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EXISTENCE OF SOLUTIONS FOR A VARIABLE EXPONENT
SYSTEM WITHOUT PS CONDITIONS

LI YIN, YUAN LIANG, QIHU ZHANG, CHUNSHAN ZHAO

Abstract. In this article, we study the existence of solution for the following

elliptic system of variable exponents with perturbation terms

− div |∇u|p(x)−2∇u) + |u|p(x)−2u = λa(x)|u|γ(x)−2u+ Fu(x, u, v) in RN ,

− div |∇v|q(x)−2∇v) + |v|q(x)−2v = λb(x)|v|δ(x)−2v + Fv(x, u, v) in RN ,

u ∈W 1,p(·)(RN ), v ∈W 1,q(·)(RN ),

where the corresponding functional does not satisfy PS conditions. We obtain
a sufficient condition for the existence of solution and also present a result on

asymptotic behavior of solutions at infinity.

1. Introduction

The study of differential equations and variational problems with variable expo-
nent has attracted intense research interests in recent years. Such problems arise
from the study of electrorheological fluids, image processing, and the theory of non-
linear elasticity [1, 7, 19, 26]. The following variable exponent flow is an important
model in image processing [7]:

ut − div |∇u|p(x)−2∇u) + λ(u− u0) = 0, in Ω× [0, T ],

u(x, t) = g(x), on ∂Ω× [0, T ],

u(x, 0) = u0.

The main benefit of this flow is the manner in which it accommodates the local
image information. We refer to [14, 18, 24] for the existence of solution of variable
exponent problems on bounded domain.

In this article, we consider the existence of solutions for the system

−div |∇u|p(x)−2∇u) + |u|p(x)−2u = λa(x)|u|γ(x)−2u+ Fu(x, u, v) in RN ,

− div |∇v|q(x)−2∇v) + |v|q(x)−2v = λb(x)|v|δ(x)−2v + Fv(x, u, v) in RN ,

u ∈W 1,p(·)(RN ), v ∈W 1,q(·)(RN ),

(1.1)
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where p, q ∈ C(RN ) are Lipschitz continuous and p(·), q(·) >> 1, the notation
h1(·) >> h2(·) means ess infx∈RN (h1(x)− h2(x)) > 0,

−∆p(x)u := − div |∇u|p(x)−2∇u)

which is called the p(x)-Laplacian. When p(·) ≡ p (a constant), p(x)-Laplacian
becomes the usual p-Laplacian. The terms λa(x)|u|γ(x)−2u and λb(x)|v|δ(x)−2v are
the perturbation terms. The p(x) -Laplacian possesses more complicated nonlin-
earities than the p-Laplacian (see [15]). Many methods and results for p-Laplacian
are invalid for p(x)-Laplacian.

The PS condition is very important in the study of the existence of solution via
variational methods. According to [21, Theorem 2.8], if a C1(X,R) functional f
satisfies the Mountain Pass Geometry, then it has a PS sequence {xn} which satisfies
f(xn)→ c which is the mountain pass level and f ′(xn)→ 0. By [21, Theorem 2.9]
it follows that if f also satisfies the PS condition, passing to a subsequence, then
xn → x0 in X, and then x0 is a critical point of f , that is f ′(x0) = 0. In the study of
this problems in the bounded domain, since we have the compact embedding from
a Sobolev space to a Lebesgue space, so we have the PS condition when we study
the case of subcritical growth condition. For the unbounded domain, we cannot get
the compact embedding in general, so we do not have the PS condition.

It is well known that a main difficulty in the study of elliptic equations in RN is
the lack of compactness. Many methods have been used to overcome this difficulty.
One type of methods is that under some additional conditions we can recover the
required compact imbedding theorem, for example, the weighting method [16, 25],
and the symmetry method [23]. If equations are periodic, the corresponding energy
functionals are invariant under period-translation. We refer to [2]–[5] and references
cited therein for the applications of this method to the p-Laplacian equations, the
Schrödinger equations and the biharmonic equations etc.

