representations (parametrized by the charac-
ters of I') may correspond to an orbit U, and our non-split examples seem to
correspond to the situation where one representation of G decomposes into
many of them. Secondly, we have scrupulously avoided any connectedness
assumptions, as these would spoil the recursive applicability of our symplec-
tic “Mackey machine”; this explains why all coverings are constructed by
hand, since one knows that the universal covering of a disconnected group or
homogeneous space is not in general a group or homogeneous space [T54].

1. Decomposition of a primary N-space

Let N be a Lie group and let (X, w,II) be a hamiltonian N-space, that is,
a symplectic manifold X with an action of N which preserves its 2-form w,
and an equivariant moment map II : X — n*. If w or Il are understood, we
may drop them from the notation or use subscripts such as wx, Ilx, etc.

(1.1) Definition. We say that X is préimary if the image of the moment
map is a single coadjoint orbit U of N. When N (or U) needs emphasis we
say N-primary (over U).

Our purpose is to describe and classify primary N-spaces over a given orbit
U. We do not distinguish between two spaces X1, Xo which are isomorphic,
i.e., related by an N-equivariant diffeomorphism which transforms w; into
wy and II; into IIs.

(1.2) Example (Homogeneous spaces; split spaces). Any homogeneous
hamiltonian N-space is primary: indeed one knows that its moment map is
a covering map, U — U, onto a coadjoint orbit [K70; S70|. More generally
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it is clear that the product
(1.3) UxT

of such a covering by any trivial hamiltonian N-space, is primary over U.
Here by a trivial hamiltonian N-space T we mean one with trivial N-action
and zero moment map, T — {0}; and we recall that the product X xY of two
hamiltonian N-spaces is the product manifold with 2-form wx + wy, action
n(z,y) = (n(x),n(y)), and moment map Ix + ITy.

(1.4) Definition. We say that a primary space over U splits if it has the
form (1.3) (U homogeneous, T trivial). We further characterize the splitting
as trivial or not according as the covering U — U is trivial (bijective) or not.

(1.5) Example (Flat bundles). Split spaces, it will turn out, do not
exhaust primary spaces. Instead we have to resort to the next simplest con-
struction, which we now present. First observe that the class of homogeneous
N-spaces over U contains a maximal object, U, which we may describe as
follows. Write K for the stabilizer N. of a point ¢ € U which we fix once and
for all, K° for its identity component, and

(1.6) U-%vU
for the covering N/K° — N/K with principal group
(1.7) I'=K/K°

(a.k.a. the “N-equivariant fundamental group” of U [C93]). Endowing U
with the pull-back p*wy of the Kirillov-Kostant-Souriau 2-form of U, we
obtain a primary N-space with moment map p.

Now suppose that V is any primary I'-space, or in other words, any sym-
plectic manifold with an wy-preserving action of I". (This is hamiltonian with
moment map V — {0}.) We may then form the associated “flat bundle”

(1.8) Uxpr V51U

and observe that its total space (the set of orbits [@, v] of the product action
of T'on U x V) is naturally a primary N-space over U: the 2-form is the one
obtained from p*wy + wy by passage to the quotient, N acts by n([u,v]) =
[n(@),v], and the moment map is II([a, v]) = p(a).

Conversely:

(1.9) Theorem (Generalized Barycentric Decomposition). (i) Every
primary N-space (X, w, II) over U is obtained in this way. More precisely one
always has

(1.10) X=UxrV where V=T1"1(c).

(ii) Two primary N-spaces (Xj,wj,11;)i=12 over U are isomorphic iff the
fibers V; = TI; 1(c) are isomorphic as primary T'-spaces.
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N(v)

Figure 1. Barycentric decomposition of the primary space X.

Implied here is the assertion that II7!(c) is always naturally a primary
I'-space. This is ensured by the following lemma and corollary, which give
the decomposition at the infinitesimal level.

(1.11) Lemma (F1G.1). Let (X,w,II) be a primary N-space over U =
N(c). Then the fiber V.= II-Y(c) is a symplectic submanifold of X and
we have, for each v € V, the direct sum decomposition into symplectically
orthogonal subspaces

(1.12) T,X = T,N(v) ® T, V.

