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ABSTRACT

A sin^Jle method is developed for the calcialation of the 

magnetic effect due to three-dimensional bodies. The method is 

based on the use of surface integration instead of volume integra

tion, Thus, any three-dimensional body can be considered as having 

two surfaces, upper and lower, with magnetic pole distributions. 

Simple equations based on potential theory have been derived for 

the calculation of the vertical component and total intensity due to 

these surface dlstf*ibutions of poles. The anomalous field of the 

bocty can be obtained by subtracting the effect due to one of the 

surfaces from that of the other.

The method can be applied to the interpretation of magnetic 

anomalies arising mainly from structures or polarization contrasts 

in the magnetic basement rocks.

The calculations have been programmed in a fixed point system 

for the Royal McBee LGP-30 electronic digital computer. The pro

grams may be used for either vertical magnetometer data or total 

Intensity data. Application to' some theoretical models establishes 

the relative accuracy of the method.

The technique has been presented as an application of the 

digital conQ>uter to magnetic interpretation where the time required 

to obtain computed results is an economic factor.
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I. INTRODUCTION

A. GENERAL
The problem of magnetic interpretation is how to use the measured 

magnetic data to obtain information about the hidden geological sub

surface* The measurements may be done at the surface mostly by a 

vertical magnetometer or above the surface of the earth by an airborne 

magnetometer. It is known that most, but not all, sedimentary rocks 

are practically non-magnetic, while crystalline rocks of igneous 

origin, such as granite, basalt, and gabbro, containing appreciable 

amo\ints of ferromagnetic minerals, are sufficiently magnetic to 

influence the earth's magnetic field at or above the surface of the 

earth. Due to this fact, it can be stated that in most areas the 

problem of magnetic interpretation is to deduce as much information 

as possible concerning the nature and structure or topography of and 

the depth to the igneous basement rocks.

The ioqpoirtance of the magnetic method is that it has been widely 

used in the mining field both directly to search for magnetic ores 

such as magnetic iron deposits, and indirectly to locate non-magnetic 

minerals or structures favorable to their occurrence if they were 

associated with magnetic materials, and can be outlined by magnetic 

means. Magnetic methods, in some cases, have been used successfully 

in petroleum prospecting, where oil-bearing structures in the sedimen

tary section are associated with topographic features in the xmderlying



basement rocks. Many examples of applications of magnetic methods can 

be found in the geophysical case histories. (See Bibliography)

B. PURPOSE OF INVESTIGATION

In spite of its importance, magnetic interpretation is not simple. 

The results of a magnetic survey are more difficult to interpret, even, 

than those of a gravity survey which can be very similarly interpreted. 

This is due to the fact that more factors are Involved in magnetic 

interpretation, such as the direction of the magnetizing vector. 

Accordingly, in the case of an aeromagnetlc survey, where the varia

tions of the total magnetic field are recoirded, the difficulty is 

fturther increased than in the case dealing with only the magnetic 

vertical conponent.

Baranov (1957) stated that

"In magnetism, the computation is much more complicated 
and a great number of variable factors must be taken into 
account, such as the inclination of the normal field, 
the orientation of the structure with respect to the 
magnetic meridian, and so on."

Several methods for magnetic interpretation have been described 

in the literature. Host of these are considered as standard methods 

which can be used successfully to yield the most probable interpreta

tion. However, a lot of computations are involved requiring many man 

hours.

So, it was the purpose of this investigation to develop a siaple 

method for magnetic intezpretation with a minimum of calculations and 

to find a means for manipulating these calculations in a minimum of 

time. The increasing availability of the electronic digital computers



at many places makes their use for the solution of these magnetic 

problems feasible. The principal advantages of using the computer 

are substitution of computer time for human time and strain, and 

increased accuracy of the results. Conputer time ranges from hours 

or fraction of an hour needed by the smaller computers to minutes 

with the much faster computers.

C. METHOD OF INVESTIGATION

The magnetic anomaly of a three-dimensional body of arbitrary 

shape is calculated. Either the vortical or the total intensity 

anomaly, or both, can be computed according to the types of the sur

veyed magnetic map or maps to be considered. The method used in 

interpretation is the standard indirect method: a certain distzd.bution 

of magnetic mateirial is assumed, the field due to this assumed distri

bution is calculated and then the distribution has to be modified 

until the calculated field fits as closely as desired the observed 

data.

The theory involved is that, if a uniform polarization is assumed, 

the magnetic effect of a body can be approximated by surface integra

tion rather than volume integration which is the basis of most other 

methods. The body is considered to have two surfaces; the effect due 

to the lower surface has to be subtracted from that due to the upper 

surface to obtain an approximation of the magnetic anomaly produced 

by the body.

Programs of the conputations have been written in fixed point 

system for the Royal McBee LGP-30 electronic digital computer of the



Missouri School of Mines. Applications to some theoretical models 

establish the relative accuracy of the method.

D. PREVIOUS WORK

Various procedures have been developed in the literature for 

interpreting magnetic data. Some of these are direct or analytic; 

others are indirect or synthetic. Some are used for the treatment 

of vertical intensity anomalies; a few others are used for total 

intensity anomalies. Some can be applied to point or line sources; 

others can be applied to two-dimensional bodies. However, few 

methods are available for three-dimensional cases.

In the analytic method, the data are analyzed directly to yield

the approximate size, shape and depth of a possible anomalous distrl-
»

button. The contid.bution to this method due to Peters (1949) was 

outstanding. He described some analytical techniques for interpreting 

magnetic data in deep basement areas on a routine basis. One of these 

methods is the downward continuation of the observed vez^ioal field to 

the sotirce, and then by removal of the regional contours, the basement 

topography can be calculated from the residual anomalies. He described 

also a "slope" method for depth estimation using the maximum slope of 

the anomaly curve and a more general method \dalch he called "error 

curve" method based on the idea that, if continuation of the obseirved 

magnetic j^tenslty is carried downward to a certain depth and then 

back up again, fairly accurate results are obtained \mtil the depth 

of buirial is approached. Beyond this depth the error increases 

rapidly. Henderson and Zietz (1949) in a pair of papers have worked



out gidd systems for computing second derivative maps and also for 

upward continuation from total magnetic intensities.

Dean (1958) developed a linear filter theory for gravity and 

magnetic interpretation. He indicated that the operations of second 

derivative, analytic continuation, smoothing, the removing of residuals 

or reglonals are analogous mathematically to the filtering action of 

electric circuits except that they must act on functions of two space 

variables (x and y). He showed that the frequency response of upward 

continuation is an exponential function decreasing with increasing 

frequency, while the downward continuation has a frequency response 

which is the reciprocal of that of upward continuation.. His method 

consists of matching frequency responses by coefficient sets.

Henderson (I960) devised a coiqprehensive system of calculation of 

first and second vertical derivatives or downward continuation of 

magnetic and gravity fields for electronic digital coiq>uters.

The synthetic method, on the other hand, is an Indirect one 

involving trial and error. It is more common and can be applied by 

using graphical aids or models. Nettleton (1942) conqputed several 

typical profiles for the theoretical variation of vertical magnetic 

intensity due to different sinqple geometrical forms. Profiles of 

the actual anomaly can be compared with these theoretical profiles and 

the depth to the center of the source can be deduced from relations 

between this depth and the half width of the anomaly curve. Henderson 

and Zietz (1948) have developed curves by which the depth of Isolated 

poles or of a line of such poles can be calculated from the total 

intensity profile obtained over each kind of feature. Smellie (1956)



modified this work by adding methods of point dipole and lines of 

dipoles. Hutchison (1958) has developed a method for depth-breadth 

determinations of oiagnetized dikes and other related two-dimensional 

classes by superinqposing the observed magnetic profile plotted 

logarithmically over a family of logarithmic master-curves for dikes 

of different assumed shapes. Also Cook (1950) has computed anomalies 

for a largo variety of model dikes: vertical, inclined, infinitely 

deep, of finite depth, striking north, striking east, etc. Henderson 

and Zietz (1957) showed that calculations of the total intensity 

anomaly for theoretical and practical three-dimensional bodies are 

greatly facilitated by the orthographic projection of a topographic 

map of the body onto a plane normal to the inducing field.

Using model experiments, Zietz and Henderson (1956) devised a 

rapid method for calculating magnetic anomalies of three-dimensional 

structures by determining the magnetic fields of certain models at 

different depths and for several magnetic inclinations. However, 

this method has been adequately treated in the work of Vacquier, ^  al. 

(1951) who conQmted an album of total intensity anomalies due to 

models of prismoidal forms having different dimensions and having 

been set up for different inclinations and orientations with respect 

to the external field. Vacquier in this work suggests the use of 

the curvature, which is proportional to the second desrivative, in 

conjunction with the prismatic models to estimate depths to the 

basement. The method is considered most reliable for sources due to 

lateral susceptibility contrasts in the basement and having dimensions 

which are large compared to depth of burial.



other workers who contributed to the magnetic interpretation 

include Skeels and Watson (1949) who showed that magnetic and gravita

tional quantities can be calculated by surface integration of the 

vertical component if the latter is known over a horizontal plane 

surface of sufficient extent. Also Hughes and Pondrom (194?) developed 

a method to conqpute the veirtical magnetic anomalies from total magnetic 

field measurements, while Affleck (1958) expressed the relationships 

between the various magnetic anomaly components. This was fovind to 

be useful in predicting anomaly shapes for any magnetic latitude and 

in simplifying calculations of aeromagnetlc or other component intensity 

anomaly for rock masses. Baranov (1957) described a new method for 

interpretation of aeromagnetlc maps based on transformation of the 

total magnetic Intensity anomalies into simpler anomalies "pseudo- 

gravimetric anomalies" in which the distortion due to the obliquity 

of the normal mag^netic field is eliminated.

Some other articles approaching the subject are those by Alldredge 

and Diehtel (1949), Fisher (1940), Gassman (1951)» Pirson (1940), and 

others. (See Bibliography)



II. THEORETICAL ANALYSIS OF MAGNETIC DATA

A. METHODS OF ANALYSIS

The usual treatment of magnetic data Is almost exclusively 

empirical. Deduction and inference regarding the subsurface structuro 

are drawn in a qualitative manner from the configurations and sizes 

of the magnetic anomalies. However, this empirical treatment is 

based partly on a knowledge of the theoretical anomalies produced 

certain inhomogeneities. Sometimes a theoretical type of analysis 

is applied to the problem.

The theoretical procedure for deducing subsurface structure 

from magnetic data can be summarized as follows:

1. Assume:

(a) A certain structure or configuration of the subsurface 

formations which must be geologically plausible. The 

size and shape of the magnetic anomalies might help in 

this starting step.

(b) Probable values of the susceptibilities. Informations 

from drill holes or other sources nay be used for 

choosing the appropriate susceptibility.

2. Conqpute the theoretical magnetic effects which the assumed 

configuration and susceptibility would produce at the surface.

3. Conq;>are the theoretical and observed results.



4, Modify the asstimptions until a satisfactory agreement is 

obtained between the observed and theoretical data.

In calculating the theoretical magnetic anomalies, different 

methods can be used:

1. Effect due to a single pole. This can be used directly in 

case of bodies having small cross section relative to their 

length, provided their depth extent is large enough that the 

effect of the magnetic pole at the lower end can be neglected.

2. Effect due to a dipole (vertical, horizontal, or inclined). 

This can be used if the depth of the subsurface body is

too small to permit neglecting the effect of the lower pole.

3. Effect due to uniformly magnetized bodies having geometrical 

shape like the sphere; horizontal and vertical cylinders, 

ellipsoids of revolution, etc.

4. Effect due to two- and three-dimensional bodies of other 

shapes like magnetized strata, structures in the basement 

rocks, etc. This can be calculated by making use of the 

three previous methods.

The calculation of the magnetic effects of three-dimensional 

bodies, especially structures in the basement, is emphasized in this 

investigation. To do this, we have to know the field due to a single 

pole.

B. CALCUUTION OF THE FIELD DUE TO A SINGLE POLE 

1. Coordinate System:

The coordinate system used in the mathematical develop

ment is a right-handed one. If we rotate the x-axis into the 

y-axis, a right-hand screw will advance along the positive
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z-axis (fig. 1). In other words, we are going to take the 

x-axis positive toward the north, the y-axis positive toward 

the east, and the z-axis positive vertically downward.

2. Mathematical Discussion;

In mathematics, a potential is often defined as a 

mathematical expression such that its derivative or rate of 

change in any particular direction is a force of some kind 

in that direction. The magnetic potential U referred to in 

this section is a function of space such that the negative 

of its partial derivative (or rate of change) in any direction 

is the magnetic force in that direction. (See Kellogg, 1929, 

P. 53) Thus, if A H  ,AH andAH represent the components 

of the magnetic force in the x, y, and z directions respec

tively, then:

Physically, the magnetic potential at any point P due 

to a pole of strength m is defined as the woric done on a 

unit magnetic pole in carrying it from infinity to the point 

under consideration. This can be expressed by the formula:

U = -r̂  m dr = m — — ---- — — —  -- — (2)
where r is the distance between the pole and the point P 

(fig. 1) and is given by the equation:

= (x* - x)2 + (y* . y)2 + (2. . z)2
X, y, and z are the coordinates of the point P. x*, y*, and 

z* are the coordinates of the pole m.

Thus U is a function of the coordinates (x, y, z) of
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c.

P and has a definite value at every point P of space external 

to the magnetic pole m. Equation (2) can be re-written as:

U = s ----------------------JS--------------------
^ [ (x'-x)^ + (y'-y)^ + (z* - z)^ji

The components of the magnetic field at point P due

to a magnetic pole of strength (-m) are given by the partial

derivatives of this equation:

AH = ---------------- (3a)

-----------------------

A H  = M  . " (?.' ----------------------  (3c)

whereAH^ ancAHy are the horizontal components of the 

magnetic field in the north and east direction respectively, 

AH^ is the vertical component.

CALCULATION OF THE FIELD DUE TO THREE-DIMENSIONAL BODIES 

1. Types of Anomalies:

There are two general types of magnetic anomalies that can 

be foxmd in any magnetic survey:

a. Broad anomalies covering large areas and having large 

amplitude, meastired usually by hundreds of gaimnas. Their 

intensity depends largely on the depth of burial (fig. 2). 

These large anomalies are mostly due to lateral changes in 

susceptibility within the basement complex or, in other 

words, due to regions of major polarization contrast which
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Fig. 1. Coordinate system used in calculating 
the magnetic fields due to pole (-m).

Fig. 2. Types of magnetic anomalies and variation of 
vertical magnetic intensity anomalies with depth of
burial. (Modified from Vacquier, 1951)
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are bounded by approximately vertical surfaces that extend 

downward several miles from the top of the basement complex 

to the depth where the rocks cease to be magnetic (i.e., the 

cuirve point geotherm) (See fig. 2). The lateral extent of 

these rock masses is often 10 miles or more. These anomalies 

can be well-shown in airborne magnetic surveys (Vacquier, 1951)« 

Their nature can be obtained by approxiisating these masses 

or regions by prismatic rectangular bodies with flat sur

faces and vertical sides having infinite depth, 

b. Small anomalies measured usually in tens or units of 

gamma. These are arising from either one or the other of 

two causes:

(i) Smaller (shallow and thin) polarization contrast 

within the basement as the case of a basalt flow. In 

this case the anomalies are relatively flat. Such a 

case can be approximated by a thin slab with horizontal 

top and bottom and having vertical sides, (as indicated 

by ABC'D* in fig. 2). Vacquier (1951) suggested that 

the computation of the magnetic effect of this prisma

tic block can be made by subtraction of the anomalies of 

two infinitely long prisms.

(ii) Structure or relief of the crystalline rock surface 

in which case the polarization contrast has sloping instead 

of vertical boundaries as the case of a buried mountain.

The anomalies are relatively sharper. This effect of
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relief was neglected by Vacquier because the magnetic 

anomalies produced by relatively small masses (i.e., 

when the topographic relief is small with respect to 

depth of burial) wo\ild be comparatively small and are 

usually lost among the much larger anomalies arising 

from contacts between different rock types. The magnetic 

effect due to these topographical bodies can be computed 

directly or indirectly by subdividing it into thin slabs 

and adding the effects of each of these slabs.

