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Abstract: In recent years the introduction and development of Interior-Point Methods has had a profound impact on 

optimization theory as well as practice, influencing the field of Operations Research and related areas. Development of 

these methods has quickly led to the design of new and efficient optimization codes particularly for Linear Programming. 

Consequently, there has been an increasing need to introduce theory and methods of this new area in optimization into the 

appropriate undergraduate and first year graduate courses such as introductory Operations Research and/or Linear 

Programming courses, Industrial Engineering courses and Math Modeling courses. The objective of this paper is to 

discuss the ways of simplifying the introduction of Interior-Point Methods for students who have various backgrounds or 

who are not necessarily mathematics majors. 

Keywords: Interior-point methods, simplex method, Newton’s method, linear programming, optimization, operations research, 

teaching issues. 

1. INTRODUCTION 

 During the last two decades, the optimization and 

operations research community has witnessed an explosive 

development in the area of optimization theory due to the 

introduction and development of Interior-Point Methods 

(IPMs). Since optimization techniques form the basis for 

many methods in Operations Research (OR) and related 

fields, these areas have been profoundly impacted by the 

advancements in IPMs. 

 This development has rapidly led to the design of new 

and efficient optimization codes particularly in the field of 

Linear Programming (LP) that have, for the first time in fifty 

years, offered a valid alternative to the Dantzig’s Simplex 

Method (SM). In many cases IPM codes were able to solve 

very large LP problems and often faster than SM codes. That 

is why currently most commercial and well known 

optimization software packages (CPLEX, Xpress-MP, 

LOQO, LINDO/LINGO, MOSEK, Excel Solver, etc.) 

include codes based on IPMs at least for LP but often for a 

number of nonlinear optimization problems as well. Students 

will quite possibly encounter situations during their work 

career in which they will need to use an optimization 

software package. 

 Given the reasons briefly outlined above, there is an 

increasing need to introduce IPMs, and the theory they are 

based on, into the appropriate undergraduate and first year 

graduate courses such as introductory Operations Research 

and/or Linear Programming courses, Industrial Engineering  
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courses and Math Modeling courses. However, the standard 

approach to IPMs involves extensive background knowledge 

on advanced topics that are usually part of Nonlinear 

Programming course such as Lagrange functions, Karush-

Kuhn-Tucker (KKT) conditions, and penalty and barrier 

methods. Most of the senior undergraduate students and 

first-year graduate students, specially the ones whose major 

is not mathematics, do not have such a background. It would 

take considerable time and effort for the students to acquire 

the needed skills. The objective of this paper is to discuss 

ways of simplifying the introduction of IPMs for LP to a 

level appropriate for such students, while still keeping as 

much generality, motivation and precision as possible in 

their understanding of the theoretical foundations of these 

methods. The paper is primarily intended for instructors 

although it is accessible to students as well, with the warning 

that in Section 3 they may not understand some terminology; 

however the main idea should be clear. The students who 

have had a calculus sequence and a basic linear algebra 

course should not have problems following the material. The 

experience that the author has had using the approach 

discussed in this paper has been a very positive one and 

student responses have been favorable. The number of 

research papers on IPMs is enormous; however there are 

very few papers that discuss the educational aspects of IPMs. 

(see for example [1]). 

 The paper is organized as follows. Section 2 contains a 

brief historical review of main steps in the development of 

IPMs for LP. In Section 3, the basic idea and key elements of 

a standard approach to IPMs for LP are described. Section 4 

contains discussion on how to simplify the presentation of 

IPMs. In Section 5, some examples are presented. 

Conclusions are given in Section 6. 
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2. A BRIEF HISTORICAL REVIEW 

 In this section we give a brief historical review of the 

main steps in the development of IPMs for LP. 

 It is not necessary to elaborate on the applicability of LP. 

The number of applications in industry, business, science 

and other fields is extensive which explains why advances in 

the theory and practice of LP receive significant attention 

even outside the field of optimization. 

 The Dantzig’s Simplex Method (SM) [2] for LP, 

developed in 1947, initiated strong research activity in the 

area of LP, and optimization in general. The main idea of 

this algorithm is to “walk” from vertex to vertex along the 

edge of a feasible region (a polytope) on which the objective 

function is decreasing (minimization) or increasing 

(maximization). The popularity of this method is due to its 

efficiency in solving practical problems. Years of 

computational experiments and applications have resulted in 

progressively better variants of this algorithm. They are 

commonly called pivoting algorithms. Computer 

implementations of some of these algorithms include 

sophisticated numerical procedures in order to achieve 

accuracy, stability, and an ability to handle large- scale 

problems. Computational experience has shown that the 

usual number of iterations to solve the problem is O(n) , or 

even O(log n) , where n  is the number of variables in the 

problem. Another reason for the popularity of the SM and its 

variants is the suitability for sensitivity analysis, which is 

extremely important in practice. The combinatorial nature of 

the algorithm allows a large number of generalizations to 

applications such as the transportation problem and other 

network problems. Another generalization is the 

development of the pivoting methods for the Quadratic 

Programming problems (QP) or, more generally, for the 

Linear Complementarity problems (LCP). 

 Unfortunately, pivoting algorithms are not polynomial 

algorithms, although they are finite procedures. Klee and 

Minty [3] in 1971 provided an LP example for which some 

pivoting algorithms need an exponential number of pivots. 

Murty [4] in 1978 provided a similar example for LCP. The 

good thing about these examples is that they are artificial; 

that is, they have not been observed in practice. This 

discrepancy between the worst-case complexity of pivoting 

algorithms and their successful practical performance 

initiated, in the early 1980’s, a strong research interest in the 

average complexity of some pivoting algorithms [5-8],. 

