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Spectral Asymptotics of Laplacians
Associated with One-dimensional Iterated
Function Systems with Overlaps

Sze-Man Ngai

Abstract. We set up a framework for computing the spectral dimension of a class of one-dimensional

self-similar measures that are defined by iterated function systems with overlaps and satisfy a family

of second-order self-similar identities. As applications of our result we obtain the spectral dimension

of important measures such as the infinite Bernoulli convolution associated with the golden ratio and

convolutions of Cantor-type measures. The main novelty of our result is that the iterated function

systems we consider are not post-critically finite and do not satisfy the well-known open set condition.

1 Introduction

Let µ be a continuous, positive, finite Borel measure on R with support

supp(µ) ⊆ [a, b]. Define the standard Dirichlet form on L2((a, b), µ),

E(u, v) :=

∫ b

a

u ′(x)v ′(x) dx,

with domain Dom(E) equal to the Sobolev space

H1
0 (a, b) := {u ∈ L2((a, b), dx) : u ′ ∈ L2((a, b), dx), u(a) = u(b) = 0}

(Dirichlet boundary condition) or

H1(a, b) := {u ∈ L2((a, b), dx) : u ′ ∈ L2((a, b), dx)}

(Neumann boundary condition). It is well known that in either case Dom(E) is dense

in L2((a, b), µ), and the quadratic form E is closed. Hence one can define a Dirichlet

(resp. Neumann) Laplace operator ∆
D
µ (resp. ∆

N
µ ) called the Dirichlet (resp. Neu-

mann) Laplacian with respect to µ, by

(1.1) E(u, v) =

∫ b

a

(−∆µu)v dµ, for all v ∈ C∞
c (a, b),
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Spectral Asymptotics of Laplacians 649

where ∆µ = ∆
D
µ or ∆

N
µ , and C∞

c (a, b) is the space of compactly supported C∞

functions on (a, b).

It is known (see, e.g., [BNT, HLN]) that there exists an orthonormal basis

{un}∞n=1 of L2((a, b), µ) consisting of eigenfunctions of −∆µ. The eigenvalues λn =

λn(−∆µ), n ≥ 1, are simple and satisfy limn→∞ λn = ∞.

Define the eigenvalue counting function for −∆µ as

N(λ,−∆µ) := #{n : λn ≤ λ},

where #A denotes the cardinality of a set A, and µ|E denotes the restriction of the

measure µ to a subset E ⊆ R. The lower and upper spectral dimensions of µ are

defined, respectively, as

dims(µ) := lim
λ→∞

2 ln N(λ,−∆µ)

ln λ
and dims(µ) := lim

λ→∞

2 ln N(λ,−∆µ)

ln λ
.

If dims(µ) = dims(µ), we call the common value the spectral dimension of µ and

denote it by dims(µ).

Since dim(H1(a, b)/H1
0 (a, b)) = 2 (see Remark 2.4), we have (see [K, Theo-

rem 4.1.7 and Corollary 4.1.8]),

λn(−∆
N
µ ) ≤ λn(−∆

D
µ ) ≤ λn+2(−∆

N
µ ),

and thus

N(λ,−∆
D
µ ) ≤ N(λ,−∆

N
µ ) ≤ N(λ,−∆

D
µ ) + 2, λ ≥ 0.

Consequently, N(λ,−∆
D
µ ) and N(λ,−∆

N
µ ) behave the same asymptotically as

λ → ∞; moreover, dims(µ), dims(µ), and dims(µ) are the same for −∆
D
µ and −∆

N
µ .

Therefore, we need only consider the Dirichlet Laplacian.

Throughout the rest of this paper, unless otherwise specified, ∆µ denotes the

Dirichlet Laplacian ∆
D
µ . The Dirichlet eigenvalues λn = λn(−∆µ) satisfy

(1.2) 0 < λ1 < λ2 < · · · and lim
n→∞

λn = ∞.

The asymptotic behavior of N(λ,−∆µ) and the computation of dims(µ) are inter-

esting problems and have been studied extensively. For the case where µ is Lebesgue

measure, ∆µ is the standard Laplacian, and (a, b) is replaced by a bounded smooth

or fractal subset in R
d, we refer the the reader to [W, L, LP, F2] and the references

therein.

We are mainly interested in the case where µ is a self-similar measure. Let {Si}m
i=1,

m ≥ 2, be an iterated function system (IFS) of contractive similitudes of the form

(1.3) Si(x) = riRix + bi , i = 1, . . . , m,

where 0 < ri < 1, Ri is an orthogonal transformation, and bi ∈ R
d. To each such

IFS, there corresponds a unique compact set K ⊆ R
d such that

K =

m⋃
i=1

Si(K)
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(see [H, F1]). K is called the self-similar set (or attractor) defined by {Si}m
i=1. To each

set of probability weights {wi}m
i=1, i.e., wi > 0 and

∑m
i=1 wi = 1, there corresponds a

unique probability measure, called a self-similar measure, satisfying the identity

(1.4) µ =

m∑

i=1

wiµ ◦ S−1
i .

Moreover, supp(µ) = K. Kigami and Lapidus [KL] obtained the spectral dimension

for a fractal Laplacian defined on a post-critically finite (PCF) self-similar structure

with a regular harmonic structure and a Bernoulli measure (see [K]). The reader

is referred to [K, S] for more results in this area. M. Solomyak and Verbitsky [SV],

Naimark and M. Solomyak [NS1, NS2] computed the spectral dimension for self-

similar measures defined by IFS’s satisfying the open set condition (OSC). Recall that

an IFS {Si}m
i=1 satisfies the open set condition if there exists a nonempty bounded

open set U such that
⋃m

i=1 Si(U ) ⊆ U and Si(U ) ∩ S j(U ) = ∅ if i 6= j (see [H, F1]).

The OSC is a separation condition; an IFS that does not satisfy the OSC is said to have

overlaps. It is still an open question whether the PCF condition implies the OSC; we

refer the reader to [DL] for a partial result.

The PCF condition and the OSC are key conditions in studying the analysis and

geometry of fractals. Since the late 1980s, differential operators on fractals defined by

IFS’s that satisfy these conditions, such as the Sierpinski gasket and Sierpinski carpet,

have been constructed and studied extensively using both analytic and probabilistic

approaches (see [K,S] and the references therein). Meanwhile, despite difficulties due

to overlaps, some geometric and measure-theoretic properties of IFS’s that do not

satisfy these conditions have also been obtained (see, e.g., [So, LN2, NW, JY, LN4]).

However, not much is known concerning the analytic aspect of such fractals, and this

has motivated the present work.

There are many interesting IFS’s that do not satisfy the PCF condition and the

OSC; some of them have been studied for a long time. In fact, the family of IFS’s

S1(x) = ρx, S2(x) = ρx + (1 − ρ), 1/2 < ρ < 1,

has been studied very extensively. Since S1[0, 1] ∩ S2[0, 1] = [1 − ρ, ρ], the IFS’s are

not PCF and do not satisfy the OSC. The self-similar measures µρ defined by the IFS

with 1/2 < ρ < 1, together with equal probability weights w1 = w2 = 1/2, have

been studied since the 1930’s and are still not completely understood (see [PSS]). In

particular, the characterization of ρ for which µρ is absolutely continuous or singular

is still an open problem. Erdős [E] showed in the 1930’s that if ρ−1 is a Pisot number

(i.e., an algebraic integer > 1 whose algebraic conjugates all lie inside the unit circle),

then µρ is singular. On the other hand, B. Solomyak [So, PS1] used a transversality

condition to show that for Lebesgue almost all ρ ∈ (1/2, 1), µρ is absolutely continu-

ous. Lau and the author [LN2] introduced the weak separation property, a separation

condition weaker than the OSC, to study the multifractal decomposition of the class

of measures with ρ−1 being a Pisot number. The most well-known Pisot number is

the golden ratio (
√

5 + 1)/2. In this paper we will compute the spectral dimension

for µρ where ρ is the reciprocal of the golden ratio.
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In this paper we will formulate a set of conditions under which the spectral di-

mension of certain self-similar measures on R can be computed. Second-order self-

similar identities play a crucial role in these conditions. The notion of second-order

self-similar identities was first introduced by Strichartz et al. [STZ] to study the den-

sity of self-similar measures. Let {Si}m
i=1 and µ be given by (1.3) and (1.4) respec-

tively. Define

Ti(x) = rni x + di , i = 0, 1, . . . , L,

where ni is a positive integer and di ∈ R
d. We say that µ satisfies a family of second-

order self-similar identities (or simply second-order identities) with respect to {Ti}L
i=0

if

(i) supp(µ) ⊆ ⋃L
i=0 Ti(supp(µ)), and

(ii) for each A ⊆ supp(µ) and 0 ≤ i, j ≤ L, µ(Ti ◦T jA) can be expressed as a linear

combination of {µ(TkA) : k = 0, 1, . . . , L} as

µ(Ti ◦ T jA) =

L∑

k=0

ckµ(TkA),

where ck = ck(i, j) are independent of A.

For our purposes, we assume that {Ti}L
i=0 satisfies the OSC. Second-order self-similar

identities were also employed by Lau and the author [LN2, LN3] to obtain the mul-

tifractal Lq-spectra and justify the multifractal formalism for measures such as the

infinite Bernoulli convolution associated with the golden ratio and the 3-fold convo-

lution of the Cantor measure.

For an IFS satisfying a family of second-order identities, we formulate a set of con-

ditions under which we can derive a formula that yields the spectral dimension of the

Laplacian defined by an associated self-similar measure (see Theorem 1.1). Using this

set-up, we obtain the spectral dimension of the Laplacians defined by the well-known

infinite Bernoulli convolution associated with the golden ratio, and convolutions of

Cantor-type measures (see Theorems 1.2 and 1.3). Our results differ from similar

ones in the literature (see e.g., [KL, NS1, NS2]) in that the IFS’s we study are not PCF

and do not satisfy the OSC.

To state our main results, we consider one-dimensional IFS’s consisting of equi-

contractive similitudes of the form

(1.5) Si(x) = ρx + bi , i = 1, . . . , m,

where 0 < ρ < 1 and 0 = b1 < b2 < · · · < bm. Note that supp(µ) ⊆ [0, b], where

b = bm/(1 − ρ). Let µ be the self-similar measure corresponding to probability

weights {wi}m
i=1. Our approach is to use second-order identities to derive a system

of functional equations for the eigenvalue counting functions on suitable subsets of

[a, b], and then apply the vector-valued renewal theorem proved by Lau et al. [LWC].

Define

(1.6) Ti(x) = ρix + di =: ρni x + di , i = 0, 1, . . . , L,
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where ni is a positive integer and di ∈ R. We will assume that {Ti}L
i=0 is a nonover-

lapping (i.e., satisfying the OSC) family with respect to which µ satisfies a family of

second-order identities. We will also assume that {Ti}L
i=0 can be partitioned into two

subfamilies {Ti}i∈I0
and {Ti}i∈I1

; each is equicontractive, with contraction ratios ρen

and ρn, respectively. For convenience, we assume, by rearranging indices if neces-

sary, that I1 = {1, . . . , K}. Under additional conditions on the similitudes and the

second-order identities (see conditions (C1), (C2), and (C3) in Section 3), we can

derive a vector renewal equation of the form

(1.7) f = f ∗ Mα + z,

where α ≥ 0,

f = f(α)(t) = [ f (α)
1 (t), . . . , f (α)

p (t)], t ∈ R,

f (α)
i (t) := e−αt N

(
et ,−∆µ|Ti [0,b]

)
, i = 1, . . . , p,

Mα = [µ(α)
ji ] is a p × p matrix of Radon measures on R, and

z = z(α)(t) = [z(α)
1 (t), . . . , z(α)

p (t)] is some error function

(see derivation of Theorem 3.3). Besides second-order identities, a key ingredient in

deriving (1.7) involves the unitary equivalence of operators on Hilbert spaces; we use

some ideas of M. Solomyak and Verbitsky [SV].

Let

(1.8) Mα(∞) :=
[
µ(α)

ji (R)
]p

j,i=1
.

For each i = 1, . . . , p and α ≥ 0, define

(1.9) Fi(α) :=

p∑

j=1

µ(α)
ji (R), Di := {α ≥ 0 : Fi(α) < ∞}, α̃i := inf Di .

By using a slightly modified vector-valued renewal theorem in [LWC], we obtain

the following main theorem.

Theorem 1.1 Let µ be a self-similar measure defined by an IFS as in (1.5), and let

∆µ denote ∆
D
µ or ∆

N
µ . Assume that µ satisfies a family of second-order identities with

respect to an IFS of the form (1.6) so that conditions (C1), (C2), and (C3) in Section 3

hold. Let Mα(∞), Fi(α), and α̃i be defined as in (1.8) and (1.9). Assume that for each

i = 1, . . . , p, limα→α̃+
i

Fi(α) > 1.

(a) There exists a unique α > 0 such that the spectral radius of Mα(∞) is equal to 1.

(b) If we assume, in addition, that for the unique α in (a), there exists σ > 0 such

that for all i = 1, . . . , p, z(α)
i (t) = o(e−σt ) as t → ∞. Then dims(µ) = 2α.

