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When using multiple regression, researchers frequently wish to explore how the

relationship between two variables is moderated by another variable; this is termed

an interaction. Historically, two approaches have been used to probe interactions:

the pick-a-point approach and the Johnson-Neyman (JN) technique. The pick-a-point

approach has limitations that can be avoided using the JN technique. Currently, the

software available for implementing the JN technique and creating corresponding figures

lacks several desirable features–most notably, ease of use and figure quality. To fill

this gap in the literature, we offer a free Microsoft Excel 2013 workbook, CAHOST (a

concatenation of the first two letters of the authors’ last names), that allows the user to

seamlessly create publication-ready figures of the results of the JN technique.

Keywords: moderation, johnson-neyman, interactions, probing interactions, multiple regression

1. INTRODUCTION

When a researcher seeks to quantify the linear effect an explanatory variable, X, has on a response
variable, Y , the size of that effect may depend on a second explanatory variable,M. For example, a
person’s blood alcohol content is influenced by the amount of alcohol that person has ingested, but
the size of this influence depends on, among other things, the body mass of that person. In such
a situation, the two explanatory variables are said to “interact” in their influence on the response
variable. Taking the view that X is the primary variable of interest or the “focal predictor,” the other
explanatory variableM is the “moderator.” Thus, the study of how the explanatory variables interact
is often called moderation analysis (Cohen et al., 2003; Hayes, 2013b). One of the tools used in
moderation analysis is the Johnson-Neyman (JN) technique.

This article describes CAHOST (a concatenation of the first two letters of the authors’ last
names), an implementation of the JN technique in aMicrosoft Excel 2013macro-enabled workbook
(.xlsm) which produces high-quality publication-ready graphics, requires no programming
capabilities, and limits error in data entry (e.g., entering coefficients). The target audience is
researchers without programming experience who wish to probe interactions. Version 1.0 of the
workbook may be found in the Supplementary Material accompanying this article, and future
releases may be found at https://sites.google.com/a/georgiasouthern.edu/stephen-carden/research.
The following sections will describe the JN technique, the underlying mathematics, detail how the
workbook operates on a sheet-per-sheet basis, present a brief example, and conclude.
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2. THE JOHNSON-NEYMAN TECHNIQUE

The simplest procedure for investigating the signficance of an
interaction is the “pick-a-point” (Rogosa, 1980), or “simple
slopes” (Aiken and West, 1991) method in which a few values
of the moderator are chosen to be fixed, and the significance of
X’s effect is investigated at those points with a hypothesis test
or by constructing a confidence interval. Although easy to carry
out, the drawbacks of this method include the values chosen
for the moderator being essentially arbitrary, and only yielding
information for those arbitrary points.

When the moderator M is continuous, a more complete
approach is the JN technique (Johnson and Neyman, 1936).
Rather than testing for significance at fixed values of M, the JN
technique works backwards and solves for the values of M for
which the effect of X on Y becomes or ceases to be significant.
A slight generalization (Bauer and Curran, 2005) can express, as
a function of M, the lower and upper bounds for the confidence
bands estimating the effect of X on Y . A graph of the confidence
bands makes it easy to see for which values of the moderator
the effect of the focal predictor on the response is significant.
Where the “pick-a-point” method can be thought of as a local
“spotlight”method, the JN technique can be thought of as a global
“floodlight” method (Spiller et al., 2013).

Implementing the JN technique is possible if one has a
software programming background (e.g., in R or SAS). Our goal
is to make the JN technique more widely accessible to those
who do not have any programming experience. Additionally,
our solution is streamlined in the sense that there is only a
single step between the user inputting the data and the creation
of a publication-ready graphic. There do exist a handful of
ready-made solutions for implementing JN, but they suffer from
one of several drawbacks. First, the highest-quality existing
implementations are for software solutions requiring expensive
licenses. The best known is the PROCESS add-on (Hayes, 2013b)
for SAS and SPSS. There are a few problems with this. First,
some researchers do not have access to SAS or SPSS, which
are prohibitively expensive. Second, in the SPSS variety, the JN
graphical output requires “considerable editing” (Hayes, 2013b,
p. 242). To be sure, there are free solutions, but they suffer from
at least one of the following drawbacks: the graphics are of bad
quality, the process is not streamlined in that it requires the
user to complete the linear regression and creation of the JN
figure separately, or the user experience is intimidating to those
without programming experience. For example, the probemod
package (Tan, 2015) for R produces a graphic that would require
considerable editing before being suitable for publication, and the
linear regression must be completed separately beforehand, so
the process is not as streamlined as it could be. The “rockchalk”
package (Johnson, 2016) produces a higher-quality graphic, but
still requires the linear regression to be completed beforehand.
Last but not least, Kristopher Preacher maintains the website
www.quantpsy.org (Preacher et al., 2006) that allows one to run
the JN technique. However, the user must manually enter the
coefficients, coefficient variances, and so forth. As these must
come from a software program, such as SPSS, one must toggle
between software and website. Thus, it is not as seamless as it

