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ABSTRACT

The object of this thesis is to demonstrate, by the use 
of a modern digital computer, a fast, efficient method to 
eliminate or minimize undesirable stress conditions in a 
multiraass vibrating system with multiple excitation. The 
condition desired is obtained by the addition of an optimum 
tuned and damped dynamic vibration absorber, for one critical 
speed only.

Maximum stress is the criteria used for design here and 
not amplitude as has been used previously by all other 
authors.

This solution requires the applied torque to be reeval­
uated as an average torque and a number of half interger 
harmonics. This method also demonstrates the use of a 
Holzer Table with complex numbers to account for damping.
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LIST OF SYMBOLS

K,k

M,ra 
J =

n
X
• •Xn

®n 

®n =

w

Wa = 

"a =
^st 
u =
f -

g = 
c =

=
c =

j =

== Spring Stiffness (Ib/in) linear system
= Torsional Spring Stiffness (in-lb/rad) torsional system, 
where n = any subscript 

= Mass (Ib-sec^/in ) linear system
Mass Moment of Inertia (in-lb-sec^) torsional system 
Maximum Force, P^ sin wt, (lb)
Linear Displacement (in), where n = any subscript 
Linear Velocity (in/sec), where n = any subscript 
Linear Acceleration (in/sec^), where n = any subscript 
Angular Displacement (rad), where n.= any subscript 
Angular Velocity (rad/sec), where n = any subscript 
Angular Acceleration (rad/sec^), where n ~ any 
subscript

Circular Frequency (rad/sec)
Yk/m = Natural Frequency of Absorber (rad/sec )
Y k/m  = Natural Frequency of Main System (rad/sec)
= Pq/K ~ Static Deflection of Main System (in) 
m/M =T Mass Ratio = absorber mass/main mass 
Wg^/Wa = Frequency Ratio (natural frequencies) 
w/wj^ = Forced Frequency Ratio 
Damping Factor (Ib-sec/in) linear system 
2mWa "Critical" Damping (Ib-sec/in) linear system 

Damping Factor (in-lb-sec/rad) torsional system 
i “ Imaginary Unit
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Lg = Equivalent Length (in)
Lĵ  = Length of shaft (in), where n = any number 

= Applied Torque (in-lb), where n = any number 
Q = Order Number of Vibration (vib/rev)



The problem of this thesis is a very practical one. It 
consists of an in-line six cylinder engine with a flywheel 
used to drive a generator and excitor. This system is 
reduced to a multimass vibration system with periodic forcing 
functions. An investigation of the given system will dis­
close that the shaft stresses at certain critical speeds 
will become quite large, approaching infinity. These 
infinitely large stresses are reduced by the addition of a 
tune]and damped dynamic vibration absorber, for one critical 
speed only.

Until the advent of modern digital computers no other 
practical method was available for the solution of such a 
problem other than approximation and trial and error, using 
measuring devices on the actual system. This thesis will 
demonstrate a numerical solution of the problem.

It is the author’s belief that the method demonstrated 
will be of economic value to those interested in the design 
of such systems.

The subject was chosen because of the author’s interest 
in the field of vibrations and dynamics and a desire for 
further knowledge in these fields.

INTRODUCTION

The author wishes to express his sincere thanks to 
Dr. T.R. Faucett for his suggestion of the subject and



guidance in the solution of the problem. Thanks are also 
due Professor R.E. Lee for arranging computer time for the 
solution of the problem. Thanks are also given to Dr. A.J. 
Miles for his encouragement in this endeavor.



Frahm (1), 1909, was the first to eliminate critical 
vibrations at one frequency by the addition of a tuned 
absorber to the vibrating system.

Den Hartog (1), gives important information concerning 
amplitude of vibration for the simple spring mass absorber 
system with and without damping.

Holzer (2), 1921, was the first to use numerical 
methods to solve multimass vibration problems. This method, 
known as the Holzer Table, when first developed, did not 
include externally applied torques or damping coefficients.

Church (2), demonstrates the method of using applied 
torques in the Holzer Table.

Porter (4)» has evaluated the half integer harmonic 
coefficients, for all four cycle gasoline engines, to be 
used in a Fourier Series. These coefficients were used as 
applied torques to the cylinders in the solution of this 
problem.