Moreover, if Mα(∞) is irreducible, then there exist constants C1,C2 > 0 such that

for λ sufficiently large,

C1λ
α ≤ N

(
λ,−∆µ|[0,b]

)
≤ C2λ

α.
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When applying Theorem 1.1 it is necessary, and usually difficult, to show that, as

t → ∞, the error terms z(α)
i (t) have order o(e−σt ) for some σ > 0. We will obtain

such estimates for the infinite Bernoulli convolution associated with the golden ra-

tio and the class of convolutions of Cantor-type measures. We use some techniques

developed by Lau and the author [LN1, LN3] for computing the Lq-spectrum and

Hausdorff dimension of the measure. We also obtain some new estimates for these

measures.

The infinite Bernoulli convolution associated with the golden ratio, defined below,

is one of the most fundamental examples of a self-similar measure defined by an IFS

with overlaps:

(1.10) S1(x) = ρx, S2(x) = ρx + (1 − ρ), ρ =

√
5 − 1

2
, w1 = w2 =

1

2
.

The corresponding self-similar identity is

(1.11) µ =
1

2
µ ◦ S−1

1 +
1

2
µ ◦ S−1

2 ,

with supp(µ) = [0, 1]. By a result of Erdős [E], µ is singular. The L2-dimension for

µ was first computed by Lau [La1, La2]. The Lq-spectrum for q ≥ 0, the multifractal

formalism in the corresponding region, the L∞-dimension, and the Hausdorff di-

mension of µ were obtained by Lau and the author [LN1,LN2]. The Lq-spectrum for

q < 0 was obtained by Feng [Fe], and the multifractal formalism in the correspond-

ing region was justified by Feng [Fe] and Feng and Olivier [FO].

This paper contributes to the study of this infinite Bernoulli convolution by com-

puting its spectral dimension. It is shown in [STZ] that by defining

(1.12)

T0(x) = S1S1(x) = ρ2x

T1(x) = S1S2S2(x) = S2S1S1(x) = ρ3x + ρ2

T2(x) = S2S2(x) = ρ2x + ρ,

one can obtain the following second-order identities for µ:




µ(T0TiA)

µ(T1TiA)

µ(T2TiA)


 = Mi




µ(T0A)

µ(T1A)

µ(T2A)


 , i = 0, 1, 2, A ⊆ [0, 1],

where

M0 =
1

8




2 0 0

1 2 0

0 4 0


 , M1 =

1

4




0 1 0

0 1 0

0 1 0


 , M2 =

1

8




0 4 0

0 2 1

0 0 2


 .

For any integer k ≥ 0 and any index J = ( j1, . . . , jk) ∈ Ik
0 := {0, 2}k, let

(1.13) c J =
1

4
[0, 1, 0]M J




1

1

1


 =

1

2 · 4k+1

[
1, 1

]
P J

[
1

1

]
,
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where M J := M j1
· · ·M jk

, P J := P j1
· · · P jk

,

P0 =

[
1 1

0 1

]
, and P2 =

[
1 0

1 1

]
.

Then it is shown in [LN1, Proposition 2.1(i)] that for all A ⊆ [0, 1],

(1.14) µ(T1T JT1A) = c Jµ(T1A).

By using Theorem 1.1 and by estimating the error term, we obtain the following.

Theorem 1.2 Let µ be the infinite Bernoulli convolution associated with the golden

ratio as defined in (1.10) and (1.11), let c J be defined as in (1.13), and let ∆µ denote

∆
D
µ or ∆

N
µ . Then there exists a unique positive real number satisfying

∞∑

k=0

∑

J∈Ik
0

(ρ2k+3c J)
α

= 1.

Moreover, dims(µ) = 2α, and there exist constants C1,C2 > 0 such that for all λ
sufficiently large,

C1λ
α ≤ N

(
λ,−∆µ

)
≤ C2λ

α.

Numerical approximations by taking k up to 20 yield dims(µ) ≈ 0.998 · · · .

Convolutions of Cantor-type measures provide an interesting family of self-simi-

lar measures that satisfy a family of second-order identities. Let

(1.15) S0(x) =
1

m
x, S1(x) =

1

m
x +

m − 1

m
,

where m ≥ 3 is an odd integer. The attractor of this IFS is a Cantor-type set. Let

νm be the self-similar measure defined by the IFS (1.15) with probability weights

p0 = p1 = 1/2. The m-fold convolution of ν∗m
m is the self-similar measure defined

by the following IFS with overlaps:

(1.16) Si(x) =
1

m
x +

m − 1

m
i, i = 0, 1, . . . , m,

together with probability weights

wi :=
1

2m

(
m

i

)
, i = 0, 1, . . . , m.

That is,

(1.17) µm =

m∑

i=0

1

2m

(
m

i

)
µm ◦ S−1

i ,
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with supp(µm) = [0, m]. Define

(1.18) Ti(x) =
1

m
x + i, i = 0, 1, . . . , m − 1.

It is shown in [LN3, Proposition 2.1] that µm satisfies a family of second-order iden-

tities with respect to this IFS {Ti}m−1
i=0 (see (6.2)).

The main reason to restrict m to an odd integer is that conditions (C2) and (C3)

in Section 3 hold (see [LN3]). These conditions are essential in deriving (1.7).

The Lq-dimensions of the 3-fold convolution for positive integers q were obtained

by Fan, Lau, and the author [FLN]. The Lq-spectrum for q > 0, the justification

of the multifractal formalism in the corresponding region, and the Hausdorff di-

mension of the µm were obtained by Lau and the author [LN3]. For q < 0, the

Lq-spectrum for the 3-fold convolution was obtained by Lau and Wang [LW], and a

modified multifractal formalism in the corresponding region was proved by Feng et

al. [FLW]. One of our objectives in this paper is to compute dims(µm).

Define

(1.19) ci, J = [wi+1, wi] P J

[
w0

wm

]
, i = 1, . . . , m − 2, J ∈ I

k
0 = {0, m − 1}k,

where P J = P j1
· · · P jk

,

(1.20) P0 =

[
w0 0

wm wm−1

]
, and Pm−1 =

[
w1 w0

0 wm

]
.

Theorem 1.3 Let µm be the m-fold convolution of the Cantor-type measure νm, let

ci, J , i = 1, . . . , m− 2, be defined as in (1.19), and let ∆µ denote ∆
D
µ or ∆

N
µ . Then there

exists a unique positive real number α satisfying

1

mα

m−1∑

i=1

wα
i +

∞∑

k=0

1

m(k+2)α

m−2∑

i=1

∑

J∈Ik
0

cα
i, J = 1.

Moreover, dims(µm) = 2α, and there exist constants C1,C2 > 0 such that for all λ
sufficiently large,

C1λ
α ≤ N(λ,−∆µm

) ≤ C2λ
α.

For the 3-fold convolution, numerical approximations by taking k up to 18 in the

above formula yield dims(µ3) ≈ 0.997 · · · .

Even though for each of the our examples, numerical result shows that dims(µ) is

close to 1, we can show that it is actually strictly less than 1.

Corollary 1.4 For the measures µ in Theorems 1.2 and 1.3, we have dims(µ) < 1.

This paper is organized as follows. In Section 2 we establish some essential prop-

erties concerning the unitary equivalence and the eigenvalue counting functions of

operators. In Section 3 we formulate a set of conditions and under which we derive

the functional equation (1.7). Section 4 is devoted to the proof of Theorem 1.1. In

Section 5 we compute the spectral dimension of the infinite Bernoulli convolution

associated with the golden ratio and prove Theorem 1.2. Finally, in Section 6 we

compute the spectral dimension of the convolutions of Cantor-type measures and

prove Theorem 1.3 and Corollary 1.4.
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2 Unitarily Equivalent Operators

Unitary equivalence of operators plays an important role in deriving the renewal

equation (1.7) and in estimating the error term z. In this section we establish some

basic properties concerning unitary equivalence of Laplace operators, especially those

defined by self-similar measures.

Let (H1, ‖ · ‖1) and (H2, ‖ · ‖2) be Hilbert spaces. Recall that a surjective linear

operator ϕ : H1 → H2 is unitary if ‖ϕx‖2 = ‖x‖1 for all x ∈ H1. Let T1, T2 be

linear operators on H1 and H2, respectively. T1 and T2 are said to be unitarily equiv-

alent, denoted T1 ≈ T2, if there exists a unitary operator ϕ : H1 → H2 such that

ϕ Dom(T1) = Dom(T2) and ϕT1x = T2ϕx for all x ∈ Dom(T1). The second condi-

tion means that the following diagram commutes:

Dom(T1)

T1

²²

ϕ
// Dom(T2)

T2

²²

H1

ϕ
// H2.

Note that u is a λ-eigenvector of T1 if and only if ϕu is a λ-eigenvector of T2. In

particular, unitarily equivalent operators have the same set of eigenvalues.

Let S : [a, b] → [c, d] be a contractive similitude with contraction ratio ρ such that

S[a, b] = [c, d], S(a) = c, and S(b) = d. Let ν be a continuous positive finite Borel

measure on [a, b] with supp(ν) ⊆ [a, b]. We will compare the Dirichlet Laplacians

∆ν|[a,b]
and ∆ν◦S−1|[c,d]

. To simplify notation we let ∆ν := ∆ν|[a,b]
and ∆ν◦S−1 :=

∆ν◦S−1|[c,d]
.

Lemma 2.1 Let S : R → R be a contractive similitude, with contraction ratio ρ, such

that S[a, b] = [c, d], S(a) = c, and S(b) = d. Let ν be a continuous positive finite Borel

measure on [a, b] with supp(ν) ⊆ [a, b]. Define ϕ : L2((c, d), ν ◦ S−1) → L2((a, b), ν)

by ϕ(u) = u ◦ S. Then

(a) ϕ is unitary;

(b) ϕ(Dom(−∆ν◦S−1 )) = Dom(−∆ν); furthermore, for all u ∈ Dom(−∆ν◦S−1 ),

(2.1) ϕ (−∆ν◦S−1 (u)) =
1
ρ

(
−∆ν(ϕ(u))

)
.

Proof (a) ϕ is clearly a linear surjection. Moreover, it is unitary because

‖ϕ(u)‖2
L2((a,b),ν) =

∫ b

a

|u(Sx)|2 dν =

∫

S(a,b)

|u(x)|2 dν ◦ S−1
= ‖u‖2

L2((c,d),ν◦S−1).

(b) It is known (see e.g., [BNT]) that u ∈ Dom(−∆ν◦S−1 ) if and only if u ∈
L2((c, d), ν ◦ S−1), u(c) = u(d) = 0, and there exists f ∈ C[c, d], satisfying f =

−∆ν◦S−1 (u), such that

u ′(y) = u ′(c) +

∫ y

c

f dν ◦ S−1, c ≤ y ≤ d,
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i.e.,

u ′(y) = u ′(c) +

∫

S−1(c,y)

f ◦ S dν, c ≤ y ≤ d.

Let y = S(x). Then the above equation becomes

u ′(S(x)) = u ′(S(a)) +

∫ x

a

f ◦ S dν, a ≤ x ≤ b,

i.e.,

(ϕ(u)) ′(x) = (ϕ(u)) ′(a) +

∫ x

a

ρϕ( f ) dν, a ≤ x ≤ b.

By part (a), ϕ(u) ∈ L2((a, b), ν). Also,

ϕ(u)(a) = u(S(a)) = u(c) = 0, ϕ(u)(b) = u(S(b)) = u(d) = 0,

and ρϕ( f ) ∈ C[a, b]. Thus, ϕ(u) ∈ Dom(−∆ν) and hence ϕ(Dom(−∆ν◦S−1 )) ⊆
Dom(−∆ν). The reverse inclusion can be established similarly. Furthermore,

−∆ν(ϕ(u)) = ρϕ( f ) = ρϕ(−∆ν◦S−1 (u)),

which yields (2.1).

Proposition 2.2 Assume the same hypotheses as in Lemma 2.1.

(a) Then −∆ν◦S−1|[c,d]
≈ 1

ρ (−∆ν|[a,b]
).

(b) If, in addition, ν|[c,d] = wν ◦ S−1 on [c, d] for some constant w > 0, then

−∆ν|[c,d]
≈ 1

ρw

(
−∆ν|[a,b]

)
.

Proof Part (a) follows directly from Lemma 2.1 and the definition of unitary equiv-

alence. To prove (b), we first show that

(2.2) −∆ 1
w
ν|[c,d]

(u) = w(−∆ν|[c,d]
(u))

for all u ∈ Dom(−∆ 1
w
ν|[c,d]

) = Dom(−∆ν◦S−1 ). In fact, for all v ∈ L2((c, d), 1
w
ν) =

L2((c, d), ν), ∫ d

c

(
−∆ 1

w
ν|[c,d]

(u)
)

v d(
1

w
ν) =

∫ d

c

u ′(x)v ′(x) dx,

which implies that

∫ d

c

(
−∆ 1

w
ν|[c,d]

(u)
)

v dν = w

∫ d

c

(
−∆ν|[c,d]

(u)
)

v dν.

Thus, (2.2) follows. Now, by part (a),

1
ρ (−∆ν|[a,b]

) ≈ −∆ν◦S−1|[c,d]
= −∆ 1

w
ν|[c,d]

= w(−∆ν|[c,d]
).

Thus, part (b) follows.
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For two continuous positive finite Borel measures µ and ν on [a, b], we say that

µ ≤ ν on [a, b] if µ(E) ≤ ν(E) for any Borel measurable subset E ⊆ [a, b].