could be, and it may be prone to error when users enter their
coefficients. Additionally, the site produces figures that are not
publication-ready. CAHOST, our workbook for implementing
JN, is freely available, familiar to researchers of all levels,
automates the linear regression, and produces publication-ready
graphics.

3. MATHEMATICS

This section derives the mathematical expressions used in the JN
technique. See Bauer and Curran (2005) for additional details.
The model for a multiplicative interaction effect takes the form

Yi = γ0 + γ1Xi + γ2Mi + γ3XiMi + ǫi, (1)

where Yi are the response values,Xi are the focal predictor values,
Mi are the moderator values, the γ ’s are regression weights, and ǫ

represents a normally distributed random error term with zero
mean. By symmetry one can see that the X and M variables
could be interchanged; thus the labeling of focal predictor and
moderator is mathematically arbitrary and relates only to the
researcher’s questions of interest. Given a set of data, the γ ’s may
be estimated by the method of least squares. These estimates will
be denoted by γ̂ ’s, resulting in the prediction equation

Ŷ = γ̂0 + γ̂1X + γ̂2M + γ̂3XM.

Given the treatment of X as the focal predictor, the prediction
equation can be rearranged to

Ŷ = (γ̂0 + γ̂2M)+ (γ̂1 + γ̂3M)X.

By setting

ω̂0(M) = γ̂0 + γ̂2M

ω̂1(M) = γ̂1 + γ̂3M (2)

the prediction equation can be expressed compactly as

Ŷ = ω̂0(M)+ ω̂1(M)X.

This form reinforces the perspective that Y is a linear function of
X1, but with an intercept and slope that depend on the moderator
M. To perform a t-test for significance of ω̂1, we need to estimate
its standard error. For a fixed value of M, elementary properties
of variance yield the standard error of ω̂1,

SEω̂1(M) =
√

Var(γ̂1)+ 2MCov(γ̂1, γ̂3)+M2Var(γ̂3).

Then at any fixed value ofM, the test statistic

t = ω̂1(M)

SEω̂1(M)
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can be calculated and compared against the critical values tα/2

for confidence level α from a t distribution. This is the “pick-a-
point” method. Although this procedure can determine whether
the slope of X is significant at individual values of M, more
information can be gained by finding the regions of significance
by setting the expression equal to the critical value from a
t distribution and solving for the moderator. Notice that the
solutions are only meaningful if they are possible values of the
moderator, thus the JN technique requires the moderator to be
continuous. Solving for the moderator results in a quadratic
equation of the usual form with solutionsm∗,m∗∗ obtained from

m∗,m∗∗ = −b±
√
b2 − 4ac

2a

where

a = t2α/2Var
(

γ̂3
)

− γ̂ 2
3 ,

b = 2t2α/2Cov(γ̂1, γ̂3)− 2γ̂1γ̂3, (3)

c = t2α/2Var(γ̂1)− γ̂ 2
1 .

By default, CAHOST uses the critical value corresponding to a
5% level of significance, or equivalently, a 95% confidence level.
There are six distinct possibilities that may arise when the roots of
the quadratic are found. These six possibilities can be organized
into three cases of two similar sub-cases.

• The first pair of possibilities occurs when two real roots are
produced, but only one, call it m∗, is within the range of
measurements of M. Then the first possibility occurs when
the effect of X on Y is significant when M ≤ m∗. This
is case 1, shown in Figure 1. In this graphic, the horizontal
axis represents the values of the moderator within three
standard deviations of the mean. On the vertical axis are the
corresponding values of the simple slope relating X to Y as
calculated in Equation (2), along with confidence bands and
the confidence region shaded a light gray. For any values
of the moderator for which the confidence bands contain
zero, the effect of X on Y is not significantly different from
zero. Likewise, for any values of the moderator for which the
confidence bands do not contain zero, the effect of X on Y is
significantly different from zero. The confidence band crosses
zero at m∗ = −1.79 in Figure 1, with a thin vertical line
marking the boundary between regions of significance and
non-significance.