Adler and Megido [5] showed that for certain probability 

models the number of iterations of Dantzig’s self-dual 

parametric algorithm [2] is (min n,m{ }
2 )where n  is the 

number of variables and m  is the number of equations. 

 Although pivoting methods for LP and LCP have been of 

great success, computational experience with these methods 

has shown that their efficiency and numerical stability 

decreases as the problem dimension increases. One reason 

for this behavior is the inability of these methods to preserve 

sparsity; thus causing data storage requirements to increase 

rapidly. Another reason is poor handling of round-off-errors. 

These unfavorable numerical characteristics together with an 

exponential worst case complexity (relaxed quite a bit with 

the artificiality of the examples for which it occurs and the 

average-case analysis) justified the need for a better 

(hopefully polynomial) algorithm. The hope that a 

polynomial algorithm for LP exists was based on the fact 

that LP is not an NP-hard problem [7, 9]. 

 Finally, in 1979, more than 30 years after the appearance 

of the SM, Khachiyan [10] proposed the first polynomial 

algorithm for LP, the Ellipsoid Algorithm, by applying 

Shor’s original method [11] developed for nonlinear convex 

programming. It is an iterative algorithm that makes use of 

ellipsoids whose volumes decrease at a constant rate. At an 

initial glance, it seems unlikely that the iterative algorithm, 

which potentially may need infinitely many iterations to 

converge to the exact solution, would find that solution in 

finitely and even polynomial number of iterations. 

Khachiyan’s main contribution was to show that for LP 

whose input data are rational numbers, the Ellipsoid 

Algorithm, achieves an exact solution in theO(n2L)  

iterations, where n is the number of variables in the problem 

and L  the total size of the problem’s input data which also 

depends polynomially on the number of variables and 

number of constraints in the problem. Publicity regarding 

this development was enormous and the news even appeared 

in the New York Times. Just as in the case of SM, immediate 

generalizations to convex quadratic programming and some 

classes of LCP were made. Also Grotchel et al. [12] used an 

Ellipsoid Algorithm as a unifying concept to prove 

polynomial complexity results for many important 

combinatorial problems. Unfortunately, computational 

experiments soon showed that from a practical point of view 

the Ellipsoid Algorithm is not very useful for solving LP 

problems. It performs much worse than the SM on most 

practical problems and various modifications could not offer 

much help. See [13] for a survey. 

 In late 1984, Karmarkar [14] proposed a new polynomial 

algorithm for LP that held great promise for performing well 

in practice. The main idea of this algorithm is quite different 

than that of SM. Unlike SM, iterates are calculated not on 

the boundary, but in the interior of the feasible region. The 

original LP problem has to be transformed into the special 

form. This algorithm is an iterative algorithm that makes use 

of projective transformations and a potential function 

(Karmarkar’s potential function). The current iterate is 

mapped to the center of the special set using a projective 

transformation. This set is an intersection of the standard 

simplex and a hyperplane obtained from the constraints. 

Then, the potential function is minimized over the ball 

inscribed in the set. The minimizer is mapped back to the 

original space and becomes a new iterate. Similarly as with 

the Ellipsoid Algorithm, it can be shown that Karmarkar’s 

Algorithm achieves an exact solution in O(nL)  iterations. 

This is much better than the iteration complexity of the 

Ellipsoid Algorithm. In addition, each iteration requires 

O(n3)  arithmetic operations. 

 The appearance of Karmarkar’s Algorithm started an 

explosion in research activity in the LP and related areas 
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initiating the field of interior-point methods. The number of 

papers on this subject can be counted in the thousands. For a 

while, Kranich [15] maintained a detailed bibliography on 

interior-point methods. For a number of years, S. Wright 

maintained the web site on interior-point methods at 

Argonne National Laboratories with a list of recent papers 

and preprints in this field and other useful information about 

commercial and public domain IPM codes. The web site 

evolved and expanded into the more comprehensive web site 

“Optimization Online” http://www.optimization-online.org 

which contains a wealth of information on optimization 

theory and practice. 

 Soon the connection of the Karmarkar’s Algorithm to the 

barrier and Newton-type methods was established [16]. 

Renegar [17] proposed a first path-following Newton-type 

algorithm which further improved the complexity to 

O( nL)  number of iterations. This complexity remains the 

best worst-case complexity for IPMs of LP so far. Many 

researchers have proposed different interior-point methods. 

They can be categorized into two main groups: potential-

reduction algorithms [18] based on the constant reduction of 

some potential function at each iteration, and path-following 

algorithms [19] based on approximately tracing a central 

trajectory or central path studied first by Megiddo [20]. 

Actually, these two groups are not that far apart because, 

with a certain choice of parameters, iterates obtained by the 

potential-reduction algorithm stay in the horn neighborhood 

of the central path. In each group there are algorithms based 

on primal, dual, or primal-dual formulation of LP. A 

different approach to interior-point methods is based on the 

concept of analytic centers and was first studied by 

Sonenvend [21]. 

 The tradition of generalization from LP to other 

optimization problems continued even more strongly in the 

case of IPMs. Many methods were first extended to Linear 

Complementarity Problem (LCP), some of them still 

maintaining the best-known O( nL) complexity. See for 

example [22-27]. In their seminal monograph, Nesterov and 

Nemirovski [28] provided a unified theory of polynomial 

interior-point methods for a large class of convex 

programming problems that satisfy the self-concordancy 

condition. Significant advances have also been made in 

interior-point methods for the Nonlinear Complementarity 

Problem (NCP) [26, 29, 30]. In the past decade, the 

development of interior-point methods for the Semidefinite 

Programming (SDP) has been a very active research area. 