Proposition 2.3 Let µ, ν be continuous positive finite Borel measures on [a, b] and

assume that there exists some constant w > 0 such that µ ≤ wν on [a, b]. Then for any

n ≥ 1,

λn(−∆µ) ≥ 1

w
λn(−∆ν).

Proof Let L be any finite-dimensional subspace of

H1
0 (a, b) = Dom

(
(−∆µ|[a,b]

)1/2
)

= Dom
(

(−∆ν|[a,b]
)1/2

)
.

Then

λ−∆µ
(L) : = sup

{∫ b

a

(u ′)2 dx
/ ∫ b

a

|u|2 dµ : u ∈ L, u 6= 0

}

≥ 1

w
sup

{∫ b

a

(u ′)2 dx
/ ∫ b

a

|u|2 dν : u ∈ L, u 6= 0

}

=:
1

w
λ−∆ν

(L).

By the variational formula,

λn(−∆µ) = inf
{
λ−∆µ

(L) : L is a subspace of H1
0 (a, b), dim(L) = n

}

≥ 1

w
inf

{
λ−∆ν

(L) : L is a subspace of H1
0 (a, b), dim(L) = n

}

=
1

w
λn(−∆ν).

Let a < b, and let P = {ai}n+1
i=0 be a partition of [a, b] satisfying

a = a0 < a1 < · · · < an < an+1 = b.

Let

F = F(P) := {u ∈ H1
0 (a, b) : u(ai) = 0 for all i = 0, 1, . . . , n + 1}.

Then F is a closed subspace of H1
0 (a, b). Define a relation ∼ on H1

0 (a, b), induced by

F, by u ∼ v if and only if u − v ∈ F. Then ∼ is an equivalence relation on H1
0 (a, b).

Define the quotient space

H1
0 (a, b)/F := {[u] : u ∈ H1

0 (a, b)},

where [u] is the equivalence class of H1
0 (a, b) defined by ∼. Define addition and scalar

multiplication on H1
0 (a, b)/F as usual. For each i = 1, . . . , n, let fi be a function in

H1
0 (a, b) that satisfies

fi(a j) = δi j , i, j = 1, . . . , n,
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where δi j is the Kronecker delta. Such an fi clearly exists. It is straightforward to

prove the following:

H1
0 (a, b)/F = span{[ fi] : i = 1, . . . , n}, dim

(
H1

0 (a, b)/F
)

= n.

Remark 2.4 A similar argument shows that dim(H1(a, b)/H1
0 (a, b)) = 2.

Let −∆
F

µ|[a,b]
be the Laplacian defined as in (1.1) with Dom(E) = F, and let

N(λ,−∆
F

µ|[a,b]
) := #{n : λn(−∆

F

µ|[a,b]
) ≤ λ} denote the associated eigenvalue count-

ing function. If F = H1
0 (a, b), N(λ,−∆

F

µ|[a,b]
) reduces to N(λ,−∆µ|[a,b]

). It follows

from above that

(2.3) N
(
λ,−∆

F

µ|[a,b]

)
=

n∑

i=0

N
(
λ,−∆µ|[ai ,ai+1]

)
.

Moreover, it follows from the variational formula (see, e.g., [K, Theorem 4.1.7 and

Corollary 4.18] or [D]) that

(2.4)
N

(
λ,−∆

F

µ|[a,b]

)
≤ N

(
λ,−∆µ|[a,b]

)
≤ N

(
λ,−∆

F

µ|[a,b]

)
+ n

= N
(
λ,−∆

F

µ|[a,b]

)
+ #P − 2.

Now let {Si}m
i=1 be an IFS of contractive similitudes on R, and let µ be an as-

sociated self-similar measure. Fix 1 ≤ i ≤ m and suppose Si[a, b] = [c, d] with

Si(a) = c and Si(b) = d. We will compare the eigenvalues of −∆µ|[c,d]
, −∆µ◦S−1

i |[c,d]
,

and −∆µ|[a,b]
.

Proposition 2.5 Let {Si}m
i=1, m ≥ 2, be an IFS of contractive similitudes on R, and let

µ be the self-similar measure associated with positive probability weights {wi}m
i=1. Fix

1 ≤ i ≤ m and suppose Si[a, b] = [c, d], Si(a) = c, Si(b) = d, and µ[a, b] > 0. Then

(a) for any n ≥ 1, λn(−∆µ|[c,d]
) ≤ 1

wi
λn(−∆µ◦S−1

i |[c,d]
);

(b) N(λ,−∆µ|[c,d]
) ≥ N(wiλ,−∆µ◦S−1

i |[c,d]
) − 1;

(c) N(λ,−∆µ|[c,d]
) ≥ N(ρiwiλ,−∆µ|[a,b]

) − 1;

(d) if a < c < d < b, then

N
(
λ,−∆µ|[c,d]

)
≤ N

(
λ,−∆µ|[a,b]

)
≤ N

( 1

ρiwi

λ,−∆µ|[c,d]

)
+ 1.

Proof (a) Since µ =
∑m

i=1 wiµ ◦ S−1
i on [c, d], µ ◦ S−1

i ≤ 1
wi

µ on [c, d]. The stated

inequality follows from Proposition 2.3.

(b) Let λn := λn(−∆µ|[c,d]
), and let N(λ,−∆µ|[c,d]

) = n so that λn ≤ λ < λn+1.

Then by part (a), wiλn+1 ≤ λn+1(−∆µ◦S−1
i |[c,d]

). Hence,

N
(
λ,−∆µ|[c,d]

)
+ 1 ≥ N

(
wiλn+1,−∆µ◦S−1

i |[c,d]

)
≥ N

(
wiλ,−∆µ◦S−1

i |[c,d]

)
,

which yields the desired inequality.
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(c) Note that by Proposition 2.2, we have

N
(

wiλ,−∆µ◦S−1
i |[c,d]

)
= N

(
wiλ, 1

ρi
(−∆µ|[a,b]

)
)

= N
(
ρiwiλ,−∆µ|[a,b]

)
.

The assertion follows by combining this with part (b).

(d) Let F := F(a, c, d, b). Then by (2.3) and (2.4),

N
(
λ,−∆µ|[a,c]

)
+ N

(
λ,−∆µ|[c,d]

)
+ N

(
λ,−∆µ|[d,b]

)
=

N
(
λ,−∆

F

µ|[a,b]

)
≤ N

(
λ,−∆µ|[a,b]

)
.

The first inequality follows; the second one follows directly from part (c).

3 Derivation of the Functional Equation

In this section we formulate a set of conditions under which we can derive the renewal

equation (1.7). Let {Si}m
i=1, m ≥ 2, and {Ti}L

i=0 be defined as in (1.5) and (1.6),

respectively. Fix a set of positive probability weights {wi}m
i=1, and let µ be the corre-

sponding self-similar measure. Then supp(µ) ⊆ [0, b], where b = bm/(1 − ρ). We

assume that {Ti}L
i=0 is a non-overlapping family, supp(µ) ⊆ ⋃L

i=0 Ti[0, b] ⊆ [0, b],

and µ satisfies the following family of second-order identities. For A ⊆ [0, b],




µ(T0TiA)
...

µ(TLTiA)


 = Mi




µ(T0A)
...

µ(TLA)


 , i = 0, 1, . . . , L,

where Mi is an L × L constant matrix.

For a finite sequence of indices I = (i1, . . . , in) we let |I| = n denote the length

of I, and for 1 ≤ k ≤ n, we let I|k := (i1, . . . , ik) denote the initial segment of I

consisting of the first k indices. If J = ( j1, . . . , jℓ) is another index, we let I J :=

(i1, . . . , in, j1, . . . , jℓ) denote the concatenation of I and J.

For I = (i1, . . . , in) ∈ {1, . . . , m}n, we use the standard notation

SI = Si1
· · · Sin

= Si1
◦ · · · ◦ Sin

, wI := wi1
· · ·win

, etc.

Also, for I ∈ {0, 1, . . . , L}k, we let ρI := ρi1
· · · ρik

= ρni1
+···+nik .

We assume that {Ti}L
i=0 can be partitioned into two subcollections, {Ti}i∈I0

and

{Ti}i∈I1
, each being equicontractive, with

ni =

{
ñ if i ∈ I0,

n if i ∈ I1.

Let I := I0 ∪ I1 = {0, 1, . . . , L} and assume for convenience that I1 = {1, . . . , K}.

For k ≥ 0, we denote by Ik
0 the k-fold Cartesian product I0 × · · · × I0 (I0

0 := ∅); Ik
1

is similarly defined. Moreover, we assume that the following conditions (C1), (C2),

and (C3) are satisfied.
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(C1) For i ∈ I1, Ti[0, b] contains an interval of the form S j1
· · · S jk

[0, b], 1 ≤ ji ≤
m.

Furthermore, there exists a positive integer ω (chosen to be the smallest) and a subset

I ⊆ {(i1, . . . , iω) : i j ∈ I1 for 1 ≤ j ≤ ω} such that for A ⊆ [0, b], conditions (C2)

and (C3) below are satisfied.

(C2) Suppose ω ≥ 2 and assume that for some k ∈ {2, . . . , ω}, the set I0
k defined

below is nonempty:

I0
k :=

{
I = (i1, . . . , ik) : i1 ∈ I1 and k is the smallest integer such that

I is not an initial segment of any member of I
}

.

Then for each I ∈ I0
k there exists an index j = j(I) ∈ I1, and a constant c(I, j),

depending only on I and j, such that

µ(TIA) = c(I, j)µ(T jA), A ⊆ [0, b].

(C3) Suppose I = (i1, . . . , iω) ∈ I. Then for each J = ( j1, . . . , jk) ∈ Ik
0, k ≥ 0 and

for each ℓ ∈ I1, there exists an index j = j(I, J, ℓ) ∈ I1 and a constant c(I, J, ℓ, j),

depending only on I, J, ℓ, and j, such that

µ(TI JℓA) = c(I, J, ℓ, j)µ(T jA), A ⊆ [0, b].

These conditions are similar to those in [LN3], which are formulated to compute

the Lq-spectrum τ (q) of a self-similar measure. Condition (C1) is slightly more re-

strictive, and (C2) and (C3) are less restrictive. (C1) ensures that µ(Ti[0, b]) > 0 for

all i ∈ I1.

The infinite Bernoulli convolution associated with the golden ratio, defined in

(1.11), together with {Ti}2
i=0 defined in (1.12), provides a basic example of an IFS

that satisfies (C1), (C2), and (C3) (see [LN1]). Another family of examples can be

obtained by taking convolutions of the Cantor-type measures, as defined in (1.17),

together with the {Ti}m−1
i=0 defined in (1.18). Details for the threefold convolution are

given in [LN3]; we will not repeat them here.

Proposition 3.1 Let I ∈ I0
k, j = j(I) and c(I, j) be as in condition (C2). Suppose

(C2) holds. Then

−∆µ|TI [0,b]
≈ 1

ρIρ
−1
j c(I, j)

(
−∆µ|T j [0,b]

)
.

Proof Let B ⊆ TI[0, b], and let A ⊆ [0, b] such that B = TIA. Then by condition

(C2),

µ(B) = µ(TIA) = c(I, j)µ(T jA) = c(I, j)µ(T jT
−1
I B).

Thus, µ = c(I, j)µ ◦ (TIT
−1
j )−1 on TI[0, b]. Now the assertion follows by applying

Proposition 2.2(b) with S := TIT
−1
j : T j[0, b] → TI[0, b].
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Proposition 3.2 Let I ∈ I, J ∈ Ik
0, k ≥ 0, ℓ ∈ I1, and let j = j(I, J, ℓ) ∈ I1 and

c(I, J, ℓ, j) be as in condition (C3). Suppose condition (C3) holds. Then

−∆µ|TI T J Tℓ[0,b]
≈ 1

ρI Jc(I, J, ℓ, j)

(
−∆µ|T j [0,b]

)
.

Proof Let B ⊆ TI Jℓ[0, b], and let A ⊆ [0, b] such that B = TI JℓA. It follows from

condition (C3) that

µ(B) = µ(TI JℓA) = c(I, J, ℓ, j)µ(T jA) = c(I, J, ℓ, j)µ(T jT
−1
I Jℓ B).

That is, µ = c(I, J, ℓ, j)µ◦(TI JℓT
−1
j )−1 on TI Jℓ[0, b]. The assertion now follows from

Proposition 2.2(b) by letting S := TI JℓT
−1
j : T j[0, b] → TI Jℓ[0, b].

It follows from Proposition 2.5(c)(d) that the asymptotic behavior of

N(λ,−∆µ|[0,b]
) is controlled by that of N(λ,−∆µ|Ti [0,b]

) for any i ∈ I1; more precisely,

for I = (i1, . . . , ik) ∈ {1, . . . , m}k such that SI[0, b] ⊆ Ti[0, b],

N
(
ρkwIλ,−∆µ|[0,b]

)
− 1 ≤ N

(
λ,−∆µ|SI [0,b]

)
≤ N

(
λ,−∆µ|Ti [0,b]

)

≤ N
(
λ,−∆µ|[0,b]

)
,

where wI :=
∑

{w J : S J = SI , | J| = k}. Thus it suffices to study N(λ,−∆µ|Ti [0,b]
) for

i ∈ I1.

Fix i ∈ I1 and let

I0
k(i) := {I ∈ I0

k : I|1 = i} and I(i) := {I ∈ I : I|1 = i}.

