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Sum Formula of Multiple Hurwitz-Zeta Values

Jianqiang Zhao

Department of Mathematics, Eckerd College, St. Petersburg, FL 33711

Abstract

Let s1, . . . , sd be d positive integers and define the multiple t-values of depth

d by

t(s1, . . . , sd) =
∑

n1>···>nd≥1

1

(2n1 − 1)s1 · · · (2nd − 1)sd
,

which is equal to the multiple Hurwitz-zeta value 2−wζ(s1, . . . , sd;−1

2
, . . . ,−1

2
)

where w = s1 + · · · + sd is called the weight. For d ≤ n, let T (2n, d) be the sum

of all multiple t-values with even arguments whose weight is 2n and whose depth

is d. Recently Shen and Cai gave formulas for T (2n, d) for d ≤ 5 in terms of

t(2n), t(2)t(2n− 2) and t(4)t(2n− 4). In this short note we generalize Shen-Cai’s

results to arbitrary depth by using the theory of symmetric functions established

by Hoffman.

1 Introduction

In recent years multiple zeta functions and many different variations and generalizations

have been studied intensively due to their close relations to other objects in a lot of

diverse branches of mathematics and physics. In particular, a large number of identities

are establishes between their special values. In [4] Shen and Cai found a few very

interesting equations which are similar in nature to Euler’s identity of double zeta values.

They gave formulas of the sum E(2n, d) of multiple zeta values at even arguments of

fixed depth d and weight 2n, for d ≤ 4. These have been generalized to arbitrary depth

by Hoffman [1]. In [3] Shen and Cai turned to the following values

t(s1, . . . , sd) =
∑

n1>···>nd≥1

1

(2n1 − 1)s1 · · · (2nd − 1)sd
,

which we call multiple t-values of depth d in this note. It is clear that this is equal to

2−wζ(s1, . . . , sd;−1

2
, . . . ,−1

2
) where w = s1 + · · ·+ sd is called the weight. Put

T (2n, d) =
∑

j1+···+jd=n
j1,...,jd≥1

t(2j1, . . . , 2jd).
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Using similar but more complicated ideas from [4] Shen and Cai gave a few sum formulas

for T (2n, d) for d ≤ 5 in [3]. For example,

T (2n, 5) =
7

128
t(2n)− 3

64
t(2)t(2n− 2) +

1

320
t(4)t(2n− 4). (1)

In this note, we shall generalize these to arbitrary depth using ideas from [1] where

Hoffman applied the theory of symmetric functions to study the generating function of

E(2n, d). It turns out that we need both Bernoulli numbers Bj and Euler numbers Ej

defined by the following generating functions respectively:

x

ex − 1
=

∞
∑

j=0

Bj

xj

j!
, sec x =

∞
∑

j=0

(−1)jE2j

x2j

(2j)!
, (2)

and the Euler numbers E2j+1 = 0 for all j ≥ 0.

Our main results are the following theorems.

Theorem 1.1. For d ≤ n,

T (2n, d) =

⌊ d−1

2
⌋

∑

j=0

(−1)jπ2j

22d−2(2j)!d

(

2d− 2j − 2

d− 1

)

t(2n− 2j),

where t(2j) = 2−2j(22j − 1)ζ(2j). Or, equivalently,

T (2n, d) =

(

2d− 2

d− 1

)

t(2n)

22d−2d
−

⌊ d−1

2
⌋

∑

j=1

(

2d− 2j − 2

d− 1

)

t(2j)t(2n− 2j)

22d−3(22j − 1)B2jd
.

The next three cases after (1) are

T (2n, 6) =
21

512
t(2n)− 7

192
t(2)t(2n− 2) +

1

256
t(4)t(2n− 4),

T (2n, 7) =
33

1024
ζ(2n)− 15

512
t(2)t(2n− 2) +

1

256
t(4)t(2n− 4)− 1

21504
t(6)t(2n− 6),

T (2n, 8) =
429

16384
t(2n)− 99

4096
t(2)t(2n− 2) +

15

4096
t(4)t(2n− 4)− 1

12288
t(6)t(2n− 6).