Lewis (3)» demonstrates a convenient method of 
handling damping coefficients in complex form.

Nestorides (5), gives an example of the Holzer Table 
with damping coefficients.

REVIEW OF LITERATURE



The first section of the discussion is taken directly 
from Den Hartog (1). This analysis of the simple spring 
mass system with an absorber is covered here in order for 
the reader to have a basic understanding of the principles 
involved. The symbols and figures are taken from Den 
Hartog (1).

Figure (1-a) represents any spring mass system where 
the forcing function, P^sin wt is at or dangerously close 
to the natural frequency of the given system. If due to 
physical limitations this condition cannot be altered, a 
dynamic vibration absorber must be added to the system to 
eliminate this undesirable condition. It will be shown that 
if the natural frequency of the absorber ̂ k/m is equal to 
the natural frequency w, of the forcing fiinction the main 
mass will not vibrate.

DISCUSSION

From Figure (1-a) the differential equations of motion 
for the main mass and absorber are as follows:

M -f (k + K) • K X2 Pq sin wt

(1)

(2)

m + K - X ) = 0

The vibrations assume the form 

= a^ sin wt ^

x^ = a^ sin wt x^ =
Substitution into the original equations gives

1 ^ cos wt • •
^1

2==-â  w sin wt

w cos wt • •X 2*=--a w sin wt
2 2 2



FIGURE 1
CURVES PERTAINING TO SIMPLE TUNED VIBRATION ABSORBER WITHOUT DAMPING
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(3)

(/f)

-k + a2 (-m + k) = 0

Dividing the first of equations (2) by K and the second 
by in gives

*1 ‘ " I ■ [ 3 f ’■ f  ■

ai = a2 ( 1 -gj2)

Where
Xg|̂  = Pq / K = static deflection of main mass 

= S/k/m ■■= natural frequency of absorber

Wĵ  = V k /m  = natural frequency of main system 

u = m/M = mass ratio = absorber mass/main mass 
Solving for â  ̂ and a2 in dimensionless form gives

(-M + K + k) - k a2 = Pq

1 -

fl ~ -----
xst ( 1 . fwf ) ( 1 + k - p/l

N  K
2 ) - k 

K

(5)

f2
x St (-1 - F-[waj

- ^ ) { 1 + k
IT

) - k

From the first of equations (4) the amplitude of 

the main mass will be zero when the numerator 1 - 

is zero. This occurs only when the frequency of the
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absorber is equal to the natural frequency of the forcing 
function.

When w = the second equation reduces to 

ao = - K = - PSt o
IT

This means then that while the main mass has no motion 
the absorber mass is vibrating with a motion -?o/k sin wt.

This force is then equal and opposite to the forcing function 
external to the system.

The above equations hold for any value of w/Wj^. The 

addition of an absorber is however not required unless the 
original system is in resonance or near it. The resonant 
condition is

w = w^ = Wĵ  or k = K or k = m
m M K M

The size of the damper is defined by the ratio 
u = m

M
For the above conditions equations (4) can be rewritten 

as follows

^st
^ - M ' sin wt

( 1 - (w“| 2 ) ( 1 + u - [wT 2 ) - u

(6)
X2
Xst

sin wt
( 1 + - u

I Wf
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From these two equations it will be noted that both 
denominators are the same, therefore both masses will have 
infinite amplitude for the same w/wa ratio. The denominators 
set equal to zero then forms the following second degree 
equation in w/wa*

2 { 2 + u ) + 1 - 0[wi^ -iwn
N  N

Solving
w
wa

2 ~ ( l f u )  + 
2  “■

u u
)

The relationship described by the above equation for 
the simple two mass system is shown graphically in Figure 
(1-b).

The effect of adding an absorber one-fifth the mass 
of the main system is shown in Figure (1-c) and on the 
absorber in Figure (1-d).

In Figures (1-c) and (1-d) the values plotted on the 
negative ordinate are caused by a change in the sign of 
the numerator or denominator. This change in sign means 
a 1^0® change in the phase angle and is of no importance 
here since

- X. sin wt = + Xq sin (wt + 180®)
these values can therefore be plotted on the positive axis.