We will derive a functional equation for N(λ,−∆µ|Ti [0,b]
). For each integer n ≥ 1, we

define a partition Pn = Pn(i) of Ti[0, b] as follows:

P1 := {Ti(0), Ti(b)} P2 := P1 ∪ {Tii2
(x) : x = 0 or b, i2 ∈ I}.

For 2 ≤ n ≤ ω, define

Pn := Pn−1∪
{

Tii2...in
(x) : x = 0 or b, (i, i2, . . . , ik) /∈ I

k
0 for 2 ≤ k ≤ n−1, in ∈ I

}
.

For n > ω, write n = ω + k + 1, where k ≥ 0, and define

Pn := Pn−1 ∪
{

TI Jin
(x) : x = 0 or b, I ∈ I(i), J ∈ I

k
0, in ∈ I

}
.

Then Pn, n ≥ 2, are end-points of the subintervals generated by the following proce-
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dure. First, replace Ti by subintervals of the form Tii2
[0, b], i2 ∈ I. If (i, i2) ∈ I0

2(i),

keep Tii2
[0, b]; otherwise, replace it by subintervals of the form Tii2i3

[0, b]. Repeat

the procedure until the length of an index is ω. For each I ∈ I(i), replace TI[0, b] by

subintervals of the form TIiω+1
[0, b]. If iω+1 ∈ I1, keep the corresponding subinterval;

otherwise, replace it by subintervals of the form TIiω+1iω+2
[0, b]. Continue.

Let Fn := F(Pn), n ≥ 1. Then, if I0
k 6= ∅ for some k ∈ {2, . . . , ω}, we have

N
(
λ,−∆

Fω

µ|Ti [0,b]

)

=

∑

(i,i2)∈I0
2(i)

N
(
λ,−∆µ|Tii2

[0,b]

)
+

∑

(i,i2,i3)∈I0
3(i)

N
(
λ,−∆µ|Tii2 i3

[0,b]

)
+ · · ·

· · · +
∑

(i,i2,...,iω)∈I0
ω(i)

N
(
λ,−∆µ|Tii2 ...iω

[0,b]

)
+

∑

(i,i2,...,iω)∈I(i)

N
(
λ,−∆µ|Tii2···iω

[0,b]

)

=

ω∑

k=2

∑

I∈I0
k
(i)

N
(
λ,−∆µ|TI [0,b]

)
+

∑

(i,i2,...,iω)∈I(i)

N
(
λ,−∆µ|Tii2···iω

[0,b]

)
.

By Proposition 3.1, for k = 2, . . . , ω and I ∈ I0
k(i),

N
(
λ,−∆µ|TI [0,b]

)
= N

(
λ,

1

ρIρ
−1
j(I)c(I, j(I))

(
−∆µ|T j(I)[0,b]

))

= N
(

ρIρ
−1
j(I)c(I, j(I))λ,−∆µ|T j(I)[0,b]

)
.

Also, for each I ∈ I(i), we can subdivide TI[0, b], in the way described above, into

subintervals of the forms TI Jℓ[0, b] or TI J[0, b], where J ∈ Ik
0 and ℓ ∈ I1. Hence, for

n > ω,

N
(
λ,−∆

Fn

µ|Ti [0,b]

)
=

ω∑

k=2

∑

I∈I0
k
(i)

N
(
ρIρ

−1
j(I)c(I, j(I))λ,−∆µ|T j(I)[0,b]

)

+

n−ω−1∑

k=0

∑

I∈I(i)

∑

J∈Ik
0

∑

ℓ∈I1

N
(
λ,−∆µ|TI Jℓ[0,b]

)

+
∑

I∈I(i)

∑

J∈I
n−ω
0

N
(
λ,−∆µ|TI J [0,b]

)
.

Consequently, by applying Proposition 3.2 to the second summation above and then



664 S.-M. Ngai

using (2.4), we get

N
(
λ,−∆µ|Ti [0,b]

)
=

ω∑

k=2

∑

I∈I0
k
(i)

N
(
ρIρ

−1
j(I)c(I, j(I))λ,−∆µ|T j(I)[0,b]

)

+

∞∑

k=0

∑

I∈I(i)

∑

J∈Ik
0

∑

ℓ∈I1

N
(
ρI Jc(I, J, ℓ, j)λ,−∆µ|T j(I, J,ℓ)[0,b]

)

−
∞∑

k=n−ω

∑

I∈I(i)

∑

J∈Ik
0

∑

ℓ∈I1

N
(
ρI Jc(I, J, ℓ, j)λ,−∆µ|T j(I, J,ℓ)[0,b]

)

+
∑

I∈I(i)

∑

J∈I
n−ω
0

N
(
λ,−∆µ|TI J [0,b]

)
+ εn(i),

(3.1)

where 0 ≤ εn(i) ≤ #Pn − 2 ≤ #Pn.

For each i ∈ I1, define fi(t) = f (α)
i (t) := e−αt N(et ,−∆µ|Ti [0,b]

). Note that if we let

λ = et , then for any β > 0,

e−αt N
(
βλ,−∆µ|Ti [0,b]

)
= e−α(t+ln β)eα ln βN

(
et+ln β ,−∆µ|Ti [0,b]

)

= βα fi(t + ln β).

(3.2)

Multiplying both sides of (3.1) by e−αt and using (3.2), we get, for all n > m,

fi(t) =

ω∑

k=2

∑

I∈I0
k
(i)

(
ρIρ

−1
j(I)c(I, j(I))

)α
f j(I)

(
t + ln(ρIρ

−1
j(I)c(I, j(I)))

)

+

∞∑

k=0

∑

I∈I(i)

∑

J∈Ik
0

∑

ℓ∈I1

(
ρI Jc(I, J, ℓ, j)

)α
f j(I, J,ℓ)

(
t + ln(ρI Jc(I, J, ℓ, j))

)

−
∞∑

k=n−ω

∑

I∈I(i)

∑

J∈Ik
0

∑

ℓ∈I1

(
ρI Jc(I, J, ℓ, j)

)α
f j(I, J,ℓ)

(
t + ln(ρI Jc(I, J, ℓ, j))

)

+
∑

I∈I(i)

∑

J∈I
n−ω
0

e−αt N
(

et ,−∆µ|TI J [0,b]

)
+e−αtεn(i).

(3.3)

Since λ1(−∆µ|Ti [0,b]
) > 0 for all i ∈ I1 (see (1.2)), there exists to ∈ R such that

(3.4) fi(t) = 0 for all t < to and all i ∈ I1.

Now for each t ∈ R, let nt = nt (i) be the smallest integer such that

(3.5) t + max
{

ln(ρI Jc(I, J, ℓ, j)) : I ∈ I(i), J ∈ I
nt−ω
0 , ℓ ∈ I1

}
< to.
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Then the third summation in (3.3) vanishes and thus we get

(3.6)

fi(t) =

ω∑

k=2

∑

I∈I0
k
(i)

(
ρIρ

−1
j(I)c(I, j(I))

)α
f j(I)

(
t + ln(ρIρ

−1
j(I)c(I, j(I)))

)

+

∞∑

k=0

∑

I∈I(i)

∑

J∈Ik
0

∑

ℓ∈I1

(
ρI Jc(I, J, ℓ, j)

)α
f j(I, J,ℓ)

(
t + ln(ρI Jc(I, J, ℓ, j))

)

+
∑

I∈I(i)

∑

J∈I
nt−ω
0

e−αt N
(

et ,−∆µ|TI J [0,b]

)
+ e−αtεnt

(i),

where 0 ≤ εnt
(i) ≤ #Pnt

.

If ω < 2 or I0
k = ∅ for all 2 ≤ k ≤ ω, the first summation in (3.6) vanishes. This

is the case for the infinite Bernoulli convolution associated with the golden ratio (see

Section 5).

Let #I1 = p. For i ∈ I1, let µ(α)
ji , j ∈ I1, be the discrete measure such that

µ(α)
ji

(
− ln(ρIρ

−1
j(I)c(I, j(I)))

)
=

(
ρIρ

−1
j(I)c(I, j(I))

)α

if I ∈ I0
k(i), 2 ≤ k ≤ ω, and j(I) = j, and

µ(α)
ji

(
− ln(ρI Jc(I, J, ℓ, j))

)
=

(
ρI Jc(I, J, ℓ, j)

)α

if I ∈ I(i), J ∈ Ik
0, ℓ ∈ I1, k ≥ 0, and j(I, J, ℓ) = j.

Let

(3.7) f := [ f (α)
1 (t), . . . , f (α)

p (t)] and Mα :=
[
µ(α)

ji

]p

j,i=1
.

We have just finished proving the following.

Theorem 3.3 Let µ be a self-similar measure defined by an IFS as in (1.5). Assume

that µ satisfies a family of second-order identities with respect to an IFS of the form

(1.6) so that conditions (C1), (C2), and (C3) in Section 3 hold. Let f, Mα be defined

as in (3.7), and let nt be defined as in (3.5). Then f satisfies the vector-valued renewal

equation f = f ∗ Mα + z, where z = z(α)(t) = [z(α)
1 (t), . . . , z(α)

p (t)],

z(α)
i (t) =

∑

I∈I(i)

∑

J∈I
nt−ω
0

e−αt N
(

et ,−∆µ|TI J [0,b]

)
+ e−αtεnt

(i) for 1 ≤ i ≤ p,

and 0 ≤ εnt
(i) ≤ #Pnt

.
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4 Proof of Theorem 1.1

We need a vector-valued renewal theorem in Lau et al. [LWC]. We introduce some

terminology and refer the reader to [LWC] for any unexplained terms. Let F be a

matrix-valued Radon measure that vanishes on (−∞, 0), i.e.,

F =




F11 . . . F1n

...
...

Fn1 . . . Fnn


 ,

where Fi j(x) = µi j(−∞, x] and each µi j is a Radon measure (i.e., positive Borel

regular measure) on R that vanishes on (−∞, 0). Let F(∞) := [Fi j(∞)], and let

m = [mi j] = [
∫ ∞

0
x dFi j] be the moment matrix. We say that each column of F is

nondegenerate at 0 if

n∑

i=1

Fi j(0) <

n∑

i=1

Fi j(∞) for 1 ≤ j ≤ n.

In this case, there exists some δ > 0 such that the vector
[

n∑

i=1

(
Fi1(∞) − Fi1(δ)

)
, . . . ,

n∑

i=1

(
Fin(∞) − Fin(δ)

)
]

is coordinatewise positive. For any path γ = (i1, . . . , ik) with i j ∈ {1, . . . , n}, we use

the notation

µγ := µi1i2
∗ µi2i3

∗ · · · ∗ µik−1ik
.

Such a γ is a called a cycle if i1 = ik and a simple cycle if it is a cycle and i1, . . . , ik−1

are distinct. We denote by RF the closed subgroup of (R, +) generated by

⋃ {
supp(µγ) : γ is a simple cycle on {1, . . . , n}

}
.

The following theorem has been modified from [LWC, Theorem 4.3] to suit our pur-

poses. The proof is similar. First, the original condition that each entry of F is non-

degenerate at 0 is replaced by the slightly weaker condition that each column of F is

nondegenerate at 0. Second, the condition that z vanishes on (−∞, 0) is replaced by

the condition that z vanishes on (−∞, xo) for some xo ∈ R. Last, the continuity of f

is replaced by Borel measurability (see [LWC, Remark 3.2]).

Theorem 4.1 (Lau et al. [LWC]) Let F be an n×n matrix-valued Radon measure de-

fined on R that vanishes on (−∞, 0) and assume that each column of F is nondegenerate

at 0. Suppose F(∞) is irreducible and has maximal eigenvalue 1. Let U =
∑∞

k=0 F∗k

and let z be a directly Riemann integrable function on R that vanishes on (−∞, xo) for

some xo ∈ R. Then f = z ∗ U is a bounded Borel measurable solution of

f(x) = (f ∗ F)(x) + z(x), x ∈ R,

and it is unique in the class of Borel measurable solutions that vanish on (−∞, xo).

Furthermore, the following hold:
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(a) If RF = R, then

lim
x→∞

f(x) =

(∫ ∞

−∞

z(t) dt

)
A,

where

A =
1

γ




u1v1 . . . u1vn

...
...

unv1 . . . unvn


 , γ = [v1, . . . , vn]




m11 . . . m1n

...
...

mn1 . . . mnn







u1

...

un




and u = [u1, . . . , un], v = [v1, . . . , vn] are the unique, normalized, positive right

and left 1-eigenvectors of F(∞), respectively. (A = 0 if one of the mi j is ∞.)

(b) If RF = 〈λ〉 for some λ > 0, then for each x > 0,

lim
k→∞

[
f1(x + a11 + kλ), . . . , fn(x + a1n + kλ)

]
=

( ∞∑

k=−∞

z(x + kλ)

)
A,

where a1 j ∈ supp(µγ(1, j)) and γ(1, j) is any path from 1 to j such that µγ(1, j) 6= 0.

Proof of Theorem 1.1 (a) First, we observe the fact that each Fi(α) is a strictly de-

creasing, continuous, positive function of α, which tends to 0 as α → ∞ and exceeds

1 when α ց α̃i ; moreover, Fi(0) = ∞. Thus there exists a unique α such that the

spectral radius of Mα(∞) is 1 (see [Mi, Theorem 2.1]). This proves part (a).