The SDP is basically LP in the space of symmetric matrices. 

The interest in solving SDP efficiently is partially due to the 

fact that many important problems in combinatorics, control 

theory, pattern recognition, etc., can be formulated as SDP. 

See for example [31-33]. The SDP is a subclass of a more 

general class of nonlinear optimization problems that are 

called Conic Optimization (CO) problems. The usual 

nonnegative ortranth (x 0) , that is a standard constraint 

requirement in LP and is the simplest example of a cone, is 

replaced with more general second- order cone or 

semidefinite cone in the case of SDP. It has been shown that 

remarkably many of the theoretical features of IPM for LP 

can still be preserved and that even from a computational 

point of view IPMs are very effective on these types of 

problems [34]. An in-depth review of many interior-point 

methods can be found in the monographs [28, 34-38] to 

mention a few. 

 Many times in the history of science and mathematics, it 

turns out that a new method is actually a rediscovered old 

method. This is exactly the case with IPMs. The logarithmic 

barrier method was first introduced by Frisch [39] in 1955. 

The method of analytic centers was suggested by Huard [40] 

in 1965. Also, the affine- scaling algorithm proposed by 

Barnes [41] and Vanderbei et al. [42] as a simplified version 

of Karmarkar’s Algorithm turned out to be simply a 

rediscovery of a method developed by Dikin [43] in 1967. 

Interior-point methods were extensively studied in the 

1960’s, and the results are best summarized in the classical 

monograph by Fiacco and McCormick [44]. The monograph 

provides an in-depth analysis of Sequential Unconstrained 

Minimization Techniques (SUMT) to solve Nonlinear 

Programming problems (NLP). Thus, early IPMs were 

developed for solving NLP, not LP. However, these methods 

were soon abandoned due to the computational difficulties. It 

was shown by Lootsma [45] and Murray [46] that the 

Hessian of the logarithmic barrier function, with which the 

system needs to be solved at each iteration, becomes 

increasingly ill-conditioned when the iterates approach an 

optimal solution. These computational difficulties, coupled 

with the fact that for LP the SM performed reasonably well 

in practice, were main reasons why IPMs were not applied 

on LP. If they had been, SUMT would have been shown to 

be a polynomial method for LP as formally shown by 

Anstreicher much later [47]. 

 There are several reasons for the success of IPMs when 

they were rediscovered in 1985 following the appearance of 

Karmarkar’s seminal paper [14]. First, they were 

immediately tried on LP and good polynomial complexity 

bounds were established. Although IPMs were originally 

developed in the 1960’s [44] to solve Nonlinear 

Programming problems (NLP), recent in-depth analysis of 

IPMs for LP has opened new research directions in the study 

of IPMs for NLP as well. Secondly, at each iteration of 

IPMs, it is necessary to solve linear system that is usually to 

some extent sparse but becomes increasingly ill-conditioned 

as we approach the solution. However, the ill-conditioning in 

the LP case is less severe. Thirdly, in the past two decades, 

hardware and software have improved so much that it is now 

possible to avoid ill-conditioning and solve these sparse 

linear systems efficiently and accurately. This is due to 

advances in numerical linear algebra, in general, and in 

sparse Cholesky factorization, in particular. See [48-50] for 

details. Lastly, and most important being the fact that, the 

IPM codes which incorporated all the advances mentioned 

above have shown to be very effective on the large 

problems. They were quite comparable to SM and in many 

cases even better. Now days almost every modern 

optimization software package contains IPM version of LP 

and many of them have IPM codes for various nonlinear 

problems such as convex quadratic, semidefinite, and cone 

programming, to mention just a few. Detailed overview of 
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optimization codes sorted by specific optimization problems 

they apply to can be found on the above mentioned web site 

“Optimization Online” http://www.optimization-online.org. 

3. INTERIOR-POINT METHODS FOR LP - A 

STANDARD APPROACH 

 In this section we present a generic infeasible interior-

point algorithm for the LP problem in the form in which it is 

usually treated in research papers and monographs. 

 Consider an LP problem in the standard form: Given the 

data, vectors 
  
b R

m
, c R

n
, and matrix A R

m n
, find a 

vector x Rn
 that solves the problem: 

  

Min c
T
x

s.t. Ax = b,

x 0.

         (3.1) 

 The vector x Rn
 is called a vector of primal variables 

and the set Fp = x : Ax = b, x 0{ }  is called a primer 

feasible region. 

 The corresponding dual problem is then given by: 

  

Max bT y

s.t. AT y + s = c,

s 0.

        (3.2) 

 The vector y Rm
 is called a vector of dual variables 

and the vector s Rn
 is called a vector of dual slack 

variables. The set Fd = {(y, s) : A
T y + s = c, s 0} is called a 

dual feasible region. 

 There is a rich and well-known theory that relates primal 

and dual LP problems and their solutions with weak and 

strong duality theorems being in its core. Elements of this 

theory are usually part of introductory LP and/or OR course 

and can be found in any standard textbook on LP and/or OR. 

See for example [2, 51]. 

 Consider now a logarithmic barrier reformulation for the 

primal problem (3.1). 

  

Min c
T
x μ ln x

i

i=1

n

s.t. Ax = b,

x 0.