From the foregoing study it is apparent that the 
undamped dynamic vibration absorber is only effective where 
the frequency of the forcing function is nearly constant.
In such a case w/wg = w/Wn = 1 and the amplitude of the



main mass will be zero. In the case of a variable speed 
motor such an application is useless since the one 
resonant speed of the original system is replaced by two 
resonant speeds. This condition will however be shown to 
be advantageous if a damping factor is added to the 
absorber spring.

Figure (2-a) represents the same system shown in 
Figure (1-a) with the addition of damping in the absorber 
spring.

The differential equations of motion for the main 

mass and absorber with damping added are as follows.

M + K + k (x2̂ - X2 ) + (xĵ  - X2 ) = Pq sin wt 
m X2 + k (x2 - Xĵ ) + c (x2 - X^) = 0

The vibrations assume the form given by equation (2) 
and substitution into the above equations gives and X2 

in complex form.

-M w^ + K -H k (xj - X2 ) + j w c (x2̂ - X2 ) == P<
(^)

-m w'̂  X2 + k (x2 - Xĵ ) + j w c (x2 - Xĵ ) = 0 

Rewriting

(9)
(-M w^ + K + k + j w c)xi - (k + j w c)x2 = Pq 
- (k + j  wc)xi + (-mw^ + k  + j wc)x2 = 0  

Expressing X2 in terms of xi from the second equation 
and substituting into the first gives

( 10) ^l = Po ________(k - m w^) + j w c____
jT-Mw^ + k)(-mw^ + k) -mw^l^ + jwc j^Mw^ + K -mw^



FIGURE 2
CURVES PERTAUvJING TO SIMPLE TUNED VIBHATION >\RSORBER WITH DAI4PING
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This expression is in the form 
A -f .1B

(ICa) ~ ^  C + jD

which can be reduced to the form

(11) = ?o ( %  )

where and are real and do not contain j. In 

vector representation then X]̂  consists of one component in 

phase with the forcing function and another advanced 90'

Equation (10) is reduced to the form of (11) as 
follows.

(11a) xq^
(A 4- jB)(C - jP)

O (C + jD)(C - jD) "
(AC + BD) + j(BC -AD) 

C2 + d2

The amplitude of the vector xĵ  may be expressed as 

(12) Xi = Pq

(12a) (Be - AD'
4“

c2 ^ q 2̂

a 2 + b 2

Pq + D^

(13)

Applying this result to equation (10) gives 

^1^ (k - mw^) + w^c^
Pq̂  [t-Mif?+k) (*̂ i(iw *̂t'k) -  nrw2l0 2 + w^c^ ĵ Mir^+K -mw^^
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Equation (13) may be rewritten in dimensionless form 
using the following symbols.

u = m/M = mass ratio = absorber mass/main mass 

Wq  ̂= ^ k/m = natural frequency of absorber

(14)

(15)

Wĵ  = ^ K / M  = natural frequency of main system

f = ^ A ^ n  ^ frequency ratio (natural frequencies)
g = w/Wn = forced frequency ratio

Xg-ĵ  = Pq /K - static deflection of system
Cq = 2 m Wji = "critical" damping

XI 2x2(2 g'̂ ) (g^ - f2)
Xst (2c g)^(g^-l+ug^)'^ +[uf^g^^- (g^-1) (g^^-f^}].2 n 2

This algebraic operation reduces equation (13) from a 
function of seven variables to a function of four variables 
as expressed above.

A plot of the amplitude ratio ĉ̂ /̂xĝ  as a function of 
the f‘requency ratio g is shown in Figure (2-b) where f = 1 
and u = 1/20. It is of interest to note from Figure (2-b) 
that as c varies from zero to infinity the system changes 
from one with a simple absorber to one with a single degree 
of freedom with a mass ratio of 21/20 M. Two other curves 

for c/cc "= 0.10 and 0.32 are also shown in Figure (2-b).

It will be noted from Figure (2-b) that all four 
curves intersect at the points P and Q. It can be proven 
that all curves pass through these two points and are 
independent of damping at this point. By changing the



relative "tuning” f = Wa/ the points P and Q can be 
shifted up and down for the curve c = 0. The proof of 
such statements is long and tedious and shall therefore be 
omitted. It will be considered sufficient only to state 
that the most favorable curve is the one where the amplitude 
of P equals the amplitude of Q and passes with a horizontal 
tangent through either of the points as shown in Figures 
(2-c) and (2-d). From Figure (2-c) it can be seen that the 
curve horizontal at P is not horizontal at Q and Figure 
(2-d) shows the opposite condition. Either condition is 
close to the optimum damping.