The second possibility occurs when the effect of X on
Y is significant when M ≥ m∗. The graph for this case,
Figure 2, is similar to Figure 1 with the difference being that
the significance region will be on the right-hand side of m∗

rather than the left.
• The next pair of possibilities occurs when two real roots m∗

and m∗∗ are produced, and both are within the range of
measurements of M. One sub-case occurs when the effect of
X on Y is significant when m∗ ≤ M ≤ m∗∗ (This is case 3
shown in Figure 3), and the other occurs when the effect of X

FIGURE 1 | Case 1. At a 95% confidence level, the effect of X on Y is

significant when M ≤ m*, where m* = −1.79.

on Y is significant whenM ≤ m∗ andM ≥ m∗∗ (This is case 4
shown in Figure 4).

• The last pair of possibilities occurs when two real roots are
produced but neither is within the range of measurements of
M, or when two complex roots are produced. If the roots are
real, then the effect of X on Y is significant for the entire range
of measurements ofM (This is case 5 shown in Figure 5). If the
roots are complex, then the effect of X on Y is not significant
anywhere in the range of measurements of M (This is case 6
shown in Figure 6).

Before calculating the roots of the quadratic, consideration
should be given to the variance of the error terms. The standard
assumption when calculating thematrix containing the estimated
variances and covariances of the γ̂i terms is that the random error
terms in Equation (1) are homoskedastic; that is, they have equal
variance. If they are actually heteroskedastic and have unequal
variances, this introduces inaccuracies in Type I error rates,
statistical power, and bounds on confidence intervals. There
are several methods for estimating the covariance matrix under
heteroskedasticity, and Hayes and Cai (2007) discuss several
along with advantages and disadvantages for each. The one we
will use is commonly referred to asHC3 (MacKinnon andWhite,
1985). Letting X denote the data matrix (including a column of
ones for the intercept),HC3 is defined by

HC3 = (X⊤X)−1X⊤diag

(

e2i
(1− hii)2

)

X(X⊤X)−1 (4)

where ei are the residuals and hii are the diagonal entries of the
“hat” matrix X(X⊤X)−1X⊤. The variances and covariances in
Equation (3) are obtained fromHC3.
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FIGURE 2 | Case 2. At a 95% confidence level, the effect of X on Y is

significant when M ≥ m∗.

FIGURE 3 | Case 3. At a 95% confidence level, the effect of X on Y is

significant when m∗ ≤ M ≤ m∗∗.

4. IMPLEMENTATION

CAHOST is written in Microsoft Excel 2013, version
15.0.4911.1000. The workbook consists of 6 sheets. In line
with our goal of making the end product as accessible and simple
to use as possible, then in the absence of problems with the data,
the user needs to interact with the workbook in only two places.
Much of the content of these 6 sheets contains information for
advanced users and can be skipped by the typical user. The role
of each sheet will be described in the following.

The first sheet is titled “1. Read Me” and gives instructions for
each subsequent sheet, along with a few bibliographic pointers
and acknowledgments. No user input is required.

The second sheet is titled “2. Enter Raw Data.” In cell C4,
the user can set the desired significance level, α, to be used. By

FIGURE 4 | Case 4. At a 95% confidence level, the effect of X on Y is

significant when M ≤ m∗ and M ≥ m∗∗.

FIGURE 5 | Case 5. At a 95% confidence level, the effect of X on Y is

significant for the entire range of measurements of M.

default, it is set to 5%, corresponding to a 95% confidence level.
Below that, in cells C5 through C7, the user may enter names for
the variables, which will automatically be incorporated into figure
labels in the output sheet. The data for Y , X, and M is placed
in columns B, C, and D, respectively. The sheet can accept up
to 1,000 observations of each variable. On the right-hand side of
this sheet is storage space and example data sets with which the
user can experiment and test the capabilities of the workbook.
The seven example data sets that come with the workbook are
the ones used to create the figures in this article.

The third sheet is titled “3. HC3.” This is where most of the
data manipulation and matrix calculations occur. No user input
is required on this sheet. The processing of the data will be
described on an item-per-item basis below.
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FIGURE 6 | Case 6. At a 95% confidence level, the effect of X on Y is not

significant anywhere in the range of measurements of M.