(b) For the rest of the proof we let α be the unique number obtained in the proof

of (a) above. We first show that the moments satisfy 0 ≤ m(α)
ji < ∞ for all i, j =

1, . . . , K and

(4.1) 0 <
K∑

j=1

m(α)
ji < ∞.

Since m(α)
ji ≥ 0, it suffices to prove (4.1). In fact, the assumption limα→α̃+

i
Fi(α) > 1

implies that there exists ǫ > 0 such that Fi(α − ǫ) < ∞. Thus,

0 <

K∑

j=1

m(α)
ji =

ω∑

k=2

∑

I∈I0
k
(i)

(
ρIρ

−1
j(I)c(I, j(I))

)α−ǫ+ǫ∣∣ ln(ρIρ
−1
j(I)c(I, j(I)))

∣∣

+

∞∑

k=0

∑

I∈I(i)

∑

J∈Ik
0

∑

ℓ∈I1

(
ρI Jc(I, J, ℓ, j)

)α−ǫ+ǫ∣∣ ln(ρI Jc(I, J, ℓ, j))
∣∣ .

By using the fact that limt→0+ tǫ ln t = 0, we have

0 <
K∑

j=1

m(α)
ji ≤ CFi(α − ǫ) < ∞ for some constant C > 0,
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proving (4.1).

It follows from the derivation of the renewal equation (3.6) that the columns of

Mα are nondegenerate at 0. Also, notice that z(α)(t) > 0 for all t sufficiently large.

From Theorem 3.3 we have f = f∗Mα + z, where, by assumption, z is directly Rie-

mann integrable on R. We now divide the proof of dims(µ) = 2α into the following

two cases.

Case 1. Mα(∞) is irreducible.

Using the above observations and Theorem 4.1, we obtain constants C1,C2 > 0

such that

0 < C1 ≤ lim
t→∞

fi(t) ≤ lim
t→∞

fi(t) ≤ C2 < ∞, i = 1, . . . , p,

which implies that dims(µ) = 2α, and, moreover, for λ = et sufficiently large,

C1λ
α ≤ N

(
λ,−∆µ|Ti [0,b]

)
≤ C2λ

α.

Case 2. Mα(∞) is reducible.

First, we notice that if β < α, then each nonzero entry of Mβ(∞) is strictly less

than the corresponding entry of Mα(∞). It follows that the maximal eigenvalue

of Mβ(∞) is less than 1 (see [Mi, Corollary II.2.2] for the irreducible case; the re-

ducible case follows by considering the irreducible blocks in the normal form [Mi,

Lemma VI.1.1] of these matrices). Hence by [LWC, Remark 4.4 and Theorem 4.5],

limt→∞ f
(β)

i (t) = 0 for i = 1, . . . , p. Thus, dims(µ) ≤ 2α.

On the other hand, since the maximal eigenvalue of Mα(∞) is 1, by [LWC, Theo-

rem 4.5], there exists some i ∈ {1, . . . , p} such that

lim
t→∞

f (α)
i (t) > 0.

Consequently, dims(µ) ≥ 2α. This completes the proof.

5 Infinite Bernoulli Convolution Associated with the Golden Ratio

In this section we compute the spectral dimension of the infinite Bernoulli convolu-

tion associated with the golden ratio.

Let {S1, S2} and µ be defined as in (1.10) and (1.11), respectively. The IFS is not

PCF and does not satisfy the OSC, because the intersection S1[0, 1] ∩ S2[0, 1] is the

interval [ρ2, ρ].

Let {Ti}3
i=1 be defined as in (1.12), and let ρ1 = ρ3 := ρ2, ρ2 := ρ3. It is known

(see [LN1]) that conditions (C1), (C2), and (C3) are satisfied by letting I0 := {0, 2},

I1 := {1}, I = {(1)} and thus ω = 1. We also note that P1 = {T1(0), T1(1)} and for

all n ≥ 2,

Pn = Pn−1 ∪ {T1 J1(x) : J ∈ I
n−2
0 , x = 0 or 1}.
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Hence, #Pn = 2 +
∑n−1

i=1 2i
= 2n. Since p = #I1 = 1, the vector-valued renewal

equation (1.7) reduces to the following scalar-valued one:

f (t) =

∞∑

k=0

∑

J∈Ik
0

(ρ2k+3c J)
α f

(
t + ln(ρ2k+3c J)

)
+ z(α)(t),

where c J is defined in (1.13),

(5.1) z(α)(t) :=
∑

J∈I
nt−1
0

e−αt N
(

et ,−∆µ|T1 J [0,1]

)
+ e−αtεnt

,

and #εnt
≤ #Pnt

= 2nt .

We need to show that there exists some σ > 0 such that z(α)(t) = o(e−σt ) as

t → ∞. To this end we will develop several lemmas; the final estimate will be given

in Lemma 5.8.

To estimate
∑

J∈I
nt−1
0

e−αt N(et ,−∆µ|T1T J [0,1]
), we divide the sum into two parts,

namely,

I
nt−1
0 (0) := { J ∈ I

nt−1
0 : jnt−1 = 0} and I

nt−1
0 (2) := { J ∈ I

nt−1
0 : jnt−1 = 2}.

Since the two parts are symmetric, it suffices to consider the case J ∈ I
nt−1
0 (0). Our

main idea is to express N(et ,−∆µ|T1T J [0,1]
) in terms of

N
(

C1( J)et ,−∆µ|T20[0,1]

)
, N

(
C2( J)et ,−∆µ|T1[0,1]

)
and N

(
C3( J)et ,−∆µ|T02[0,1]

)
,

where C1( J),C2( J), and C3( J) depend on J and thus on t . Each of these terms can be

shown to be bounded by some constant independent of t .

For J ∈ I
nt−1
0 (0), write J = ( j1, . . . , jn−1) = ( J ′, 0), where J ′ ∈ I

nt−2
0 . We divide

T1 J[0, 1] into the following three nonoverlapping subintervals:

T1 J0[0, 1], T1 J1[0, 1], T1 J2[0, 1],

and study the corresponding Laplacian on them. We begin with the easiest case.

Case 1. T1 J1[0, 1].

Lemma 5.1 Let J = ( J ′, 0) ∈ I
nt−1
0 (0). Then

−∆µ|T1 J1[0,1]
≈ 1

ρ1 Jc J

(
−∆µ|T1[0,1]

)
.

Proof Let A ⊆ T1 J1[0, 1], and let B ⊆ T1[0, 1] such that A = T1 JB. Since T−1
1 B ⊆

[0, 1], by (1.14),

µ(A) = µ(T1 J1T−1
1 B) = c Jµ(B) = c Jµ(T−1

1 J A),

i.e., µ = c Jµ ◦ T−1
1 J on T1 J1[0, 1]. The result now follows by applying Proposi-

tion 2.2(b) with S := T1 J : T1[0, 1] → T1 J1[0, 1].
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Case 2. T1 J2[0, 1].

We first prove the following.

Lemma 5.2 For any µ-measurable subset A ⊆ T1 J ′02[0, 1],

c J ′µ ◦ T−1
1 J ′(A) ≤ µ(A) ≤ 2c J ′µ ◦ T−1

1 J ′(A).

Proof Let A = T1 J ′02B, where B ⊆ [0, 1]. Then µ(A) = µ(T1 J ′1T−1
1 T02B). Note

that T02(B) ⊆ [ρ3, ρ2], and therefore

T−1
1 T02B ⊆ T−1

1 [ρ3, ρ2] = [−ρ, 0].

Hence by [LN1, Proposition 2.1(ii)],

c J ′µ(T02B) ≤ µ(A) ≤ 2c J ′µ(T02B),

and the asserted inequalities follow.

Lemma 5.3 Let J = ( J ′, 0) ∈ I
nt−1
0 (0). Then

(a) −∆µ◦T−1

1 J ′
|T

1 J ′02
[0,1]

≈ 1
ρ1 J ′

(−∆µ|T02[0,1]
);

(b) λn(−∆µ|T
1 J ′02

[0,1]
) ≥ 1

2c J ′
λn(−∆µ◦T−1

1 J ′
|T

1 J ′02
[0,1]

).

Proof (a) follows by using Proposition 2.2(b) with

S = T1 J ′ : T02[0, 1] → T1 J ′02[0, 1].

(b) follows by combining Proposition 2.3 with Lemma 5.2.

Finally, we consider the following.

Case 3. T1 J0[0, 1].

We need the following estimate for the measure µ.

Lemma 5.4 For any µ-measurable subset A ⊆ T1 J0[0, 1],

µ(A) ≤ 4c Jµ ◦ (T1 JT
−1
2 )−1(A).

Proof Let A ⊆ T1 J0[0, 1]. Then there exists B ⊆ T0[0, 1] such that A = T1 JB =

T1 JT
−1
2 T2B. Thus, by applying the second-order identities (see [LN1]), we have

(5.2) µ(A) = µ(T1 J ′0B) = [0, 1, 0]M J ′




µ(T00B)

µ(T10B)

µ(T20B)


 = [0, 1, 0]M J




µ(T0B)

µ(T1B)

µ(T2B)


 .

We compare the values of µ(T0B), µ(T1B), and µ(T2B). It follows by applying the

self-similar identity (1.11) that

µ(T0B) =
1
4
µ(B), µ(T1B) =

1
8
µ(B + ρ) + 1

4
µ(B), µ(T2B) =

1
4
µ(B + ρ) + 1

4
µ(B).
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Hence,

(5.3) µ(T2B) ≥ µ(T1B) ≥ µ(T0B).

Putting (5.3) into (5.2), we have

µ(A) ≤ [0, 1, 0]M J




µ(T2B)

µ(T2B)

µ(T2B)


 = 4c Jµ(T2B) = 4c Jµ

(
(T1 JT

−1
2 )−1A

)
,

which completes the proof.

Lemma 5.5 Let J ∈ I
nt−1
0 .

(a) −∆µ◦(T1 JT
−1
2 )−1|T1 J0[0,1]

≈ 1

ρ1 Jρ
−1
2

(−∆µ|T20[0,1]
);

(b) λn(−∆µ|T1 J0[0,1]
) ≥ 1

4c J
λn(−∆µ◦(T1 JT

−1
2 )−1|T1 J0[0,1]

).

Proof (a) follows by applying Proposition 2.2(b) with S := T1 JT
−1
2 : T20[0, 1] →

T1 J0[0, 1]. (b) follows by combining Proposition 2.3 with Lemma 5.4.

Equipped with the above lemmas, we are now ready to estimate z(α)(t). We will

use frequently the simple fact that if λn := λn(−∆ν) and λ∗
n := λ∗

n(−∆ν∗) and there

exists a constant c > 0 such that λn ≥ (1/c)λ∗
n for all n ≥ 1, then N(λ,−∆ν) ≤

N(cλ,−∆ν∗) for all λ > 0. In fact, for any λ > 0, let n ∈ N be the unique integer

such that λn ≤ λ < λn+1. Then

λ∗
n ≤ cλn ≤ cλ < cλn+1.

Hence, N(λ,−∆ν) = n ≤ N(cλ,−∆ν∗).

Lemma 5.6 There exists a constant C > 0 such that

∑

J∈I
nt−1
0

e−αt N
(

et ,−∆µ|T1 J [0,1]

)
≤ Ce−αt 2nt .

Proof For J ∈ I
nt−1
0 (0), by using (2.3), (2.4), and the lemmas above, we have

N
(

et ,−∆µ|T1 J [0,1]

)
≤

2∑

k=0

N
(

et ,−∆µ|T1 Jk[0,1]

)
+ 2

≤ N
(

4c Je
t ,−∆µ◦(T1 JT

−1
2 )−1|T1 J0[0,1]

)
(Lemma 5.5(b))

+ N
(
ρ1 Jc Je

t ,−∆µ|T1[0,1]

)
(Lemma 5.1)

+ N
(

2c J ′e
t ,−∆µ◦T−1

1 J ′
|T

1 J ′02
[0,1]

)
(Lemma 5.3(b))

+ 2.
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We now use Lemma 5.5(a), Lemma 5.3(a), and that ρ0 = ρ2 = ρ2 and ρ1 = ρ3 to

conclude that

(5.4)

N
(

et ,−∆µ|T1 J [0,1]

)
≤ N

(
4ρ2nt−1c Je

t ,−∆µ|T20[0,1]

)
(Lemma 5.5(a))

+ N
(
ρ2nt +1c Je

t ,−∆µ|T1[0,1]

)

+ N
(

2ρ2nt−1c J ′e
t ,−∆µ|T02[0,1]

)
(Lemma 5.3(a))

+ 2.

For each t ∈ R, the nt defined in (3.5) is the smallest positive integer such that

t + ln(4ρ2nt +1c J) ≤ to for all J ∈ I
nt−1
0 ,

where to is defined in (3.4). Equivalently,

4ρ2nt +1c Je
t ≤ eto for all J ∈ I

nt−1
0 .

It follows that each term on the right-hand side of (5.4) is bounded by some constant

independent of J and t . Hence, there exists a constant C > 0 such that

N
(

et ,−∆µ|T1 J [0,1]

)
≤ C for all t ∈ R and J ∈ I

nt−1
0 (0).

By symmetry, the same holds for all J ∈ I
nt−1
0 (2), and the lemma follows.