As we mentioned in the above the proof of Theorem 1.1 utilizes the generating

function of T (2n, d) defined by

Φ(u, v) = 1 +
∑

n≥d≥1

T (2n, d)unvd

for which we have the following result.

Theorem 1.2. We have

Φ(u, v) = cos(π
√

(1− v)u/2) sec(π
√
u/2).
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The next theorem involves Euler numbers and is more useful computationally when

the difference between n and d is small.

Theorem 1.3. For d ≤ n we have

T (2n, d) =
(−1)n−dπ2n

4n(2n)!

n−d
∑

ℓ=0

(

n− ℓ

d

)(

2n

2ℓ

)

E2ℓ. (3)

This work was started while the the author was visiting Taida Institute for Mathe-

matical Sciences at National Taiwan University in the summer of 2012. He would like

to thank Prof. Jing Yu and Chieh-Yu Chang for encouragement and their interest in

his work.

2 Proof of Theorem 1.2 and Theorem 1.3

We first recall some results on symmetric functions contained in [1, 2] with some slight

modification. Let Sym be the subring of Q[[x1, x2, . . . ]] consisting of the formal power

series of bounded degree that are invariant under permutations of the xj . Define elements

ej, hj , and pj in Sym by the generating functions

E(u) =
∞
∑

j=0

eju
j =

∞
∏

j=1

(1 + uxj),

H(u) =

∞
∑

j=0

hju
j =

∞
∏

j=1

1

1− uxj

= E(−u)−1,

P (u) =
∞
∑

j=1

pju
j−1 =

∞
∑

j=1

xj

1− uxj

=
H ′(u)

H(u)
.

Define a homomorphism T : Sym → R such that T(xj) = 1/(2j − 1)2 for all j ≥ 1.

Hence for all n ≥ 1

T(pn) = t(2n) =
∑

j≥1

1

(2j − 1)2n
.

First we need a simple lemma.

Lemma 2.1. For any positive integer n let {2}n be the string (2, . . . , 2) with 2 repeated

n times. Then we have

t({2}n) = π2n

4n(2n)!
. (4)
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Proof. It is easy to see that

1 +

∞
∑

n=1

t({2}n)xn =

∞
∏

j=1

(

1 +
x

(2j − 1)2

)

=
∞
∏

j=1

(

1 +
x

j2

)

/
∞
∏

j=1

(

1 +
x

(2j)2

)

=
sinh(π

√
x)

π
√
x

· π
√
x/2

sinh(π
√
x/2)

= cosh(π
√
x/2)

=

∞
∑

n=1

π2nxn

4n(2n)!
.

This finishes the proof of the lemma.

Now let Nn,d be the sum of all the monomial symmetric functions corresponding to

partitions of n having length d. Then clearly

T(Nn,d) = T (2n, d).

As in [1] we may define

F(u, v) = 1 +
∑

n≥d≥1

Nn,du
nvd,

then T sends F(u, v) to the generating function

Φ(u, v) = 1 +
∑

n≥d≥1

T (2n, d)unvd.

By Lemma 2.1 we have

T(en) = t({2}n) = π2n

4n(2n)!
. (5)

Hence

T(E(u)) = cosh(π
√
u/2),

and

T(H(u)) = T(E(−u)−1) = 1/ cosh(π
√
−u/2) = sec(π

√
u/2).

Thus by [1, Lemma 1] F(u, v) = E((v − 1)u)H(u) and we get

Φ(u, v) = T(E((v − 1)u)H(u)) = cosh(π
√

(v − 1)u/2) sec(π
√
u/2)

= cos(π
√

(1− v)u/2) sec(π
√
u/2).

This proves Theorem 1.2.
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Setting v = 1 in Theorem 1.2 we obtain

Φ(u, 1) = sec(π
√
u/2).

This yields immediately the following identity by (2)

T(hn) =

n
∑

d=1

T (2n, d) =
(−1)nE2nπ

2n

4n(2n)!
. (6)

Now by [1, Lemma 2] we have

Nn,d =
n−d
∑

ℓ=0

(

n− ℓ

d

)

(−1)n−d−ℓhℓen−ℓ.