The study of the simple spring mass absorber system 
involves all the basic principles. An expansion of these 
principles is given in the remainder of the discussion.

The system shown in Figure (3) represents a problem 
encountered in the design of internal combustion engine 
systems.

From the given data the system was dynamically balanced 
and reduced to an equivalent system as shown in Figure (4).

In order to dynamically balance the engine it was 
necessary to add 2.92 # at a radius of 3*25 ” to cranks one 
and six, thereby increasing the polar mass moment of inertia 

from 0 .2 3 2 71 5 to 1 .0 3 2 7 1 5 in-lb-sec^.

13

The equivalent length of crankshaft, between crankthrows.
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was determined from Carters equation (2) for solid journals 
and crankpins.

8a 0.75b
(1 6 )

r e + o.a
L  ^0^

+ +
1.5r“|
a c 3 j

From this equivalent length the shaft torsional stiff­
ness could be determined

(17) K =
G tt d< 

32

The shaft stiffness between cylinder number six and the 
flywheel was determined by multiplying the aforementioned 
stiffness by two and treating the additional length of 3 l/2" 
diameter as one shaft acting on another in series. The 
remaining shafts were changed to 3 l/2" diameter for conven­
ience only.

The calculations mentioned above are long and tedious 
and serve no purpose other than to show the origin of the 
equivalent system used in this example.

The given system may now be analyzed by a method 
developed by Holzer (2) in 1921. This method, as later 
devised, may be used for free or forced vibrations with or 
without damping. This numerical method of analyzing the 
system was developed from the differential equations of each 
mass and is well suited for solution on the digital computer.

A study of the first two vibrating masses will lead to 
the general equations used in the Holzer Table.
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Mass J.

ei

©2

1/

-

since
0- = ©T cos wtIv 1

-Qĵ  w sin wt

T, = T t cos wt Iv 1

©T > 0

03^^="'-©3̂ cos wt 

Substituting in (1^) gives

(lBa)T3̂ cos wt - ( - ^ w 2 )  cos wt == K3 «̂2 ( “ ®2 J ^
And solving fox: ©2

Ti , Jt ©2 w^
(19) ©2 == ®1 - ---— —

K1 - 2

r^ass J, 6 > 0  >© ^1 ^2 3

K2-3
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(2 0) '̂ 2v~'̂ 2 ^2v "*‘1-2 ̂ ®lv " ®2v^ ■*■ ^2-3^®2v " ®3v^
i)ince

®3v '̂3 cos wt *̂ 2v~'̂ 2 <̂ os Wt

®2v ®2 w sin wt ®3v" -©3 W sin wt

®2v"" "®2 w^ cos wt -©3 W^ cos wt

(20a ) ®2 w2 = -(T^+J^ 0i W^) 4- *■2 -3 ^®2 " ®3 ^
And solving for-©^ gives

(2 1)
(T1+T2.)4- W^ VR  ®i - •̂ 2 ®2^

*■2-3
From the above analysis the following general equations 

can be derived.

The inertia torque developed by mass n

(22) Torque inertia ~ ®n ^
The total torque acting on shaft n

(23) Torque = ®n S  Tĵ

The amplitude 0̂  ̂ of disk n

(24) ®n “ ®n-l
Kn-1

A method illustrating this analysis is given in Table I 
The amplitude of the first mass is assumed to be 1.0000 A 
radian. This value is placed in column 4* Column 5 is 
obtained by multiplying column 3 by column 4* Column 5 is 
then added to cplumn 6 to give w ^ ^ J ^  0^ Dividing.