Sometimes we can compare the original equation with its limiting equation at
infinity. Especially, we can compare the corresponding critical values of the func-
tionals for these two equations when the existence of the ground state solution for
the limiting equation is known. Usually the limiting equations are homogeneous,
but in [2]-[5] the limiting equations are periodic. We also refer to [13] for the
existence of solution for p(x)-Laplacian equations with periodic conditions.

In this article we consider the existence and the asymptotic behavior of solutions
near infinity for a variable exponent system with perturbations that does not satisfy
periodic conditions, which implies the corresponding functional does not satisfy PS
conditions on unbounded domain. We will also give a sufficient condition for the
existence of solutions for the system (1.1). Our method is to compare the original
equation with its limiting equation at infinity without perturbation. These results
also partially generalize the results in [13] and [20].

In this article, we make the following assumptions.

(A0) p(·), q(·) are Lipschitz continuous, 1 << p(·), q(·) << N , 1 << γ(·) <<
p(·), a(·) ∈ L

p(·)
p(·)−γ(·) (RN ), 1 << δ(·) << q(·), b(·) ∈ L

q(·)
q(·)−δ(·) (RN ), F

∈ C1(RN × R2,R) satisfies

|Fu(x, u, v)| ≤ C(|u|p(x)−1 + |u|α(x)−1 + |v|q(x)/α0(x) + |v|β(x)/α0(x)),

|Fv(x, u, v)| ≤ C(|v|q(x)−1 + |v|β(x)−1 + |u|p(x)/β0(x) + |u|α(x)/β0(x)),
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where Fu = ∂
∂uF , Fv = ∂

∂vF , α, β ∈ C(RN ) satisfy

p(·) << α(·) << p∗(·), q(·) << β(·) << q∗(·),
h0(·) denotes the conjugate function of h(·), that is 1

h(x) + 1
h0(x) ≡ 1, and

p∗(x) =

{
Np(x)/(N − p(x)), p(x) < N,

∞, p(x) ≥ N.

(A1) There exist constants θ1 > p+ and θ2 > q+, such that F satisfies the
following conditions

0 ≤ sFs(x, s, t), 0 ≤ tFt(x, s, t), ∀(x, s, t) ∈ RN × R× R,

0 < F (x, s, t) ≤ 1
θ1
sFs(x, s, t) +

1
θ2
tFt(x, s, t), ∀x ∈ RN ,∀(s, t) ∈ R× R\{(0, 0)}.

(A2) For (s, t) ∈ R2, the function sFs(x, τ1/θ1s, τ1/θ2t)/τ
θ1−1
θ1 and the function

tFt(x, τ1/θ1s, τ1/θ2t)/τ
θ2−1
θ2 are increasing with respect to τ > 0.

(A3) There is a measurable function F̃ (s, t) such that

lim
|x|→+∞

F (x, s, t) = F̃ (s, t)

for bounded |s|+ |t| uniformly, and

|F̃ (s, t)|+ |F̃s(s, t)s|+ |F̃t(s, t)t| ≤ C(|s|p
+

+ |s|α
−

+ |t|q
+

+ |t|β
−

), ∀(s, t) ∈ R2,

and when |x| ≥ R the following inequalities hold

|F (x, s, t)− F̃ (s, t)| ≤ ε(R)(|s|p(x) + |s|p
∗(x) + |t|q(x) + |t|q

∗(x)),

|Fs(x, s, t)− F̃s(s, t)|

≤ ε(R)(|s|p(x)−1 + |s|p
∗(x)−1 + |t|q(x)(p∗(x)−1)/p∗(x) + |t|q

∗(x)(p∗(x)−1)/p∗(x)),

|Ft(x, s, t)− F̃t(s, t)|

≤ ε(R)(|s|p(x)(q∗(x)−1)/q∗(x) + |s|p
∗(x)(q∗(x)−1)/q∗(x) + |t|q(x)−1 + |t|q

∗(x)−1),

where ε(R) satisfies limR→+∞ ε(R) = 0.
This article is organized as follows. In Section 2, we introduce some basic prop-

erties of the Lebesgue-Sobolev spaces with variable exponents and p(x)-Laplacian.
In Section 3, we give the main results and the proofs.