Proof. We know that II : X — n* remains smooth when regarded as a
map X — U where U = N/K has the quotient manifold structure [004,
2.3.12(i)]. In particular it is (by equivariance) a submersion: hence, its fiber
V is a submanifold. Moreover, by a well-known property of moment maps
[S70, 12.152; M74, Lemma (ii)|, the tangent space to V at v is

(1.13) T,V = ker(DII(v)) = n(v)~,

the orthogonal of the tangent space T,N(v) = n(v) relative to the 2-form w.
But n(v) and n(v)* span T,X: indeed, given év € T, X we can findav €n
such that DII(v)(év) = v(c), and then dv is the sum of

(1.14) v(v) € n(v) and ov — v(v) € ker(DII(v)),
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where the last inclusion is by equivariance of II. Now, taking orthogonals on
both sides of the relation T, X = n(v) +n(v)“, we get {0} = n(v) Nn(v)“. So
the sum is direct, and each summand is a symplectic subspace of T, X. [

(1.15) Corollary. In the setting of (1.11), the action of the stabilizer K =
N, on V induces the trivial action of K°, so that V carries a natural action

of T = K/K°.

Proof. The relation DII(v)(¢(v)) = €(c¢) = 0 shows that the tangent space
T,K(v) = £(v) lies in the intersection n(v) N ker(DII(v)), which we have
just seen is zero. Thus & acts trivially on V, and hence so does the identity
component K°. O

Proof of the theorem. (i) We claim that the flat bundle (1.8) built from V =
I1!(c) is isomorphic to (X, w, ). To see this, let us denote it by (Y, wy, ITy).
We have N-equivariant submersions «, 3:

X NxvV—Loy
(1.16)

n(v) =tz —— (n,v) — y:=n([eK v])
where N acts on N x V via its left action on N. Now since
B(n',v) = B(n,v) & (nK° ') = (nK°y~ 1, v(v)) for some vy € T’

& (n',v) = (nk™h Ek(v)) for some k € K
(1.17) s n/(v') =n(v) and n~ln’ € K

& a(n',v) = a(n,v),
we see that the fibers of a and (8 define the same partition of N x V. So
(1.16) induces an N-equivariant bijection X — Y, which is a diffeomorphism
by [B67, 5.9.6], and which pulls IIy back to II since II(a(n,v)) = n(c) =
IIy (B(n,v)). We must still show that this diffeomorphism is symplectic. To
this end, write dx «— (dn,0v) — dy for the diagram tangent to (1.16),
i.e.
(1.18) o0z = n.(v(v) + dv) and 0y = ny([v(eK®), dv])
where v = n~16n and the bracket denotes the derived projection TUX TV —
TY. Then we have

w(dz,8'z) = wv(v) + dv, V' (v) + §'v) since n*w = w
= w(v(v), V' (v)) + w(dv, §'v) by (1.12)
(1.19) = (¢, [V, V]) + wy(6v,d'v) by [S70, 11.17¢]
= wy(dy, 8'y) by definition,

as was to be shown. This completes the proof of (i).
(ii) Isomorphic X; give rise to isomorphic V;. Indeed, let an isomorphism
F : Xy — X5 be given. Then the relation II; = IIsoF implies that F maps V;
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onto Vo and induces a diffeomorphism f between them. Since the V; have
by construction the 2-form and action of v € I induced by the w; and by the
action of some k € v on the X;, it is clear that f is another isomorphism.

Conversely, isomorphic V; give rise to isomorphic X;. Indeed, let an iso-
morphism f : Vi — Vs be given. Then in the diagram

UxV; n Ux Vo
(1.20) mod T .
T X V1 77777777 ]i 7777777 > ﬁ Xr V2

one verifies without trouble that the top arrow is an isomorphism of primary
N x I'-spaces, relative to the 2-forms p*wy + wy, and actions (n,v)(4,v;) =
(niiy~1,v(v;)). So it descends to an isomorphism F between the quotients, of
which we already know by (1.10) that they are isomorphic to X; and Xp. 0O

(1.21) Corollary 1. If the pair (N, U) is in any of the following cases, then
every primary N-space over U splits trivially as X =U x V:

(1) points of U have connected stabilizers in N;

(ii) N is connected and U is simply connected;

(iii) N is connected and compact or abelian or nilpotent or exponential;
(iv) N is connected, complex semisimple and U is a semisimple orbit.

Proof. (i) If K is connected, then I' = {1} and (1.10) reduces to X = U x V;
(ii) implies (i) by the homotopy exact sequence 71(U) — mp(K) — mo(N);
(iii, iv) each imply (i) or (ii): see [B72, p.4; B87, 8.20; C93, 2.3.4]. O

(1.22) Remark. The component groups I' are also well known when N is
connected solvable or simple: in the former case they are lattices Z¢ [A71];
in the latter, finite products of groups Zg4, Ss, S4, S5 [K92; C93|. Lest the
reader conclude that they are always dull, we note here that every finite
group occurs for some coadjoint orbit of some connected Lie group [P78,
Prop. 1(iii)].

As soon as I' # {1} it becomes an issue to detect which primary spaces
do or don’t split. For this we have the following simple criteria.