The method developed in this investigation can be applied to 

each of these cases as will be shown later on.

2. Basic Principles;

To calculate the field due to a three-dimensional body of a 

given form and polarization, a useful approximation may be 

obtained by considering the volume magnetization of the body 

as replaced by magnetic poles on its surface, by Gauss's 

theorem, for effects at points outside a magnetized body, the 

volume magnetization within the body can be replaced by s 

surface distribution of magnetization. Thus, any simple boc|y 

which is simply magnetized can be considered as having two 

surfaces; an upper surface with a distribution of negative 

poles, and an opposite lower surface with an equal distribution 

of positive poles. Due to this approximation, in calculating 

the magnetic effect of a body, we can now replace the voliuoe 

Integration throughout the magnetized body by surface integration 

over its surface.
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If a structural or topographical relief in the crystalline 

basement is more magnetic than surrounding rocks it will have a 

distribution of negative poles on its upper surface. Thus, 

its magnetic effect is calculated by carrying the surface inte

gration from minus infinity to plus infinity. However, to avoid 

this, one can assume a level surface with a similar distribution 

of negative poles whose effect is subtracted from that of the 

basement surface. By this subtraction the negative poles ai*e 

changed to positive ones distributed throughout this level 

surface which represents the general basement level (indicated 

by the line z=h in fig. 3)* In other words, the basement level 

is extended throughout the area to separate the local relief 

from the general topography.

In case of a basement high, e.g., a buried hill, this level 

will represent the lower surface of the structure with a distri

bution of positive magnetic poles. The basement surface will be 

the upper one with negative poles. Thus, in the surrounding 

area of the high where the basement is assumed to be constant 

in topography, the effects of the negative and positive poles 

cancel each other since both distributions coincide together. 

Accordingly, the effect due to the basement high is the only 

thing to account for (fig. 3a).

In case of a depression in the basement, i.e., a basement 

low, the same principle can be applied, but here the general 

basement level with positive poles will be above the depressed 

basement surface having a distribution of negative poles, (fig. 3b)



Fig. 3* Calculation of the magnetic field due 
to three-dimensional basement structure or relief.

Fig. 4, Calculation of the magnetic field due to 
rectangular bodies.

(a.) thin slab (b.) Infinite prtsra
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By this procedure, we have separated the regional effect 

from local effects due to any relief in the basement whether 

elevation or depression.

Now, we can replace the surface integration by summation.

This is done by dividing the subsurface structure into grid 

squares (or rectangles) and then calculate the magnetic effect 

due to each grid. By adding the effects of all grids of the 

surface with negative poles (basement surface) and subtracting 

the effects of those of the opposite surface with positive poles 

(general basement level), we obtain the magnetic anomalous field 

due to the structure. One must put into consideration that the 

grids of the basement surface lie at variable depth z* from the 

sxirface of measurements while all the grids of the basement level 

lie at a constant depth h.

In case of a thin slab or any rectangular block with finite 

depth, its magnetic effect can be calculated in a similar manner 

by adding the effects of the grids of the upper surface with 

negative poles and subtracting the effects of those of the lower 

surface with positive poles. In this case, the depth z* is the 

same for all grids of the upper surface (fig. 4a).

In case of a rectangular prism with Infinite depth, the 

magnetic effect of its lower surface can be neglected and we 

have the effect due to the upper surface with negative poles 

and at a constant depth z* only (fig. 4b).

Another approach for approximating the magnetic effect of a 

three-dimensional structure ^lhich might be mentioned is similar
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in its results to the previous approximation. However it might 

be more effective and more accurate in case of an irregularly- 

shaped body. The body is subdivided into thin prismatic rectangu

lar slabs of constant thickness and varying horizontal dimensions 

(fig. 5). The magnetic field of each slab at its appropriate 

depth is calculated and then contoured as mentioned before by 

adding the effects of the upper surface and subtracting the 

effects of the bottom. The field due "to the whole body could 

be obtained by superimposing these con-toured maps and adding 

numerically the effects at each point.

By adding the magnetic effects of the tops of the slabs and 

subtracting -the effects of the bot-toms, it is evident -that the 

contribution of areas common -to the top and bottom of two slabs 

will be zero, so that the anomaly will consist of the effects 

due to the top of the uppermost slab and the bottom of -the lower

most slab, and also due -to the horizontal areas of the steps 

approximating the sloping boundary of the body.

If contoured magnetic fields of numerous slabs were made 

available, havipg the geometrtcal shape mentioned above, buried 

at different depths, and for several magnetic inclinations, -then 

for an Irregular magnetic mass distribution, the field coiild be 

obtained directly by superimposing the appropriate contoured 

maps and adding numerically the effects at each point. This 

approach has been used by Zietz and Henderson (1956) using 

experimental models.
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Fig. 5* Approximation of a three-dimensional structure 
by prismatic slabs. (After Ziete and Henderson, 1956).

NO PTH

Fig. 6. (a) Calculation of the magnetic field due to
surface distribution of poles.

(b) Calculation of the total anomalous field 
from North and vertical components.
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3. Mathematical Discussion

The components of the magietic field due to surface with a 

distribution of negative polos can be obtained by use of 

equations (3) for a single pole summing for all poles over the 

surface. Thus, the north component (a  H) and vertical component 

(a  V) due to the surface are given by: 

n
E

i=l
A  H = m E ^^*i ~ •(4a)

A  V = m E  ^^*i ~
i=l

•(4b)

where, as before, x, y, and z are the coordinates of the point 

at vdiich the magnetic field is measured; x'̂ ,̂ y'̂ ,̂ and are 

the cooivilnates of the centers of the subsurface grids, i.e., 

the coordinates of the magnetic poles, r^ is the distance between 

the i ^  magnetic pole and the point of measurements and is given 

by:

“ (x'^ - x)^ + (y*^ - y)^ + ( z*^ - z)^ •(5)

The siumnatlon in equations (4a) and (4b) is carried over all 

the grids; n is the number of the grids, 

m is the magnetic pole strength and in this case is given by:

m = I a A — — — —  -------------—  ------(6)

where A A  is the area of each grid sq\iare (or rectangle).

I is the polarization or intensity of magnetization which is 

defined as pole strength per unit area, and it can be expressed as: 

I = k H
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k Is the magnetic susceptibility of the rocks 

is the component of the magnetic earth's field 

normal to the surface and in its turn, can be 

written as;

H = H cos 6 n

where H is the total earth's field, 6 is the angle between the 

direction of this field and the noimal to the surface. If the 

surface is horizontal, then 6 will be the complement of the 

magnetic inclination which is constant throughout the area 

(fig. 6a). Thus, in case of any relief in the basement surface, 

the slope of the botindaries is assumed to be small so that the 

grids can be assumed as horizontals. Now we can express m 

given by equation (6) as:

m = H k A A  cos 0 — — ----------------— — - (6a)

Substituting this value of m and that of r| in equations (4a) 

and (4b) we can express the north and vertical components as;

A H  = H k A A  cos 0 Z  ^^*i ~ _________________ —  (?a)
i=l[(x'^ - x)2 + (y'^-y)^+(z^j^-e)^]^^
” (t.* - z)A V  = H k A A  cos 0 £  i___^ —  (7b) 

3/2i=l[(x'j^ - x f  + (y'̂  -y)̂ +(z'ĵ -z)̂ ]

The effect due to the opposite surface with positive poles 

is obtained from the same equations by replacing z'^ with h 

which is the constant depth of the basement level.

The total anomalous magnetic intensity measured by the 

airborne magnetometer is taken as the sum of the projections
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of the north and vertical components of the actxial anomalous 

magnetic intensity on the direction of the total magnetic 

intensity (fig. 6b). The east (y) component of the magnetic 

intensity AHy is zero, since the x axis is directed north 

(Vacquier, 1951)• Thus, if AT represents the total anomalous 

magnetic intensity, then:

AT » a h  sin 6 + a V cos 6 (8)

EqTiations (7a), (7b), and (8) were programmed for the Royal 

McBee LOP-30 electronic digital computer in fixed point system. 

The programs were discussed in Chapter III.

D. BASIC ASSUMPTIONS AND LIMITATIONS OF THE METHOD

In the development of this method and specially for airborne 

magnetometry, certain assuoqptions must be made for the simplification 

of the procedure. These have been mentioned above, but are sum

marized here:

1. The bodies to be dealt with are assimed to be homogeneous,

1. e., have uniform properties and are tmiformly polarized.

2. In airborne magnetometry the anomalous total field is assumed 

to be in the direction of the earth's normal field which is 

assumed to be uid.form over the area. Hughes and Pondrom (194?) 

have shown that this assuaqption results in a negligible error 

for stifficlently small areas as in esq^loration work.

3* The magnetic polarization of the basement rocks is assumed 

to be in the same direction as the present direction of the 

earth's magnetic field. In other words, any remanent magneti

zation is assxuned to be codirectional with the normal field;
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otherwise the body is magnetized entirely by Induction.

4. The polarization of the rocks is assvimed to have no horizontal 

component, i.e., a vertical polarization is only considered.

Thus, in calculating the magnetic effect of the prismatic 

bodies, the effect due to the vertical sides was neglected;

only effects due to the horizontal surface were considered. In 

high magnetic latitudes this approximation would introduce 

negligible errors. Vacquier (1951) indicated in his model 

anomalies the progressive change of the magnetic e^qpresslon 

of the same Idealized bodies with decreasing magnetic latitude.

5. In calculating the total anomalous magnetic Intensity, the 

east (y) component of the magnetic intensity is assumed to be 

zero, since the x axis is directed north. This will not affect 

the accuracy of the method, since the declination of the earth's 

field from the north is in the range of few degrees which oan

be neglected.

All these assumptions place limitations on the procedure. The 

accuracy of the method depends on the degree to which these slo^lifying 

assvuqptlons are satisfied. However, for most cases discussed in the 

literature, these assusqptlons were found to be reasonable.



III. ELECTRONIC COMPUTER CALCULATIONS

A. CALCUUTION PROCEDURE

The coinputation processes were programmed by the author for the 

Royal McBee LGP-30 electronic digital computer of Missouri School of 

Mines and Metallurgy. The system used in programming is the fixed 

point system which is more flexible and much faster than other 

systems. Four programs have been written for different cases en

countered depending on whether the vertical or the total anomalous 

field, or both, are required to be calculated and whether the body 

to be dealt with has a finite depth or infinite depth. The general 

procedure for all these programs is almost the same. There is little 

difference between them, even one may be modified to do the function 

of the other. However they were written here separately for simpli

fication and for increasing the speed of computation.

In general, the calculation procedure is summarized as follows; 

The magnetic effect due to the first subsurface grid is calculated 

for all the surface points by using the equations developed in Chapter 

II. The effect due to the next grid, is then calculated and added to 

the previous effect for each surface point and so on until the effects 

due to all the n subsurface grids are calculated and summed for each 

of the s surface points. Thus, the calculations will be carried 

(n X s) times.
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By this piocedure, the surface data (I.e., the coordinates of the 

surface points) have to be stored in the computer, while the subsurface 

data should be fed to the computer, one at a time.

B. SYMBOLS USED

X, y, z = coordinates of the points at which the magnetic field 
is measured at the surface or over the surface of the 

earth (simply called surface data).

X* y*» 2?, » coordinates of the subsurface points at which the 

magnetic poles are located (subsurface data), 

h » the constant vertical depth from the surface of

measurements to the basement level or in general depth 

to the lower surface of the body.

Ax*, ^  • interval between the subsurface points (i.s., grid 

interval) in the x* and y* directions respectively, 

x'^ = final or largest value of x* plus an increment (about 

half a x ')

y'^ = final or largest value of y* plus an increment (about 

half Ay')

r 3 distance between subsurface and surface points 

S nxudber of surface points or stations at which measure

ments are made 

s « S - 1/2

n = number of subsurface points (i.e., number of grids)

A A  = grid area =Ax* *Ay* 

m “ magnetic pole strength
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k = susceptibility of the rocks 

H = earth's total field

6 • angle between the direction of H and the vertical 

(i.e., the complement of the angle of inclination)

AV_ = horizontal (north) and vertical components of the

anomalous magnetic field due to the surface having a 

distribution of negative poles (Generally the upper 

surface)

AH^, AV_^ = horizontal and vertical componaits due to the surface 

having a distribution of positive poles (generally the 

lower surface)

AH, AV = anomalous hoidzcntal and vertical oonqponents due to 

both upper and lower surfaces or due to only the ' 

upper surface if the lower one is at Infinite depth.

In the first case: AH = AH__ - AH_̂ _

A V  = AV_ - AV^

In the second case A H  = AH_, AV = AV_

AT = total anomalous magnetic intensity

C. FUNCTIONS OF THE PROGRAMS 

1. Program No. 1:

The purpose of this program is to conpute only the vertical 

magnetic anomaly due to the upper surface only of a three-dimensional 

body whose lower surface is assumed to be at infinite depth e.g. an 

infinite rectangular prism.

The program will prtnt out in sequence the values of x, y and
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corresponding values of AV.

2. Program No. 2;

The purpose of this program is to compute only the vertical 

magnetic anomaly due to both upper and lower surfaces of a three- 

dimensional body having a finite depth e.g. buried hill, basalt 

flow represented by thin slab or any feature represented by 

rectangular block. The program will print out x, y and AV in 

sequence as program No. 1.

3« Program No. 3;

The purpose of this program is to compute the vertical, 

horizontal and total magnetic intensity due to the upper surface 

only of a three-dimensional bo^y having a lower surface at infinite 

depth. The program will print out in sequence the values of x, 

y and the corresponding values o f A V  and/or AT. This can be con

trolled by the transfer control button in the conputer. I f A V  is 

required to be printed together with AT, the transfer control 

button is depressed. This is indicated by the appearance of li^t 

behind the button. However, if AT only is required, the transfer 

control button must be up, i.e., in its normal position (unlighted). 

In this case, the conputer will not print AV.

4. Program No. 4i

The function of this program is to compute the vertical, 

horizontal and total magnetic intensity due to both upper and 

lower surfaces of a three-dimensional body having a finite depth. 

The sequence and mechanism of printing out is the same as those of 

program No. 3.
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D. FLOW CHARTS

The flow charts of the four programs appear on pages 30 - 34.

These charts have been drawn mainly for a fixed point system. 

However, by slight modifications they can be used for other systems of 

the LGP-30 e.g. Act III compiler.

E. DESCRIPTION OF THE FLOW CHARTS

The description is referred to flow chart (4) of program No. 4, 

but it can be applied to the other charts except that some boxes are 

slightly^ modified and a few others are omitted according to the function 

of each program.

Box It Input data are stored in memory. These include initial 

values of x* and y', final values xj and y^,Ax',Ay*, h, H, k, cos 0, 

sin 0,AA, s and the surface data x, y and z.

Box 2t m is calculated from eqtiation (6a) and then stored.

Box 3: The computer is stopped in order to load the reader with 

the second data tape containing z' which will be input later (Box 8). 

This being done, the computer start button is pushed to start computing 

again.

Box 4: Sum I and sum II are set to zero for storage of AV andA H 

respectively.

Box 5: 8 is decreased by one and replaces the previous value.

If the new s is still positive proceed directly to Box 6. If s is 

negative transfer to Box 7.
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Box 6t The addresses of sum I and sum II are modified to the 

next following addresses. This is done in fixed point system by adding 

1 at q = 29 (or ZOOOl) to the address. The addresses being modified, 

unconditional transfer to Box 4, The process is repeated as long as s 

is positive until 2S locations are set to zero for the storage of the 

values of A V  andAH at S surface points. This being done, s becomes 

negative and the procedure in Box 7 is followed.

Box 7: The value of s, which is modified in Box 5* is reset to 

its initial value.

Box 8; z’ is read one at a time for a certain subsurface grid.

Box 9: The quantities indicated inside are calculated and stored.
2Box 10: r is calculated from equation (5), then r is obtained

2 2by taking the square root of r . r and r are stored.

Box 11: AV_ due to the surface with negative poles is calculated 

using equation (7b), then sum I is added and result is stored in sum I.

Box 12: A  H_, is calculated using equation (7&)» then sum II is 

added and result is stored in sum II.