2. Notation and preliminary results

Throughout this paper, the letters c, ci, Ci, i = 1, 2, . . . , denote positive con-
stants which may vary from line to line but are independent of the terms which will
take part in any limit process. To discuss problem (1.1), we need some preparations
on space W 1,p(·)(Ω) which we call variable exponent Sobolev space, where Ω ⊂ RN
is an open domain. Firstly, we state some basic properties of spaces W 1,p(·)(Ω)
which we will use later (for details, see [9, 11, 12, 14]). Denote

C+(Ω) = {h ∈ C(Ω), h(x) ≥ 1 for x ∈ Ω},
h+

Ω = ess supx∈Ω h(x), h−Ω = ess infx∈Ω h(x), for any h ∈ L∞(Ω),

h+ = ess supx∈RN h(x), h− = ess infx∈RN h(x), for any h ∈ L∞(RN ),

S(Ω) = {u : u is a real-valued measurable function on Ω},
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Lp(·)(Ω) = {u ∈ S(Ω) :
∫

Ω

|u(x)|p(x) dx <∞}.

In this section, p(·) and pi(·) are Lipschitz continuous unless otherwise noted.
We introduce the norm on Lp(·)(Ω) by

|u|p(·),Ω = inf{λ > 0 :
∫

Ω

|u(x)
λ
|p(x) dx ≤ 1},

and (Lp(·)(Ω), | · |p(·),Ω) becomes a Banach space, we call it variable exponent
Lebesgue space.

If Ω = RN , we will simply denote by | · |p(·) the norm on Lp(·)(RN ).

Proposition 2.1 ([9]). (i) The space (Lp(·)(Ω), | · |p(·),Ω) is a separable, uniform
convex Banach space, and its conjugate space is Lp

0(·)(Ω), where 1
p(x) + 1

p0(x) ≡ 1.

For any u ∈ Lp(·)(Ω) and v ∈ Lp0(·)(Ω), we have

|
∫

Ω

uv dx| ≤ (
1
p−Ω

+
1

(p0)−Ω
)|u|p(·),Ω|v|p0(·),Ω.

(ii) If Ω is bounded, p1, p2 ∈ C+(Ω), p1(·) ≤ p2(·) for any x ∈ Ω, then
Lp2(·)(Ω) ⊂ Lp1(·)(Ω), and the imbedding is continuous.

Proposition 2.2 ([9]). If f : Ω× R→ R is a Caratheodory function and satisfies

|f(x, s)| ≤ h(x) + d|s|p1(x)/p2(x) for any x ∈ Ω, s ∈ R,

where p1, p2 ∈ C+(Ω) , h ∈ Lp2(·)(Ω), h(x) ≥ 0, d ≥ 0, then the Nemytskii operator
from Lp1(·)(Ω) to Lp2(·)(Ω) defined by (Nfu)(x) = f(x, u(x)) is continuous and
bounded.

Proposition 2.3 ([9]). If we denote

ρ(u) =
∫

Ω

|u|p(x) dx, ∀u ∈ Lp(·)(Ω),

then
(i) |u|p(·),Ω < 1 (= 1;> 1)⇐⇒ ρ(u) < 1 (= 1;> 1);

(ii) |u|p(·),Ω > 1 =⇒ |u|p
−

p(·),Ω ≤ ρ(u) ≤ |u|p
+

p(·),Ω; |u|p(·),Ω < 1 =⇒ |u|p
−

p(·),Ω ≥

ρ(u) ≥ |u|p
+

p(·),Ω;
(iii) |u|p(·),Ω → 0⇐⇒ ρ(u)→ 0; |u|p(·),Ω →∞⇐⇒ ρ(u)→∞.

Proposition 2.4 ([9]). If u, un ∈ Lp(·)(Ω), n = 1, 2, . . . , then the following state-
ments are equivalent.

(1) limn→∞ |un − u|p(·),Ω = 0;
(2) limn→∞ ρ(un − u) = 0;
(3) un → u in measure in Ω and limn→∞ ρ(un) = ρ(u).