Applying the homomorphism T and using equation (4) and (6) we get Theorem 1.3

immediately.

3 Proof of Theorems 1.1 and a combinatorial iden-

tity

We now rewrite the generating function Φ(4u, v) as follows using Theorem 1.2:

Φ(4u, v) =
∑

d≥0

vdG̃d(u) = sec(π
√
u) cos(π

√

(1− v)u) = sec(π
√
u)

∞
∑

j=0

π2j

(2j)!
(v − 1)juj.

Let D be the differential operator with respect to u. Then

G̃d(u) =(−1)d sec(π
√
u)

∑

j≥d

(−1)jπ2juj

(2j)!

(

j

d

)

= sec(π
√
u) · (−u)d

d!
·Dd

∑

j≥d

(−1)jπ2juj

(2j)!

= sec(π
√
u) · (−u)d

d!
·Dd cos(π

√
u)

=− π2

2
sec(π

√
u) · (−u)d

d!
·Dd−1

sin(π
√
u)

π
√
u

=
π2u

2d

tan(π
√
u)

π
√
u

Gd−1(u)
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by [1, (12)] (the definition of Gk is defined on page 9). By [1, Lemma 3] we have

G̃d(u) =− π2u

2d

⌊ d−2

2
⌋

∑

j=0

(−4π2u)j

22d−3(2j + 1)!

(

2d− 2j − 3

d− 1

)

(7)

+
π
√
u

2d
tan(π

√
u)

⌊ d−1

2
⌋

∑

j=0

(−4π2u)j

22d−2(2j)!

(

2d− 2j − 2

d− 1

)

(8)

=
π
√
u

2d
tan(π

√
u)

⌊ d−1

2
⌋

∑

j=0

(−4π2u)j

22d−2(2j)!

(

2d− 2j − 2

d− 1

)

+ terms of degree < d.

It is well-dnown that

tanx =
∞
∑

m=1

(−1)m−122m(22m − 1)B2mx
2m−1

(2m)!
.

Hence
π
√
u

2
tan(π

√
u) =

∞
∑

m=1

4mt(2m)um.

Therefore T (2n, d) is the coefficient of un in

G̃d(u/4) =
1

d

∞
∑

m=2

t(2m)um

⌊ d−1

2
⌋

∑

j=0

(−π2u)j

22d−2(2j)!

(

2d− 2j − 2

d− 1

)

.

This implies Theorem 1.1 immediately. Notice that by comparing Theorem 1.1 and

Theorem 1.3 we get the following identity of between Bernoulli numbers and Euler

numbers.

Theorem 3.1. For all d ≤ n

⌊ d−1

2
⌋

∑

j=0

(22n−2j − 1)B2n−2j

22d−1d

(

2d− 2j − 2

d− 1

)(

2n

2j

)

=
(−1)n−dπ2n

4n(2n)!

n−d
∑

ℓ=0

(

n− ℓ

d

)(

2n

2ℓ

)

E2ℓ.

Further we have

⌊ d−1

2
⌋

∑

j=0

(22n−2j − 1)B2n−2j

22d−1d

(

2d− 2j − 2

d− 1

)(

2n

2j

)

=







0, if n < d < 2n;
n

22d−1d

(

2d− 2n− 1

d− 1

)

, if d ≥ 2n.
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Proof. We only need to show the second identity. Notice that when d > n the coefficient

of unvd is 0 in Φ(u, v). Thus the coefficient of un in G̃d(u/4) is zero. By (7) and (8) we

have

⌊ d−1

2
⌋

∑

j=0

(22n−2j − 1)B2n−2j

22d−1d

(

2d− 2j − 2

d− 1

)(

2n

2j

)

=
(−1)n(2n)!

(2π)2n
× Coeff. of un of (7) (i.e. j = n− 1)

=







0, n < d < 2n;
n

22d−1d

(

2d− 2n− 1

d− 1

)

, d ≥ 2n,

as desired.
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