Box 13: Using h, the depth to the surface with positive poles,

instead of z', the quantities (h-z) and (h-z) are calculated and stored
2in the locations of (z*-z) and (z'-z) respectively.

Box 14: The new values of r and r are calcxilated.

Box 15: AV^ due to the surface with positive poles is calculated 

using equation (7b) and then stored.

Box 16: AV^ is subtracted from sum I and result is stored in sum I. 

Box 17*A H^ is calculated using equation (7a) and then stored.
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Box 18;A is subtracted from sum II and result is stored 

in sum II,

Box 19: HaveA V andA H been calculated for all surface points? 

If not proceed directly to Box 20. Otherwise, transfer to Box 21,

Box 20: Addresses of x, y, z, sum I and sum II are modified 

to the next ones and by unconditional transfer to Box 9 the proce

dure is repeated for the calculation of a V andAH using new values 

of X, y, and z corresponding to the next s\irface station. This is 

carried on until A  V andAH are calculated for all surface points. 

Hence, the procedure in Box 21 is followed.

Box 21: s is set at its initial value.

Box 22: Addresses of x, y, z, sum I and sum II which are 

modified in Box 20 are set at their initial values.

Box 23: The value of y* is increased by Ay* and stored in 

the location for y* (to calculate the effect due to ths next sub

surface grtd in the y* or east direction).

Box 24: Has end of row in the y* direction been reached?

If not, i.e., if AV andA H due to all grids in a row have not been 

confuted, transfer back to Box 8. Otherwise, the procedvire in 

Box 25 is followed.

Box 25: y* is set at its initial value.

Box 26: The value of x* is increased t^A x* and stored in 

the location for x* (to calculate the effect due to the next row 

of grids).

Box 27: Are there any more rows to compute? If yes, transfer 

back to Box 8. If no, which means that the final value of x* has
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been used in the coinputation, i.e., the effects due to all sub

surface grids have been computed, then the procedure in Box 28 is 

followed.

Box 28: The values of x and y are printed.

Box 29: The accumulator is set to zero (see Box 30).

Box 30: According to a criterion set up by the programmer,

AV, is printed out if desired or, if not, the computation proceeds 

to Box 32 without printing A  V. This has been done in fixed point 

system by using the instruction 800T XXXX which means that, if the 

accumulator is positive and the transfer control button is down, 

control is transferred to memory location XXXX (Box 31 in this case), 

while if the transfer control button is up, the instruction follow

ing T XXXX is executed next (this is an unconditional transfer to 

Box 32).

Box 311 A V  is printed out.

Box 32: A  T is calculated using equation (8) and then printed

out.

Box 33: A carriage return is executed.

Box 34: If all values of x, y, AV and/or AT have not been 

printed out, procedure in Box 35 is followed. Otherwise, the 

con9)utation is stopped.

Box 35: Addresses of x, y, AV (sum I) and AH (sum II) are 

replaced by the next following addresses and, by unconditional 

transfer to Box 28, new values of x, y, AV and/or AT are printed 

out.
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F, SUBROUTINES

Three subroutines are used in each of the four programs.

1. Input Subroutine;

This is used to input and store data from the first data 

tape, and to feed in z* from the second data tape. The sub

routine used in this investigation is the data input No. 5 

subroutine - Program 11.4B.

2. Output Subroutine:

This is used to prtnt the output data. The subroutine 

used is the data output No. 1 subroutine - Program 12.OB.

3. Square Root Subroutine;
2This is used to obtain r by taking the square root of r .

The subroutine used is the square root subroutine - Program 15*1.

For more information about these subroutines, refer to 

the LGP-30 subroutine manual.

Q. MFMORY REOUIREMENTS

The storage required for the programs ranges, in general, from 

approximately 125 locations for program No. 1 to 200 locations for 

program No. 4 (exclusive of the subroutines). Storage required 

for miscellaneous data is 20 locations. Also 10 locations of 

teiiq)orary storage are needed to store some quantities during 

con?)utations. The storage requirement for surface data (x, y, and 

z) is 3 S locations. For output data S locations are required in 

case of using program No. 1 and 2 S locations in using other programs.
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Thus, the total requirement is of the order of:

(4S + 150) words or locations for program No. 1

(5S + 200) words or locations for programs No. 2 and No. 3

and (5S + 250) words or locations for program No. 4.

In this investigation, the programs are written such that four 

tracks are required for program No. 4 and data storage (three tracks 

only are required for each of the other programs), one track is 

required for square root subroutine and two tracks are required for 

each of X, y, z A  V andA H so that any program can be used to 

calculate the magnetic field at a maximum of 128 surface stations.

H. ESTIMAT3PN OF THE RUNNING TIME

The time taken by the square root subroutine 15*1 is a maximum 

of 510 milli-seconds. The input subroutine 11.4B can read 4 0 - 5 0  

words per minute. Printing ty the output subroutine 12.OB takes 

about 1.5 seconds per word including the tab if the output is taken 

through the high speed punch.

The time required for the conqputation of the magnetic field 

at one surface point depends on the nxunber of subsurface grids.

By using the programs in fixed point system, it was found that the 

machine time required for the computations (without printing) per 

a single subsurface grid at a single surface station is approximately 

1.3 seconds for program No. 1, 1.6 seconds for program No. 2, 1.5 

seconds for program No. 3i and 2.6 seconds for program No. 4. This 

estimated time would be reduced further if the programs were optimized.
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I. SUMMARY OF THE OPERATION PROCEDURE OF THE COMPUTER

The steps to be followed in the operation of the con?)uter are 

summarized in this section and must be carried out in the following 

order:

1. The subroutines are loaded in the computer.

2. The program tape is read and stored in the computer.

3. The first data tape containing all necessary data except 

z* is r̂ ead. After all data has been stored, the conputer will 

stop.

4. The second data tape containing z* is loaded in the reader.

5. The start button is depressed, z* will be fed one at a 

time during the conqputation.

After all the computations are completed, the output 

data are taken either through the flexowriter or through the 

high speed punch. In the latter case the break point l6 

button must be down, if output subroutine 12.OB is used.

N.B. In case of using program No. 3 or No. 4, the transfer 

control button must be down if one wants to print the vertical 

magnetic component.



The method discussed in the previous chapter has been applied to 

calculate the magnetic effect due to twelve theoretical models.

This has been done mainly to check the relative accuracy of the 

method by compartng the results obtained herein with those obtained 

by Vacquier, et al (1951) who calculated the magnetic effects due to 

identical prismatic models.

A. GENERAL PROPERTIES OF MODELS

IV. APPLICATION OF THE METHOD TO THEORETICAL MODELS

The prismatic models, which are considered similar to large 

lithologic units in crystalline rock, have the following common 

properties as described by Vacquier, ibidi

(1) Horizontal upper surface, one unit below the plane of the 

map.

(2) Vertical side walls that extend infinitely downward, except 

for two models whose vertical walls have finite length.

(3) Polarization in the direction of the earth's main magnetic 

field.

(4) A magnetic susceptibility, constant throughout the prism, 

and in caitrast to the susceptibility of the rock surrounding 

the prism.

The prismatic models are rectangular in plane in order to
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facilitate the confutation of their magnetic fields* The dimensions 

of the rectangle are in units of the depth of burial of the top of 

the prism. The dimensions are expressed herein as a x b where a 

is the dimension of the side that is parallel to nagnetic north and 

b is the dimension of the other side in the east-west direction, 

a and b range from 1 to 8 in length. In case of the models with 

finite vertical length, the dimensions are expressed as a x b x c 

where c is the height of the model.

B. CONSTRUCnON OF THE MODEL CHARTS

The total and vertical intensity anomalies were calculated 

for each of the twelve models which have different dimensions and 

having been set up for different magnetic inclinations of 45°, 60°, 

75*̂ > and 90°. The dimensicxis of the models and the coordinates are 

measured in terms of the depth of burial of the top of the prism 

which is taken as unity. The center of ths prism is taken as the 

origin of the coordinates* However, if the origin is taken at the 

corner of the prism, same results will be obtained.

The horizontal surface of the prism is divided into square 

gzdds. The side of the sqiiare is equal to the depth of burial in 

some prisms or half the depth of burial in others. In one of the 

prisms the grid interval is taken as equal to one quarter the depth 

of burial.

The polarization of the prisms was taken as unity (k H = 1) 

for most of the models so that the values of the calculated total



42

intensity (in C. G. S. units) can be compared with those values 

(a T/I) obtained in the worit of Vacquier, ibid. In a few models,

H was given a value of 60,000 gammas and k was given a value of 

0.003 C. G. S. \inits.

Program No. 1 has been used in con?)uting the total intensity of 

the models where the magnetic inclination is 90° in which case the 

total intensity is equal to the vertical component. In case of the 

other inclinations, program No. 3 has been used to compute the total' 

and vertical magnetic intensity due to infinitely long prisms, while 

program No. 4 has been used in case of models with finite vertical 

length. The resxilts obtained from the programs for each model are 

given in appendix D.

The values of the total magnetic intensity are contoured on 

the right side of Figures 7 - 1 8  for each model. The left side has 

not been contoured since the anomaly will be symmetrical about the 

magnetic north axis.

C. DSSCBIPTION OF THE MODEL CHARTS

The model charts shown in Figures 7 - 1 8  are maps of the total 

intensity anomaly produced by & prismatic model* These prismatic 

models are given numbers from 1 - 12. In the following description 

each model is Indicated by its dimensions, magnetic inclination, 

grid interval and polarization:

Model No. 1: (Fig. 7) 6 x 2 ,  inclination 45°, grid interval =

1/2 depth of burial, Hk = 1.
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Model No. 2: (Fig. 8) 6 x 1, inclination 60°, grid interval. = 

depth of burial, H = 60,000 gammas, k = 0.003.

Model No. 3: (Fig* 9) 4 x 6, inclination 60°, grid inteirval = 

depth of burial, H = 60,000 gammas, k = 0,003.

Model No. 4; (Fig. 10) 1 x 1, inclination 60°, grid interval = 

l/4 depth of burial, Hk = 1.

Model No. 5: (Fig. 11) 8 x 8 x 7 »  inclination 60°, grid 

interval = depth of burial, H = 60,000 gammas, k = 0.003.

Model No. 6: (Fig. 12) 8 x 8 x 1, inclination 60°, grid 

interval = depth of burial, H = 60,000 gammas, k = 0.003.

Model No. 7: (Fig. 13) 6 x 1 ,  inclination 75°» grid interval = 

1/2 depth of burial, H = 60,000, k = 0.003.

Model No. 8: (Fig. 14) 6 x 2, inclination 75°» grid interval = 

1/2 depth of burial, Hk = 1.

Model No. 9t (Fig. 15) 2 x 6, inclination 75°* grid interval = 

1/2 depth of burial, Hk = 1.

Model No. lOt (Fig. I6) 6 x 1 ,  inclination 90°, grid interval = 

1/2 depth of burial, Hk = 1.

Model No. Ill (Fig. 17) 1 X 6, inclination 90°, grid interval = 

1/2 depth of burial, Hk = 1.

!fodel No. 12: (Fig. 18) 8 x 6, inclination 90°, grid interval = 

depth of burial, Hk = 1.

D. ACCURACY OF THE METHOD

The accuracy of the program calculations has been checked by
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The results from both computer and desk calculator were accurate 

within three decimal places. However in preparing Figures 7 through 

18, the computer values were ruunded to two decimal places in those 

cases using C. G. S. units and to whole integers where gammas were 

used. Thus the accuracy of the points used in preparing the contour 

maps is + 0.005 C. G. S. units or + 0.5 gammas.

The model charts shown in figures 7 through 18 have been 

coD?)ared with the equivalent charts shown in the work of Vacquier. 

The comparison showed that there is a similarity between the general 

shape of the anomalies in both works. However, as far as the 

absolute values of the total Intensity are concerned, there is 

an excellent agreement between both results when the inclination 

of the magnetic field is 90°. This can be shown by comparing 

Figures l6, 17, and 18 with Vacquier*s Figures A77, A80, and A83 

respectively. In the cases idiere the inclination of the magnetic 

field is 75° to 45°, the magnetic contours calculated in this thesis 

are shifted northward compared to Vacquier*s work up to 20^ of 

the length of a north-south prism.

Figures 19 and 20 are photographs of Vacquier* s Figures A83 

and A45, given here for comparison with figures 18 and 1 of this 

thesis respectively. The similarity between both results when the 

inclination is 90° can be shown by figures 18 and 19, while the 

relative discrepancy when the Inclination is 45° is indicated in 

Figures 1 and 20.

calculating a small-scale sample problem on a desk calculator.
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Fig. 7. Total Intensity (C.Q.S^ - Model No. 1 

Inclination 45°
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Fig. 8. Total intensity (Gammas) - Model No. 2 

Inclination 60°



Fig. 9. Total intensity (Gaimnas) - Model No. 3 

Inclination 60°
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Fig, 10, Total intensity (C.O.S.) - Model No. 4 

Inclination 60°



Fig. 11. Total Intensity (Gammas) - Model No. 5, 8 X 8 X 7  

Inclination 60°



Fig. 12. Total Intensity (Oanunas) - Model No. 6, 8 X 8 X 1 

Incllnoatlon 60°
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Fig. 13. Total Intensity (Gammas) - Model No. 7

Inclination 75
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Fig. 14. Total Intonslty (C.O.S.) - Model No. 8

Inclination 75
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Fig. 15. Total Intensity (C.G.S.) - Model No. 9

Inclination 75
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Fig. 16. ToUl intsnslty (C.O.S.) - Model No. 10 

Inollnatlon 90°
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Fig. 17* Total intensity (C.O.S.) - Model No. 11

Inclination 90^
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Fig. 18. Total intensity (C.G.S.) - Nodal No. 12

Inollnatlon 90
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Figure 19. Model 8 x 6 ,  Inclination 90° (Vacquier*s figure A83) 
to be compared with Figure 18.
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Figure 20. Model 6 x 2 ,  Inclination 45° (Vacquier*s figure A45) 
to be compared with Figure 7.



V. SUMMARY AND CONCLUSIONS

The summary and conclusions of this study are as follows:

1. Magnetic anomalies due to three-dimensional bodies can be 

calc\ilated in a minimum of time with an accuracy adequate for 

most ptxrposes. If the inclination of the magnetic field is 

less than 60° the error can be expected to Increase as the 

Inclination decreases.

2. The method can be applied to the Interpretation of magnetic 

data specially those due to magnetic distribution In the 

basement rocks, whether these data are obtained by a vertical 

magnetometer or they are total Intensity data.

3. The magnetic distribution may be due to lateral polarization 

contrast within the basement rocks or due to topographical 

relief of the basement surface. The latter Is of special 

inportance In oil exploration, since many geologic deformations 

or structures that form traps for oil accumulation are under

lain by basement uplifts. Also, the estimation of the basement 

depths, even If It Is rough, may be very valuable for Indicating 

the available thickness of sedimentary section In which oil 

accumulation may occur.

4. The method of Interpretation Is summarized as follows:

(1) Assume a certain distribution of magnetic material having
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a certain susceptibility, certain shape and located at a 

certain depth.

(11) By incorporating these three parameters into a conqputer 

program, compute the magnetic effect (total or vertical 

intensity, or both) due to the assumed distribution at the 

surface or any plane above the surface.

(ill) Plot the values of the magnetic intensity obtained from 

the computer on a contour map or on a profile.

(iv) Compare the theoretical map or profile with the actual one. 

(v) If the comparison is not satisfactory, modify the assump

tions and re-run the program using ths new data until a 

reasonable fit Is obtained.

5. Model studies can be applied as an effective method for magnetic 

Interpretations specially aeromagnetlcs Involving three- 

dimensional structures. A complete album of model fields

can be made available by this method and can be used as a 

reference for Interpretations. Thus, the anomalous field of a 

three-dimensional structure can be readily calculated by re

placing the body by the proper array of prismatic blocks and 

by oonqparing this field with the actvial field, the distribution 

of the blocks may be altered until a proper fit Is obtained.