Denote Y =
∏k
i=1 L

pi(·)(Ω) with the norm

‖y‖Y =
k∑
i=1

yi|pi(·),Ω,∀y = (y1, . . . , yk) ∈ Y,

where pi(·) ∈ C+(Ω), i = 1, . . . ,m, then Y is a Banach space.
With a proof similar to proof in [6], we have:
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Proposition 2.5. Suppose f(x, y) : Ω×Rk → Rm is a Caratheodory function; that
is, f satisfies

(i) For a.e. x ∈ Ω, y → f(x, y) is a continuous function from Rk to Rm,
(ii) For any y ∈ Rk, x→ f(x, y) is measurable.

If there exist p1(·), . . . , pk(·) ∈ C+(Ω), 1 ≤ β(·) ∈ C(Ω), ρ(·) ∈ Lβ(·)(Ω) and positive
constant c > 0 such that

|f(x, y)| ≤ ρ(x) + c

k∑
i=1

|yi|pi(x)/β(x) for any x ∈ Ω, y ∈ Rk,

then the Nemytskii operator from Y to (Lβ(·)(Ω))m defined by (Nfu)(x) = f(x, u(x))
is continuous and bounded.

The space W 1,p(·)(Ω) is defined by

W 1,p(·)(Ω) = {u ∈ Lp(·)(Ω) : ∇u ∈ (Lp(·)(Ω))N},

with the norm

‖u‖p(·),Ω = |u|p(·),Ω + |∇u|p(·),Ω, ∀u ∈W 1,p(·)(Ω).

If Ω = RN , we will denote the norm on W 1,p(·)(RN ) as ‖u‖p(·).
Denote

‖u‖′p(·),Ω = inf{λ > 0 :
∫

Ω

|∇u
λ
|p(x) dx+

∫
Ω

|u(x)
λ
|p(x) dx ≤ 1},

‖v‖′q(·),Ω = inf{λ > 0 :
∫

Ω

|∇v
λ
|q(x) dx+

∫
Ω

|v(x)
λ
|q(x) dx ≤ 1}.

It is easy to see that the norm ‖ · ‖′p(·),Ω is equivalent to ‖ · ‖p(·),Ω on W 1,p(·)(Ω),
and ‖ · ‖′q(·),Ω is equivalent to ‖ · ‖q(·),Ω on W 1,q(·)(Ω). In the following, we will use
‖ · ‖′p(·),Ω instead of ‖ · ‖p(·),Ω on W 1,p(·)(Ω), and use ‖ · ‖′q(·),Ω instead of ‖ · ‖q(·),Ω
on W 1,q(·)(Ω). We denote by W 1,p(·)

0 (Ω) the closure of C∞0 (Ω) in W 1,p(·)(Ω).

Proposition 2.6 ([8, 9, 11]). (i) W 1,p(·)(Ω) and W 1,p(·)
0 (Ω) are separable reflexive

Banach spaces;
(ii) If p(·) is Lipschitz continuous, α(·) is measurable, and satisfies p(·) ≤ α(·) ≤

p∗(·) for any x ∈ Ω, then the imbedding from W 1,p(·)(RN ) to Lα(·)(RN ) is contin-
uous;

(iii) If Ω is bounded, α ∈ C+(Ω) and α(·) < p∗(·) for any x ∈ Ω, then the
imbedding from W 1,p(·)(Ω) to Lα(·)(Ω) is compact and continuous.

Proposition 2.7 ([12, Lemma 3.1]). Assume that p : RN → R is a uniformly
continuous function, if {un} is bounded in W 1,p(·)(RN ) and

sup
y∈RN

∫
B(y,r)

|un|ρ(x) dx→ 0, n→ +∞,

for some r > 0 and some ρ ∈ L∞+ (RN ) satisfying

p(·) ≤ ρ(·) << p∗(·),

then un → 0 in Lα(·)(RN ) for any α satisfying p(·) << α(·) << p∗(·), where B(y, r)
is an open ball with center y and radius r.
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Denote X1 = W 1,p(·)(RN ), X2 = W 1,q(·)(RN ), X = X1 ×X2. Let us endow the
norm ‖ · ‖ on X as