(1.23) Corollary 2. Let X be primary with fiber V. (i) If X splits triv-
ially, then T acts trivially on V. (ii) If X splits nontrivially, then V is not
connected.

Proof. (i) The hypothesis means that (X,w,II) = (U x T,wy + wr, pry) for
some T on which N acts trivially. By (1.9ii) it follows that V = {¢} x T,
on which T acts trivially. (ii) Likewise if (X,w,II) = (U x T, m*wy + wr, 7 o
pry) for some nontrivial covering 7 then V. = 7~ !(¢) x T, which is not
connected. O
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(1.24) Remarks. (i) We emphasize that — thanks essentially to the rigid-
ity of the moment map — these criteria are very much simpler than the
topological arguments one would need to decide whether U xr V is trivial
as a bundle, or whether it is homeomorphic to a product U x T.

(ii) It may also be worth noting that Theorem (1.9) places any primary
space half-way between two products:

UxV mod T
(1.25) X IT x mod N
U x V,

where V is the quotient X/N =V/I' (F1G. 1). However, the upper product
here does not naturally carry an action of N; and the lower one is only
a (trivially split) primary space insofar as V is a manifold, which fails in
general: see e.g. Example (4.21) below, where V is not even an orbifold.

(1.26) Example (Reduced spaces of Kazhdan et al.). An important
source of primary spaces is the construction of Kazhdan-Kostant-Sternberg
K78, p.482]: if (Y,0,V) is an arbitrary hamiltonian N-space, then under
appropriate transversality hypotheses one can form the reduced space at U,

(1.27) X = U 1(U)/ ker(o)

(the quotient of ¥~ (U), which is coisotropic, by its characteristic foliation).
This is naturally a primary N-space over U, to which the above applies. In
this setting we note that (1.11), (1.21i) and a version of (1.9i) are found
respectively in [K78, Prop. 1.1; G84b, Thm 26.6; O84, Thm 1]. (Our treat-
ment avoids the assumption, made in these references, that U < n* be an
embedding.) Also, the spaces V and U x V of (1.25) are none other than the
quotients

(1.28) T1(c)/N, and v LU)/R

of Marsden-Weinstein [M74] and Marle [M76] (to which we refer for the def-
inition of the equivalence relation R). In particular Marle’s quotient always
splits trivially, beyond the cases elucidated in [M76, Cor. p.257|.

2. Extensions of a primary N-space

From here on we assume again that N is a closed normal subgroup of a Lie
group G. Our aim is to describe those N-primary spaces (X, w,II) over U
that arise by restriction of an action of the larger group — i.e. X admits
a hamiltonian G-action, with equivariant moment map ®, such that the
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following diagrams commute:

G. G-action ‘?’ 5 0°
(2.1) T 3 Diff(X,w) X l
N ﬁion } n*.

Suppose for a moment that such an extended action exists. Because it nor-
malizes N, G has coadjoint actions on both g* and n*, relative to which the
second diagram (2.1) is equivariant. In particular G preserves the image of
I1, so U must belong to the set (n*/N)¢ of G-invariant coadjoint orbits of N.
Under this assumption we have the following result, which in effect reduces
the extension problem to the case where U is a point.

(2.2) Theorem. Let N be normal in G, pick an orbit U = N(c) € (n*/N)¢,
and write K and L for the stabilizers N. and G.. Then the correspondence
X 2V of Theorem (1.9) naturally induces another between

N-primary hamiltonian G-spaces ., K-primary hamiltonian L-spaces
(X,w, @) over U T (V,wy, ) over the point {epe}

The proof will make repeated use of the following elementary observation,
which essentially describes the trivial case where U = {0}.

(2.3) Lemma. If N is normal in G, the annihilator anng- (n) = ker(g* — n*)
is

(1) invariant under the coadjoint action of G on g*,
(ii) pointwise fized by the action of N,
(iii) as a G/N-module, canonically isomorphic to (g/n)*.

Proof. Write I(g) = Igl~! for the conjugation action of I € G on elements
(or subsets) of G. Since N is normal, [ maps each coset gN to another such
coset,

(2.4) l(gN) = IgNI™" = I(g)N.

So we have an induced conjugation action on G/N which is just the lift of
its conjugation action on itself, for (2.4) can also be written (IN)gN(IN)~!.
In other words, the exact sequence

(2.5) 1 N G G/N 1
() () ()
G G G

is G-equivariant, and the third G-action is in fact an action of G/N (so N acts
trivially). Deriving at e and dualizing, we get exactness and equivariance of

(2.6) 0— (g/n)" g" n* 0
() () ()
G G G
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relative to the 3 coadjoint actions, of which the first is in fact lifted from
G/N (so N acts trivially). This is precisely what the lemma claims. O

Proof of the theorem. Suppose that (X,w,®) is given. The G-equivariance
of II ensures that the stabilizer L of ¢ preserves V.= II"!(¢c). So V be-
comes a hamiltonian L-space, whose moment map W we can define by the
commutativity of

X g n* >ec
o R
vV— £ 3 .