• Columns B through E import the data from the previous sheet,
determine the number of observations, and check that there
are no missing data.

• Columns H through K lay out the observations for which
no variable values are missing, add the intercept term, and
calculate the interaction term. These columns constitute the
data matrix, X.

• Columns M through AI carry out the ordinary least squares
calculations. Specifically: Columns M through P calculate
(X⊤X)−1. Columns R and S display regression coefficient
estimates. Columns W and X list predicted values and
residuals. Columns AA through AC display the SSE, associated
degrees of freedom, and MSE summaries. Columns AE
through AI display the estimated covariance matrix for the
regression coefficient estimates. Note that this covariance
matrix is not used in further calculations because HC3,
the heteroskedasticity-consistent covariance estimator, will be
used. It is displayed for the benefit of advanced users.

• Columns AK through BZW carry out the calculations for
HC3. The “hat” matrix H = X(X⊤X)−1X⊤ is in columns AK
through AMV. The diagonals from this matrix, often termed
the leverage values, represent the potential influence the
corresponding response value has on fitted values. Leverage
values equal to one result in an undefined HC3 matrix; thus,
the diagonals are listed below the matrix on row 1010 to
aid in error-checking. Columns AMX through ANC calculate
the values necessary for the diagonal matrix in the HC3
calculation, and columns ANE through BZQ construct that
diagonal matrix. Finally, HC3 is calculated and displayed in
columns BZS through BZV.

The fourth sheet, titled “4. Error Check,” informs the user if the
previous sheet encountered any potential problems with the data.

• The first check is to ensure that no observation had missing
values for Y , X, orM. The box is green if all values are present,

and red if any are missing. This is most likely due to user error
in inputting values, or copying and pasting from a source that
includes observations with missing values. The user should
check the data entered into sheet 2.

• The second check examines the determinant of (X⊤X)−1. If
this value is a non-zero numerical value, the box is green. If the
value is 0 or an error is returned, the box is red. This means the
data matrix is not full rank, and usually happens when there is
not enough variability in the observations. The user must add
enough observations to make the data matrix full rank, or the
JN technique cannot be completed.

• The third check looks at the maximum diagonal entry of
the hat matrix. If the maximum is less than one, this box
is green. If the maximum is one, the box is red, indicating
that HC3 is undefined. This means that some observation
has too much leverage, and HC3 cannot be calculated.
This is a rare occurance, and if encountered, the user is
encouraged to consult with a statistician as to whether the
high-leverage observation can be dropped. Otherwise, the user
is recommended to use an implementation of JN which does
not use HC3 for covariance estimates.

• The fourth check looks at the variance and covariance of
the regression coefficients used in the construction of the JN
figure. If none of the key values are zero, the box is green. If
any of the key values are zero, the box is red. While the figure
is still created, no confidence bands appear due to the lack of
variability in the estimates. If this occurs, it could be that the
data represents a deterministic process with no variability, but
it is more likely that the data set is very small and has not yet
captured the variability present in the process.

The last two sheets contain the output. The fifth sheet is titled
“5. JN Figure.” Columns A through C contain a summary of the
matrix and regression calculations from the third sheet. Columns
D through P contain calculations used in the creation of the
figure. These columns can be ignored by the user. ColumnsQ and
R contain calculations for setting the axes and scale of the figure.
Below these calculations is a “Create Figure” button. When the
user clicks this button with the figure highlighted, a Visual Basic
macro will run and create or update the figure.

Sheet six, “6. Simple Slopes,” constructs a figure using the
“simple-slopes” technique mentioned in the introduction. This
figure first considers low values of the moderator M by setting
it to be one standard deviation below the mean. With M
temporarily fixed, the value of Y is predicted at low and high
values of the focal predictor variable X. The exact values of
the focal predictor depend on the values present for X. In cells
B24 and B25, a calculation determines if the values of X are
dichotomous. If so, the low and high values are set to be the two
distinct values that X can take. If X is not dichotomous, then it
is treated as continuous, and the low and high values are set to
be one standard deviation below and above the mean. With X on
the horizontal axis and Y on the vertical axis, the two predicted
values of Y are plotted and connected with a solid straight line.
The slope of this line represents the effect of X on Y when M
is below average. This process is repeated with M set to one
standard deviation above its mean, plotted with a dashed line.
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TABLE 1 | Regression summary relating liking to protesting, sexism, and their

interaction.