‖(u, v)‖ = max{‖u‖p(·), ‖v‖q(·)}.
The dual space of X will be denoted by X∗, then for any Θ ∈ X∗, there exist
f ∈ (W 1,p(·)(RN ))∗ and g ∈ (W 1,q(·)(RN ))∗ such that Θ(u, v) = f(u) + g(v).
We denote ‖ · ‖∗, ‖ · ‖∗,p(·) and ‖ · ‖∗,q(·) the norms of X∗, (W 1,p(·)(RN ))∗ and
(W 1,q(·)(RN ))∗, respectively. Obviously X∗ = (W 1,p(·)(RN ))∗ × (W 1,q(·)(RN ))∗

and
‖Θ‖∗ = ‖f‖∗,p(·) + ‖g‖∗,q(·), ∀Θ ∈ X.

For every (u, v) and (ϕ,ψ) in X, set

Φ1(u) =
∫

RN

1
p(x)
|∇u|p(x) dx+

∫
RN

1
p(x)
|u|p(x) dx,

Φ2(v) =
∫

RN

1
q(x)
|∇v|q(x) dx+

∫
RN

1
q(x)
|v|q(x) dx,

Φ(u, v) = Φ1(u) + Φ2(v),

Ψ(u, v) =
∫

RN
{λ[

a(x)
γ(x)

|u|γ(x) +
b(x)
δ(x)
|v|δ(x)] + F (x, u, v)} dx,

Ψ1(u, v) =
∫

RN
λ
a(x)
γ(x)

|u|γ(x) dx+
∫

RN
λ
b(x)
δ(x)
|v|δ(x) dx.

It follows from Proposition 2.5 that Φ ∈ C1(X,R), then

Φ′(u, v)(ϕ,ψ) = D1Φ(u, v)(ϕ) +D2Φ(u, v)(ψ),∀(ϕ,ψ) ∈ X,
Ψ′(u, v)(ϕ,ψ) = D1Ψ(u, v)(ϕ) +D2Ψ(u, v)(ψ),∀(ϕ,ψ) ∈ X,

where

D1Φ(u, v)(ϕ) =
∫

RN
|∇u|p(x)−2∇u∇ϕdx+

∫
RN
|u|p(x)−2uϕdx = Φ′1(u)(ϕ),

∀ϕ ∈ X1,

D2Φ(u, v)(ψ) =
∫

RN
|∇v|p(x)−2∇v∇ψ dx+

∫
RN
|v|p(x)−2vψ dx = Φ′2(v)(ψ),

∀ψ ∈ X2,

D1Ψ(u, v)(ϕ) =
∫

RN
[λa(x)|u|γ(x)−2u+

∂

∂u
F (x, u, v)]ϕdx, ∀ϕ ∈ X1,

D2Ψ(u, v)(ψ) =
∫

RN
[λb(x)|v|δ(x)−2v +

∂

∂v
F (x, u, v)]ψ dx, ∀ψ ∈ X2.

The integral functional associated with the problem (1.1) is

J(u, v) = Φ(u, v)−Ψ(u, v).

Without loss of generality, we may assume that F (x, 0, 0) = 0, then we have

F (x, u, v) =
∫ 1

0

[u∂2F (x, tu, tv) + v∂3F (x, tu, tv)]dt,

where ∂j denotes the partial derivative of F with respect to its j-th variable. The
condition (A0) holds

|F (x, u, v)| ≤ c(|u|p(x) + |u|α(x) + |v|q(x) + |v|β(x)). (2.1)



EJDE-2015/63 EXISTENCE OF SOLUTIONS 7

From Proposition 2.5 and condition (A0), it is easy to see that J ∈ C1(X,R)
and satisfies

J ′(u, v)(ϕ,ψ) = D1J(u, v)(ϕ) +D2J(u, v)(ψ), ∀(ϕ,ψ) ∈ X,
where

D1J(u, v)(ϕ) = D1Φ(u, v)(ϕ)−D1Ψ(u, v)(ϕ), ∀ϕ ∈ X1,

D2J(u, v)(ψ) = D2Φ(u, v)(ψ)−D2Ψ(u, v)(ψ), ∀ψ ∈ X2.