For the infinite Bernoulli convolution we consider in this section, equation (1.9)

becomes

(5.5)

F(α) =

∞∑

k=0

∑

J∈Ik
0

(
ρ2k+3c J

)α
, D =

{
α ∈ R : F(α) < ∞

}
, α̃ = inf D.

Clearly, F(α) is a strictly decreasing continuous function of α on D. Moreover,

[1,∞) ⊆ D ⊆ (0,∞). The first inclusion follows from [LN1, Proposition 2.4(i)];

the second inclusion is obvious. Thus 0 ≤ α̃ ≤ 1. The following lemma shows that

the hypothesis limα→α̃+ F(α) > 1 in Theorem 1.1 is satisfied.

Lemma 5.7 Let F(α) and α̃ be defined as in (5.5). Then F(α) → ∞ as α ց α̃.

Moreover, F(α̃) = ∞.

Proof First, we need to strengthen [LN1, Proposition 2.5] slightly by proving the

following claim. Let {ak} be a submultiplicative sequence of nonnegative numbers,

i.e., am+k ≤ amak for all m, k. Suppose there exists some ko such that ako
< 1. Then

there exists some r ∈ [0, 1) and a constant C > 0 such that ak ≤ Crk for all k. In fact,

for all k > ko,

ak ≤ ako
ak−ko

≤ a2
ko

ak−2ko
≤ · · · ≤ Ca

k/ko

ko
= Crk,
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where r = a
1/ko

ko
if ak0

6= 0. If ak0
= 0, then ak = 0 for all k ≥ k0, and the result is

obvious.

Next, by using the definition of c J in (1.13), we have

F(α) =

∞∑

k=0

ρ(2k+3)α

(2 · 4k+1)α

∑

J∈Ik
0

(
[1, 1]P J

[
1

1

])α

.

Let

sk(α) :=
∑

J∈Ik
0

(
[1, 1]P J

[
1

1

])α

.

It is proved in [LN1, Proposition 2.5] that the sequence {sk(α)}k is submultiplica-

tive, and thus R(α) := limk→∞
k
√

sk(α) exists in R. Moreover, if we let sk(α) =

ak(α)R(α)k, then {ak(α)}k is also submultiplicative and limk→∞
k
√

ak(α) = 1. By

using the claim above, we have ak(α) ≥ 1 for all k. Thus,

F(α) =
ρ3α

8α

∞∑

k=0

ak(α)

(
ρ2αR(α)

4α

)k

≥ ρ3α

8α

∞∑

k=0

(
ρ2αR(α)

4α

)k

.

We note that R(α) is continuous. In fact, it is proved in [LN1, Proposition 2.4]

that for all J ∈ Ik
0, c J ≤ 1/(4(4ρ)k), and thus [1, 1]P J[1, 1]t ≤ 2ρ−k. Hence, for any

ǫ > 0,

∣∣R(α + ǫ) − R(α)
∣∣ ≤ lim

k→∞

∣∣∣∣∣∣
k
√

sk(α) k

√√√√sup
J∈Ik

0

(
[1, 1]P J

[
1

1

])ǫ

− k
√

sk(α)

∣∣∣∣∣∣

= R(α)|ρ−ǫ − 1|.

Next, let g(α) := (ρ2αR(α))/4α. Then g is a continuous function of α. The fol-

lowing identity shows that g(α) is decreasing:

(5.6)

(
k

√
ρ3αak(α)

8α
g(α)

)k

=

∑

J∈Ik
0

(ρ2k+3c J)
α, k ≥ 0.

Moreover, (5.6) shows that

lim
α→0

g(α) = 2 and lim
α→∞

g(α) = 0.

Now it is easy to see that F(α) converges if and only if ρ2αR(α)/4α < 1. Further-

more, α̃ satisfies

ρ2α̃R(α̃)/4α̃
= 1, F(α̃) =

ρ3α̃

8α̃

∞∑

k=0

ak(α̃) = ∞,

and F(α) → ∞ as α ց α̃.
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For the rest of this section we let α be the unique positive number satisfying

(5.7)

∞∑

k=0

∑

J∈Ik
0

(
ρ2k+3c J

)α
= 1.

Such an α exists by Lemma 5.7.

Before proving the next lemma, we recall that the lower L∞-dimension of a com-

pactly supported finite Borel measure ν on R
d is defined as

dim∞(ν) = lim
δ→0+

ln(supx ν(Bδ(x)))

ln δ
,

where Bδ(x) is the δ-ball with center x, and the supremum is taken over all

x ∈ supp(ν).

Lemma 5.8 Let α be defined as in (5.7), and let z(α)(t) be defined as in (5.1). Then

there exists some σ > 0 such that e−αt 2nt = o(e−σt ) as t → ∞. Consequently, z(α)(t) =

o(e−σt ) as t → ∞.

Proof We first obtain a lower estimate for α by using some known results in [LN1].

Note that α is the unique q coordinate of the intersection of the curve y = τ (q) and

the line y = −q in the (q, y)-plane, where τ (q) is defined by (see [LN1])

∞∑

k=0

(ρ2k+3)−τ (q)
∑

J∈Ik
0

c
q
J = 1.

Also, note that by the strict concavity of τ (q) for q > 0, the line in the (q, y)-plane

with slope dimH(µ) = τ ′(1) and passing through (1, 0) is strictly above the curve of

τ (q) (except at the point (1, 0)). Let α1 be the q value at the intersection of the lines

y = dimH(µ)(q − 1) and y = −q.

Then

α > α1 =
dimH(µ)

dimH(µ) + 1
.

Moreover, by using the strict concavity of τ (q) for q > 0, we have

dimH(µ) > dim∞(µ).

Using the fact that the function f (x) = x/(x + 1) is strictly increasing for x > 0,

together with the explicit formula dim∞(µ) = − ln(4ρ)/(2 ln ρ) in [LN1, Theo-

rem 4.4], we have

(5.8) α > α1 =
dimH(µ)

dimH(µ) + 1
>

dim∞(µ)

dim∞(µ) + 1
=

ln(4ρ)

ln(4/ρ)
.
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Next, we will obtain an upper estimate for 2nt . Since nt is the smallest positive

integer such that t + ln(ρ2nt +1c J) ≤ to for all J ∈ I
nt−1
0 , there exists Jo ∈ I

nt−2
0 such

that

ρ2nt−1c Jo
> eto−t .

Also, by [LN1, Proposition 2.4], c Jo
≤ 1/(4(4ρ)nt−2). Hence,

nt <
ln(4ρ) − to + t

ln(4/ρ)
.

Thus,

(5.9) 2nt ≤ exp

(
(ln(4ρ) − to) ln 2

ln(4/ρ)

)
exp

(
ln 2

ln(4/ρ)
t

)
=: C exp

(
ln 2

ln(4/ρ)
t

)
.

Combining (5.8) and (5.9), we get

e−αt 2nt ≤ C exp

(− ln(2ρ)

ln(4/ρ)
t

)
.

The first part of the lemma follows by noting that ln(2ρ)/ ln(4/ρ) ≈ 0.1134 > 0.

Combining this with Lemma 5.6 yields the second part.

Proof of Theorem 1.2 Combine Lemmas 5.7 and 5.8, and Theorem 1.1.

6 Convolutions of Cantor-type Measures

In this section we compute the spectral dimension of convolutions of Cantor-type

measures. The attractor of the IFS in (1.15) is a Cantor-type set. We will assume that

m is odd. Let νm be the corresponding self-similar measure with probability weights

p0 = p1 = 1/2. We first show that the m-fold convolution of νm is the self-similar

measure defined by the IFS in (1.17).

Proposition 6.1 Let m ≥ 3 be an odd integer. Then µm := ν∗m
m is the self-similar

measure defined by the IFS (1.16) together with probability weights

wi :=
1

2m

(
m

i

)
, i = 0, 1, . . . , m.

That is, µm =
∑m

i=0 wiµm ◦ S−1
i .

Proof We prove by induction the more general result that ν∗k
m is the self-similar mea-

sure defined by the IFS

Si(x) =
1

m
x +

m − 1

m
i, i = 0, 1, . . . , k,
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with probability weights
(

k
i

)
/2k, i = 0, 1, . . . , k. This is clearly true if k = 1. Assume

that it is true for some k ≥ 1. Then for any Borel subset A ⊆ R, by using the self-

similar identity for νm and induction hypothesis, we have

ν∗(k+1)
m (A) =

∫

R

ν∗k
m (A − x) dνm

=
1

2

∫

R

ν∗k
m (A − S0x) dνm +

1

2

∫

R

ν∗k
m (A − S1x) dνm

=

k∑

j=0

1

2k+1

(
k

j

) ∫

R

ν∗k
m

(
S−1

j (A − S0x)
)

dνm

+

k∑

j=0

1

2k+1

(
k

j

) ∫

R

ν∗k
m

(
S−1

j (A − S1x)
)

dνm.

Rewrite the first and second summations above, respectively, as

1

2k+1

(
k + 1

0

)∫

R

ν∗k
m (S−1

0 A − x) dνm +
1

2k+1

k∑

j=1

(
k

j

)∫

R

ν∗k
m (S−1

j A − x) dνm,

1

2k+1

k∑

j=1

(
k

j − 1

)∫

R

ν∗k
m (S−1

j A − x) dνm +
1

2k+1

(
k + 1

k + 1

) ∫

R

ν∗k
m (S−1

k+1A − x) dνm,

and using the identity
(

k
j

)
+

(
k

j−1

)
=

(
k+1

j

)
, we get

ν∗(k+1)
m (A) =

k+1∑

j=0

1

2k+1

(
k + 1

j

)
ν∗(k+1)

m (S−1
j A).

This completes the induction, and the proposition follows.

Note that supp(µm) = [0, m] and that the IFS (1.16) is not PCF and does not

satisfy the open set condition, since

Si[0, m]∩Si+1[0, m] =

[
m − 1

m
+

(m − 1)i

m
, 1 +

(m − 1)i

m

]
for i = 0, 1, . . . , m.

For the rest of this section we will fix an odd integer m ≥ 3, and let µ := µm for

convenience.

For the IFS in (1.16), it is shown in [LN3] that µ satisfies a family of second-order

identities with respect to the IFS

Ti(x) =
1

m
x + i, i = 0, 1, . . . , m − 1.
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In fact, for i, j, k ∈ {0, 1, . . . , m − 1}, define

m(i)
j,k =

{
wℓ, if 0 ≤ ℓ ≤ m and i + m j − (m − 1)ℓ = k,

0, otherwise,

and let Mi be the matrix

(6.1) Mi =

[
m(i)

j+1,k+1

]m−1

j,k=0
.

Then µ satisfies

(6.2)




µ(T0iA)
...

µ(T(m−1)iA)


 = Mi




µ(T0A)
...

µ(Tm−1A)


 , i = 0, 1, . . . , m − 1.

For the IFS’s {Si}m
i=0 and {Ti}m−1

i=0 we consider here, L = m − 1, ñ = n = 1.

Moreover, it is shown in [LN3] that conditions (C1), (C2), and (C3) hold with ω = 2,

I0 = {0, m − 1}, I1 = {1, . . . , m − 2}, and I = {(i, i ′) : i = 1, . . . , m − 2}, where

i ′ = m − 1 − i. Furthermore, we have

I0
2 = {(i, k) : i = 1, . . . , m − 2, k 6= i ′},

I0
2(i) = {(i, k) : k 6= i ′}, i = 1, . . . , m − 2,

I(i) = {(i, i ′)}, i = 1, . . . , m − 2.

Let i = 1, . . . , m − 2, I = (i, i ′), and nt > ω = 2. The renewal equation (3.6) can be

written as

fi(t) =

∑

J∈I0
2(i)

(
c( J, j( J))

m

)α

f j( J)

(
t + ln

( c( J, j( J))

m

))

+

∞∑

k=0

∑

J∈Ik
0

m−2∑

ℓ=1

(
c(I, J, ℓ, j)

mk+2

)α

f j(I, J,ℓ)

(
t + ln

( c(I, J, ℓ, j)

mk+2

))
+ z(α)

i (t),

where

(6.3) z(α)
i (t) =

∑

J∈I
nt−2
0

e−αt N
(

et ,−∆µ|TI J [0,m]

)
+ e−αtεnt

(i)

and 0 ≤ εnt
(i) ≤ #Pnt

(i).

Proposition 6.2 The spectral radius of Mα(∞) is

1

mα

m−1∑

i=1

wα
i +

∞∑

k=0

1

m(k+2)α

m−2∑

i=1

∑

J∈Ik
0

cα
i, J,

where ci, J is defined as in (1.19) and (1.20).
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Proof It follows from the renewal equations above that the ( j, i)-entry of Mα(∞),

i.e., µ(α)
ji (∞), is equal to

∑

J∈I0
2(i), j( J)= j

(
c( J, j( J))

m

)α

+

∞∑

k=0

∑

J∈Ik
0

m−2∑

ℓ=1

(
c(I, J, ℓ, j)

mk+2

)α

#
{

j(I, J, ℓ) : j(I, J, ℓ) = j
}

,

where I = (i, i ′).

We will show that the row sums of Mα(∞) are all equal. In fact, it follows from

[LN3, Propositions 4.3(a)] that for each J = (i, k) ∈ I0
2(i),

c( J, j) =

{
wiδ j,k+i , if 0 ≤ k < i ′,

wi+1δ j,k−i ′ , if i ′ < k ≤ m − 1.