Because V sits above ¢ € n* by construction, it follows that it sits above
cip under the composition V. — [* — £, which is the moment map for the
induced K-action; in other words V is K-primary over {cj}, as claimed.
_ Conversely suppose that (V,wy, ¥) is given. We must construct on X :=
U X1 V a G-action and moment map ¢ satisfying (2.1). The rough (but
wrong) idea is that G acts separately on U and V, with moment maps ¢
and 1) that add up to an equivariant ®. To make this correct we must in
fact take a detour via U, where ¢ will be defined, and an attendant G which
actually acts on U and V. We do this in the following steps, where N x L
denotes the semidirect product with law (n,1)(n’,l") = (ni(n),ll’) (notation
(2.4)). 3

1. We can define a covering extension G of G by I' by the following commu-
tative diagram of exact sequences, where A(k) = (k=1 k) and 7 (n, ) = nl:

(2.8) l[a-J

R T e SN G- 1
1 1 1

Indeed, 7 clearly has kernel A(K) and is onto: given g € G, we can findn € N
such that g(c) = n(c), whence g = 7(n,n"1g). So the top and middle row are
exact. In particular NxL normalizes A(K), hence also its identity component
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A(K®) [H63, 7.16]. Writing G for the resulting quotient and
(2.9) (n,1) — [n,l] and g—g

for the projections N x L — G and G — G, we have exact columns too, so
the nine lemma (or the second isomorphism theorem |[H63, 5.35|) completes
the diagram. Before continuing we observe that [-, e] and [e, ] map N and
L injectively onto isomorphic copies which we shall denote

(2.10) N = [N, e, L = [e,L].

(The gain inside G is that unlike N 0L (= K), the intersection NN L (=
[K°, e]) is always connected.)

2. We claim that the coadjoint action of G on U lifts to an action of G
on U. To see this, we note that (2.8) contains the relations G = NL and
G = NL. Therefore the first isomorphism theorem [H63, 5.33] implies that
all horizontal maps in the following commutative diagrams are bijections:

OoNKo—— L GI. LK —— &N
nK° —— [n,L] IK° —— [N,I]
(2.11) P { I l !
nK ——— nL IK /— IN

U=N/K—  G/L L/)K— 4 G/N.

Now the first diagram identifies our N-equivariant covering (1.6), on the left,
with the G-equivariant covering on the right. This equips U with an action
of G which fits the bill and works out, since [n, l][n’, L] = [nl(n'),L], as
(2.12) [n,l](a) = nl(a), u=n'K° € N/K°.

3. This action (2.12) preserves wiy = p*wy and admits a (not necessarily
equivariant) moment map ¢ : U — g* given by
(2.13) o(u) = u(e),
where we fix henceforth an element ¢ € g* projecting to ¢ € n*. Indeed,
first we note that (2.13) is well-defined, i.e. all elements of a coset & = nK®
have the same effect on ¢. This is because any two differ by an element of
K°, which acts trivially by (1.15) applied to the orbit G(¢) (which is clearly

N-primary over U). Next, (2.13) is a moment map because we have, for
@ =nK° and all (v,7) € nx g,

[tywi + d{o(-), M)](v (1)) = wo (v (@

(2.14) = (n(e), [v,7]) + (n(e), [v, v])

If G is disconnected we still need to check that the action (2.12) preserves
wg. Since p in (2.11) intertwines it with the coadjoint action of G on U,
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it suffices to show that g*wy = wy, which is true because we have, for all
/
v,V €n,

g wu(v(u), v (u) =

(2.15) = (g(w), [Ady(v), Ady(v)])

4. The given action of L on V induces an wy-preserving action of G on
V, viz.

(2.16) [n,l(v) =1(v).

Indeed, this is well-defined because [n,[] determines I € L up to multiplica-
tion by an element of K°, which we know acts trivially on V (by Cor. 1.15,
applied this time to V as a K-primary L-space). Moreover it preserves wy,
since the given action of L does.

5. This action (2.16) admits a (not necessarily equivariant) moment map
¥V — g* given by the following formula, where p* denotes the injection

(I/8)" ooy (8/M)* 5 ¢ viewed as a map annp-(£) — anng-(n) (2.3):

(2.17) P(v) = p"(¥(v) = &).