Ti£U I

(1)
NUi

No

(2)
J 3

(4)
k JX «2 jM k S  + Th

(7)
k

,(8 )
Tu

k

1 1 .0243 1,000A .0243A .0243A + 1 1 .0243A + 1

2 1 .0243 .97574 1 .0237A -  .0243 •0480A + 1.9757 1 .048UA + 1.9757

3 1 .0243 .92771 -  a.9T97 .0225A -  .0724 .0705A -1- 2.9033 i .0705A + 2.9033

4 1 •0243 .65724 -  5.8790 .02081 -  .1430 .0913A 3.7603 1 .0913A + 3.7603

5 1 .0243 .76594 -  9.Klf3 .0166a -  .2340 .1099A .  4.5263 1 .1099A + 4.5263

6 1 .0243 .65604 • 14U65 .015VA -  .344 .1258A 5.182 1 .1258a ■¥ 5.182

7 1 .0243 .5302A -  19.347 .0129A -  .471 .1387A + 5.7U 1 .1387A + $.711

6 1 •0243 .39154 -  25W58 .0095A -  .610 .1482A -  6a01 .5 .2964A -  12.202

9 71 1.72$ .095U - .I64OA -  64.20 •3122A -  70.30 1.34 .2334 -  $2.50

10 19.5 .474 -0 3 7 1 4 ^ 1 1 4 0 -.06534 + 7.23 .24694 • 63.07
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column 6 by column 7 gives column B. Subtracting the value 
of column B from line 1 column 4 gives the amplitude of mass 
2 and the procedure is repeated until line 10, column 6 where 
the torque remaining on the system is determined. In this 
easy to follow example the remaining torque is set equal to 
zero and the equation solved for A. The torque acting on any 
shaft may now be determined.

In the foregoing discussion it was mentioned only that 
the exciting torque was a periodic function. The approxi­
mate shape of the torque versus crank angle is shown below.

Crank Angle

Fourier (B) has shown that a periodic curve of this 
type may be expressed as a constant and a series of sine or 
cosine terras of various amplitudes whose frequencies are 
integral multiples of periodic motion as shown below.

(25) f(x) oo
a© + X + bĵ  sin nTTx)

1 I  L
Since the sum of any two corresponding terras may be

v/ritten as
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(26) nxra cos -—  z n L sin niT t = Cr sin (— + 0_)n
Expanding

(26a) c sin (-iiILt+0) « c^sin SlLt cos 0 4-c sin 0 cos-SiL tL “ T. n n t

b = c cos 0 « c =Va ^ b ' n n n i n

Then
a = c sin 0 .n n n»

a
= arc tann b

(26b)

And equation (26) may be rewritten as 

(27) f(x) = ” - + S  sin (S3-t + 0jj)

The problem now becomes one of determining the value 
of the various coefficients of equation (26) and substituting 
them in equation (27). This may be done by dividing the 
abscissaoif the given period, in this case 720^, into z equal 
intervals and measuring the ordinate y, at the end of eachXv
interval. The values of y^ are entered in a table, and the 

coefficients are calculated by the following formulas.
(28) !2 ^

2 z k=l
(29) 2

z • Yk cos (720 -nk J 
z

(30) b = n
2
z

k=z
■ X I .  Y yk= ^

sin (720 -nk J 
z

Where k is the number of the1 interval
ment (2).

The values of these coefficients, for four cycle gas­
oline engines, have been determined by F.P. Porter (4) for any
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mean affective pressure and are shovm in Figure (5). Half 
integral coefficients higher than 12 are net shown on Figure 
(5) because they are of insufficient amplitude to have a 
marked effect on the system.

From the information given in Figure (5) it is now 
possible to change the disturbing torque into harmonic compo­
nents whose frequencies are half integral multiples of the 
operating frequency. Half integral multiples occur because 
the power stroke on a four cycle internal combustion engine 
occurs on every other revolution of the crankshaft.

Since any of the harmonic frequencies are capable of 
exciting the system into resonance, all possible conditions 
must be investigated. The investigation of the given system 
can be thoroughly understood by the information given in 
Figure (6).

The effect of all six cylinders must now be obtained by 
studying the phase diagrams for the crank arrangement used.
The harmonic torque phase diagram shown in Figure (6-c,d,e,f,
& g) have a vectorial sum of zero. In Figure (6-h) the harmonic 
torque vectors add or act in phase and are therefore dangerous. 
Such a condition is known as a major order vibration. All 
other orders are called minor orders and are neglected in this 
investigation since their effect is small compared to the 
major order vibrations.