Hence,

∑

J∈I0
2(i), j( J)= j

( c( J, j( J))

m

)α

=





wα
i+1/mα, if j < i,

(wα
i + wα

i+1)/mα, if j = i,

wα
i /mα, if j > i,

and therefore
m−2∑

i=1

∑

J∈I0
2(i), j( J)= j

( c( J, j( J))

m

)α

=
1

mα

m−1∑

i=1

wα
i .

Also, it follows from [LN3, Propositions 4.4] that c(I, J, ℓ, j) = ci, Jδℓ, j . Thus,

m−2∑

i=1

∞∑

k=0

∑

J∈Ik
0

m−2∑

ℓ=1

( c(I, J, ℓ, j)

mk+2

)α

#
{

j(I, J, ℓ) : j(I, J, ℓ) = j
}

=

∞∑

k=0

1

m(k+2)α

m−2∑

i=1

∑

J∈Ik
0

cα
i, J,

which completes the proof.

We now turn to estimating the error term z(α)(t). For each t > 0, nt is the smallest

integer such that

t + max
{

ln
( ci, J

mnt

)
: i = 1, . . . , m − 2, J ∈ I

nt−2
0

}
< to,

where to is defined as in (3.5). We need to show that for each i = 1, . . . , m − 2, there

exists some σ > 0 such that z(α)
i (t) is of order o(e−σt ) as t → ∞ (Lemma 6.14).
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We first compute the lower L∞-dimension of µ. It is proved in [LN3, Theorem

1.2] that for the self-similar measure in (1.17), the Lq-spectrum τ (q), q > 0, is the

unique real number α satisfying

(6.4) mα
m−1∑

i=1

w
q
i +

∞∑

k=0

m(k+2)α

(m−2∑

i=1

∑

J∈Ik
0

c
q
i, J

)
= 1.

Let

P̃0 =

[
1 0

1 m

]
and P̃m−1 =

[
m 1

0 1

]
.

Then for J ∈ Ik
0,

(6.5) ci, J =
1

22m

[(
m

i+1

)
,
(

m
i

)]
P J

[
1

1

]
=

1

22m+mk

[(
m

i+1

)
,
(

m
i

)]
P̃ J

[
1

1

]
.

Proposition 6.3 Let k ≥ 1. Then

(a) P̃k
0 =

[
1 0

mk−1
m−1

mk

]
and P̃k

m−1 =

[
mk mk−1

m−1

0 1

]
;

(b) (m − 1, . . . , m − 1), (0, . . . , 0) ∈ Ik
0 maximize, respectively, the first and second

column sums over all P̃ J , J ∈ Ik
0.

Proof Part (a) follows directly by induction.

(b) We use induction again. The assertion clearly holds for k = 1. Assume that it

holds for some k ≥ 1. Write P̃ J , J ∈ Ik
0, as

(6.6) P̃ J =

[
a b

c d

]
.

Then

P̃ JP̃0 =

[
a + b mb

c + d md

]
and P̃ JP̃m−1 =

[
ma a + b

mc c + d

]
.

By induction hypothesis, a + c ≤ mk and b + d ≤ mk. Thus,

a + b + c + d ≤ 2mk ≤ mk+1, m(a + c) ≤ mk+1, and m(b + d) ≤ mk+1.

By using (a), we see that the assertion holds for J ∈ Ik+1
0 .

Since m is odd, the maximum of the binomial coefficients
(

m
i

)
, 0 ≤ i ≤ m, is

attained when i = [(m − 1)/2] or i = (m + 1)/2. Let

cm :=

(
m

(m − 1)/2

)
=

(
m

(m + 1)/2

)
.

Proposition 6.4 Let k ≥ 1. Then

cm

4m

( m

2m

) k

≤ max{ci, J : i = 1, . . . , m − 2, J ∈ I
k
0} ≤ 2cm

4m

( m

2m

) k

.
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Proof Let J ∈ Ik
0 and write P̃ J as in (6.6). Then for i = 1, . . . , m − 2,

ci, J =
1

22m+mk

[(
m

i+1

)
,
(

m
i

)]
P̃ J

[
1

1

]
(by (6.5))

≤ 1

22m+mk

[
cm, cm

] [
a b

c d

] [
1

1

]

=
cm(a + b + c + d)

22m+mk

≤ 2cmmk

22m+mk
. (Proposition 6.3)

On the other hand,

max{ci, J : i = 1, . . . , m − 2, J ∈ I
k
0} ≥ 1

22m+mk

[
cm, cm

]
P̃k

0

[
1

1

]

=
1

22m+mk

[
cm, cm

]
[

1 0
mk−1
m−1

mk

] [
1

1

]

≥ cmmk

22m+mk
.

This completes the proof.

Theorem 6.5 Let µ = µm be the self-similar measure in (1.17). Then

dim∞(µ) =
ln(2m/cm)

ln m
.

Proof The proof is obtained by modifying that of [LN3, Theorem 6.2]; we include it

for completeness.

For q > 0, (6.4) implies that mτ (q)(cm/2m)q < 1. Thus,

lim
q→∞

τ (q)

q
≤ ln(2m/cm)

ln m
=: ℓ.

Suppose limq→∞ τ (q)/q < ℓ − ǫ for some ǫ > 0. We first notice that this would

imply

(6.7) lim
q→∞

mτ (q)

m−1∑

i=1

w
q
i = 0.

In fact, for all q > 0 sufficiently large, we would get

mτ (q)
( cm

2m

) q

=

(
mτ (q)/q cm

2m

) q

≤
(

mln(2m/cm)/ ln m−ǫ cm

2m

) q

=

( 1

mǫ

) q

,
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which implies (6.7).

Next, by putting q = 1 into (6.4) and using the fact that τ (1) = 0 , we get

m−1∑

i=1

wi +

∞∑

k=0

(m−2∑

i=1

∑

J∈Ik
0

ci, J

)
= 1.

Thus,
∞∑

k=0

m−2∑

i=1

∑

J∈Ik
0

ci, J = 1 −
m−1∑

i=1

wi = w0 + wm > 0.

Now let q0 be sufficiently large so that for all q ≥ qo,

mτ (q)

m−1∑

i=1

w
q
i < 1 − (w0 + wm).

Then for all q ≥ qo,

w0 + wm <
∞∑

k=0

m(k+2)τ (q)

(m−2∑

i=1

∑

J∈Ik
0

c
q
i, J

)

≤
∞∑

k=0

m(k+2)τ (q)
(

max{ci, J : i = 1, . . . , m − 2, J ∈ I
k
0}

) q−1
(m−2∑

i=1

∑

J∈Ik
0

ci, J

)

≤
∞∑

k=0

m(k+2)τ (q)

(
2cm

4m

( m

2m

) k
) q−1(m−2∑

i=1

∑

J∈Ik
0

ci, J

)

≤ (w0 + wm) sup
k≥0

(
mτ (q)

( cm

2m

) q−1
) k+2

,

where in the last inequality we have used the fact that 2cmmk ≤ ck+2
m . It follows that

mτ (q)(cm/2m)q−1 ≥ 1 for all q ≥ qo, and thus limq→∞ τ (q)/(q − 1) ≥ ℓ. This

contradiction completes the proof.

We now find an upper estimate for
∑

J∈I
nt−2
0

e−αt N(et ,−∆µ|TI J [0,m]
),

where I = (i, i ′). Again, we need a few lemmas; the estimate is given in Lemma 5.6.

By symmetry it suffices to consider those J = ( j1, . . . , jnt−2) ∈ I
nt−2
0 with

jnt−2 = 0. Let J = ( J ′, 0), where J ′ ∈ I
nt−2
0 . We divide TI J[0, m] into the following

m subintervals:

TI J0[0, m], TI J j[0, m], j = 1, . . . , m − 2, and TI J(m−1)[0, m].

We consider the Laplacian defined by the restriction of µ to these subintervals.

Case 1. TI J j[0, m], j = 1, . . . , m − 2.
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Lemma 6.6 For I = (i, i ′), J ∈ I
nt−2
0 and j = 1, . . . , m − 2,

−∆µ|TI J j [0,m]
≈ 1

ρI Jci, J

(
−∆µ|T j [0,m]

)
.

Proof Let A ⊆ TI J j[0, m]. Then there exists B ⊆ [0, m] such that A = TI J jB. Hence

by [LN3, Proposition 4.4(c)(i)],

µ(A) = µ(TI J jB) = ci, Jµ(T jB) = ci, Jµ ◦ T−1
I J (A).

The lemma now follows from Proposition 2.2.

We now consider the following.

Case 2. TI J(m−1)[0, m] = TI J ′0(m−1)[0, m].

Lemma 6.7 Let I = (i, i ′) and J ′ ∈ I
nt−3
0 . There exists a constant C > 0 such that

for all A ⊆ TI J ′0(m−1)[0, m],

ci, J ′µ ◦ T−1
I J ′ (A) ≤ µ(A) ≤ Cci, J ′µ ◦ T−1

I J ′ (A).

Proof Let A ⊆ TI J ′0(m−1)[0, m]. Then there exists D ⊆ [0, m] such that

A = TI J ′0(m−1)D = TI J ′T1T−1
1 T0(m−1)D.

Note that T0(m−1)[0, m] ⊆ [(m − 1)/m, 1]. Thus

T−1
1 T0(m−1)[0, m] ⊆ T−1

1

[ m − 1

m
, 1

]
⊆ [−1, 0].

We now apply [LN3, Proposition A.2] with B := T−1
1 T0(m−1)D to obtain a constant

C > 0 such that

ci, J ′µ(T1B) ≤ µ(A) = µ(TI J ′1B) ≤ Cci, J ′µ(T1B),

from which the asserted inequalities follow.

Lemma 6.8 Let I = (i, i ′) ∈ I and J = ( J ′, 0) ∈ I
nt−2
0 .

(a) −∆µ◦T−1

I J ′
|T

I J ′0(m−1)
[0,m]

≈ 1
ρI J ′

(−∆µ|T0(m−1)[0,m]
).

(b) There exists a constant C > 0 such that

λn

(
−∆µ|T

I J ′0(m−1)
[0,m]

)
≥ 1

Cci, J ′
λn

(
−∆µ◦T−1

I J ′
|T

I J ′0(m−1)
[0,m]

)
.

Proof (a) follows from Proposition 2.2.

(b) follows from Proposition 2.3 and Lemma 6.7.
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Case 3. TI J0[0, m] = TI JT
−1
m−1Tm−1T0[0, m] = TI JT

−1
m−1[m − 1, m − 1 + 1

m
].

We recall a result and some notation from [LN3] before proving the next lemma.

For each i = 1, . . . , m − 2, let M̃i be the matrix formed from the Mi in (6.1) by

keeping its (m − i)-th row and assigning 0 to all other entries. For i = 0 or m − 1,

let M̃i be the matrix formed from Mi by keeping its first and last rows and assigning

0 to all other entries. Then for i = 1, . . . , m − 2,

ci, J = [wi+1, 0, wi]M̃ J




w0

0

wm


 and [wi+1, 0, wi] = eiMi ′ = eiM̃i ′ ,

where ei denotes the unit vector in R
m whose (i + 1)-st coordinate is 1.

Lemma 6.9 Let I = (i, i ′) and J ∈ I
nt−2
0 . Then for all µ-measurable subsets A ⊆

TI J0[0, m],

µ(A) ≤ ci, J

w0

µ ◦ (TI JT
−1
m−1)−1(A).

Proof Let A ⊆ TI J0[0, m]. Then there exists B ⊆ T0[0, m] such that A = TI JB. Thus

by the proofs of [LN3, Proposition 4.4(c)(ii)] and [LN3, Proposition 4.4(a)],

µ(A) = µ(TI JB) = µ(TI J ′0B)

= eiM̃i ′M̃ J ′




µ(T0T0B)

0

µ(Tm−1T0B)


 (proof of [LN3, Proposition 4.4(c)(ii)])

= eiM̃i ′M̃ J ′M̃0




µ(T0B)

0

µ(Tm−1B)


 (proof of [LN3, Proposition 4.4(a)])

= [wi+1, 0, wi]M̃ J




µ(T0B)

0

µ(Tm−1B)


 .

By using the self-similar identity (1.17) we get

µ(T0B) = w0µ(B) and µ(Tm−1B) = wm−1µ(S−1
m−1Tm−1B) + wmµ(B).

Since w0 = wm = 1/2m, we have µ(T0B) ≤ µ(Tm−1B). Consequently,

µ(A) ≤ 1

w0

[wi+1, 0, wi]M̃ J




w0

0

wm


µ(Tm−1B) =

ci, J

w0

µ
(

(TI JT
−1
m−1)−1A

)
.

Lemma 6.10 Let I = (i, i ′) and J ∈ I
nt−2
0 .

(a) −∆µ◦(TI JT
−1
m−1)−1|TI J0[0,m]

≈ 1

ρI Jρ
−1
m−1

(−∆µ|Tm−1T0[0,m]
).
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(b) λn(−∆µ|TI J0[0,m]
) ≥ w0

ci, J
λn(−∆µ◦(TI JT

−1
m−1)−1 |TI J0[0,m]).

Proof (a) follows from Proposition 2.2. (b) follows from Proposition 2.3 and

Lemma 6.9.

Lemma 6.11 Let I = (i, i ′). Then there exists some Co > 0 such that for all t ∈ R,

∑

J∈I
nt−2
0

e−αt N
(

et ,−∆µ|TI J [0,m]

)
≤ Coe−αt 2nt .