Obviously,
‖J ′(u, v)‖∗ = ‖D1J(u, v)‖∗,p(·) + ‖D2J(u, v)‖∗,q(·).

We say (u, v) ∈ X is a critical point of J if

J ′(u, v)(ϕ,ψ) = 0, ∀(ϕ,ψ) ∈ X.

Proposition 2.8 ([22]). (i) Φ is a convex functional;
(ii) Φ′ is strictly monotone, that is, for any (u1, v1) , (u2, v2) ∈ X with (u1, v1) 6=

(u2, v2), we have

(Φ′(u1, v1)− Φ′(u2, v2))(u1 − u2, v1 − v2) > 0,

(iii) Φ′ is a mapping of type (S+), that is if (un, vn) ⇀ (u, v) in X and

lim sup
n→∞

[Φ′(un, vn)− Φ′(u, v)](un − u, vn − v) ≤ 0,

then (un, vn)→ (u, v) in X.
(iv) Φ′ : X → X∗ is a bounded homeomorphism.

Theorem 2.9. Ψ1 ∈ C1(X,R) and Ψ1,Ψ′1 are weakly-strongly continuous, that is,
(un, vn) ⇀ (u, v) implies Ψ1(un, vn)→ Ψ1(u, v) and Ψ′1(un, vn)→ Ψ′1(u, v).

The proof is similar to the proof of [25, Theorem 3.2], we omit it here.

3. Main results and their proofs

In this section, we state the main results at first, and using the critical point
theory, we prove the existence of solutions for problem (1.1), and the asymptotic
behavior of solutions near infinity.

We say that (u, v) ∈ X is a weak solution for (1.1), if∫
RN
|∇u|p(x)−2∇u · ∇ϕdx+

∫
RN
|u|p(x)−2u · ϕdx

=
∫

RN
{λa(x)|u|γ(x)−2u+ Fu(x, u, v)}ϕdx, ∀ϕ ∈ X1,∫

RN
|∇v|q(x)−2∇v · ∇ψ dx+

∫
RN
|v|q(x)−2v · ψ dx

=
∫

RN
{λb(x)|v|δ(x)−2v + Fv(x, u, v)}ψ dx, ∀ψ ∈ X2.

It is easy to see that the critical point of J is a solution for (1.1).
Similar to the proof of [18, Theorem 5], from (A1) we have

F (x, τ1/θ1s, τ1/θ2t) ≥ τF (x, s, t), ∀(x, s, t) ∈ RN × R2, τ ≥ 1, (3.1)

F (x, τ1/θ1s, τ1/θ2t) ≤ τF (x, s, t), ∀(x, s, t) ∈ RN × R2, 0 ≤ τ ≤ 1. (3.2)

In fact, from (A0) and (A1) we have
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(A0’) 0 ≤ F (x, s, t) ≤ σ|s|p(x) + C(σ)|s|α(x) + σ|t|q(x) + C(σ)|t|β(x), where σ is a
small enough positive constant.

Denote

Γ = {γ ∈ C([0, 1], X) : γ(0) = (0, 0), γ(1) = (u∗, v∗)},
c = inf

γ∈Γ
max

(u,v)∈γ
J(u, v),

where (u∗, v∗) ∈ X satisfies J(u∗, v∗) < 0.
Denote

Ĵ(u, v) =
∫

RN

1
p(x)

(|∇u|p(x) + |u|p(x)) dx

+
∫

RN

1
q(x)

(|∇v|q(x) + |v|q(x)) dx−
∫

RN
F̃ (u, v) dx,

N = {(u, v) ∈ X : Ĵ ′(u, v)(
1
θ1
u,

1
θ2
v) = 0, (u, v) 6= 0},

J∞ = inf
(u,v)∈N

Ĵ(u, v).

Now our results can be stated as follows.

Theorem 3.1. If F satisfies (A0)–(A3), the positive parameter λ is small enough
and c < J∞, then (1.1) possesses a nontrivial solution.

Next, we give an application of Theorem 3.1, that is, a sufficient condition for
c < J∞.