In order to show the effect of the major order vibrations.
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the natural frequencies of the system, without disturbing 
torques must first be determined. This was accomplished 
on a digital computer using a Holzer Table, with the dis­
turbing torque reduced to zero. The results of the calcula­
tions are shown on Figure (7), with a natural frequency at 
146 and 200 cycles per second.

The following equation gives the relationship between 
the exciting frequency and engine rpm.

(3 1 )

exciting

60 f*N =
Q

N .  Q - i i f e  .  1  m in
min rev * 60 sec
rpm

The first major order number is three. At the first 
natural frequency the engine speed would be 

N = (14 6) = 2,920 rpm
Since this is outside the normal operating speed of the 

engine, maximum 2,200 rpm, it may be disregarded.

The next major order number is six. This critical major 
order vibration falls within the operating range and 2,000 
rpm for the second mode of vibration. The first critical 
speed 1 ,4 6 0 rpm will be investigated.

The value of T for the sixth harmonic is taken from 
Figure (5) and is

4 .0 7 «ini- . in^ . 1 .7 5  in = 8 9 .5 in-lbs

At this point there must be a deviation from .the 
criterion governiTg the simple spring mass absorber system.





27

In this problem displacement is not the controlling factor 
but rather maximum stress in any part of the system. This 
represents a considerable departure from the method used for 
the simple absorber. This stress can be effectively control­
led by the addition of a properly designed absorber and the 
results will be similar to those shown in Figure (2-c). The 
displacement however will be of importance in the choice of 
a front or rear absorber. In this system the maximum displace­
ment was at the rear of the system for the first mode of 
vibration, thereby indicating the use of a rear absorber.

The size of the absorber, as in the simple system with 
no damping, controls the amount of deviation from the criti­
cal speed as shown in Figure (1-b). For this system an 
absorber with approximately yfo of the total polar mass moment 
of inertia was chosen. The results, of this addition to the 
system for c equal to infinity (absorber locked) is shown in 
Figure (9)» This lowers the natural frequency of the system 
to 1,2 6 2 rpm.

A value of K, with c = 0, must now be chosen so the 
ordinates of points P and Q as shown in Figure (9) are 
equal. This was accomplished by imposing a torsional stiff­
ness between the absorber mass and the last mass of the main 
system in the program and using an absorber frequency equal 
to the natural frequency of the locked system as the first 
approximation.
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f _ 1 K
2 J

K = (126)^ . 4 tt  ̂ . (3.25) = 2,043,000 in-lb/rad
This value of* K was ultimately adjusted to an optimum

value of 1 ,650,000 in-lb/rad. The results of which are shown 
in Figure (9)*

It now becomes necessary to determine a value of c such 
that the stress amplitude curve in Figure (9) will pass with 
a horizontal tangent through point P in Figure (9)*

The differential equations of motion of each mass in the 
system are obtained in the same manner shown earlier in the 
discussion on page 17. The following equation illustrates 
the method of handling the damping coefficients in the 
Holzer Table.

Mass JB

/ /
t"

K50-B B y

KB-a

®50

(32) = K^o-B (Sov-®Bv> B-a (®gv“®av)

(®Bv “^av^
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ince

®8v = ©g cos wt ©av

®8v = - ©g w sin wt »av
•  # 2= - ©, w cos wt8v 8

=  Q COS wt a
= - w sin wta

Substituting in (3 2) gives

(32a) ^  " ~^50-B (®50 “ ^8  ̂ ^

+K^ (©c5 ~ © ) cos wt8-a 8 a
• •

-c w (0 . - © ) sin wta 8 a
From the equation for (not shown)

(32b) J. ©. w2 cos wt + ( S t -f w^SlJ © _^)cos wt=
8 8 1 - 6  1 - 5 0  1 - 5 0

(©,.,-© ) ( cos wt - c w sin wt)8 a 8-a a
From the identity (sin w t = - i c o s w t )  equation (32b) 

may be rewritten.
- ( g T l - 6  +  v ^ g J l - 8  0i-8 ) C03 wt(33) 0a '8

( K . + i c w ) cos wt
8-a a

And rationalizing it is now possible to replace a spring 
stiffness by a complex coupling coefficient in the Holzer 
Table as shown below.