Proof For I = (i, i ′), J = ( j1, . . . , jnt
, 0) = ( J ′, 0) ∈ I

nt−2
0 , and C as in

Lemma 6.8(b), by using the lemmas above, we have

N
(

et ,−∆µ|TI J [0,m]

)
≤

m−1∑

j=0

N(et ,−∆µ|TI J j [0,m]
) + m − 1 ((2.3) and (2.4))

≤ N

(
ci, J

w0

et ,−∆µ◦(TI JT
−1
m−1)−1|TI J0[0,m]

)
(Lemma 6.10(b))

+

m−2∑

j=1

N
(
ρI Jci, Je

t ,−∆µ|T j [0,m]

)
(Lemma 6.6)

+ N
(

Cci, J ′e
t ,−∆µ◦T−1

I J ′
|T

I J ′0(m−1)
[0,m]

)
(Lemma 6.8(b))

+ m − 1

By applying Lemma 6.10(a) and Lemma 6.8(a) to the first and third terms in the last

expression, respectively, and using the fact that ρi = 1/m for i = 0, 1, . . . , m − 1, we

get

N
(

et ,−∆µ|TI J [0,m]

)
≤ N

( ρI Jci, J

ρm−1w0

et ,−∆µ|Tm−1T0[0,m]

)
+

m−2∑

j=1

N
(
ρI Jci, Je

t ,−∆µ|T j [0,m]

)

+ N
(

CρI J ′ci, J ′e
t ,−∆µ|T0Tm−1[0,m]

)
+ m − 1

= N
( ci, J

mnt−1w0

et ,−∆µ|Tm−1T0[0,m]

)
+

m−2∑

j=1

N
( ci, J

mnt
et ,−∆µ|T j [0,m]

)

+ N
( Cci, J ′

mnt−1
et ,−∆µ|T0Tm−1[0,m]

)
+ m − 1.

Now, it follows from the choice of nt that there exists a constant C1 > 0 such that

N
(

et ,−∆µ|TI J [0,m]

)
≤ C1.

By symmetry, the same bound holds if J = ( j1, . . . , jnt−2) ∈ I
nt−2
0 and jnt−2 =

m − 1. Hence, the lemma follows.
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Since all column sums of Mα(∞) are equal, (1.9) becomes

F(α) =
1

mα

m−1∑

i=1

wα
i +

∞∑

k=0

1

m(k+2)α

m−2∑

i=1

∑

J∈Ik
0

cα
i, J

D = {α ∈ R : F(α) < ∞}, α̃ = inf D.

(6.8)

Lemma 6.12 Let F(α) and α̃ be defined as in (6.8). Then limα→α̃+ F(α) = ∞ and

F(α̃) = ∞.

Proof Define d0 := min{w0, wm} and di := min{wi , wi+1} for i = 1, . . . , m − 2.
Then

F(α) =
1

mα

m−1∑

i=1

wα
i +

∞∑

k=0

1

m(k+2)α

m−2∑

i=1

dα
0 dα

i

∑

J∈Ik
0

(
[w̃i+1, w̃i]P J

[
w̃0

w̃m

])α

,

where w̃i := wi/di , w̃i+1 =: wi+1/di , and w̃0, w̃m are similarly defined. Let

si,k(α) :=
∑

J∈Ik
0

(
[w̃i+1, w̃i]P J

[
w̃0

w̃m

])α

.

Since w̃i ≥ 1 for i = 0, . . . , m, it is straightforward to check that {si,k(α)}k is submul-

tiplicative. Moreover, it is shown in [LN3, Proposition A.1] that for i = 1, . . . , m−2,

lim
k→∞

( ∑

J∈Ik
0

cα
i, J

) 1/k

is independent of i. It follows that R(α) := limk→∞(si,k(α))1/k is also independent of

i. The result now follows by using a similar argument as in the proof of Lemma 5.7.

Before proving the final error estimate, we first prove the following.

Lemma 6.13 Let i = 1, . . . , m − 1. Then for each integer n ≥ 2,

#Pn = #Pn(i) = 2 + (m − 1)2n−2.

Proof Clearly, #P1 = #{Ti(0), Ti(m)} = 2. P2 contains the end-points of the inter-

vals TiT j[0, m], j = 0, 1, . . . , m − 1. Thus, #P2 = #P1 + (m − 1). P3 contains P2

together with all end-points of the intervals Tii ′ j[0, m], j = 0, 1, . . . , m − 1. Thus

#P3 = #P2 + (m − 1). P4 contains P3 together with the end-points of the intervals

Tii ′ J j , J ∈ I0, j = 0, 1, . . . , m − 1. Thus #P4 = #P3 + 2(m − 1). Inductively, for

n > 2,

#Pn = #Pn−1 + 2n−3(m− 1) = 2 + (m− 1) + (m− 1)

n−3∑

k=0

2k
= 2 + (m− 1)2n−2.
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Lemma 6.14 Let α be the unique number satisfying F(α) = 1. Then there exists

σ > 0 such that e−αt 2nt = o(e−σt ) as t → ∞. Consequently, for all i ∈ I1, z(α)
i (t) =

o(e−σt ) as t → ∞.

Proof We first get an upper bound for nt in terms of t . Fix t . Since nt is the smallest

integer such that t + max{ln(ci, J/mnt ) : i = 1, . . . , m−2, J ∈ I
nt−2
0 } < to, there exist

Jo ∈ I
nt−3
0 and 1 ≤ io ≤ m − 2 such that

t + ln
( cio, Jo

mnt−1

)
≥ to.

Thus, by Proposition 6.4, we have

mnt ≤ mcio, Jo
et−to ≤ m

(
2cm

4m

)( m

2m

)nt−3

et−to .

From this we get

(6.9) nt <
Km + t

m ln 2
,

where Km := ln(2m+1cm/m2) − to is a constant independent of t .

Next, it follows from the same argument as in Section 5 that

(6.10) α >
dim∞(µ)

dim∞(µ) + 1
.

By combining (6.9), (6.10), and Theorem 6.5, we have

e−αt 2nt ≤ exp

( − dim∞(µ)t

dim∞(µ) + 1

)
exp

(
Km + t

m

)

= exp

(
Km

m

)
exp

(
− (m − 1) ln(2m/cm) − ln m

m(ln(2m/cm) + ln m)
t

)
.

Thus, it suffices to show that (m−1) ln(2m/cm)−ln m > 0. It is clear that 2m/cm ≥ 2.

Therefore we need only show that (m − 1) ln 2 − ln m > 0 for all m ≥ 3. But this is

clear by using calculus. Thus the first part of the lemma holds. Using the definition of

z(α)
i (t) in (6.3), Lemma 6.11, and Lemma 6.13, we have z(α)

i (t) ≤ Ce−αt 2nt for some

constant C . Hence the second part of the lemma also follows.

We can now complete the proofs of the remaining main results.

Proof of Theorem 1.3 Combine Proposition 6.2, Lemmas 6.12 and 6.14, and Theo-

rem 1.1.

Proof of Corollary 1.4 Recall that dims(µ)/2 is the unique q coordinate of the inter-

section of the curve y = τ (q) and the line y = −q in the (q, y)-plane. Since τ (q) is

strictly concave with τ (0) = −1 and τ (1) = 0, we have dims(µ)/2 < 1/2, and the

result follows.
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[E] P. Erdős, On a family of symmetric Bernoulli convolutions. Amer. J. Math. 61(1939), 974–976.
doi:10.2307/2371641

[F1] K. Falconer, Fractal geometry. Mathematical foundations and applications. John Wiley & Sons,
Ltd., Chichester, 1990.

[F2] , Techniques in fractal geometry. John Wiley & Sons, Ltd., Chichester, 1997.
[FLN] A.-H. Fan, K.-S. Lau, and S.-M. Ngai, Iterated function systems with overlaps. Asian J. Math.

4(2000), no. 3, 527–552.
[Fe] D.-J. Feng, The limited Rademacher functions and Bernoulli convolutions associated with Pisot

numbers. Adv. Math. 195(2005), no. 1, 24–101.
[FLW] D.-J. Feng, K.-S. Lau, and X.-Y. Wang, Some exceptional phenomena in multifractal formalism. II.

Asian J. Math. 9(2005), no. 4, 473–488.
[FO] D.-J. Feng and E. Olivier, Multifractal analysis of weak Gibbs measures and phase

transition—application to some Bernoulli convolutions. Ergodic Theory Dynam. Systems
23(2003), no. 6, 1751–1784.

[HLN] J. Hu, K.-S. Lau, and S.-M. Ngai, Laplace operators related to self-similar measures on R
d. J.

Funct. Anal. 239(2006), no. 2, 542–565. doi:10.1016/j.jfa.2006.07.005

[H] J. E. Hutchinson, Fractals and self-similarity. Indiana Univ. Math. J. 30(1981), no. 5, 713–747.
doi:10.1512/iumj.1981.30.30055

[JY] N. Jin and S. S. T. Yau, General finite type IFS and M-matrix. Comm. Anal. Geom. 13(2005),
no. 4, 821–843.

[K] J. Kigami, Analysis on fractals. Cambridge Tracts in Mathematics, 143, Cambridge University
Press, Cambridge, 2001.

[KL] J. Kigami and M. L. Lapidus, Weyl’s problem for the spectral distribution of Laplacians on p.c.f.
self-similar fractals. Comm. Math. Phys. 158(1993), no. 1, 93–125. doi:10.1007/BF02097233

[L] M. L. Lapidus, Fractal drum, inverse spectral problems for elliptic operators and a partial
resolution of the Weyl-Berry conjecture. Trans. Amer. Math. Soc. 325(1991), no. 2, 465–529.
doi:10.2307/2001638

[LP] M. L. Lapidus and C. Pomerance, The Riemann zeta-function and the one-dimensional
Weyl-Berry conjecture for fractal drums. Proc. London Math. Soc. (3) 66(1993), no. 1, 41–69.
doi:10.1112/plms/s3-66.1.41

[La1] K.-S. Lau, Fractal measures and mean p-variations. J. Funct. Anal. 108(1992), no. 2, 427–457.
doi:10.1016/0022-1236(92)90031-D

[La2] , Dimension of a family of singular Bernoulli convolutions. J. Funct. Anal. 116(1993),
no. 2, 335–358. doi:10.1006/jfan.1993.1116

[LN1] K.-S. Lau and S.-M. Ngai, Lq-spectrum of the Bernoulli convolution associated with the golden
ratio. Studia Math. 131(1998), no. 3, 225–251.

[LN2] , Multifractal measures and a weak separation condition. Adv. Math. 141(1999), no. 1,
45–96. doi:10.1006/aima.1998.1773

[LN3] , Second-order self-similar identities and multifractal decompositions. Indiana Univ. Math.
J. 49(2000), no. 3, 925–972.

[LN4] , A generalized finite type condition for iterated function systems. Adv. Math 208(2007),
no. 2, 647–671. doi:10.1016/j.aim.2006.03.007

[LWC] K.-S. Lau, J. Wang, and C.-H. Chu, Vector-valued Choquet-Deny theorem, renewal equation and
self-similar measures. Studia Math. 117(1995), no. 1, 1–28.

[LW] K.-S. Lau and X.-Y. Wang, Some exceptional phenomena in multifractal formalism. I. Asian J.
Math. 9(2005), no. 2, 275–294.

[Mi] H. Minc, Nonnegative matrices. Wiley-Interscience Series in Discrete Mathematics and
Optimization. A Wiley-Interscience Publication, John Wiley & Sons, Inc., New York, 1988.

[NS1] K. Naimark and M. Solomyak, On the eigenvalue behaviour for a class of operators related to

self-similar measures on R
d. C. R. Acad. Sci. Paris Sér. I Math. 319(1994), no. 8, 837–842.

[NS2] K. Naimark and M. Solomyak, The eigenvalue behaviour for the boundary value problems related

to self-similar measures on R
d . Math. Res. Lett. 2(1995), no. 3, 279–298.

http://dx.doi.org/10.1088/0951-7715/21/6/004
http://dx.doi.org/10.2307/2371641
http://dx.doi.org/10.1016/j.jfa.2006.07.005
http://dx.doi.org/10.1512/iumj.1981.30.30055
http://dx.doi.org/10.1007/BF02097233
http://dx.doi.org/10.2307/2001638
http://dx.doi.org/10.1112/plms/s3-66.1.41
http://dx.doi.org/10.1016/0022-1236(92)90031-D
http://dx.doi.org/10.1006/jfan.1993.1116
http://dx.doi.org/10.1006/aima.1998.1773
http://dx.doi.org/10.1016/j.aim.2006.03.007


688 S.-M. Ngai

[NW] S.-M. Ngai and Y. Wang, Hausdorff dimension of self-similar sets with overlaps. J. London Math.
Soc. (2) 63(2001), no. 3, 655–672. doi:10.1017/S0024610701001946

[PS1] Y. Peres and B. Solomyak, Absolute continuity of Bernoulli convolutions, a simple proof. Math.
Res. Lett. 3(1996), no. 2, 231–239.

[PSS] Y. Peres, W. Schlag, and B. Solomyak, Sixty years of Bernoulli convolutions. In: Fractal geometry
and stochastics, II (Greifswald/Koserow, 1998), Progr. Probab., 46, Birkhäuser, Basel, 2000,
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