6. It must be emphasized that any Interpretation of observed 

magnetic data shotild be made cautiously because. In general, 

the solution Is not unique. Only the magnitude of the anomaly 

and the earth*s field at the point In question are known.
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The unknown susceptibility, depth of burial, and shape and 

size of the structure all enter as parameters and the observed 

field may always be approximated t̂ y several combinations of 

these parameters. However, when two of these quantities are 

known, the third may be reliably detenained. Therefore, the 

interpreter must resort to other aids besides direct theory.

The three most effective aids are

(a) Adequate geologic or subsurface control (this is the most 

Important).

(b) Magnetic studies over known geologic conditions In the 

Immediate area.

(c) Model experiioents.

Thus, with a clue to the probable shape of the structure, 

and an Idea of the magnetic properties of the rocks. It Is 

possible to conqpute the theoretical anomalies for a series of 

structures vdiloh would give the results obtained from the field 

measurements, and to select from this series the structure 

that seemed ihost likely from the geological standpoint.

7. The method developed In this Investigation still needs more 

studty and development so that It can be applied to all oases 

without any restriction. However, it has the advantage of being 

slnqple and of allowing rapid calculations.

In conclusion, the author believes that digital coopiters have 

great versatility In treating geophysical problems where the time 

required to obtain computed results is an economic factor. He 

presents this technique of application of a digital con^mter to
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magnetic interpretations as one approach to this idea.
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APPENDIX A
MEMORY LOCATIONS AND THEIR CONTENTS
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APPENDIX A

MEMOPOr LOCATIONS AND THEIR CONTENTS

The following is a general memory map for all programs showing 

the locations used, their contents, and the q point:

Memory Location Contents

5135 z* 5
36 Initial x* 5

37 AX* 5

38 X*. 5

39 Initial y* u> 5
40 Ay* 5
41 ^f 5
42 Initial X* 5
43 Initial y* 5
44 h 5

45 H 16

46 k 1

47 Cos 6 1

48 Sin e 1

49 1 1

50 A  A 2

51 9
52 S 9

53 1 9
54 1 4
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Temporary Storage: 

Memory Location

5155

56

57

58

59
60 

61 

62

Contents

m = Hk A  A cos 6

X* - X
(x* - x)'v2 uj

(y* - y)̂ L>

Z'-Z i-"
r

r

u

w

5
10
10
5
10
5

15

20

A  H sin 0 

(for programs No. 4 and No. 5)

In general, the memory map for each program, showing the 

location of program, data, and square root subroutine, is as follows:

Programs No. 1, No. 2, and No. 3:

Location Contents _g_
Track 48 Square root subroutine 15•!

49
50
51

Program No. 1, No. 2, or No. 3 
and data indicated in general 
memory map starting in location 5135

52
53 X 5

54
55 y 5

56
57 z 5

58
59 14

60
61

A  (for Program No. 2) 
or AH_ (for Program No. 3) 14



n

Program No. 4: 

Location Contents

Track 4? Square root subroutine 15 •!

48 Program No. 4
49 and data indicated
50 in general memory map
51 starting in location 5135

52
53 X 5

54
55 y 5

56 2 557

58 A  V 14
59
60
61 A H 14
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APPENDIX B

PROGRiMS NO. 1-4 AS WRITTEN FDR THE LGP-30 COMPUTER
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APPENDIX B

PROGRAMS No. 1 - 4 AS WRITTEai FCR 
THE IfiP-50 CCMPUIER

Program No. 1

;0004900'/OOOOOOO'
r6308'u4000’b5l45' ni5l46'm5150’m5l47'h5155'zOOOO’ 
c5800’c5800'b5151's5153’h5151't4919'h4908'a5062’ 
y4908'y4909’u4908'b5152'h5151’r6308’u4000'b 5156 * 
s5200’h5156' m5156’h5157 *b5139's5400'h5158'm5158’ 
h5158'b5135’s5600'h5159 •m5159’a5158'a5157'h5l6o' 
r4850’u4800'h5l6l'b5155'd5l6o * m5159'd5l6l •m5154 * 
a580O’h5800’b5151’s5153'h5151'15004' b4924’a5062’ 
y4924’b4929' a5062'y4929'b4934'a5062'y4934'b4948' 
a5062'y4948'y4949'u 4923'b5152'h5151'b5200'b5006' 
y4924'b5400'b5009’y4929’b5600’b5012'y4934*b5800' 
b5015’y4948’y4949 *b5139’a5l4o'h5159's5l4l’t4921' 
b 5143'h5139’b5136’a5137'h5136's5138't4921’b5200' 
m5153' r506l' u5058’ b5400‘ m5153' r506l ’ u5058'b5800’ 
r506l’u5058'pl600'zOOOO'b5151•s5153'h5151't5062’ 
b5031’a5062’y5031’b5035’a5062’y5035'b5039’a5062' 
y5039'u5031’r6312'u4400* z0004'uOOOO'zOOOl' 
.0004900*
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Program No. 2

;0004900’/0004900’
xr6508'xu4000’b0245'm0246'm0250'm0247•h0255’xzOOOO' 
CO9OO'CO9OO'cllOO' 0251’SO255'h0251't0025•b0008* 
a0255•y0008'y0009’bOOlO'a0235'yOOlO’u0008’b0252’ 
h0251'xr6508'xu4000'b02j6 * s0500'h0256'm0256'h0257' 
b0239'SO5OO'h0258'm0258 * h0258 * b0235's0700'h0259’ 
m0259’a0258’a0257’h0260'xr4850’xu4800'h026l'b0255’ 
d0260 'm0259 ’ d026l 'ra0254 ’ a0900' h0900'b0244' .<30700' 
h0259 'm0259’a0258'a0257'h026o 'xr4850'xu4800'h026l ' 
b0255'd0260' m0259'd026l' m0254'allOO'hllOO'b0251' 
SO253'h0251‘t0130'b0028'a0233'y0028’b0033'a0233• 
y0035 *b0038'a0233’y0038'y0055'b0052'a0233'y0052’ 
y0053'b0105'a0233’y0105'yO106'u0027'b0252'h0251’ 
b0300 *b0132'y0028’b0500'b0135'y0033'b0700 •b0138’ 
y0038'y0055'b0900•bOl42'y0052'y0053'hllOO'bOl46 * 
y0105•y0106'b0239'a0240'h0239’s024l' t0025'b0243' 
h0239 ’b0236' a0237* h0236' SO238' t0025 'b0300 'in0253' 
r0252'U0229'b0500 * m0253'r0232'u0229'b0900'sllOO' 
r0232'U0229'xpl600'xzOOOO’b0251's0253'h0251't0233' 
bOl62’a0235 * yOl62’b0202'a0233'y0202'b0206’a0233' 
y0206’b0207'a0233'yO207'uOl62’xr6312’xu4400’xzOOOU * 
xuOOOO’xzOOOl'
.0004900'
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Program No.3

;000h900•/OOOU90O '
xr6508 • :ai4000' b0245' m0246 ’ m0250' m0247' h0255 ’ xzOOOO' 
CO90O ’CO9OO'CllOO' b0251'SO253'h0251't0023’b0008’ 
a0233 • y0008' y0009' bOOlO' a0233 ’ yOOlO' u0008' b0252' 
h0251 ’ xr6308’ xuUooo • b0236 ’ s0300' h0256 'm0256' h0257' 
b0259'SO50O 'h0258 • m0258'h0258'b0235's0700'h0259' 
m0259' a0258' a0257 ’ h0260' xr4850' xu48O0' h026l 'b0255' 
d0260' m0259' d026l ' m025U ' a0900’ h0900 ’ b0255' d0260 • 
m0256 ’ d026l' m0254' allOO' hllOO ’ b0251 * s0253' h0251' 
t0119' b0028 ’ a0233' y0028' b0033' a0235 ’ y0033' b0038' 
a0233'y0038'b0052'a0233'y0052’y0053'b0059'a0233' 
y0059‘y0060’UOO27'b0252'h0251‘b0300'b0121•y0028' 
b0500’b012U ' y0033 •b0700’b0127 ’ y0038 'b0900'b0150* 
y0052' y0053 'bllOO 'b0134* y0059' y006o 'b0239 ’ a02U0* 
h0239 • s024l ’ t0025 ’b02U3 ’ h0239 ’1>0236' a0237 ‘ h0236' 
s0238 ’ t0025' b0300' m0253 * r0232 * u0229 ’ b0500’ m0253 ’ 
r0232' UO229' CO263'800t0l6l ’ u0200’ b0900' r0232' u0229 ’ 
bllOO 'm02U8 * h0262' b0900'm02U7 ’ a0262 ’ d02U9 ’ r0232' 
UO229 • xpl600' xzOOOO' b02 51 ’ SO253 * h02 51' t0233 * b0150' 
a0233 ’y0150’b0154' a0233 ‘ y015U*b0203 ’ a0233' y0203 ’ 
yOl6l *b0200’ a0233' yO200‘ u0150 * xr6312' xu44O0' xzOOOU' 
xuOOOO'xzOOOl*
.OOOU9OO’
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Program No. U

; 0004800 70004800'
xr65O8'xu4000'b0545 'm0546*m0350’m054T'h0555 ’ xzOOOO' 
clOOO'clOOO'C1200'b0551's0355'h0351't0023'b0008' 
aO307'y0008'y0009'bOOlO'a0307'yOOlO'u0008'b0352 * 
h0351'xr6308'xu40O0'bO336's04oo'h0356'm0356'h0357' 
b0359's0600'h0358’m0358'h0358'b0335's0800'h0359' 
ra0359’a0358’a0557’h0360'xr4750' :oi4700'h036l 'b0355' 
d0360'm0359'd036l'm0354'alOOO'hlOOO' b0355' d0360' 
ra0356'd036l'm0354'al200'hl200'b0344's0800'h0359' 
m0359'a0358'a0357’h0360'xr4750'xu4700'h036l 'b0355' 
d0360'n0359’d036l'm0354'h0362 'blOOO's0362'hlOOO' 
b0355'd0360’m0356'd036l'm0354'h0362'bl200's0362' 
hl200'b0351's0353’h0351't0152'b0028'a0307’y0028' 
b0033’a0307'y0033’̂ 0038'a0307'y0038'y0062'b0052' 
a0307'y0052'y0053’y0113’y0115' b0059'a0307'y0059’ 
y0060 * y0122'y0124'u0027' b0352'h0351' b040O' b0154' 
y0028’b0600 'b0157 ’ yO033 'b0800 'b0l60' y0038' y0062' 
blOOO’b0200'y0052'y0053'y0113'y0115'bl200'b0206' 
y0059'y0060'y0122'y0124 'b0339’a034o'h0339 * s034l' 
t0025’b0343'h0339'b0336'a0337'h0336's0338’t0025' 
b0400'm0353'r0306'u0303'b0600'ra0353'r0306'u0303'
CO363'800t0235' tK)238'blOOO'r0306'UO303'bl200'm0348' 
h0362 'blOOO 'm0347'a0362'd0349'r0306'UO303’xpl600' 
xzOOOO'b0351'SO353’h0351’t0307'b0224'a0307’y0224' 
b0228’a0307'y0228'b024l'a0307'y024l'y0235'b0238' 
a0307’y0238'u0224'xr6312'xu4400’xz0004'xuOOOO'xzOOOl' 
.0004800’
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APPENDIX C

LGP-30 CODim SHEETS OF PROGRAM NO. 4
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CALCUIATICK CF VERTICAL AND TOTAL MAGNETIC INTENSITY
PROGRAM NC.k Page 1 Of 7

Program Input Codes o.o
</> Location Instruction 

Opsration | Addrtts
ao
tfi

Contsnts of Address Notes

;,0,0,0>,8,0,0 1
,8,0,0 X

1 1 1 1 1 1 1 0.0i0,0 1 r^ir,6,3,0,8 1 Input 11 ,B
t

1 1 J 1 I 1 1 1 .0,1 . î î l̂ .̂O.O.O f input 11. B

1 1 1 1 1 1 1 1 .0,2 11 ib| 0i 3i4i 5 f H at 16
1 1 1 1 1 1 1 . .0,3 1 1 i1D|Oi3i4i6 • k at 1

1 1 1 1 1 1 1 . .0,4 1 1 im|Oi3i5iO • AA at 2
1 1 1 1 1 1 1 , ,0,5 1 1 im,Oi3i4i7 t cos 0 at 1
1 1 1 1 1 1 1 1 1 01 6 1 1 ihjO,3i5i5 I m at 20
1 1 1 1 1 1 1 , ,0,7 1 iXiZjOiOiOiO X StOD
1 1 1 1 1 1 1 1 1 01 8 1 i iC |1 lO lO lO 1 set E A V-0
1 i 1 t i l l , ,0i9 1 1 i*̂ |Ti0|0i0 1—

If tt

1 1 J 1 1 1 1 , ,1,0 1 1 i®|T|2,0|0 1 set E A H « 0

1 1 1 1 1 1 1 1 il.l 11 1^jOi3|5|1 f s at 9
1 1 1 1 1 1 1 1 ,1,2 11 1 ® 1 ® 151513 1 1 at 9

1 1 1 1 1 1 1 1 ill 3 1 1 .î |0|3i5|l 1

1 1 1 1  1 1 1 , ,1,4 1 1 |■t|0|0J2,3 1

1 1 i 1 i 1 1 1 ,1,5 1 1 ib|0|0i0j8 X address of AV
1

i 1 1 I 1 1 1 1 i Il6 1 1 ia|0|3i0i7 1 1 at 29
1

1 1 1 1 1 1 1 11 li 7 1 1 iy|0,0,0,8 1

1 1 1 1 1 1 1 1 ,1,8 1 1 iy|0,o,o,9 t
1 1 1 1 1 1 1 i ill 9 1 1 i?5|0i0ili0 1 address of AH

1 1 1 1 1 1 1 1 l2i0 1 1 ia|Oj3iOi7 1 1 at 29

1 1 1 ) 1 1 1 1 1 2i 1 1 1 iyiO,0|i|0 11
1 1 1 1 1 1 1 1 1 2i 2 1 1 1 0i 0i 0,8 1

_ 1 1 1 j 1 1 1 1 i2l3 1 1 1 b| 0| 5i 5i 2 X  Initial s

1 1 1 1 1 1 1 1 1 2i 4 1 1 i^|0|3j5|l f Initialize s

1 1 1 j 1 1 1 1 i2i5 1 ,x,r|6, 3j0j8 1 Input 11.B

J 1 1 1 1 1 1 1 i2i6 , ,x,U|U, 0,0,0 f input 11.B

11 1 1 1 1 1 1 1 2, 7 1 1 1 ̂10, 3i 3i 6 I x’ at 5

- 1 1 1 1 1 1 1 1 1 2i 8 1 1 1 S| 0| U, 0| 0 1 X at 5

1 1 1 1 1 1 1 1 1 2i 9 1 1 1 hj 0, 3i 5i 6 1 x'-x at 5

1 1 1 1 1 1 1 , i3,0 1 1 1 mj 0, 3i 5i 6 1 x'-x at 5

— 11 1 1 1 1 ̂ 1 1_, 1 1 hi 0, 3, 3i 7 X (x'-x) at 10
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CALCUIATICN CF VERTICAL AND TOTAL MAGNETIC INTENSITY
PROGRAM NO. U Page 2 Of 7

Program input Codst Q.O
in Location Instruction 

Opsration | Address
Q.O5)

Contents of Address Notes

1 1 1 1 1 1 J •
1 1 1 1 i 1 1 XI
1 1 1 1 1 1 1 0,0,3,2 . . ,ljOi3.5.9 1 y* at 5
1 1 1 1 1 1 1 1 i3i3 . . ,Sj0i6,0i0 t y at 5
1 1 1 1 1 1 1 1 ,3i4 . . .hjo,3.5.8 1 y'-Y at 5
1 1 1 1 1 1 1 . i3,5 . . .ro|0,3.5i8 I y'-y at 5
1 1 1 1 1 1 1 , ,3i6 1 1 1 hi 0| 3i 5i 8 1 (y'-y)^ at 10
1 i 1 1 1 1 1 1 l3 i7 . 1 .b|0|3i3i5 1 z' at 5f
1 1 1 1 1 1 1 1 1318 1 1 1 sj 0i 8| 0| 0 1 z at 5
1 1 1 1 1 1 1 1 i3i 9