This is well-defined because our hypothesis that V is K-primary over {c}
ensures W(v) — ¢ € anng«(8). To see that it is a moment map, we note that
(2.8) implies that every v € g can be written v + A for some (v, A) € n x L.
Then,

b+ d(B(),7) = oy +d(B(),7) by (2.16)

= vywy + d(W(-), \) since range (1)) C anng«(n)
(2.18) = uwv +d(¥(), \) since (¢, \) is constant
=0 since ¥ is a moment map.

_ 6. Putting the actions (2.12) and (2.16) together, we get an action of
G on U x V which we claim is hamiltonian, i.e. its moment map ¢ + ¢ is
G-equivariant. In other words we will show that g + 6y = 0 where

00(9) := o(g(a)) — g(¢(w)),
Ov(9) == ¥(g(v)) = g((v))-
To work out these ‘non-equivariance cocycles’ (which as the notation antic-

ipates, will be independent of 4 and v; note that for disconnected X this
is emphatically not guaranteed by the general theory [S70, 11.17; 004,

(2.19)
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4.5.21]), we pick g = [n,[] projecting to g = nl and compute, on the U side,

06(9) = ¢(nl(a)) — (nl)(o(a)) by (2.12)
= (nl(@) — nl@)(3) by (2.13)
=nl(a)(¢ —1(¢))

(2.20) =c¢—1(¢) by Lemma (2.3ii),

which lemma applies because | € G, implies (¢ — [(¢),n) = (¢ — l(c),n) =0,
i.e. we have

(2.21) ¢ —1(¢) € anng«(n).
Meanwhile on the V side we find, forally =v+ Aing=n+1,
(Ov(9),7) = (W(U(v)) = (nd) (¥ (v)),7) by (2.16)
= (¥((v)) = (¥ (v)),7) by (2.3i, i)
= (Y(l(v)) = l(Y(v)), \) since range (1)) C anng«(n)
(2.22) =(V(l(v)) = e = U(¥(v) = ¢),\) by (2.17)
(

S A) since VU is L-equivariant
)~ 67} by (2.21).

Thus we have 05 + 6y = 0, which proves that ¢ + 1 is G-equivariant.

7. Next we consider the subgroup I' = {[k~1,k] : k& € K} in (2.8) and
observe that its orbits in U x V, under the action just considered, are exactly
the points of X = U xp V. Since G normalizes T, it follows that its action
takes T-orbit to I'-orbit and hence descends to an action of G = G/T on X,
viz.

(2.23) nl([a,v]) = [nl(a),l(v)].

Moreover the I'-equivariance of ¢ + 1) means precisely that this map is con-
stant on I'-orbits, hence descends to an equivariant moment map ® : X — g*.
Tracing through its construction yields explicitly, with notation as above,

(2.24) (®([a,v]), v+ A) = (p(a),v) + (a(¢) — ¢ A) + (¥(v), A).

Finally we check that ® does not depend on the choice of ¢. Indeed if & € g*
is another choice projecting to ¢ € n*, then the difference z = & — ¢ lies in
anng-(n). So (2.3ii) implies @(z) —z = 0, which shows that the change leaves
(2.24) unaltered. This completes the proof. O

Asin (1.9), X and V determine each other to within isomorphism. More
precisely we have the following proposition, whose proof is straightforward
and left to the reader.

(2.25) Proposition. Under the correspondence of Theorem (2.2),
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(i) Two N-primary hamiltonian G-spaces X1, Xo over U are isomorphic iff
the corresponding V; = II; 1 (c) are isomorphic as hamiltonian L-spaces.

(ii) X is G-homogeneous iff V is L-homogeneous, and X is the coadjoint
orbit G(¢) (where ¢, = ¢) iff V is the coadjoint orbit L(¢)).

3. Kceenig’s theorem and the Mackey obstruction

In this section we spell out three corollaries of Theorem (2.2) and its proof.
We keep the notations K, T', U, G, N, L established in (1.6-1.7) and (2.8~
2.10). The first corollary merely records how we reconstructed the moment
map P from two independent pieces:

(3.1) Corollary 1 (Generalized Kcenig Theorem). Let (X,w,®) be an
N-primary hamiltonian G-space over U with fiber V. Then not only does G
act on X = U xp V, but the product G x G acts on U x V with moment map
(¢, 1) such that

(3.2) ®([u, v]) = ¢(u) + ¢ (v).

The second action is really an action of G/N with moment map ¥ : V —
anng-(n).

Unlike ®, the maps ¢, ¥, 6, Oy do depend on the choice of ¢ such that
¢jn = ¢. The next corollary extracts the intrinsic part of this construction:

(3.3) Corollary 2. Attached to each U = N(c) € (n*/N)C is a well-defined
cohomology class [0g] € H'(G/N, (g/n)*) which measures the obstruction to
making U a hamiltonian G-space, and vanishes if cp = 0. If cp # 0, the
derived class [(DOg(e)(+),-)] € H2(g/n, R) is that of the central extension

(3.4) 0—¢t)j—1/j—1/t—0
where j = ker(cjg).