        (3.3) 

 Problem (3.1) and (3.3) are equivalent in the sense that 

they have the same solution sets. The Lagrange function for 

the problem (3.3) is 

L(x, y) = cT x μ ln xi yT (Ax b)
i=1

n

,      (3.4) 

from which the Karush-Kuhn-Tucker (KKT) conditions can 

be derived 

xL(x, y) = c μ X 1e AT y = 0,

yL(x, y) = b Ax = 0,

x > 0,

       (3.5) 

where X Rn n
represents a diagonal matrix with the 

components of the vector x Rn
on its diagonal, e Rn

is a 

vector of ones, and μ > 0  is a parameter. Using the 

transformation s = μ X 1e , system (3.5) becomes 

AT y + s = c,

Ax = b, x > 0,

Xs = μ e.

         (3.6) 

 The logarithmic barrier model for the dual LP problem 

(3.2) is 

  

Max bT y + μ ln s
i

i=1

n

s.t. AT y + s = c,

s 0.

        (3.7) 

 The KKT conditions for the above problem are 

xL(x, y, s) = A
T y + s c = 0,

yL(x, y, s) = b Ax = 0 = 0,

sL(x, y, s) = μ S 1e x = 0,

s > 0,

        (3.8) 

or equivalently 

AT y + s c = 0, s > 0,

b Ax = 0,

Xs = μ e.

        (3.9) 

 Combining the KKT conditions for the primal (3.6) and 

dual (3.9) barrier models we obtain primal-dual KKT 

conditions 

AT y + s c = 0, s > 0,

b Ax = 0, x > 0,

Xs = μ e.

      (3.10) 

 The above conditions are very similar to the original 

KKT conditions for LP. 

AT y + s c = 0, s 0,  Dual feasibility 

  
b Ax = 0, x 0,  Primal feasibility   (3.11) 

Xs = 0.    Complementarity 

 The only differences between (3.10) and (3.11) are strict 

positivity of the variables and perturbation of the 

complementarity equation. Although these differences seem 

minor, they are essential in devising a globally convergent 

interior-point algorithm for LP. 

 Note that the complementarity equation in (3.11) can be 

written as xT s = 0 . It is a well known fact that  
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xT s = bT y cT x  and therefore xT s  can be viewed as a 

primal-dual gap between objective functions. Hence, the 

complementarity condition in (3.11) can be interpreted as the 

condition of primal-dual gap being zero, which is simply 

another look at strong duality theorem for LP. 

 It is a well known fact that (x , y , s )  is a solution of 

problem (3.11) iff x  is a solution of the primal LP problem 

(3.1) and (y , s )  is a solution of the dual LP problem (3.2). 

 The system (3.10) can be viewed as the system 

parameterized in μ > 0 . This parameterized system has a 

unique solution for each μ > 0  if rank(A) = m . This 

solution is denoted as x(μ), y(μ), s(μ)( )  and we call x(μ)  a 

μ  - center for (3.1) and y(μ), s(μ)( )  a μ  - center for (3.2). 

The set of μ -centers gives a homotopy path, which is called 

the central path of (3.1) and (3.2) respectively. The relevance 

of the central path for LP was first recognized by Megiddo 

[20]. He showed that the limit of the central path exists when 

μ 0 . Thus, the limit point satisfies the complementarity 

equation in (3.11) and therefore is an optimal solution of 

(3.1) and (3.2). Moreover, the obtained optimal solution is a 

strictly complementary solution. A strictly complementary 

solution is defined as a pair of solutions x  and (y,* s ) , 

such that x + s > 0 . It was shown by Goldman and Tucker 

[52] that such a solution always exists for LP if primal and 

dual problems are both feasible. Moreover, Guler and Ye 

[53] showed that the supports for x*  and s  that are given 

by P = { j : x j > 0}  and Z = { j : s j > 0}  are invariant for 

all pairs of strictly complementary solutions. 

 The limiting property of the central path mentioned 

above leads naturally to the main idea of the iterative 

methods for solving (3.1) and (3.2): trace the central path 

while reducing μ  at each iteration. This is in essence just a 

more geometric interpretation of a generic barrier method to 

solve the system (3.11). More formally, the generic Barrier 

Method (BM) can be stated as follows. 

 (BM) 1. Given 
k

μ  solve system (3.10). 

   2. Decrease the value of μk  to μk+1 . 

   3. Set k = k +1  and go to step 1. 

 However, tracing the central path exactly, that is, solving 

the system (3.10) exactly or at least with very high accuracy 

would be too costly and inefficient. The main achievement 

of IPMs was to show that it is sufficient to trace the central 

path approximately and still obtain global convergence of the 

method as long as the approximate solutions of (3.10) are not 

“too far” from the central path. 

 The standard method of choice for finding an 

approximate solution of the system (3.10) in Step 1 of (BM) 

is one step of the Modified (damped) Newton’s Method 

(MNM); that is, the Newton’s Method with line search. This 

step of the MNM is formalized below. 

 (MNM) 1. Given an iterate xk , find the search  

          direction dx  by solving the linear  

          system f (xk )dx = f (xk ) . 

   2.   Find step size k . 

   3.   Update xk  to xk+1 = xk + kdx . 

 The symbol f  represents the derivative, gradient, or 

Jacobian of the function f  depending on the definition of 

the function f . 

 From system (3.10) it is easy to see that in the case of LP 

the function f  is defined as 

  

F (x, y, s) =

Ax b

AT y + s c

Xs μ e

.      (3.12) 

 Note that the original system (3.10) has been slightly 

modified by adding the scaling factor  to the last equation 

with the intention to increase the flexibility of the algorithm. 