— __fs!L_— _) (22t + w^SJ y
1 -6  1 - 8  1 -8(34) ®a = ®8 - ( „ 2 ̂  2 2 K . + c w8-a a

The program for the solution of the problem was
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rewritten in the general form to include all values of K and 
c* The flow chart of this program is shown in Figure (8 ) 
and an example at 1,4 0 0 rpm, c = 1,462 and K = 1 ,650,000 

is shown in Table II.

The optimum value of c shown in Figure (9) was deter­
mined by selecting two frequencies, one slightly above and 
another slightly below point P Figure (9) and equating the 
stress at these two frequencies. This causes the stress 
amplitude curve to pass through point P v/ith approximately 
zero slope.
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table II
140 eps .w^3,777.14 K-1,650,000 c»l,462

(2)
J x 5^

(7)K (8)
60

1,032715 700 091.25 • 1.0000000-A 779,091.25 A 
-to.oooooo +0.000000

779,091.25 A 
+89.503982

a7.5’io6' .045662358 A
+5.U45134«i06

.232715 180 069V54 .96433764-4 .171,847.14 A 180,069.9* ..5^ 5134.106 -.92096008
970,938.40 A 

+178.08699 17.5*10^ .055482195 A, 
+•10.176400*10°

.232715 180 069.54 .898855U A , .161,856.49 A 180,069.5* ,15.290913.10  ̂ -2.7534278
1,132,794.9 A 
+-264.83754

1 7.5*106 .064731136 A 
+15.133575*10^

.232715 180.069.54 .83412430 A . 150,200.38 A 
* -30.424488*10 -5.4785235

1,282,995.2 A
+•348.86300

17.5*10^ .073314015 A
+-19.935029*10°

.232715 180.069.54 .76081029 A 136,998.76 A 
-50.359517*106 -9.0682153

1,419,994.0 A 
+■429.29877

17.5*106 .081142516 A, 
+24.531359*10^

1,032715 799.091.26 .67966777 A . 543,116.57 A 
' -74.090876*106 -59.844642

1,963,110.6 A 
+■458.95811

^ c

19.5*106 .10067234 A , 
+23.536314*10°

3.46 2.677.268.8 .57809543 A 1,550,126.4 A 
-98.427190*10° -263.51605

3,513,236.9 A 
+■195.44206

16.75*10^ .20974549 A . 
+■11.668183 »10

90.00

8.00

38,680^^54 ".36924993 A , 14,285,857 A
illO«09537*10‘' -4,259.4639

6,190,23.6.8 -2.6121729 A , -16,169,917 A 
+57».^533‘10^ +3,532.4183

17,799,094 A 5.97*106
-4,064.0219

r Multĵ fcly by / 
1.629,177 .A.- .377C^7*iPlZ 
-531.60356 tti.29385819*10 _

2.9814229 A . 
-680.74071*10

r  .61423519 iT
L+i.47874701 A_

10 3.25 2,514,775.6 r-8,H 3,692.5 4“lp6»^»515.5 Al ^ ■200»426n°3,0“^
'il§6oai605®103

Solving for A 
A « 22O.69H4«10'

+ i 19.608U7*10“^





CONCLUSIONS

The results of this investigation are very good.
The addition of the tuned and damped absorber to the 
system has reduced the stress at 1,2 6 2 rpm, absorber 
locked, from infinity to a value less than 100 psi.

The optimum tuned and damped stress curve shown 
in Figure (9) does not compare favorably to the ideal 
case shown in Figure (2-c). The cause of this lack of 
comparison is due to the close proximity of the second 
mode of vibration, at 2,000 rpm. The curve shown in 
Figure (9) is however the best possible stress condition 
for the first mode of vibration using a rear single 
absorber. It will be noted that the afforementioned 
curve approaches the c = 0 curve at increased rpm 
indicating the optimum condition.

The infinite stress for the second mode of vibration 
at 2,000 rpm must be eliminated in the same manner. For 
this case however a front absorber is required since the 
maximum deflection occurs at the front of the system.

The foregoing discussion should be considered a pre­
liminary study of the method of analysis since there are 
several areas left to be investigated. A general program 
for many masses with a front, and front and rear absorber 
would be of great interest. Also the design of an actual
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absorber with the required spring constants and damping co« 
efficient would be very informative.

The author suggests that further worthwhile study 
could be done in this area.
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