Proof. These are all elementary properties of the function 6g in (2.20). First,
by an easy application of (2.3ii), it satisfies the cocycle identity 6 (gg’) =
05(3) +g(05(g")) which defines Z'(G, g*) [B80, p. 112]. As it takes its values
in anng« (n) (2.21) and clearly only depends on g = [n, ] via its class [N, {], we
may equally regard it as a member of Z'(G/N, (g/n)*). Moreover, replacing
¢ by ¢+ z, also projecting on ¢ € n*, alters the cocycle by a term z — I(z)
which is the coboundary of —z € anng«(n). So the resulting cohomology
class [0g] does not depend on our choice of ¢. Next, if ¢y = 0 then we
may take ¢ to be ¢ on n and 0 on [, in which case the cocycle vanishes:
(¢—=1¢),n+1) =(c—1Ic),n) 4+ (0—1(0),I) = 0 since [ stabilizes c. Finally
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we consider the derivative fi = (Dfg(e)(-),-):
fow+ AV +X) =4 (0g(le”, D), v + X)

t=0

=4 (c—ee),V +N) -

= (=A(@), \) since (I(c),n) =0
(3.5) = (¢, [\, N]).
As above one verifies that this defines a cocycle in Z?(g/n, R) [B80, p. 196]
whose class in H?(g/n, R) = H2(I/€,R) (2.11) does not depend on the choice

of ¢. To see that it coincides with the cohomology class of the extension
(3.4), we recall that the latter is that of the cocycle [B80, p. 198]

(3.6) FOHEN +8) = (c,[sA+8),s(N +8)] —s((N+€ XN +¥€]))

where s is any linear section of the projection [/j — [/€, and where we have
identified £/j with R by sending s +j to (¢, ). Choosing s(A+¢£) = q(\) +3j
where p (resp. ¢) is the projection onto € (resp. v) associated to a vector
space decomposition [ = £ @ v, this is

= (¢, la(N), g(\)] = a([AA]))
= (¢, [A = p(N), X' = p(N)] = [N NT + p([A X))
(3.7) = (cop, [\, \])

since (I(c),n) = 0. Now c o p defines an extension of ¢ to [ and thereby to
g = n+ [, which we can assume coincides with ¢ (by changing the latter if
necessary). So (3.5) and (3.7) belong to the same cohomology class, as was
to be shown. O

(3.8) Definition. We shall refer to the class [fg] in (3.3) as the symplectic
Mackey obstruction of U, and to the class [(Dfg(e)(-),-)], or the central

extension (3.4) it represents, as the infinitesimal Mackey obstruction of
U.

Given © € HY(G, g*) let us also agree to call hamiltonian (G, ©)-space a
symplectic manifold (X, w) with an w-preserving action of G which admits a
moment map ¢ satisfying ¢(g(x)) = g(¢(x))+6(g) identically for some 6 € ©.
(We emphasize that ¢ is not part of the structure: only its existence is.) With
this in hand we can rephrase our solution (2.2) of the extension problem in a
form more closely parallel to the representation-theoretic version (3), namely:

(3.9) Corollary 3. Let N be normal in G and let U € (n*/N)S have sym-
plectic Mackey obstruction ©. Then the correspondence X = V of Theorem
2.2 can be regarded as a correspondence

N-primary hamiltonian R arbitrary hamiltonian

(3.10) G-spaces X over U - (G/N,=©)-spaces V.
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Proof. Let (X,w,®) be N-primary over U, and consider the corresponding
K-primary L-space (V,wy, V) given by Theorem (2.2). We know (1.15) that
K° acts trivially so that V is in fact a L/K® = G/N-space (2.11). Moreover
we have seen that this action admits a moment map ¢ : V — (g/n)* (2.17)
whose non-equivariance cocycle (2.19) has cohomology class —©.