Thus, a search direction is a solution of the Newton’s 

equation 

F (xk , yk , sk )

dx
dy
ds

= F (xk , yk , sk ) ,    (3.13) 

or equivalently, the solution of the linear system 

  

A 0 0

0 AT I

S k
0 X k

d
x

d
y

d
s

=

b Axk

c sk AT yk

X k sk
+ μ

k
e

=

r
P

k

r
D

k

X k sk
+ μ

k
e

,   (3.14) 

where rP
k

 and rD
k

 are called primal and dual residuals. 

 The choice of a step size k  in Step 2 of MNM is the key 

to proving good global convergence of the method. The 

statement that approximate solutions of (3.10), or, as they are 

called, iterates of BM, should not be “too far” from the 

central path is formalized by introducing the horn 

neighborhood of the central path. The horn neighborhoods of 

the central path can be defined using different norms 

  
N

2
( ) = (x, s) : Xs μ e

2
μ{ } ,     (3.15) 

  
N ( ) = (x, s) : Xs μ e μ{ } ,     (3.16) 

or even a pseudonorm 

  
N ( ) = (x, s) : Xs μ e μ{ } = (x, s): Xs (1 )μ{ } ,  (3.17) 

where z = z and (z ) j = min z j , 0{ } . These 

neighborhoods have the following inclusion relations among 

them: 

N2 ( ) N ( ) N ( ) .     (3.18) 
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 The step size is chosen in such a way that iterates stay in 

the one of the above horn neighborhoods 

  k
= max : X ( )s( ) μ( )e μ( ), [0, ]{ } ,   (3.19) 

where 

  
x( ) = x

k
+ d

x
, s( ) = s

k
+ d

s
,  μ( ) =

xT ( )s( )

n
.    (3.20) 

 Although general Newton’s Method (NM) is not 

necessarily globally convergent, by using the above 

technique, global convergence is guaranteed. Moreover, fast 

local convergence (quadratic or at least superlinear) is 

preserved. Now, the first step of the barrier algorithm BM 

can be completed by calculating the new iterates 

  
xk+1

= xk
+

k
d

x
, yk+1

= yk
+

k
d

y
, sk+1

= sk
+

k
d

s
.    (3.21) 

 The second step of BM is the calculation of μk+1  using 

the last equation in (3.20). It can be shown that the 

sequence {μk} is decreasing at least at a constant rate which 

is the key to proving that the global convergence of the 

method is polynomial in the number of variables and chosen 

accuracy. Finally, let us mention again that BM is an 

iterative algorithm. An iterate (xk , yk , sk )  is an - 

approximate optimal solution if 

Axk b P , AT yk + sk c D , (x
k )T sk G    (3.22) 

for a given ( P , D , G ) > 0 . 

 The Interior-Point Algorithm can now be summarized as 

follows. 

Algorithm (IPM) 

Initialization 

1. Choose , (0,1)  and ( P , D , G ) > 0 . Choose 

(x0 , y0 , s0 )  such that (x0 , s0 ) > 0  and 

X 0s0 μ0 e μ0  where μ0 =
(x0 )T s0

n
. 

2. Set k = 0 . 

Step 

3. Set  rP
k
= b Axk , rD

k
= c AT yk sk , μk =

(xk )T sk

n
. 

4. Check the termination. If 

rP
k

P , rD
k

D , (x
k )T sk G , then terminate. 

5. Compute the direction by solving the system 

A 0 0

0 AT I

Sk 0 Xk

dx
dy
ds

=

rP
k

rD
k

X ksk + μke

. 

6. Compute the step size 

k = max : X( )s( ) μ( )e μ( ), [0, ]{ } , 

where x( ) = xk + dx , s( ) = sk + ds , 

μ( ) =
xT ( )s( )

n
. 

7. Update xk+1 = xk + kdx ,  yk+1 = yk + kdy , s
k+1

= sk + kds .  

8. Set k = k +1  and go to step 3. 

 The graphical representation of the IPM algorithm is 

given in Fig. (1). 

 
Fig. (1). 

 The above algorithm has favorable convergence 

properties. For certain choice of the parameters and using the 

neighborhood N2 ( ) , the following convergence results can 

be obtained. 

• Global convergence: The algorithm IPM will 

achieve an approximate optimal solution in 

O n log1( )  iterations, where = min P , D , G{ } . 

• Local convergence: For a sufficiently large k  there 

exists a constant > 0  such that 

xi
k+1si

k+1 (xi
k si

k )2 , i = 1, ...,n.  

 There are many modifications and variations of this 

algorithm. In fact this algorithm represents a broad class of 

algorithms. For example, as we already mentioned, we can 

consider different neighborhoods of the central path. 

Because of the relation (3.18), if N2 ( )  is used, IPM is 

called a short-step algorithm, and if N ( ) or N ( )  is 

selected, IPM is called a long-step algorithm. Unfortunately, 

the price to pay for taking bigger steps in a long-step 

algorithm is worse global convergence, that is, algorithm 

needs O n log1( )  to achieve an approximate optimal 

solution. However, the practical performance of long-step 

algorithms seems to be better than the short-step algorithms. 

Details of the similar IPMs and the proofs of the 

convergence results can be found in [38, 54-58] and many 

other papers and monographs. 