1
1 1 . hj 0| 3. 5.9 X z'-z at 5

1 1 1 1 1 1 1 1 1410 . . .:̂ j0, 3. 5.9 1 z’-z at 5
1 1 1 1 1 1 1 . i4j 1 i i I Q-j 0i 3i 5i 8 1 at 10
1 1 1 1 1 1 1 1 j4 i 2 1 1 1 Q-i 0i 3i 5i 7 1 at 10
1 1 1 j 1 1 i 1 i4i 3 1 J 1 h| 0,3. 6,0 1 at 10
1 1 1 1 1 1 1 1 i4i4 . ix,r|U,7,5,o 1 sqrt 15.1
1 1 1 1 1 1 1 1 i4i5 J .XiU|U|7iPfO 1 sqrt 15.1
1 1 1 1 1 1 1 1 i4i 6 . 1 ,h,0. 3:6, 1 f r at 5
1 1 1 1 1 1 1 1 i4i 7 1 1 ib|Oi3i5i5 X m at 20
1 1 1 1 1 1 1 1 i4i 8 . . . d| 0.3.6.0 f at 10
1 1 1 1 1 1 1 1 14i 9 .1 i Si| 0. 3. 5. 9 t z'-z at 5
1 1 1 1  1 1 1 1 i5i0 . . . dj 0. 3.6.1 t r at 5
1 1 1 1 1 1 1 1 1 51 1 1 1 1 irii Oi 3i 5i U t 1 at 4
1 1 1 1 1 1 1 . ,5.2

1
1 1 I &| li Oi Oi 0 1 Z AV

_ 1 11 j 1 1 1 . ,5,3
I

1 1 1 hi li Oi Oi 0 1 AV at 14
1 1 1 1 1 1 1 . .5.4

1
. . ibj 0. 3. 5. 5 1 m at 20

1 1 1 1 1 1 1 . ,5.5 1 1 1 d| Oi 3i 6i 0 XI at 10
_ 1 1 i j 1 1 1 . .5.6 . . . ni| 0. 3.5. 6 1 x'-x at 5
1 1 1 1 1 1 1 . .5,7 . . . dj 0. 5i 6.1 1 r at 5
1 1 1 1 1 1 1 . .5,8 . . . Mj 0. 3i 5. 4 1 1 at 4f
1 1 1 1 1 1 1 ... .5.9 1 1 1 a,| li 2i Oi 0 1 E  A  H

- 1 1 1 1 I 1 1 1 1 6| 0 1 1 1 hi li 2i Oi 0 1 A H  at l4
1 1 1 j 1 1 1 . .6. 1 . L ibj 0. 5i 4. 4 1 h at 5
1 1 1 1 1 1 1 . .6,2 . . 1 6| 0. 8. 0. 0 1__ Z___at 51
_1_1_1_1_1_1_1_ 1 .i 6̂ ,3 1 . 1 hiOi 3. 5.9 X h - z  at 5
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CAITUIATICW OF VERTICAL AND TOTAL MAGNETIC INTENSITY___________
PRQS2W1 UQi 4 .... Fase 3 Of 7

Program Input Codtt

1 1 1 1 1 1 1

o.o«-in Location Instruction 
Opsration | Address

ao
a

Contents ot Address Notes

1
1 1 1 1 1 1 1 X
1 1 1 1 1 1 1 0,1,0.0 . J i®jOi3.5.9 1 h-z at 5
1 1 J 1 1 1 1 1 .0,1 1 L. iajO,5i5.8 11!y’- y / at 1C
1 1 1 1 1 1 1 . .0,2 . . .a|0,3,5.7 I at 10
1 1 1 1 1 1 1 . .0,3^ 1 1 1 hi 0| 5i 0 1 at 10
1 1 1 1 1 1 1 . .0,4

1
. iX,rj4,7,5jO 1 sqrt 15•!

1 1 1 1 1 1 1 . .0.5 1 iX,U|U,7.0.0 1 sqrt 15.1

1 1 1 1 1 1 1 , .0,6 . . ih|0|3i6|l 1 r at 5
1 1 1 1 1 1 1 . .0l7I . 1 ibjO,3,5i5 X m at 20
1 1 1 1 1 1 1 1 ,0.8 . 1 . d| 0,3,6,0 1 at JO
1 1 1 1 1 1 1 1 .0,9 1 1 imjO|3,5i9 1 h-z at 5
1 1 1 j I 1 i _ . il.O 1 . fdjO, 3.6,1 1 r at 5
1 1 1 1 1 1 1 . il.l i 1 inijO,3,5i4 1 1 at 4
1 1 1 1 1 1 1 1 ,1.2 1 1 1 hj 0, 3,6,2 1 AV. at 14
1 1 1 1 1 1 1 1 il.3 1 1 |bjli0,0,0 r E AV at 14

'T'

1 1 1 1 1 1 1 1 .1.4 1 1 1 S| Oi 3i 6, 2 1 at 14
1 1 1 1 1 1 1 . .1.5

1
1 1 1 hi 1101010 X

1 1 1 1 1 1  1 1 .1.6 1 1 i^|Oi5i5i5 f m at 20
1 1 1 1 1 1 1 . .1.7 1 1 jdjO,3,6,0 t at 10
1 1 1 1 1 1 1 1 .1.8 1 1 j™|0,3,5i6 1 x'-x at 5
1 1 1 1 L 1 1 1 1 1. 9 1 1 1 d|0| 3i 1 1 r at 5
1 1 1 1 1 1 1 1 i2i0

1
1 1 in’! 0,3,5,4 1 1 at 4

1 1 1 1 1 1 1 . i2il 1 1 11^10,3,6,2 1 at 14
1 1 1 1 1 1 1 1 i2i2 1 1 i^|l|2,0,0 t E AH at 14

. 1 1 1 1 1 1 1 1 i2 l3 1 1 I S| 0, 3,6,2 X at lU
1 1 1 1 1 1 1 . .2.4 1 1 1 h| 1| 2| 0| 0 1
1 1 1 1 1 1 1 . . 2. 5 . . .b! 0,3.5.1 I s at 9 set counter to1
1 1 1 1 1 1 1 1 1 2i 6

1
1 1 . Sj 0,3i 5. 5 f 1 at 9 loop

1 1 1 1 1 1 1 1 i2i7 1 1 1 hi 0, 3i 5.1 1
1 1 1 1 1 1 1 1 i2.a 1 1 11| 0,1. 5,2 1
1 1 1 1 1 1 1 1 1 2i 9 1 , ibj0iO,2,8 I address of X
1 1 1 1 1 1 1 . .3.0 , , 1 Ej 0i3 , Oi 7 1 1 at 29

__i_l_1_1_L-J_I— 1 1 1 I . .y!o.0.2.8 X

t'/
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CALCUIATICN CF VERTICAL AND TCTAL MAGNETIC DfPENSITY
PROGRAM NO. 4 Page 4 Of 7

Program input Codes
CXo55 Location Instruction 

Opsration | Address
o.

CO

Contents 
of Address Notes

T

1 1 1 1 1 1 J 1

i 1 1 1 i 1 1 X1
1 1 1 1 1 1 1 0 . 1 i 3 . 2 1 . . b j O i O , 3 . 3 . 1 a d d re ss of yI
1 1 1 1 1 1 1 1 . 3 i 3 1 1 i 3 ' j 0 i 3 i 0 i 7 1 1 a t  29

1 1 1 1 1 1 1 1 i 3 . 4 1 1 1 y  10101513 1

1 1 1 1 1 1. 1 i i 3 . 5 . . . b | 0 , 0 , 3 . 8 I a d d re ss o f  z

1 1 1 1 1 1 1 1 i 3 i 6 1 1 i a j O i 3 i O i 7 t 1 a t  29

1 1 1 1 1 1 1 1 131 7 1 1 lY |0 |0 i3 i8 1

1 1 1 1 1 1 1 1 1318 1 , . y | 0 , 0 , 6 , 2 f

1 1 1 1 1 1 1 1 i 3 i 9 1 1 ib |0 lO i5 i2 X a d d ress of AV
1 1 1 1 1 1 1 1 i 4 10 . 1 jQ jO i 3 . 0 , 7 1 1 a t  29

1 1 1 1 1 1 1 . i 4 i l , , . y | 0 , o , 5 , 2 1

1 1 1 1 1 1 1 1 i 4 i 2 1 , . y | 0 , 0 i 5 . 3 1

1 1 1 1 1 1 1 . i 4 i 3 1 . . y | 0 , l i l i 3 1

1 1 1 1 1 1 1 1 1414 1..J j y | 0 . i j i j 5 1

1 1 1 1 1 1 1 1 i4i  5 1 1 lb |0 lO i5 i9 1 a d d re ss of A H
1 1 1 1 1 1 1 1 i4 i 6 1 1 i ^ j O i 3 i O i 7 1 _ L ____a t  291
1 1 1 1 1 1 1 1 i 4 i 7 1 1 i y j O , O i 5 i 9 X
1 1 1 1 1 1 1 1 14i  8 . . . y j 0 , o , 6 i 0 1

1 1 1 1 1 1 1 1 14i  9 . . i y | 0 . 1 i 2 i 2 1

1 1 1 ) 1 1 1 i i 5 i 0 1 1 i y i C i i i 2 i U f

1 1 1 ) 1 1 1 - 1 15i  1 1 . . U j O . O . 2 . 7 t

1 1 1 1 1 1 1 . . 5 . 2 1 1 ib j 013 1512 1 I n i t i a l  s1
. 1 1 J 1 1 1 1 . . 5 . 3 1 1 i h j O i 5 i 5 i l • i n i t i a l i z e  st

1 1 1 1 1 1 1 . . 5 . 4 1 1 ib j0|4|0|0 1 i n i t i a l  X
1

1 1 1 j 1 1  1 . . 5 , 5 1 1 . b | 0 , l , 5 . 4 X a d d re ss o f  X

1 1 1 ) 1 1 1 . . 5 . 6 . , , y | 0 , 0 , 2 . 8 1

1 1 1 1 1 1 1 . . 5 , 7 1 1 ib j 0 1 6  1C 10 1 i n i t i a l  y1
1 1 1 1 1 1 1  - . . 5 , 8 . . , b j 0 , 1 , 5 . 7 1 a d d re ss |Of y

1 1 1 ) 1 1 1 , . 5 , 9 1 1 i y ) Oi Oi 3 i 3 1

1 1 1 ) 1 1 1 1 1 6| 0 1 1 ib |0 |8 |0 |0 • i n i t i a l  z

1 1 1 j 1 i 1 . .6 , 1
1

1 1 ib |0 | 1 1 6  |0 1 a d d re ss o f  z

1 1 1 1 1 1 1 , ± 6 , 2
1

1 . .y  jO .0 ,3 .8 •
' 1

__1__1__1__1— 1— 1— 1— . .6.3 ■ 1 ■ y 0 i 0 i 6 i 2 X
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CALCUIATICN CF VERTICAL AND TOTAL MAGNETIC INTENSITY
PROGRAM NO. 4 Page 5 Of 7

Program Input Codes 0.
0
ifi Location Instruction 

Opsration | Address
a.
05)

Contents of Address Not«<

1 1 1 1 1 1 1 t
1 1 1 1 1 1 1 X
1 1 1 1 1 1 1 0 ,2 ,0,0 1 1 lb |1 lO lO lO 1 AV
1 1 1 1 I 1 1 1 iO,l 1 1 |b|0|2 |0| 0 1 address Of AV1
1 1 11 1 1 1 1 i0,2 1 1 iyjOi0i5i2 1

1
1 1 1 1 1 1 1 I i0i3 1 1 iy|OiO,5i5 1

1 1 1 1 1 1 1 1 1 014 1 1 iy|Oiiiii3 1

1 1 1 1 1 1 1 1 .0i5 1 1 iy|Oiiiii5 f
1 1 1 1 1 1 1 1 1 01 6 1 I |b|X|2 |0| 0 1 A  H
1 1 1 1 1 1 1 1 .0i7 1 1 ib|0 |2 i0 i6 X address of A  H
1 1 1 1 1 1 1 1 1 01 8

— — — — 1— ,— ,— ,—
1 1 iy|0|0,5i9 1

1 1 1 1 1 1 1 1 i0i9 1 1 iyiOiOi6 iO •
1 1 1 1 1 1 1 1 iliO 1 1 ly jOiI i212 •
1 1 1 1 1 1 1 1 ilil 1 1 iy|Oiii2i4 1

1 1 1 1 1 1 1 1 1 li2 1 1 it>|Oi3i3i9 1 y' at 5
1 1 1 I 1 1 1 1 1 li 3 1 1 i®-|Oi3j 4 iO 1 A y ’ at 5 increment y'

1 1 1 1 1 1 1 1 I li4 1 1 i41013 i5 i9 •
, 1I.5 1 1 i‘*3 jO i3 1̂  il X yf at 5

1 1 1 1 1 1 1 1 1 li 6 1 1 |010 |2 i5 1

1 1 1 1 1 1 1 . • ’ . ill 7 1 1 it) |0,3 i4 i3 f initial y'
1 1 1 1 1 1 1 1 1 li 8 1 1 1̂  |01513 i9 f initialize y'
1 1 1 1 1 1 1 1 ill 9 1 1 |0 13 1316 1 x' at 5

1 1 1 1 1 1 1 1 i2,0 1 1 1®- jO i313 i7 1 Ax' at 5 increment x'

1 1 1 1 1 11 1 i2il 1 1 ih|0|3i3i6 1

1 1 1 1 1 1 1 1 i2i2 1 1 1® |013 i3.|8 1 x'f at 5

1 1 1 1 1 1 1 1 i2i3 1 1 I't |0 ,012 ,5 1X
1 1 1 1 1 1 1 1 i2i4 1 1 ih jO i4 |0 |0 1 X at 51
1 1 1 1 1 1 1 1 i2i5 1 1 1® jO i3 i5 i3 1 1 at P X at l4
1 1 1 1 1 1 1 1 1 2i 6 1 1 ii* jO i3 iO 16 t print X1
1 1 1 1 1 1 1 1 i2i7 1 1 lU |0 i3 [0 i3 1

1 1 1 1 1 1 1 1 1 2i 8 1 1 lb jO 16 lO lO 1 y at 5
1 1 1 1 1 1 1 1 1 2i 9 1 1 I®j0i3i5i3 1 1 at q y at l41
1 1 1 1 1 1 1 , i3i0 1 1 irjOi3iOi6 1 Drint y
i T 1 1 1 ■ 1 *̂1 1,.,x > i.̂40i3.iOi3. X
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CALCUIATiai CF VERTICAL AND TOTAL MAGNETIC INTENSITY
PROGRAM NO. 4 Page 6 Of 7

Program Input Codes 0.
0 Location Instruction Opsration | Address

a
0
tn

Contents of Address Notes
--7..

