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Abstract

Given a double complex X there are spectral sequences with the E2 terms
being either HI (HII(X)) or HII(HI(X)). But if HI(X) = HII(X) = 0 both
spectral sequences have all their terms 0. This can happen even though there
is nonzero (co)homology of interest associated with X. This is frequently the
case when dealing with Tate (co)homology. So in this situation the spectral
sequences may not give any information about the (co)homology of interest. In
this article we give a different way of constructing homology groups of X when
HI(X) =HII(X) = 0. With this result we give a new and elementary proof of
balance of Tate homology and cohomology.

1.Introduction

We will mainly be concerned with left R-modules over some ring R. So unless oth-

erwise specified, the term module will mean a left R-module. By a complex (C, d)

of left R-modules we mean a graded module C = (Cn)n∈Z along with a morphism

dC = d : C → C of graded modules of degree −1 such that d ◦ d = 0. We also use the

notation C = (Cn) but where d is of degree +1 and where we let Cn = C−n.

Given a complex C we let Z(C) ⊂ C be Ker(d), let B(C) = Im(d) and let H(C) =

Z(C)/B(C). If M and N are modules and C = (Ci) and D = (Dj) are complexes, we

form complexes denotedHom(M,D) andHom(C,N) whereHom(M,D)j = Hom(M,Dj)

and where Hom(C,N)i = Hom(Ci, N).

By a double complex of modules X we mean a bigraded module (X(i,j))(i,j)∈Z×Z along

with morphisms d′ and d′′ of bidegrees (1, 0) and (0, 1) respectively such that d′◦d′ = 0,

∗2010 Mathematics Subject Classification.55U15,16E05,16E30, 18G15.
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d′′ ◦ d′′ = 0 and d′ ◦ d′′ + d′′ ◦ d′ = 0. In [2], d′ and d′′ are denoted d1 and d2 and the

homology groups of X with respect to d1 (d2) are denoted HI(X) (HII(X)).

In this paper we find it convenient to use the related notion of what Verdier ([5] ,

Definition 2.1.2) calls a 2-tuple complex and which we will call a bicomplex. We get

a bicomplex if we take the axioms for a double complex and replace the condition

d′ ◦ d′′ + d′′ ◦ d′ = 0 with the condition that d′ ◦ d′′ = d′′ ◦ d′. We can form the addi-

tive category of bicomplexes where morphisms f : X → Y have bidegree (0, 0). This

category will be an abelian category which is not only equivalent to but is isomorphic

to the category of double complexes.

Given the bicomplex X we let Z ′(X) ⊂ X be the bicomplex Ker(d′). Then we let

B′(X) = Im(d′) and let H ′(X) be the quotient bicomplex Z ′(X)/B′(X). Note that

these bicomplexes have their d′ = 0. In a similar manner we define Z ′′(X), B′′(X) and

H ′′(X).

We will tacitly assume that for a bicomplex X we have X(i,j) ∩ X(k,l) = ∅ unless

(i, j) = (k, l). We then will let x ∈ X mean that x ∈ X(i,j) for some (unique)

(i, j) ∈ Z× Z.

2. The Main Result

Theorem 2.1. Let X be a bicomplex such that H ′(X) = H ′′(X) = 0 i.e. such

that X has exact rows and columns. Then H ′(Z ′′(X)) = H ′′(Z ′(X)). In this case, if

we let H(X) be H ′(Z ′′(X)) = H ′′(Z ′(X)), there is a natural isomorphism of bigraded

modules H(X) → H(X) of bidegree (1,−1).

Proof. It is easy to see that H ′(Z ′′(X)) = Z ′(X) ∩ Z ′′(X)/d′(Z ′′(X)) and that

H ′′(Z ′(X)) = Z ′(X)∩Z ′′(X)/d′′(Z ′(X)). Hence we only need prove that d′(Z ′′(X)) =

d′′(Z ′(X)). We argue this is so by chasing the diagram. Let d′(x) ∈ d′(Z ′′(X)) where

x ∈ Z ′′(X). Then d′′(x) = 0. Since H ′′(X) = 0 we have x = d′′(y) for some y ∈ X .

Since d′(d′(y)) = 0 we have d′(y) ∈ Z ′(X). Also d′′(d′(y)) = d′(d′′(y)) = d′(x). So

d′(x) = d′(d′′(y)) = d′′(d′(y)) ∈ d′′(Z ′(X)). So we have d′(Z ′′(X)) ⊂ d′′(Z ′(X)).

A similar argument gives that d′′(Z ′(X))) ⊂ d′(Z ′′(X)) and so that d′(Z ′′(X)) =

d′′(Z ′(X)).

So when H ′(X) = H ′′(X) = 0 we let H(X) = Z ′(X) ∩ Z ′′(X)/d′(Z ′′(X)) = Z ′(X) ∩

Z ′′(X)/d′′(Z ′′(X)). In this case we want to find an isomorphism H(X) → H(X)

of bigraded modules of bidegree (1,−1). Let x + d′(Z ′′(X)) ∈ H(X) = Z ′(X) ∩

Z ′′(X)/d′(Z ′′(X)). Since x ∈ Z ′(X) ∩ Z ′′(X) we have d′′(x) = 0. So since H ′′(X) =
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0 we have x = d′′(y) for some y ∈ X . We claim d′(y) ∈ Z ′(X) ∩ Z ′′(X). For

d′(d′(y)) = 0 and d′′(d′(y)) = d′(d′′(y)) = d′(x) = 0 (since x ∈ Z ′(X)). So we want

to map x + d′(Z ′′(X)) to d′(y) + d′(Z ′′(X)). To see that this map is well-defined, let

x + d′(Z ′′(X)) = x + d′(Z ′′(X)) where x ∈ Z ′(X) ∩ Z ′′(X). Let d′′(y) = x. Then we

have x−x ∈ d′(Z ′′(X)). So let x−x = d′(z) where z ∈ Z ′′(X). Then since H ′′(X) = 0

we have w ∈ X with d′′(w) = z. Then d′′(d′(w)) = d′(d′′(w)) = d′(z) = x − x. Since

d′′(y − y) = x − x we have d′′(y − y − d′(w)) = 0, i.e. that y − y − d′(w) ∈ Z ′′(X).