 The IPMs are iterative algorithms which produce only an 

-approximate optimal solution of the problem. However, 

as in the case of the Ellipsoid and Karmarkar’s algorithms, it 
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can be shown that if the input data are rational numbers, the 

IPM finds the exact solution of LP in O n L( )  iterations 

proving that this is the algorithm with the best known 

polynomial iteration complexity. Nevertheless, this can still 

correspond to very large number of iterations. However, it 

may be possible to perform far less iteration and still be able 

to recover the exact optimal solution of the problem. This 

procedure is called Finite Termination procedure [59]. The 

main idea of the method is to perform orthogonal projection 

of an iterate to the optimal set when the iterate is “near” the 

optimal set (there are several different criteria how to 

determine when the iterate is “near” the optimal set.). 

Another interesting fact is that in the case when LP problem 

has infinitely many optimal solutions, IPMs tend to find an 

exact optimal solution that is in the “center” of the optimal 

set as opposed to the SM that finds the “corner” (vertex) of 

the optimal set. However, it is possible to recover a vertex 

optimal solution as well. Procedures of this type are called 

Cross-over procedures. Finite Termination and Cross-over 

procedures transform IPMs for LP to theoretically finite 

algorithms that are practically, even efficiently, computable. 

For many problems in practice, an -approximate optimal 

solution is sufficient, but there are applications where an 

exact solution is needed. 

 Note that in the IPM only one step of the Modified 

Newton Method (MNM) was used to find an approximate 

solution of system (3.10). However, more steps of the MNM 

can be performed in each iteration in order to achieve better 

approximation. The IPM is then called a higher-order 

algorithm. If only one additional step per iteration is 

performed, the algorithm is called a predictor-corrector 

algorithm. Surprisingly enough, global convergence of this 

new algorithm remainsO n log1( ) , and fast local 

convergence is preserved. In addition, predictor-corrector 

algorithms show the best practical performance and therefore 

are implemented in almost all modern interior-point codes. 

See [48, 60]. 

 Note that the above IPM is an “infeasible” algorithm; that 

is, a starting point is not required to be feasible. This is in 

contrast to SM that requires an initial basic feasible solution 

(Big-M method, Two-phase method). At the beginnings of 

the development of IPMs the feasibility was also required 

and original LP problem was embedded into the larger LP 

problem with nonempty interior of the feasible region. In this 

case, system (3.14) has to be modified to 

A 0 0

0 AT I

Sk 0 Xk

dx
dy
ds

=

0

0

Xksk + μke

.    (3.23) 

 Hence the name: interior-point algorithms. 

 The IPM is also a path-following algorithm since iterates 

are required to stay in the horn neighborhood of the central 

path. These algorithms are designed to reduce the primal-

dual gap ( μ ) directly in each iteration. There is another 

group of interior-point algorithms that are designed to reduce 

the primal-dual gap ( μ ) indirectly in each iteration. These 

algorithms directly reduce a potential function that is 

reduced by a constant in each iteration. That is why they are 

called potential-reduction algorithms. Iterates of these 

algorithms do not necessarily stay in the horn neighborhood 

of the central path. In this paper, the generic potential-

reduction algorithm will not be discussed in detail. For in 

depth analysis, the reader is referred to [38]. We only 

mention the most popular potential function, a Tanabe-Todd-

Ye primal-dual potential function 

(x, s) = log xT s log xisi
i=1

n

,      (3.24) 

where > n . Using this function, Ye [55] developed the 

potential-reduction algorithm with O n log1( )  

complexity, matching the best result obtained for path-

following algorithms. Karmarkar’s Algorithm is also a 

variant of the potential-reduction algorithm with the primal 

potential function 

(x) = log(cT x Z ) log xi
i=1

n

,     (3.25) 

where = n +1  and Z  is a lower bound on the optimal 

objective value. 

 Finally, choices of barrier functions other than the 

logarithmic barrier function (3.3) used in this section are also 

possible. It can be shown that the favorable global and local 

convergence results obtained for logarithmic barrier function 

can be preserved for the large class of different barrier 

functions [61, 62]. 

4. INTERIOR-POINT METHODS FOR LP - A 
SIMPLIFIED APPROACH 

 As we have seen, a standard approach to IPMs involves a 

lot of background knowledge on advanced topics that are 

standard in a Nonlinear Programming course, including 

Lagrange function, KKT conditions, and penalty and barrier 

methods. Most of the senior undergraduate students and 

first-year graduate students, specially the ones whose major 

is not mathematics, do not have such a background and it 

would take them a long time and effort to acquire it. In this 

section, we discuss the ways to simplify the introduction of 

IPMs to a level appropriate for such students, while keeping 

as much generality, motivation and precision as we can in 

understanding of the theoretical foundations of these 

methods. It is also important to compare the IPMs with the 

SM. The students who have had a calculus sequence and a 

basic linear algebra course should not have problems 

following the material. 

 The summary of the suggestions is as follows. 

• Avoid explicit introduction of the Lagrange function 

and KKT conditions. 

• Avoid explicit introduction of barrier models and 

methods. 
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• Keep the Newton’s Method, with the following 

restrictions: 

• Change the calculation of a step size by avoiding 

introduction of neighborhoods of a central path. 

• Simplify the calculation of a search direction 

(normal equations). 

 Each of these suggestions will be explained in details in 

the subsequent subsections. 

Avoid Explicit Introduction of KKT Conditions 

 The KKT conditions for LP problems can be obtained 

using weak and strong duality theorems which are included 

in the content of standard LP and/or OR course. Using these 

theorems we get 

  
A

T
y + s c = 0, s 0,  Primal feasibility 

  
b Ax = 0, x 0,  Dual feasibility     (4.1) 

  
cT x bT y = 0.   Primal-dual gap 

 The only difference between the above system and the 

KKT conditions for LP problems is the primal-dual gap 

equation. However, it is an easy exercise to show that 

0 = cT x bT y = xT s .       (4.2) 

also 

  

x
T
s = 0 x

i
s

i
= 0, i = 1,..., n

Xs = 0.
      (4.3) 

 The last equation in (4.3) is the form of complementarity 

slackness that is used mostly in IPMs. Now we have a 

complete equivalence with KKT conditions for LP problems. 