1 1 1 1 1 1 1
1

1 1 1 1 1 1 1 1 X
1 1 1 j 1 1 1 0,2,3i2 1 i_ î jOi3|6i3 1 clear accuimilator
1 1 1 1 I 1 i 1 i3i3 8,o,o,t|o,2 ,3, 5 1

1 1 1 1 i 1 1 1 i314 1 1 jO|2 i318 1

1 1 1 1 1 1 1 . i3i5 1 1 ihjliOiOiO 1 AV at 14
1 1 1 1 1 1 1 I i3i6 1 1 . J-* 1 c 131016 1 print AV
1 1 1 ) 1 1 1 1 i3i7 1 1 iU|Oi3,Oi3 1

1 1 1 ) 1 1 1 1 i3i8 1 1 ib |112 |0 10 t A H at l4
1 1 1 1 1 1 1 1 1319 1 1 ini|Oi3i4,8 X sin 6 at 1

1 1 1 ) 1 1 1 1 i4i0 1 1 ih|Oi3 i6| 2 1 A H s in 0 at 15
1 1 1 ) 1 1 1 , i4il 1 1 1 b j ]. 101010 1 AV at 14
1 1 1 ) 1 1 1 I ,4i2 . , ,ni|0 ,3.4.7 1 cos e at 1 AV cos 0 at 15
1 1 1 1 1 1 1 1 141 3 1 1 la lO i3 1612 1 AH sin 9 AT at 13
1 1 1 1 1 1 i 1 1414 1 1 idjOi3i4i9 f 1 at 1 AT at l4
1 1 1 ) 1 1 1 1 i4i5 1 1 ir |0 i3 1O16 1 print AT
1 1 1 ) 1 1 1 I i4i6 1 1 iU|Oi3iOi3 f

1 1 1 1 1 1 1 1 i4i7 1 1X 1P.I161O1O X carriage return
1 1 1 1 1 1 1 1 i4i8 1 iXiZjOiOiOiO 1

f

1 1 1 ) 1 1 1 1 i4i9 1 1 lb j 0 13 1511 1 s at 9 set counter to
1 1 1 ) 1 1 1 1 i5i0 1 1 iS|Oi3i5i3 1 1 at 0 loqp
1 1 1 ) 1 1 1 . i5il 1 1 ihjOi3i5il 1

1 1 1 ) 1 1 1 1 i5i2 1 1 it|Oi3iOi7 1 stop i f  neg.
I 1 1 I 1 1 1 . .5.3 1 1 lb jO i21214 1 address of X

1

1 1 1 ) 1 1 1 1 1 51 4 . . .a jo .3 ,0, 7 f 1 at 29

1 1 1 ) 1 1 1 . .5. 5 1 1 lY |0 |2 |2 ,4 X
1 1 1 1 1 1 1 . .5. 6

I
1 1 ,b .0 |2 |2,8 1 address of y

1

1 1 1 ) 1 1 1 . .5, 7
1

1 1 1® | 0  15 lO 1 ̂ 1 1 at 29

1 1 1 1 1 1 1 . .5. 8 . , .YjO 2 ,2, 8 1

1 1 1 1 1 1 1 . .5. 9 . 1 î j0|2i4|l 1 address of AV
1

1 1 1 1 1 1 1 1 .6,0 1 1 1® |015101 r 1 1 at 29

1 1 1 ) 1 1 1 i .61I 1 1 ,y,0 ,2 ,4,1 1

1 1 1 ) 1 1 1 1 . 6, 2 , 1 ,y|0,2,5,5 1

J i l l _____ L....... 1— 1 - . .6,3 1 1 lb 0|2i3i8 X address _________________________________
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CALCUIATICN CF VERTICAL AND TOTAL MAGNETIC INTENSITY
PROGRAM NO. 4 Page 7 Of 7

Program Input Codot o.o(/) Location Instruction 
Opsration | Addrsss

o.o
Si

Contonts ot Addrsss Notts

1 1 1 1 1 1 1
1

1 1 1 1 1 1 1 1 X
1 1 1 1 1 1 1 0 , 3 , 0 , 0 1 1 1 ® ) ® 15 101 7 1 1  a t  2 9

1 1 1 1 1 1 1 1 , 0 , 1 1 1 l y ) ®  i 2  j 8 1
1 1 1 1 1 1 1 1 , 0 , 2 1 1 i ^ | 0 i 2 , 2 | 4 | 1
1 1 1 1 1 1 1 1 1 01 3 1 1 ^ j^ i 5 i l  |2 1 o u t p u t  1 2 . OBI
1 1 1 j 1 1 1 , , 0 , 4 , , x , u . U , 4 , 0 , 0 •
1 1 1 1 1 1 1 1 , 0 , 5 , , x , z . 0 | 0 , 0 , 4 1
1 1 1 ) 1 1 1 1 1 01 6 , | X , u . 0 , 0 , 0 , 0 1
i 1 1 1  1 1 1 , , 0 , 7 , , x , z . 0 , 0 , 0 , l 1 X 1 a t  29 o r  s t o p

. , 0 , 0 , 0  V e , 0 , 0 f
1 1 01 8 1 1 1 ) 1 1 1 1

1 1 1 j 1 1 1 1 , 0 , 9 1 i  1 1 1 1 1 f
1 1 1 ) 1 1 1 1 I 1 , 0 1 1  1 j 1 1 1 1
1 1 1 1 1 1 1 1 i l l ! 1 1 1 ) 1 1 1 1
1 1 1 ) 1 1 1 1 1 1 , 2 1 1 1 ) 1 1 1 t
1 1 1 1 1  1 1 1 1 I I  3 1 1 1 ) 1 , 1 1 1
1 1 1 1 1 1 1 1 i l l  4 1 1 1 ) 1 1 1 1f
1 1 1 ) 1 1 1 1 1  l i 5 X
1 1 1 ) 1 1 1 1 1 l i  6 1 1 1 ( l i t f
1 1 1 ) 1 1 1 1 1 l i 7 1 1 J ) 1 1 A 1
1 1 1 ) 1 1 1 1 i l l  8 1 1 1 1 1 1 1 1
1 1 1 ) 1 1 1 1 1 l i 9 1 1 1 1 1 1 1 1
1 1 1 )  1 1 1 1 i 2 i 0 1 1 1 1 1 1  1 1

1 1 1 1 1 1 1 1 i 2 i l 1 1 1 ) 1 1 1 f
1 1 1 ) 1 1 1 1 1 2 i 2

1

1 1 1 1 1 1 1 f
1 1 1 ) 1 1 1 1 i 2 l 3 1 1 1 1 1 1 1 X
1 1 1 ( 1 1 , 1 1 i 2 i 4 1 1 1 1 1 1 1 1

1 1 1 )  1 1  1 1 i 2 i 5

f
1 1 1 1 i 1 1 1

1

1 1 1 ) 1 1 1 1 1 2i  6 1 i  1 1 1 1 1 I1
1 1 1  1 1 1 1 1 1 2i  7 1 1 1  L  1 1 1 1

1 1 1 j 1 1 1 1 i 2 j 8 1 1 1 ) 1 1 1 1
1 1 1 1 1 1  1 1 1 2i  9 , 1 1 1 1  1 1 1 1

1

1 1 1 j 1 1 1 I i 3 i 0 1 1 1 1 1 1 1 1
,„.i 1 1 i 1 1 i  , 1 1 *̂ 1 1

1
_1_1_1.4.Ji_1_1_ X
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APPENDIX D

OUTPUT DATA OBTAINED FROM THE LOP-30 

COMPUTER FOR MODELS NO. 1-12
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OUTPUT DATA CBTADIED FRCM THE IGP-30

CCMPUTER FCR MCDELS NO. 1-12

Output Data Obtained For Model No. 1

Using Pi’Ograjn No■ 3

X y A  V A T
.00000 .00000 2.09I+05 1.48016
.99999 .00000 2.05230 1.25763

1.99999 .00000 1.84i83 .05731
2.1+9999 .00000 1.56164 .47122
3.00000 .00000 1.09823 .04675
4.00000 .00000 .55156 -.27026
.00000 .99999 1.43484 l.OlUoU
.1+9999 .99999 1.42706 .92745
.99999 .99999 1.40099 .82190

1.49999 .99999 1.54735 .68472
1.99999 •99999 1.24517 .49789
2.49999 .99999 1.05750 .24707
3.50000 .99999 .47120 -.19281
5.00000 .99999 .11513 -.19821
5.99999 .99999 .05717 -.14843
.00000 1.49999 .89556 .63272
.99999 1.49999 .86915 .47057
.49999 1.99999 .53250 .31774

1.49999 1.99999 .49069 .16860
2.49999 1.99999 .30459 -.01474
4.00000 1.99999 .16290 -.16827
5.99999 1.99999 .04710 -.12600

.49999 3.50000 .14742 .07̂ +51
3.00000 3.00000 .13686 -.06169
3.00000 5.00000 .04292 -.04l4l
.00000 4.50000 .0771? .05420

3.00000 5.49999 .03401 -.05494
-.99999 .49999 1.88019 1.51528
-.99999 .75000 1.66979 1.35^4
-.99999 .99999 1.40099 1.15835
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X y A V A T
-.99999 1.49999 .86915 .75756
-.99999 2.49999 .32061 .31991+-.99999 6,49999 .02711 03487
-1.99999 .25000 1.80268 1.73296
-1.99999 .75000 1.49208 1.47002
-1.99999 .99999 1.24517 1.26202
-1.99999 1.49999 .76019 .84375-1.99999 3.00000 .18117 .26696
-1.99999 4.50000 .06658 .11422
-5.00000 .49999 1.01002 1.59898-3.00000 .75000 .90230 1.27055-3.00000 .99999 .76465 1.10635-5.00000 1.49999 .49069 .77178-5.00000 1.99999 .50635 .52892-5.00000 3.00000 .13686 .27U53-3-50000 .49999 .58962 1.03903-4.00000 .49999 .35215 .72964
-4.00000 1.99999 .16290 .39782
-4.00000 5.00000 .09075 .24191-4.00000 4.50000 .04266 .12527-5.00000 .00000 .15000 .40094
-5.00000 1.49999 .10017 .51881
-5.00000 4.50000 .05150 .11453
-6.99999 1.49999 .05075 .14962
1.49999 -.99999 I.3I+735 .68472
2.49999 -1.99999 .58459 -.01474
-300000 -.99999 .76465 1.10655
-.99999 -1.49999 .86915 .75756
-1.99999 -3.00000 .18117 .26696
-4.00000 -1.99999 .16290 .59782
-8.50000 .00000 .01684 .10287
-6.99999 5.50000 .02102 .10580
-6.49999 .00000 .04501 .19814
-5.99999 3.00000 .03596 .15055
-1.99999 5.99999 .03128 .05801
-.99999 4.00000 .10151 .11733



Output Data Obtained For Model No. 2 

Using Program No. 5
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X y A V A T

.00000 .00000 292.26671 253.11166

.99999 .00000 287.51537 233.35726
1.99999 .00000 262.49879 188.15890
2.49999 .00000 235.27038 145.73776
3.00000 .00000 151.84909 61.993534.00000 .00000 40.85510 - 8.02627

.00000 .99999 141.11657 122.21111

.49999 .99999 140.59965 115.35424

.99999 .99999 137.43601 105.72930
1.49999 .99999 132.03429 93.24725
1.99999 .99999 121.12949 74.92163
2.49999 .99999 103.14535 50.45077
3.50000 .99999 48.69721 1.30065
3.00000 .99999 12.69295 -11.02057
5.99999 .99999 6.35813 -9.31912

.00000 1.49999 82.43182 71.38837

.99999 1.49999 79.66256 57.86501

.49999 1.99999 49.67878 58.55948
1.49999 1.99999 45.52513 25.94906
2.49999 1.99999 35.86720 9.91000
4.00000 1.99999 16.74573 -6.85099
5.99999 1.99999 5.18392 -7.88607

.49999 3.50000 14.86467 10.64525
3.00000 3.00000 13.79840 -1.32557
3.00000 5.00000 4.57242 -1.45697

.00000 4.50000 8.02590 6.95061
3.00000 5.49999 3.65283 -1.2 9 721
-.99999 .49999 228.05154 212.48595
-.99999 .75000 179-82282 169.96942
-.99999 .99999 157.45601 152.31799
-.99999 1.49999 79.66256 80.11517
-.99999 2.49999 50.77940 33.75222
-.99999 6.49999 2.92709 3.75420

-1.99999 .25000 245.87408 251.36182
-1.99999 .75000 160.41244 172.30779
-1.99999 .99999 121.12949 134.88180
-1.99999 1.49999 68.94556 82.97677
-1.99999 3.00000 17.93821 2 5 .9̂ +384
-1.99999 4.50000 6.96565 11.12 70 1
-3.00000 .49999 121.83723 165.51257



89

X y A V A T
3.00000 .75000 97.39802 156.09556

-3.00000 .99999 75.79258 109.50657
-5.00000 1.49999 45.94272 71.21822
-3.00000 1.99999 29.22457 48.52238
-3.00000 3.00000 13.79840 25.22497
-3.50000 .49999 67.91762 111.50313
-4.00000 .49999 37.52768 73.05065
-4.00000 1.99999 16.74573 35.83547-4.00000 3.00000 9.46087 21.62237
-4.00000 4.50000 L 56618 11.21185
-5.00000 .00000 l4.60904 57.45480
-5.00000 1.49999 10.89810 28.77722
-5.00000 4.50000 3.42628 10.05521
-6.99999 1.49999 5. **2988 15.01330
1.49999 -.99999 132.03429 93.24725
2.49999 -1.99999 35.86720 9.91000
-5.00000 -.99999 75.79256 109.50657
-.99999 -1.49999 79.66256 80.11517
-1.99999 -3.00000 17.93821 25.94384
-4.00000 -1.99999 16.74573 35.835*+7

CXitput Data Cbtained For Model No. 3 

Using Program No. 3

X y A V
.00000 .00000 629.86029
.25000 .49999 634.17329.75000 .49999 610.35247
.99999 .49999 582.75241

1.25000 .49999 553.17991
1.49999 .49999 510.51441
1.75000 .49999 443.92657
1.99999 .49999 363.03108
2.25000 .49999 285.91227
2.49999 .49999 222.509393.00000 .49999 136.401093.50000 .49999 87.757925.00000 .49999 30.49523.25000 1.49999 600.53755.75000 1.49999 578.39187
.99999 1.49999 552.30601

1.49999 1.49999 484.27658
1.75000 1.49999 420.28858
2.25000 1-49999 267.880513.00000 1.49999 125.78734

A  T
545.47769 
526.53357 
451.40875 
403.60330 
35*+. 00030 
290.17831 
209.46029 
128.65823 
63.97760 
19.14010 
-26.86474 
-42.20632
-40.10000
499.49450
429.89877
385.26647
278.59195
201.17757
61.54002
-24.72107
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X y A V AT
5.00000 1.49999 28.35887 -37.46789
.00000 2.49999 4 75.35351 4 11.6 70 19
.49999 2.49999 475.U2829 375.86776
.99999 2.49999 439.76710 307.52872
1.49999 2.49999 388.27195 224.85142
2.49999 2.49999 165.4 574 1 13 .2234 2
4.50000 2.49999 32.60875 -34.65298

.00000 3.50000 201.69674 174.67525

.49999 3.50000 197.99090 1U8.9I1.760
1.49999 5.50000 160.85284 75.09747
2.49999 5.50000 89.41047 -.04568
3.50000 3.50000 4^.84583 -24.62298
.00000 5.49999 34.70614 30.05659
2.49999 5.49999 25.99092 -4.73889
-.49999 .49999 629.80503 595-10879
-1.25000 .49999 553.179 9 1 6o4.l4oi0
-1.99999 .49999 363.03108 500.13296
-2.49999 .49999 222.30939 365.91278
-3.00000 .49999 156.40109 26 3.119 26
-3.50000 .49999 87.75792 194.20795
-4.50000 .49999 41.78985 115 .8 5 17 1
-5.99999 .49999 17 .6 3 113 63.26766
-7.99999 .49999 7.40579 34.41946
-.49999 1.49999 596.80186 562.57335
-1.49999 1.49999 484.27658 560.20388
-2.49999 1.49999 206.99279 359.91668
-3.50000 1.49999 80.63070 178.64681
-5.00000 1.49999 28.35887 86.58691
-6.99999 1.49999 10.55490 45.55120
-.49999 2.49999 475.42829 4 4 7 .^ 2 2 9
-•99999 2.49999 439.76710 454.17395
-1-49999 2.49999 588.27195 447.67864
-2.49999 2.49999 16 3.4 574 1 269.89428
-3.50000 2.49999 6 5 .5 0 114 14 5.78 8 21
-4.50000 2.49999 52.60873 9 1.15 29 0
-6.49999 2.49999 11.8 0 17 0 45.70138
-.49999 3.50000 197.99090 193-98419
-1.49999 3.50000 160.85284 205.50905
-1.49999 3.00000 270.66465 5 22.22222
-2.49999 3.50000 89.41047 154.90964
-3-50000 3.50000 44.84583 102.29834
-5.49999 3.50000 15 .3 9 14 9 51.74783
-.99999 4.50000 69.55607 83.98895
-1.99999 4.50000 55.46272 86.22265
-4.00000 4.50000 22.4 19 4 3 58.50509
-5.99999 4.50000 9.97068 56.41033

.00000 5.49999 34.70614 30.05659
-.49999 6.99999 14 .26 727 15 .5 3 16 4
1.99999 5.99999 20.49498 .07199
-5.00000 6.99999 6.76831 21.7 8 10 6



Oitput Data Obtained For Model No. 4 

Using Program No. 3
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X y A V A  T