But d′(y − y − d′(w)) = d′(y) − d′(y) − 0. So d′(y) − d′(y) ∈ d′(Z ′′(X)). This gives

that x+ d′(Z ′′(X)) 7→ d′(y) + d′(Z ′′(X)) (where d′′(y) = x) is well-defined. This map

is clearly additive, natural and of bidegree (1,−1). Reversing the roles of d′ and d′′

we get a homomorphism H(X) → H(X) of bidegree (−1, 1). By construction we see

that these two maps are inverses of one another, and so both are isomorphisms.

�

3. Construction of Bicomplexes

If C = (Ci) and D = (Dj) are complexes we construct a bicomplex denoted

Hom(C,D). We let Hom(C,D)(i,j) = Hom(Ci, D
j) and let d′ = Hom(dC, D) and

d′′ = Hom(C, dD). Letting X = Hom(C,D), the condition H ′(X) = 0 just says that

for each j ∈ Z the complex Hom(C,Dj) is exact. Similarly the condition H ′′(X) = 0

just says that Hom(Ci, D) is an exact complex for all i ∈ Z.

If X = Hom(C,D) then want to describe the bicomplexes Z ′(X), Z ′′(X) and H(X)

under certain condition.

Proposition 3.1. If C is an exact complex andD is any complex, then Z ′(Hom(C,D)) ∼=

Hom(Z(C), D) where the isomorphism is an isomorphism of bicomplexes.

Proof. We have Z ′(Hom(C,D))(i,j) is by definition the kernel of the mapHom(Ci, D
j) →

Hom(Ci+1, D
j)). But this kernel is Hom(Ci/Bi(C), Dj). Since C is exact Ci/Bi(C) ∼=

Zi(C). So as graded modules we have Z ′(Hom(C,D)) ∼= Hom(Z(C), D). Clearly

these are isomorphisms of bicomplexes. �

We prove the next result in a similar manner.

Proposition 3.2. If D is an exact complex then Z ′′(Hom(C,D)) ∼= Hom(C,Z(D))

where the isomorphism is an isomorphism of bicomplexes.

Theorem 3.3. If C and D are both exact complexes and if Hom(C,D) has ex-
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act rows and columns then for each (i, j) ∈ Z × Z we have H(Hom(C,D))(i,j) ∼=

Hj(Hom(Zi(C), D)) ∼= H i(Hom(C,Zj(D))).

Proof. To get the two isomorphisms we use the two descriptions ofH(Hom(C,D)).

We first use that H(Hom(C,D)) = H ′′(Z ′Hom(C,D)). Since Z ′(Hom(C,D)) ∼=

Hom(Z(C), D) as bicomplexes we have that H(Hom(C,D)) ∼= H ′′(Hom(Z(C), D).

Since H ′′(Hom(Z(C), D))(i,j) = HjHom(Zi(C), D)), we get the first isomorphism.

Using the other description of H(Hom(C,D)) we get the second isomorphism. �

Corollary 3.4. For any n ∈ Z we have Hn(Hom(Z0(C), D)) ∼= Hn(Hom(C,Z0(D))).

Proof. Using the natural isomorphism of Theorem 2.1 we have that

H(Hom(C,D))(n,0) ∼= H(Hom(C,D))(0,n). Using the two isomorphisms of Theorem

3.3 we have H(Hom(C,D))(0,n) ∼= Hn(Hom(Z0(C), D)) and H(Hom(C,D))(n,0) ∼=

Hn(Hom(C,Z0(D))). �

If P is an exact sequence of projective modules and E an exact sequence of injective

modules, then Hom(P,E) has exact rows and columns. So this bicomplex satisfies the

hypotheses of Theorem 3.3. If M and N are a Gorenstein projective and injective

module respectively and if P and E are a complete projective and injective resolution

ofM and ofN respectively, then Corollary 3.4 saysH(Hom(M,E)) ∼= H(Hom(P,N)).

This is what is meant by Tate balance of cohomology. These (common) cohomology

groups are denoted Êxt
n
(M,N) (see [1], section 4 for definitions and notation).

Remarks 3.5. The balance over a Gorenstein ring was first proved by Iacob ([4],

Example 1, pg.2024) and then by Asadollahi and Salarian [1] when the ring is local,

Gorenstein and the first module finitely generated. Christensen and Jorgensen in [3]

used the inventive idea of a pinched complex to give a different proof of the general

balance result.

If we use the tensor product instead of the homomorphism functor, we get results

analogous to the above. The proof of these results will be easy and obvious modifi-

cations of those for the Hom functor. So we will just state the results. Note that if

C and D are complexes of left and right R-modules respectively, then we can form a

bicomplex which we will denote C ⊗D.

Theorem 3.6. If C is an exact complex of right R-modules and D is an exact
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complex of left R-modules and if the bicomplex C⊗D has exact rows and columns then

Hn(Z0(C)⊗D) ∼= Hn(C ⊗ Z0(D)) for any n ∈ Z.

To get examples where this result can be applied we only need assume that C and

D are both exact complexes of flat modules. Then clearly C ⊗D will have exact rows

and columns. With this result we get balance of Tate homology.
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