  

AT y + s c = 0, s 0,

b Ax = 0, x 0,

Xs = 0.

        (4.4) 

Avoid Explicit Introduction of Barrier Method 

 The primal – dual KKT conditions (3.10), that are 

repeated below, were developed using barrier reformulation 

of the original problem. 

AT y + s c = 0, s > 0,

b Ax = 0, x > 0,

Xs = μ e.

 

 We would like to avoid introduction of barrier methods. 

The question becomes how to justify the need for the 

perturbation in the last equation of KKT conditions for LP 

(4.1) (primal-dual gap equation or equivalently 

complementarity slackness equation) and the strict positivity 

of x  and s  which is essential in the introduction and 

development of IPMs? A suggested answer is as follows. 

 Suppose we apply the NM directly to system (4.1) above. 

In particular, the application of the NM to the last equation 

leads to: 

Sdx + Xds = Xs ,        (4.5) 

or equivalently: 

si (dx )i + xi (ds )i = xisi , i = 1, ...,n.  

 If xi = 0  and si > 0  for some index i , then the 

immediate consequence of the above equation is (dx )i = 0  

and the update is xi
+
= xi + (dx )i = 0 .      (4.6) 

 Thus, once the component becomes 0, it stays 0 forever. 

The iteration sequence may get “stuck” at the wrong face of 

R
+

n
 and never converge to the solution. 

 To avoid this “trapping” phenomenon we perturb the 

complementary equation to obtain: 

Xs = μ e, μ > 0 .        (4.7) 

 This approach is very intuitive and gives a sufficient 

justification to students for the perturbation (4.7) and 

positivity of x  and s . 

Keep the Newton’s Method 

 The Newton’s Method (NM) is an essential component 

of the IPM. In general, students are familiar with NM in one 

dimension from the Calculus sequence. The extension to the 

higher dimension case is not too difficult. In addition, the 

NM is an important part of any advanced optimization 

course such as Nonlinear Programming, and introducing it 

here will better prepare students who wish to take such a 

course. 

 The objection may be made that the use of the NM 

requires the solving of a much larger system than when we 

use a SM which is given by: 

  

A 0 0

0 AT I

S k
0 X k

d
x

d
y

d
s

=

r
P

k

r
D

k

X k sk
+ μ

k
e

.       (4.8) 

 This is actually not true because the above system can be 

significantly reduced by eliminating ds  and dx . The 

resulting system is 

Mdy = r ,         (4.9) 

where 

M = A(Sk ) 1XkAT ,

r = b + A(Sk ) 1(XkrD
k μk e).

     (4.10) 

 The size of the system that leads to the solution of dy  is 

comparable to the size of the system that we have when we 

use SM. Since ds  and dx  can be obtained from the 

backward substitutions:  

ds = rd
k AT dy ,

dx = xk + (Sk ) 1( μk e X kds ),
     (4.11) 

the numbers of computations per iteration in IPM and SM 

are comparable. 
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 Equations for dy , ds  and dx  are known as normal 

equation and are central in implementation of IPMs. 

However, they sometime get neglected in the derivation of 

IPMs. It is important to explain them clearly to students 

since the normal equations are the main reason why IPMs 

are comparable in efficiency to SM. This is also an 

appropriate place to mention the importance of numerical 

linear algebra. It should be pointed out to students that 

solving the system Mdy = r  computationally is the most 

expensive part of the IPM. In addition, as the algorithm 

progresses, the matrix M  becomes increasingly ill-

conditioned. However, the advancement of modern 

numerical linear algebra makes it possible to effectively 

solve such systems.  

 Students should also be made aware of how different 

fields are interconnected and how they initiate each other’s 

development. Thus, mathematics is a “living body” and not a 

dead science. A little venture to history is also possible by 

pointing out that inability of “old” numerical linear algebra 

to handle ill-conditioning was a prime reason why IPMs 

were abandoned when they were first discovered in the 

1950’s and 1960’s and are a “driving force” for new research 

in numerical linear algebra. 

Change the Calculation of the Step Size 

 The choice of the step-size, which is the consequence of 

the central path and neighborhoods of the central path, is 

essential in proving good convergence properties of IPMs. 

Convergence results are the main contribution of new IPMs. 

However, they are beyond the level usually required for 

students in introductory OR and/or LP courses. We think 

they should be omitted, along with concepts associated with 

them. Cycling and convergence results of SM are also not a 

standard part of introductory OR and/or LP course. 

 Consequently, the calculation of the step size as specified 

in the IPM may be relaxed. The suggestion is to replace it 

with a procedure similar to the minimal ratio test in SM. This 

choice of the step size does not guarantee convergence but it 

usually works well in practice. 

 The step size is chosen so that the positivity of x  and s  

are preserved when updated. As in SM, max  is a maximum 

possible step size until one of the variables becomes 0. 

Hence, 

max
= max 0 : xk + dx 0, sk + ds 0{ } .   (4.12) 

 In practice max  is calculated as follows: 

  

P

max
= min

x
i

(d
x
)

i

: (d
x

)
i
< 0, i = 1,..., n ,

D

max
= min

s
i

(d
s
)

i

: (d
s
)

i
< 0, i = 1,..., n ,

max
= min

P

max ,
D

max{ } ,

   (4.13) 

which is similar to a ratio test for SM. Since we do not allow 

any of the variables to be 0, we take 

k = min 1, max{ } ,      (4.14) 

where (0,1) . The usual choice of  is = 0.9  or 

= 0.95 . 