.00000 .00000 .69848 .6o4to

.09998 .00000 .69204 .37079

.20000 .00000 .67306 •52757

.29998 .00000 .64273 .47665

.39999 .00000 .60290 .42126

.49999 .00000 .55624 .36413

.70000 .00000 .45315 .25521

.99999 .00000 .30883 .12921
1.29998 .00000 .’20297 .05428
1.99999 .00000 .08019 -.00741
3.00000 .00000 .02779 -.01702
-.30000 .00000 .64273 .63619
-.49999 .00000 .55624 .59893
-.70000 .00000 .45315 .52932
-.99999 .00000 .30883 .40539

-1.40001 .00000 .17632 .26690
-1.70000 .00000 .11728 .19558
-2.20001 .00000 .06326 .12176
-3.50000 .00000 .01806 .04690
-4.50000 .00000 .00872 .02727
-2.49999 .49999 .04319 .08981
-1.49999 .70000 .12483 .19604
-1.30000 .49999 .17873 .26208
-.99999 .49999 .26347 •34686
-.49999 49999 .45143 .48766
-.30000 49999 .51525 .31129

.00000 49999 .55624 48154

.20000 .49999 .53752 42019

.39999 .49999 .48592 •35794

.70000 .49999 .37427 .20925

.99999 .49999 .26347 .10913
1.29998 .49999 .17873 .04718
3.00000 .49999 .02677 -.01641
-.49999 .29998 .51525 55542

.00000 .79998 .40191 .34790

.00000 1.19999 .23364 20218

.00000 1.49999 .15356 .15284
-.49999 .79998 .33540 .36401
-.49999 .99999 .26347 .28698
-.49999 1.29998 .17873 .19565
-.49999 1.79998 .09454 .10412
-1.49999 1.99999 .04555 .07247
-1.49999 1.29998 .08196 .12954
-.99999 99999 .17417 .23105
-.99999 1.49999 .10306 .15781
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-2.80000
-3.50000
29998
•49999
49999

.00000

.99999
1.99999
-1.49999
1.49999

1.49999
2.49999 
.79998
1.49999 
2 U9999
4.50000
1.49999 
•99999
4.50000 
2.49999

.02373

.00996

.37599

.13778

.04319

.00872

.10306

.06083

.00750

.03007

A V
.05318
.02605
.27642
.08709
.02679
.00745
.o4o43
00610

.01208

.00381

A T

Output Data Obtained For Model No. 5 
Using Program No. U

X y A V A T

.00000 .00000 653.13045 548.30978

.49999 .00000 637.95565 550.08447

.99999 .00000 627.12674 497 25397
1.49999 .00000 624.42102 469.21453
1.99999 .00000 602.42886 421.046̂
2.49999 .00000 5 8 1.5 115 5 368.94631
3.00000 .00000 526.76483 282.68249
5.50000 .00000 446.76892 172.68235
4.00000 .00000 300.77138 21.5 8 9 13
4.50000 .00000 161.12246 -79.98558
5.00000 .00000 75.20840 -119 .114 4 4
5.99999 00000 .65328 -12 2 .9 15 7 2
6.99999 00000 -22.92824 -105.55844
-.99999 00000 627.12674 588.98691
-1.99999 .00000 602.42886 622.39568
-5.00000 .00000 526.76483 629.70553
-4.00000 .00000 300.77138 499.36471
-4.50000 .00000 161.12246 359.05716
-5.00000 .00000 75.20840 249.37976
-5*99999 .00000 .65328 124.04520
-7#%999 .00000 -27.40670 45.78203

.49999 .99999 6 3 1.988^ 525.4 7531
1.49999 .99999 6 18 .77174 466.03255
2.49999 .99999 576.59076 367.5 ^ 5 2
3.19999 .99999 496.05862 244.56313
4.00000 .99999 29 7.74 16 1 22.8 2519
5.00000 .99999 73.526 75 -117.0 20 0 7
6.49999 .99999 -14.87387 -111.9 6 3 6 8
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7.99999 
-.49999
-1.99999
- 5 .0 0 0 0 0
-4.50000
-5.99999
-7.99999
2.49999
3.69999
5.70000
6.99999 
-1.49999 
- 3.50000 
- 5.00000 
-6.99999
7.99999
5.99999
4.00000
2.49999 

.99999
-.99999

- 3.00000
-4.50000
-6.30000
4.50000 
3.19999
1.49999 
.00000

-1.99999
-2.49999
-4.00000
-5.49999
-4.00000
6.99999
5.49999
3.00000 

.75000
- 5.00000 
• 5.00000 
-.99999
1.99999 
■6.99999

.99999

.99999
•99999
•99999
•99999
99999

•99999
1-99999
1-99999
1.99999
1.99999
1.99999
1.99999
1.99999 
2.79998
4.00000
4.00000
4.00000
4.00000
4.00000
4.00000
4.00000
4.00000
4.00000 
3-50000
3.00000 
2.69999 
5.00000
3.59999 
5.00000 
3.00000 
3-00000 
3 74999 
5-99999 
5-00000 
5.00000 
5-00000 
5.00000 
5.00000 
5-99999 
5-99999 
5-99999

-29.39228
631.98889
597-08559
522.58607
158.79695

-.06135
-29.39228
555.65989
377.07295
10.44351

-23.73561
595.28880
427.37661
67.11944

-24.64155
-28.60384
-15.47782
154.15630
274.65753
297.74161
297.74161
247.29203 

64.29354
-20.51796
99.34860

421.88186
558.89650
526.76483
403.87884
488.88634
247.29203 
12.85394

173 82995 
-27 85598 
-17 16822 
51.54510 
74.29863 
51.34510 
-8.15995 
-.06155 
-2.58531 

-27-83598

A V

-82.28516
569.16717
615.46918
622.56005
553.24301
120.69147
31.37390
558.91217
113.89648 
-117 69088 
-96.68127 
580.04940 
568.08111 
227.07858 
47.61517 

-65.00189 
-89.94256 
-18.44219 
159.20666 
229.95653 
285.74988 
513.95898 
181.04806 

51.57724
-67.54652
216.54717
425.55737
456.19405
417.22524
528.05618
407.16262
129.70904
505.53993
--55.87504
-77.41571
-18.18466
49.29695

107.11754
62.36944
15-64480

-29.26187
7 65959

A T
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Output Data Obtained For Ffodel No . 6

Using Program No . 4

X y A  V A  T
.00000 .00000 179.04516 155.05841

1.25000 .00000 186.81338 149.95405
2.25000 .00000 195.95489 136.17588
2.74999 .00000 192.53426 114.22895
3.00000 .00000 183.55392 97.01946
3.24999 .00000 174.80920 78.25571
3.50000 .00000 156.835855 47.53958
5.79999 .00000 111.59460 -6.77537
4.50000 .00000 -4.17114 -92.42561
5.49999 .00000 -43.46571 -80.59149
5.99999 .00000 -4o.67440 -64.65060
6.99999 .00000 -29.74548 -40.45465
7.99999 .00000 -20.81954 -26.04611
-.99999 .00000 182.08093 167.90960

-1.49999 .00000 191.80673 183.33850
-2.25000 .00000 193.95489 199.76749
-2.80000 .00000 190.60585 219.43154
-3.50000 .00000 156.83855 224.11404
-4.10000 .00000 54.34896 151.79065
-4.30000 .00000 21.16891 116.66427
-4.50000 .00000 -4.17114 85.19882
-4.79999 .00000 -28.03622 48.69226
-5.20001 .00000 -41.30624 18;35308
-5.49999 .00000 -43.46371 5.30960
-6.49999 .00000 -35.26580 -9.98394
-7.99999 .00000 -20.81954 -10.01461

.99999 .99999 185.03072 150;26364
2.19999 .99999 195.40646 139.33657
3.00000 .99999 185.85594 99.85073
3.50000 .99999 158.91111 50.27868
4.50000 .99999 -2.58046 -90.09091
5.39999 .99999 -42.05328 -82.05459
6.09999 .99999 -38.80093 -60.38250

.00000 1.99999 189.45510 164.07573
1.59999 1.99999 201.55132 156.47577
2.79998 1.99999 198.61282 12l.37*+8l
5.39999 1.99999 173.18273 72.62109
3.79999 1.99999 118.27885 3.93508
5.29998 1.99999 -37.89111 -79.24383
5.99999 1.99999 -37.08844 -58.93548
6.99999 1.99999 -27.443U -37.01068
-.99999 .99999 185.03072 170.22054

-1.49999 1.99999 201.45825 190.03271
-2.20001 1.99999 201.61520 202.37002
-5.00000 .99999 185.85594 222.06280
-4.20001 1.99999 43.05791 134.42Ji80
-4.50000 1.99999 1.63169 85.47744
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- 5.20001
- 6.20000

.00000
1.49999
2.59999 
3.24999
3.69999
4.50000
5.79998

- 1.80000
- 2.70001
-4.00000
- 5.00000
-5.99999
-6.99999
1.49999
2.69999
3.50000
4.50000
6.59999
5.00000

.00000
-1.49999
-1.99999
-2.49999
- 3.00000
-4.00000
-4.00000
-4.50000
-4.30000
-5.00000
-5.29999
-6.99999

.00000

.99999
3.00000
4.00000
1.99999 
-.49999

-3.00000
-4.00000
-3.00000
-1.99999
-.99999
6.99999
5.49999
5.00000 

.00000
-1.60000

.00000
-6.99999
5.99999

1.99999
1.99999
3.00000
3.00000
3.00000
3.00000
3.00000
3.24999
3.00000
3.00000
3.00000
3.00000
3.00000
3.00000
3.00000
4.00000
4.00000
4.00000
4.00000
4.00000
4.50000
3.79999
4.00000
3.50000
4.00000
3.50000
5.50000
3.79999
3.50000
4.00000
4.00000
4.29999
5.00000
4.50000
4.50000
4.50000
4.79998
4.79998
5.00000
5.00000
4.79998 
4150000
4.79998
4.29999
5.99999
5.99999
5.99999
5.99999 
5.59998
6.79998 
6.49999

-1.99999

-56.50560
-35.32545
183.55392
194.68885
197.83331
175.84298
132.21229

2.21912
-34.26470
192.37094
194.53538
78.06242

-27.55989
-33.10194
-24.77369
60.23149 
82.76997
65.56028 
-13.07996 
-24.28161
-29.46724
111.59460
80.23149 
163.89968 
84.18925

158.75307
65.56028 
43.48238
-.94172
-.79150

-28,37331
-30.09353
-17.95388
-4.17114
-2.58046
3.69879 

-24.43937 
-22.64579 
-36.30432 
-27,55989 
-24.43937

3.69879
-22.64579 
22.85649 

-l4;59613
-21.23746
-33;10194 
-40.67440 
-40.62050 
-31.89654 
-13.07270 
-37.08844

A V

18.66961
-7.50225

158.96313
155.51351
142.79339
93.15399
31.30382
-66.46108
-56.13998
185,45181
208.36034
156..64947
26,60208
-5.97317

-10.14761
59.94?*+8
45.02148
10.81246
-57.66448
-32.10846
-49,34332
96,64422
79.01818

159,84106
94,99093

179,63333
133,32919
101.98205

61,46914
50.41107
8,82809
-3.42199
-9,48950
-3.61230
-6.91989

-19.92569
-46.30000
-29.33260
-29.65765
-8.22973
4.01061

26.33218
-9.89132
24.89379

-16.59722
-25.07778
-35.80578
-35.22531
-30.59783
-27.62335
-8.15310

-58.93548

A T
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Output Data Obtained For Model No. 7

Using Program No. '3

( Grid interval = 1/2 depth of burial )

X y A  V A  T

.00000 .00000 309.61156 299.06296

.99999 .00000 504.11584 284.69269
1.99999 .00000 275.09521 243.27580
2.49999 .00000 233.69580 194.56721
5.00000 .00000 161.27706 119.05264
4.00000 .00000 47.07030 20.56707

.00000 .99999 162.65670 157.11487

.49999 .99999 161.67428 152.44853

.99999 .99999 158.40580 145.29916
1.49999 .99999 151.74156 134.3 4 > 6
1.99999 .99999 139.39695 117.52299
2.49999 .99999 118.03607 91.70575
3.50000 ,99999 56.57601 50.99136
5.00000 .99999 14.44835 1.20013
5.99999 .99999 7.16157 -l.'6483l

.00000 1.49999 95.44817 92.19616

.99999 1,49999 92.25687 82.66045

.49999 1.99999 57.19543 52.65786
1.49999 1,99999 52.41398 42.81249
2.49999 1.99999 41:23979 27:58102
4.00000 1.99999 19.11738 6.10293
5.99999 1.99999 5.84446 -1.51925

.49999 3.50000 16.85095 14:98617
3.00000 3.00000 15.66865 7.44408
5-.00000 5.00000 5.14195 1.83267

.00000 4.50000 9.05102 8.74255
3.00000 5.49999 4.10287 1.38284
-.99999 .49999 252.42478 252."5H 32
-.99999 .75000 204:31741 205.61084
-.99999 .99999 158.40580 160.71844
-.99999 1.49999 92.25687 95:56665
-.99999 2.49999 35 ".21047 38.12500
-.99999 6,49999 3.28365 3.87679

-1.99999 .25000 261*.78424 274.90790
-1.99999 .75000 181.69494 194.75298
-1.99999 .99999 139.39693 151.97215
-1.99999 1.49999 79.81003 90.57058
-1.99999 3.00000 20.40226 25.73852
-1.99999 4'. 50000 7.84900 10.53124
-3.00000 >9999 155.10821 163:32635
-3.00000 .75000 110.68042 135.87542
-3.00000 .99999 87.25006 109.22683
-3.00000 1.49999 53.06693 69.39084
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X y A V A T

-3.00CXX) 1.99999 33.55384 45.73575
-5.00000 5.00000 15.66865 22.82554
-3.5C000 .49999 78.03617 105.03216
-4.00000 .49999 43.29160 65.14757
-4.C0000 1.99999 19.11738 30.82897
-4.00000 3.00000 10.71232 18.12569
-4.00000 4.50000 5.13698 9.16123
-5.00000 .00000 16.65646 30.45565
-5.00000 1.49999 12.36034 23.16540
-5.00000 4.50000 3.84950 7.81860
-6.99999 1.49999 3.85624 9.53567
1.49999 -.99999 151.74156 134.34646
2.49999 -1.99999 41.25979 27.58102
-3.00000 -.99999 87.25006 109.22685
-.99999 -1.49999 92.25687 95.56665

-1.99999 -5.00000 20.40226 25.73852
-4.00000 -1.99999 19.11738 30.82897

Output Data Obtained For Model No, 7

Using Program No. 3

( Grid Interval = depth of burial )

.00000 .00000 325.98177 314.87555

.99999 .00000 320.68011 300.72592
1.99999 .00000 292.77992 260.18829
2.49999 .00000 260.17979 218.82122
3.00000 .00000 169.36595 123.46248
4.00000 .00000 45.56799 18.95370

.00000 .99999 157.39538 152,03286

.49999 .99999 156.81881 147.77554

.99999 .99999 153.29026 140.39209
r .49999 .99999 147.26536 150.74218
1.99999 .99999 135.10266 113.19055
2.49999 .99999 115.04390 88.67901
5.50000 .99999 54.31480 28.86636
5.00000 .99999 l4 .15714 -96551
5.99999 .99999 7-09160 -1-70953
.00000 1.49999 91.94097 88.80849
.99999 1.49999 88.85226 79.40191
,49999 1.99999 55 .*+0960 50.94458

1.49999 1.99999 50.77679 41.26580
2.49999 1.99999 4o.00474 26.42953
4.00000 1.99999 18.67744 5.72424
5.99999 1.99999 5.78193 -1.56008

.49999 3.50000 16.57942 14.72824
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X y A  V A  T

3.00000 3.00000 15.39012 7.20126
3.00000 5.00000 5.09988 1.79870
.00000 4.50000 8.95175 8.64672

3.00000 5.49999 4.07419 I.8505O
-.99999 .49999 254.35897 254.34546
-.99999 .75000 200.56663 201.95534
-.99999 .99999 153.29026 155.74316
-.99999 1.49999 88.85226 92.24810
-.99999 2.49999 54.33004 37.25750
-.99999 6.49999 5.26471 3.85742