Variable Role Regression coefficient

Liking Response −
− Intercept 7.7062

Protest Focal predictor −3.7727

Sexism Moderator −0.4725

Protest*Sexism Interaction 0.8336

The difference in the slopes signifies the moderating effect of M.
It is not uncommon to see simple slopes graphs that also include
a slope for the average value of the moderator, so this sheet has
a second graph including the slope at the average ofM. The user
may use whichever of these two graphs they prefer.

5. EXAMPLE

We present an example using data from a workplace gender
discrimination study from Garcia et al. (2010). Here we will
only apply the JN and simple slopes techniques; a more
detailed moderation analysis can be found in Hayes (2013b).
The data is available in a compressed zip file from the book’s
website (Hayes, 2013a). The data consists of 129 women who
read a vignette about a female attorney, Catherine, who lost
a promotion to a less qualified male. The participants were
randomly assigned versions of the story with one of three
different endings. In one ending, Catherine did not protest
the decision and continued working at the firm. In the other
two endings, Catherine protests by requesting that management
reconsider their decision. These two endings differ in the
manner of protest (making an individual or collective argument),
but for the purpose of analysis here, we will group them
together. Thus, the story ending is regarded as a binary variable,
representing the existence of some form of protest. After reading
the story, the participants answer six questions about their
perceptions of Catherine, which are combined into a measure
of liking. Participants were also given the Modern Sexism Scale
instrument, which measures the degree to which the person
believes society suffers from sexism. To apply the JN technique,
we will treat liking as the response variable, whether Catherine
protested as the (binary) focal predictor, and perceived sexism as
the moderator.

The estimates for the regression coefficients are in Table 1.
Figure 7 shows the JN graph for this model. For values of Sexism
greater than 5.05, the effect of Protest on Liking is significantly
different from zero. Also, notice the figure shows another region
of significance for values of Sexism < 2.84. However, while the
value 2.84 is within three standard deviations of themean value of
Sexism and thus appears on the graph, the lowest value of Sexism
observed in the data is 2.87, and regions of significance close to
the extreme values of the measurements should be interpreted
with caution. In this case, since the lower region of significance is
below the smallest value of the moderator, it is probably best to
consider this model to have only one region of significance.

FIGURE 7 | The JN graph for the model relating Liking to Protesting, Sexism,

and their interaction. Notice the effect of Protesting on Liking is significant only

for high levels of Sexism.

FIGURE 8 | The simple slopes graph for the model relating Liking to

Protesting, Sexism, and their interaction. Notice the effect of Protesting on

Liking is nearly zero for low levels of Sexism, and positive for high levels of

Sexism.

Figure 8 shows the simple slopes graph for this model. Since
Protest is a binary condition, CAHOST recognizes X as a
dichotomous variable, and plots the slope of Protest on liking for
low values of Sexism (the solid line), which can be seen is nearly
horizontal, agreeing with the JN graph that the effect of Protest
on Liking is not significant for low levels of Sexism. The dashed
line is the slope of Protest on Liking for high values of Sexism.
This slope is positive, in agreement with the JN graph that the
effect of Protest on Liking is significant for high levels of Sexism.

6. CONCLUSION

The JN technique is a method for exploring the moderating
effect that a continuous variable has on the relationship
between a focal predictor and the response variable. This paper
has described a workbook intended to make implementing
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the JN technique as easy as possible for researchers without
programming experience or without access to advanced software
with significant licensing fees. The use of a heteroskedasticity-
consistent covariance estimator, HC3 allows the workbook to
be used in a “one size fits all” manner. Care has been taken
to reduce user burden to two actions: inputting the raw data
and pressing the “Create Figure” button. For advanced users,
intermediate steps in the HC3 calculations are visible. An
error-check sheet alerts the user to any potential problems in
carrying out the JN technique. Output includes a summary of
the regression analysis, a graphic displaying the regions of the
moderator for which the focal predictor’s effect on the response is
significant, and a graphic displaying the results of a simple-slopes
analysis.

Finally, it is necessary to point out some limitations. The
workbook is set up to handle up to 1,000 observations. Handling
more observations would require significant editing of sheet “3.
HC3” or using different software. At the time of this writing, it

can only handle two-way interactions, not three-way or higher

interactions. Finally, it cannot handle multi-level modeling
results. If the user is concerned about these limitations, then we
recommend using the www.quantpsy.org website maintained by
Kristopher Preacher (Preacher et al., 2006).
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