Conversely, let (V,wy) be any hamiltonian (G/N, —0)-space. By (2.11)
we can regard it as a hamiltonian (L/K°, —©)-space, © € H(L/K°, (I/€)*)
being the class of the cocycle 0 (IK°) = (¢ —1(¢)); € annp(€) (2.3iii, 2.20,
2.21). By definition this means that we can choose a moment map ¢ : V —
anng (€) so that

(3.11) P(l(v)) = 1 (v)) + (1) = &)

(equality in anne(¢) = ([/€)*). Now, lifting the action from L/K° to L
enables us to add ¢ to both sides to obtain the L-equivariance of ¥ :=
Y(-) + ¢ Thus (V,wy,¥) is a K-primary hamiltonian L-space over ¢.
By (2.2) this corresponds to an N-primary hamiltonian G-space over U, as
desired. 0

(3.12) Remark. Another justification for Definition (3.8) is that it appears
to correctly predict, at least at the Lie algebra level, the Mackey obstruction
(3) of the representation(s) obtained by “quantizing” U. To be specific, let
us first note that (3.4) does not always integrate to a Lie group extension.
(Indeed it is not hard to construct examples where the subgroup J° generated
by j in (3.4) is not even closed.) However, when U is integral in the sense
that K admits a character x with differential ic¢, then J = ker(x) is closed
and the extension

(3.13) 1—K/J—L/J—L/K—1

integrates (3.4) and is precisely the Mackey obstruction found in [A71, Thm
IV.4.1; D70, §6], in the case where N is nilpotent and G is solvable.

4. Examples

(4.1) Souriau’s theorems. We consider here the group G of all block upper
triangular matrices of the form
L bA g[bl* f
A b c
1
where A € SO(3), b,c € R3, e, f € R and the bar means transpose. The
quotient obtained by forgetting the first row and column is the Galilei group

and G is (up to a Zgy cover which need not concern us here) its universal
central extension, where f is the central parameter. The axioms of classical
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mechanics as spelled out in [S70, 13.1, 13.7], state: “A free dynamical sys-
tem is represented by a connected symplectic manifold (X, w) together with
a w-preserving action of the Galilei group admitting a moment map”. As one
knows [K68, p.66], the resulting action of G always admits an equivariant
moment map, so we can rephrase this as: A free dynamical system is rep-
resented by a connected hamiltonian G-space where the center acts trivially.
Identifying g* with R by writing (L, G, P, E, M) for the value of the 1-form

0 Ls —L
43)  lmr ((—fs 33 gf) dA) — (G, db) + (P, dc) — Ede — Mdf
2 —L1

at the identity, we observe that this implies, first, that X is primary over
a point {M} (known as the total mass of the system), and secondly, when
M # 0, that X is also primary over a coadjoint orbit R% of the normal
Heisenberg subgroup N C G defined by A =id, e = 0. Applying the results
(1.9), (1.21iii) and (3.1), we obtain after computing the moment map ¢:

1) X is symplectomorphic to the product of U = (RS MdV A dR) by
a symplectic manifold V on which N acts trivially. This is the original
barycentric decomposition theorem, first proved in this generality in [S70,
Thm 13.15], but which in essence goes back at least to Euler [E50, p. 187]:

“Quelque composé que soit le mouvement [x] d’un corps solide,
on le peut toujours décomposer en un mouvement progressif [ul]
et en un mouvement de rotation [v]. Le premier s’estime par le
mouvement du centre de gravité du corps, et il est toujours permis
de considérer ce mouvement séparément et indépendamment de
l'autre mouvement.”

2) The group G x SO(3) x R acts symplectically on X = U x V and the
moment map ® : X — g* splits as ®(u,v) = M(R x V,R,V, %||V||2, 1) +
(L/, 0,0, F, O) where L’ and E’, known as the proper angular momentum and
energy, depend only on v. This is the classical Koenig theorem [S70, 13.35],
thus named by Painlevé [P30] but going back to Laplace for L [L99, p. 70|
and to Koenig for E [K51, p. 173]:

“Vis viva [2E|, quee inest corporibus A et B, equalis est Vi viva
communi [M||V||?], una cum Viribus vivis propriis amborum cor-
porum [2E'].”

(4.4) Remark. [S71] gives another application of the case where N is Hei-
senberg, to the description of a particle in a constant electromagnetic field.
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(4.5) A primary orbit which doesn’t split. Let G be the solvable group
of all upper triangular matrices of the form

1 ¢ 0 e f
1 0 0 e a,c,e,fGR
(4.6) g= ef* 0 b beC
L a j=2mV/—1,
1

and let N be the normal subgroup in which ¢ = e = 0. We identify g* with
R x C x R? by writing (p, 2,7, s,t) for the value of the 1-form

(4.7) pda + Re(Zdb) — rdc — sde — tdf

at the identity; likewise we identify n* with triples (p, z,t) so that the pro-
jection g* — n* writes (p,z,7,s,t) — (p,2,t). The coadjoint action of G
preserves the hyperplane ¢ = 1 and writes there

P p+ e+ Re(jbelz)
z etz
(4.8) glr| = r+e
S s+a—c
1 1

in g*, and likewise in n* with the rows for r, s erased. Taking ¢ = (0,1,0,0, 1),
it is clear from this that the coadjoint orbit X = G(¢) is N-primary over U
with fiber V, where

(49) X = {(paejq7r7371) :p,q, T, S € R}a
(41()) U= {(pvejq) ]-) 'D,q € R}a wyu = dp/\ dQ7
(4.11) V:{(O,l,r,s,l) :T,SER}, wy = dr Ads.