 Again, it is important to convey to students that this 

choice of the step size does not guarantee convergence, but it 

usually works well in practice and it is very similar to the 

ratio test in SM. Also, it would be advisable to mention 

briefly to students the role of the step size in proving the 

convergence results of IPM. 

 The following simplified IPM summarizes the 

simplifications discussed in the previous subsections. 

Algorithm (Simplified IPM) 

Initialization 

1. Choose , (0,1)  and > 0 . Choose (x0 , y0 , s0 )  

such that x0 = s0 = e  and y0 = 0 . 

2. Set k = 0 . 

Step 

3. Set rP
k
= b Axk , rD

k
= c AT yk sk , μk =

(xk )T sk

n
. 

4. Check the termination. If 

rP
k , rD

k , (xk )T sk , then terminate. 

5. Compute the direction by using (4.9) – (4.11). 

6. Compute the step size by using (4.12) – (4.14). 

7. Update xk+1 = xk + kdx ,  yk+1 = yk + kdy ,  

sk+1 = sk + kds .  

8. Set k = k +1  and go to step 3. 

5. EXAMPLES 

 The experiences in using the above simplified approach 

in introductory OR and/or LP courses have been very 

positive. Projects have been given to students to implement 

the IPM in a simplified form. MATLAB was the language of 

choice for most students; however some students used Excel, 

since they have used spreadsheets in several other courses. 

These projects were an excellent opportunity to discuss 

different features of the IPM, and its similarities and 

differences to the SM. Some examples that are taken mainly 

from Introduction to Operations Research by Hillier and 

Lieberman [51] are listed below. 

 Fig. (2) shows the first few iterations of a MATLAB 

implementation of the problem 

Max x1 + 2x2
s.t. x1 2.3

2x1 + 2x2 10

4x1 + x2 10

4x1 + 2x2 12

x1 + 2.2x2 10

x1 0, x2 0
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Fig. (2). 

 Fig. (3) below shows first few iterations of the Excel 

implementation of the above problem. 

 The “detour” in the path of iterations in the Fig. (2) is due 

to matrix M becoming increasingly ill-conditioned, and not 

surprisingly, Excel was less suitable to handle the problem 

than MATLAB. This is also a good example to show what 

problems may occur when we relax the calculation of the 

step-size. 

 

Fig. (3). 

 An important feature of the interior-point methods that 

distinguish them from Simplex-type methods is that in the 

case of infinitely many optimal solutions they converge to 

the center of the optimal set rather than to the vertex. This is 

illustrated in Fig. (4) below that shows a MATLAB 

implementation of very simple example with infinitely many 

optimal solutions. 

Max 2x1 + 2x2
s.t. x1 + x2 3

x1 0, x2 0

 

 It is important to illustrate that the simplified version of 

the IPM is an infeasible algorithm; that is, it is not required 

that the method start from a point in the feasible region.  

Fig. (5) below shows the first few iterations of a MATLAB 

implementation of the problem 

 

Fig. (4). 

Max 3x1 + 5x2
s.t. x1 4

2x2 12

3x1 + 2x2 18

x1 0, x2 0

 

with infeasible initial starting point. 

 

Fig. (5). 

 Many other variations and modifications can be easily 

discussed as well. Examples include how the change of 

parameters influences the method, and how the change of 

tolerance reflects on the number of iterations. In addition, 

one interesting direction of modifying this basic simplified 

version of IPM would be to incorporate Mehrota’s predictor-

corrector approach [60], which we briefly discussed at the 

end of Section 3. The main idea is that two steps of the 

Modified Newton’s Method be taken per iteration instead of 

one. Then we can further compare these two approaches. 
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6. CONCLUSION 

 In this paper we have tried to show one way of 

introducing IPMs for the introductory LP and/or OR courses 

as well as other courses that contain LP as a part of their 

content. The basic idea is to put the emphasis on the NM 

while avoiding more advanced topics such as the Lagrange 

functions, KKT conditions, barrier methods, and proofs of 

convergence results. Several advantages of introducing IPMs 

are listed below. 

 Often students in introductory OR and/or LP courses 

think of Simplex-type methods as the only way to solve LP 

problems. Introduction of IPMs shows that LP problems can 

be solved using algorithms with quite a different approach 

than the approach on which the SM was based. It also shows 

students that their knowledge of calculus can be useful in a 

place where they do not expect it. In addition, students 

certainly benefit from seeing an important problem such as 

the LP problem solved in two different ways. It opens 

numerous possibilities for comparison of the two methods, 

some of which were outlined in the previous sections. 

 With introduction of IPMs, the classical distinction 

between linear programming methods, based on the SM and 

methods of nonlinear programming, many of which are 

based on NM, has largely disappeared. This opens up 

possibilities for a more unifying approach to the large class 

of optimization problems. In that sense, introduction of IPMs 

into introductory OR and/or LP courses serves as a good 

base for students who wish to proceed by studying Nonlinear 

Programming and/or more advanced topics of IPMs. 

 Last, but not least, important is the fact that many, if not 

the majority, of modern commercial and educational codes 

for LP contain efficient IPM solvers. Computational 

experiences in recent years have shown that they are often 

more efficient than SM solvers, especially for large-scale 

problems. Introducing IPMs will help students to better 

understand and use these modern optimization codes. 
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