-1.99999 .25000 274.23741 287.08037
-1.99999 .75000 178.91711 192.09680
-1.99999 •99999 135.10266 147.80878
-1.99999 1.49999 76.09896 87.71279
-1.99999 3.00000 20.00749 25.33559
-1.99999 4.50000 7.76695 10.44467
-3.00000 .49999 135.89207 165.90218
-3.00000 .75000 108.65354 134.80795
-3.00000 .99999 84.53579 106.98282
-3.00000 1.49999 51.24255 67.64318
-3.00000 1.99999 32.59580 44.77190
-3.00000 3.00000 15.59012 22.53018
-3.50000 .49999 75.75240 103.47359
-4.00000 .49999 41.85679 63.84271
-4.00000 1.99999 18.67744 30.35784
-4.00000 3.00000 10.55222 17.94595
-4.00000 4.50000 5.09288 9.10943
-5.00000 .00000 16.29425 30.05917
-5.00000 1.49999 12.15524 22.90661
-5.00000 4.50000 3.82151 7.78356
-6.99999 1.49999 3.82551 9.49350
1.49999 -.99999 147.26536 130.06676
2.49999 -1.99999 40.00474 26.42955

-3.00000 -.99999 84.53f79 106.98282
-.99999 -1.49999 88.85226 92.24810

-1.99999 -3.00000 20.00749 25.35559
-4.00000 -1.99999 18.67744 50.35784



Output Data Obtained For Model No. 8

Using Progi'arn No. 3

99

X y A  V A  T

.00000 .00000 i.G5o03 2.76049

.99999 .00000 2.80093 2.60891
1.99999 .00000 2.51370 2.19566
2.49999 .00000 2.13131 1.74261
3.00000 .00000 I.49S96 1.06545
4.00000 .00000 .47994 .20449

.00000 .99999 1.95857 1.89145

.49999 .99999 1.94771 1.84066

.99999 .99999 1.91212 1.76276
1.49999 .99999 1.85867 1 .> 245
1.99999 .99999 1.69944 1.45056
2.49999 .99999 1.44515 l.l44o4
3.50000 .99999 .64323 .35867
5.00000 .99999 .15725 .01230
5.99999 .99999 .07815 -.01830

.00000 1.49999 1.22250 I.I6066

.99999 1.49999 1.18643 1.07415

.49999 1.99999 .72672 .67275
1.49999 1.99999 .66990 .55804
2.49999 1.99999 .52508 .36407
4.00000 1.99999 .22245 .07336
5.99999 1.99999 .06431 -.01739

.49999 3.50000 .20127 .17950
3.00000 3.00000 .18698 .09149
3.00000 5.00000 .05867 .02087

.00000 4.50000 .10547 .10171
3.00000 5.49999 .04651 .01550
-.99999 .49999 2.56605 2.57150
-.99999 .75000 2.27911 2.29037
-.99999 .99999 1.91212 1.93079
-.99999 1.49999 1.18643 1.21747
-.99999 2.49999 .43771 .46942
-.99999 6.49999 .03709 .04569

-1.99999 .25000 2.46037 2.60546
-1.99999 .75000 2.03656 2.17449
-1.99999 .99999 1.69944 1.83218
-1.99999 1.49999 1.03768 1.15530
-1.99999 3.00000 .24747 .30840
-1.99999 4.50000 .09101 .12146
-3.00000 .49999 1.37861 1.67373
-3.00000 .75000 1.23170 1.50561
-3.00000 .99999 1.04368 1.29071
-3.00000 1.49999 .66987 .85928
-3.00000 1.99999 .41824 .56003
-3.00000 3.00000 .18698 .26941
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X y A V A T
-3.50000 .49999 .80493 1.08328
-4.00000 .49999 .45348 .68521
-4.00000 1.99999 .22245 .35608
-4.00000 3.00000 .12399 .20856
-4.00000 4.50000 .05833 .10387
-5.00000 .00000 .17761 .52592
-5.00000 1.49999 .13685 .25607
-5.00000 4.50000 .04313 .08773
-6.99999 1.49999 .04203 .10452
1.49999 -.99999 1.83837 1.64245
2.49999 -1.99999 .52508 .36407

-3.00000 -.99999 1.04368 1.29071
-.99999 -1.49999 1.18643 1.21747

-1.99999 -3.00000 .24747 .50840
-4.00000 -1.99999 .22245 .35608
-6.50000 .00000 .02516 .06790
-6.99999 3.50000 .02875 .07321
-6.49999 .00000 .05192 .11623
-5.99999 3.00000 .04916 .11001
-1.99999 5.99999 .04280 .05952
-.99999 4.00000 .13860 .15667

Output Data Obtained For Model No. 9 

Using Program No. 3

.00000 .00000 2.85803 2.76o 46

.29998 .00000 2.77227 2.54263

.49999 .00000 2.62014 2.31243

.70000 .00000 2.39575 2.02386

.99999 .00000 1.95837 1.52829
1.29998 .00000 1.49480 1.05737
1.69999 .00000 .99*+56 .59890
2.29998 .00000 .54806 .24059
5.50000 .00000 .20353 .02270
-.49999 .00000 2.62014 2.74887
-.90001 .00000 2.11286 2.36497

-1.99999 .00000 .73299 1.03390
-3.00000 .00000 .29781 .50121

.00000 .99999 2.80093 2.70552

.39999 .99999 2.65035 2.38702

.39999 .99999 2.06481 1.65954
1.59999 .99999 1.06880 .67309
2.29998 .99999 .52697 .23150
-.49999 .99999 2.56605 2.69073
-.99999 .99999 1.91212 2.19967
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X y A  V A  T

-1.99999 .99999 .70681 .99655
>9999 .49999 2.60781 2.30194
.70000 .49999 2.38399 2.01437

1.29998 .49999 1.48545 1.05111
.00000 1.99999 2.51370 2.42788
>9999 1.99999 2.29954 2.05466
.99999 1.99999 1.69944 1.53172

1.49999 1.99999 1.05768 .68279
2.19999 1.99999 .50006 .23324
-.49999 1.99999 2.29954 2.40737
-.80000 1.99999 1.97341 2.17910

-1.49999 1,99999 1.03768 1.32150
-2.49999 1.99999 .37731 .58386

.00000 2.59999 2.02295 1.95585
,00000 3,00000 1.49896 l.i+4772
.00000 3.19999 1.22283 1.18097
.00000 3,50000 .86557 .83590
.00000 4.19999 ,58443 .37115
>9999 5.00000 1,37861 1.21596
.99999 3.00000 1.04368 .81048

1.79998 3.00000 ,50320 .28628
3.00000 5.00000 .18698 .04488

.49999 2.69999 1.74510 1.54266

.70000 4.00000 .42960 .35015
1.49999 4.00000 .29838 .18600

-1.49999 3.39999 .49469 .65860
.00000 5.00000 ' .17761 .17159

-.80000 2.69999 1.50233 1.66092
-1.99999 2.49999 .52508 .74114

-.75000 3.24999 .96332 1.06579
-5.00000 1.99999 .06935 .15438
-3.50000 1.99999 .17067 .31079
-5.49999 .00000 .06090 .14361
-4.00000 .00000 .14413 .28165
-3.00000 4.50000 .09837 .16790
-3.00000 3.00000 .18698 .51604
-3.00000 .99999 .28555 .48061
-4.00000 3.59999 .08366 .16459
-1.99999 4.79998 .13069 .18954
-1.99999 3.69999 .27238 .38949
- 2.49999 .00000 .45587 .70519
-1.49999 .00000 1.22250 1.55995
-1.99999 1.49999 .66990 .94421

-.99999 3.00000 1.04568 1.20541
-.49999 3.00000 1.37861 1.44900
-.49999 2.49999 1.95127 2.04251
-.49999 1.99999 2.29954 2.40757
5.00000 .99999 .07667 -.02270
4.00000 .00000 .14413 -.00348
3.00000 1.99999 .24747 .06088



Output Data Obtained For Model Wo. 10

Using Prograrr. No. 3
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X y A V A T
.00000 .00000 1.78035 1.78055
.99999 .00000 1.71+371 1.74871

1.99999 .00000 1.58185 1.58185
2.1+9999 .00000 1.34572 1.54372
3.00000 .00000 .92724 .92724
1+.00000 .00000 .27041 .27041

.00000 .99999 .93521 .93521

.1+9999 .99999 .92956 .92956

.99999 .99999 .91077 .91076
1.1+9999 .99999 .87245 .87243
1.99999 .99999 .80148 .80148
2.1+9999 .99999 .67861 .67861
3.50000 .99999 .32398 .523975.00000 .99999 .08285 .08285
5.99999 .99999 .04106 .04108

.00000 1.49999 .54354 .54854

.99999 1.49999 .53021 .55021

.1+9999 1.99999 .32857 .32857
1.1+9999 1.99999 .30111 .30111
2.1+9999 1.99999 .23686 .23684
i+.ooooo 1.99999 .10965 .10965
5.99999 1.99999 .03336 .03335
.1+9999 3.50000 .09665 .09665

3.00000 3.00000 .08986 .08984
3.00000 5.00000 .02934 .02952

.00000 4.50000 .05188 .05168
3.00000 5.49999 .02334 .02334
-.99999 .49999 1.45152 1.45150
-.99999 .75000 1.17476 1.17474
-.99999 .99999 .91077 .91076
-.99999 1.49999 .53021 .53021
-.99999 2.49999 .20219 .20218
-.99999 6.49999 .01867 .01867

-1.99999 .25000 1.50529 1.50527
-1.99999 .75000 1.04467 1.04467
-1.99999 .99999 .80143 .80148
-1.99999 1.49999 .45867 .45867-1.99999 3.00000 .11706 .11706
-1.99999 4.50000 .64493 .04491
-3.00000 .49999 .77680 .77679-3.00000 .75000 .63626 .65626
-3.00000 .99999 .50155 .50155
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X y A V A T
-3.00000 1.49999 .30488 .30486
-3.00000 1.99999 .19267 .19265
-3.00000 3.00000 .08986 .08984
-3.50000 .49999 .44858 .44658
-4.00000 .49999 .24673 .24871
-4.00000 1.99999 .10965 .10965
-4.00000 3.00000 .06138 .06137-4.00000 4.50000 .02932 .02932
-5.00000 .00000 .09555 .09555
-5.00000 1.49999 .07092 .07092
-5.00000 4.50000 .02191 .02191
-6.99999 1.49999 .02194 .02194

1.49999 -.99999 .87245 .87243
2.49999 -1.99999 .23686 .23684

-3.00000 -.99999 .50155 .50155
-.99999 -1.49999 .53021 .53021

-1.99999 -3.00000 .11706 .11706
-4.00000 -1.99999 .10965 .10965

Output Data Obtained For Model No. 11 

Using Program No. 1

X y A V t;
.00000 .00000 1.78033
.29998 .00000 1.66397
.49999 .00000 1.48108
.70000 .00000 1*25870
.99999 .00000 .93521

1.29998 .00000 .67864
1.69999 .00000 .44614
2.29998 .00000 .25128
3.50000 .00000 .09762
-.49999 .00000 1.48108
-.90001 .00000 1.03723

-1.99999 .00000 .33169-3.00000 .00000 .14062
.00000 .99999 1.74871
.39999 .99999 1.54995
.89999 .99999 1.01161

1.59999 .99999 ,47714
2.29998 .99999 .24102
-.49999 .99999 1.45152
-.99999 .99999 .91077
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A V {« A T)
-1.99999 .99999 .31878

>9999 .49999 1.47436
.70000 .49999 1.25236

1.29993 .49999 .67378
.00000 1.99999 1.58185
>9999 1.99999 1.30268
.99999 1.99999 .80146

1>9999 1.99999 .45867
2.19999 1.99999 .22692
->9999 1.99999 1.30268
-.80000 1.99999 .99319

-1.49999 1.99999 .45867
-2.49999 1.99999 .17422

.00000 2.59999 1.27392

.00000 3.00000 .92724

.00000 3.19999 .74534

.00000 3.50000 .51022

.00000 4.19999 .21371

.49999 3.00000 .77680

.99999 3.00000 .50155
1.79998 3.00000 .23005
3.00000 3.00000 .08986
.49999 2.69999 .98654
.70000 4.00000 .23069

1.49999 4.00000 .14916
-1.49999 3.39999 .23443

.00000 5.00000 .09555
-.80000 2.69999 .75526

-1.99999 2.49999 .23686
-.75000 3.24999 .50364



Output Data Obtained For Model No. 12
Using Program No. 1
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X y A  V ( - A T )
.00000 .00000 4.64471

1.25000 .00000 4,59176
2.25000 .00000 4.36285
2.74999 .00000 4,11825
3.00000 .00000 3.91464
3.24999 .00000 3.69033
3.50000 .00000 3.38762
3.79999 .00000 2*65256
4.5CX)00 .00000 1,52549
5.49999 .00000 ,62594
5.99999 .00000 ,43145
6.99999 .00000 .23038
7.99999 .00000 .13784
-.99999 .00000 4,59991

-1.49999 .00000 4.57491
-2.25000 .00000 4,36285
-2.80000 .00000 4,07940
-3.50000 .00000 3,58762
-4.10000 .00000 2,23001
-4.30000 .00000 1,84862
-4.50000 .00000 1,52349
“4.79999 .00000 1,14471
-5.20001 .00000 ,80081
-5*49999 .00000 .62594
-6.49999 .00000 .30993
-7.99999 .00000 .13784

.99999 .99999 4.48456
2.19999 .99999 4.26956
3.00000 .99999 3.82432
3.50000 .99999 3.31046
4.50000 .99999 1.47663
5.39999 .99999 .65298
6.09999 .99999 .38773

.00000 1.99999 4.02756
1.59999 1.99999 3.95968
2.79998 1.99999 3.56440
3.39999 1.99999 3.08999
3.79999 1.99999 2.49166
5.29998 1.99999 .61931
5.99999 1.99999 ,36684
6.99999 1.99999 .20132
-.99999 .99999 4.48456
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A V (- A T)

-1>9999 1.99999 A  5.97801
-2.20001 1.99999 5.80963
-3.00000 .99999 5.82432
-4.20001 1.99999 1.75120
-4.50000 1.99999 1.29723
-5.20001 1.99999 .67356
-6.20000 1.99999 .32150

.00000 3.00000 2.53308
1.49999 3.00000 2.48732
2.39999 3.00000 2.34225
3.24999 3.00000 2.00471
3.69999 3.00000 1.66995
4.50000 5.24999 .75354
5.79998 3.00000 .32925

-1.80000 3.00000 2.43963
-2.70001 3.00000 2.25282
-4.00000 3.00000 1.35354
-5.00000 3.00000 .57980
-5.99999 5.00000 .29092
-6.99999 5.00000 .16946
1.49999 4.00000 .98417
2.69999 4.00000 .86480
3.50000 4.00000 .71076
4.50000 4.00000 .45687
6.59999 4.00000 .15966
5.00000 4.50000 .27092

.00000 3.79999 1.22152
-1.49999 4.00000 .98417
-1.99999 3.50000 1.50549
-2.49999 4.00000 .89279
-3.00000 3.50000 1.30875
-4.00000 3.50000 .88331
-4.00000 3.79999 .68527
-4.50000 3.50000 .63784
-4.30000 4.00000 .50611
-5.00000 4.00000 .55034
-5.29999 4.29999 .26050
-6.99999 5.00000 .10320

.00000 4.50000 .68545

.99999 4.50000 .67197
3.00000 4.50000 .53976
4.00000 4.79998 .33477
1.99999 4 . 7 9 ^ .50251
-.49999 5.00000 .47762
-3.00000 5.00000 .37867
-4.00000 4.79998 .33477
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X y A  V (- A  ‘

-3.00000 4.50000 .53976
-1.99999 4.79998 .50251

-.99999 4.29999 .78541
6.99999 5.99999 .07849
5.49999 5.99999 .11999
3.00000 5.99999 .21143

.00000 5.99999 .26248
-1.60000 5.59996 .31074

.00000 6.79998 .17471
-6.99999 6.49999 .06860
5.99999 -1.99999 .36684

.00000 1.25000 4.47186
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