We claim that despite first appearances, X splits neither as U x V nor in
fact in any other way. A first hint of this is the observation that its 2-form
works out as wx = dp A dq + dg A dr + dr A ds which is not the sum of wy
and wy. For an actual proof we note that since the fiber V is connected it
is enough to see that I', or equivalently the stabilizer K, acts nontrivially on
V (1.23). But this is clear since one finds

1000 f
1000 ac’

4.12 K= = :
2 {k ( 195}) b’fGR}

(hence I' = Z) and, from (4.8), k(0,1,7,s,1) = (0,1,r,s + a,1).

(4.13) Remarks. (i) As the reader may verify, this orbit also provides
an example of nonvanishing Mackey obstruction (3.8), viz. the cohomology
class of

(414> 96(9,[45) = (0707 —€,C—l45,0)-
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Here we have identified the group G (2.8) with the direct product G x Z by
sending [n, 1] to the pair (nl,entry l45 of [).

(ii) It is of interest to note that the representations attached to X are not
primary when restricted to N. In fact, [Z96, Prop. 3.8| applied to the normal
subgroup P° in which @ = e = 0 shows that we have X = Ind$ {¢p} where
P is the subgroup in which a € Z, e = 0. Accordingly one finds that the
representations attached to X by [A71] are the Ind$ y,, where

1c00f

(4.15) Xw ( 19 2) = wee' Re)g=if w=¢e? e8!,
a
1

—OoO

is the most general character of P with differential i¢|,. These representations

can be realized in L?(G/P) = L(S! x R) by
(4.16) (9E)(z,1) = e0FnagiRe(z) g—iclr=e)o=if f (56770 1 — ¢).

Likewise one finds that the representations attached to U are the Indﬁmp Nw
where 7, is the restriction of x,,, which we can realize in L?(S!) by

(4.17) (nF)(2) = o006 Re(E) o=if p( 50— da).

Now it is clear that on restricting (4.16) to N = {g : ¢ = e = 0} one gets not
one of the representations (4.17) but a direct integral of all of them.

(4.18) A primary orbit which splits nontrivially. Let H be the sub-
group of (4.6) in which ¢ = 0. Its coadjoint action is obtained by making
¢ = 0 and erasing the row for r in (4.8). In particular we see that the orbit

(4.19) Y =H(0,1,0,1) = {(p,e’%, ¢, 1) : p,g € R}

is N-primary over the same orbit (4.10) of the same normal subgroup N, and
is its universal covering.

(4.20) Remark. As in (4.13ii) one can verify that the representations at-
tached to Y are not primary when restricted to N. This raises the question of
a possible correlation between an irreducible representation being N-primary
and the corresponding orbit being trivially split N-primary (1.4).

(4.21) A primary space which doesn’t split even topologically. All
our examples so far were at least homeomorphic to the product of a covering
of U with another manifold, so it is natural to ask how far from such a product
a primary space can get. In this section we exploit the close similarity of (1.8)
with the Kodaira-Thurston construction [T76; W77, p. 10] to show that, at
least as long as we don’t insist on homogeneity under an ambient Lie group G
acting in hamiltonian fashion, examples exist with no such homeomorphism.

To this end, we let N and U be same group and cylinder orbit as in (4.10),
so that U and T are respectively the plane R? and the integers Z. We take
for V the flat torus T? = {(e’",e’*) : r,s € R} where the integers act by
powers of a Dehn twist: k(R,S) = (RS*,S), and we form the associated
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bundle X = U xp V. Thus X is the quotient of (R x T2, dp A dq + dr A ds)
by the Z-action
(4.22) k(p, g,e’" ) = (p,q+ k,ej(r+ks),ejs).

Our claim is that X is not homeomorphic to the product of any covering of
U by any surface. To see this, we observe that R? x T? can be regarded as
the right quotient of the group M of real matrices

1 0 0 p 1 0 0 O
(4.23) m= Loros by the subgroup Z ® Z = 1z 7
1 g¢q 1 0
1 1
Moreover (4.22) coincides with the residual right action on M/(Z @ Z) of the

Heisenberg group

(4.24) Hy =

— N ©
— NN o

which normalizes Z®Z. Thus we have X = M/Hgz and therefore 71 (X) = Hz.
Now since Hz does not admit Z as a direct factor, it follows that X cannot
be the product of the cylinder U (or any finite covering) by anything. Nor
is it the product of the plane U by any surface, because no surface has
fundamental group Hgz [M77, pp. 135, 143].
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