We say h(x) is periodic and its period is A = {a1, a2, . . . , aN} where ai ≥ 0,
1 ≤ i ≤ N , if

h(x) = h(x+ niaiei), ∀x ∈ RN ,

where ni are integers and 〈e1, . . . , eN 〉 is the standard basis of RN .
Denote

Q(xo, A) = {x ∈ RN : (x− xo)ei ∈ [0, ai]}.

Theorem 3.2. If p(·), q(·) are periodic and their periods is A, F (x, s, t) satisfies
(A0)–(A3), and there exist τ, δ > 0 and p(·) << αo(·) << p∗(·), q(·) << βo(·) <<
q∗(·) such that

F (x, s, t) ≥ F̃ (s, t), ∀(x, s, t) ∈ RN × R+ × R+,

F (x, s, t) ≥ F̃ (s, t) + τsαo(x)−1 + τtβo(x)−1,

∀(x, s, t) ∈ B(Q(xo, A), δ)× R+ × R+,

(3.3)

then (1.1) possesses at least one nontrivial solution when λ is small enough.

Next we give the behavior of solutions near infinity.

Theorem 3.3. Suppose (A0)–(A3) hold, a, b ∈ L∞(RN ). If u is a weak solution
for problem (1.1), then u, v ∈ C1,α(RN ), u(x) → 0, |∇u(x)| → 0, v(x) → 0 and
|∇v(x)| → 0 as |x| → ∞.
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3.1. Proof of Theorem 3.1. For the proof, we need to do some preparations.

Lemma 3.4. If F satisfies (A0)–(A2), and the parameter λ is small enough, then
J satisfies the Mountain Pass Geometry, that is,

(i) There exist positive numbers ρ and α such that J(u, v) ≥ α for any (u, v) ∈
X with ‖(u, v)‖ = ρ;

(ii) J(0, 0) = 0, and there exists (u, v) ∈ X with ‖(u, v)‖ > ρ such that J(u, v) <
0.

Proof. (i) Recall that (A0)–(A1) imply (A0’). Then from (A0’) we have

|F (x, u, v)| ≤ ε(|u|p
+

+ |v|q
+

) + C(ε)(|u|α(x) + |v|β(x)).

Suppose ε and λ are small enough. We have

J(u, v) =
∫

RN

1
p(x)

(|∇u|p(x) + |u|p(x)) dx+
∫

RN

1
q(x)

(|∇v|q(x) + |v|q(x)) dx

−
∫

RN
λ[
a(x)
γ(x)

|u|γ(x) +
b(x)
δ(x)
|v|δ(x)] dx−

∫
RN

F (x, u, v) dx

≥ Φ(u, v)− λ
∫

RN
(|u|p(x) + |v|q(x)) dx− λC1

− ε
∫

RN
[|u|p

+
+ |v|q

+
] dx− C(ε)

∫
RN

(|u|α(x) + |v|β(x)) dx

≥ 1
2

Φ(u, v)− C(ε)
∫

RN
(|u|α(x) + |v|β(x)) dx.

Since
p(·) << α(·) << p∗(·), q(·) << β(·) << q∗(·),

there exists a positive constant ε0 such that

α(·)− p(·) ≥ 2ε0 and β(·)− q(·) ≥ 2ε0.

Since p is Liptchitz cntinuous, we can divide RN into countable disjoint cube
Ωn, n = 1, 2, . . . , each one has the same side length, such that ∪∞n=1Ωn = RN and
for any n = 1, 2, . . . , the following inequalities hold

inf
x∈Ωn

α(x)− sup
x∈Ωn

p(x) ≥ ε0 and inf
x∈Ωn

β(x)− sup
x∈Ωn

q(x) ≥ ε0.

Denote α−Ωn = infx∈Ωn α(x), p+
Ωn

= supx∈Ωn p(x). Suppose the positive number
ρ < 1 is small enough and ‖(u, v)‖ = ρ, from Propositions 2.3 and 2.6, it follows
that

C(ε)
∫

Ωn

|u|α(x) ≤ C(ε)|u|α
−
Ωn
α(·),Ωn ≤

1
8p+
‖u‖p

+
Ωn
p(·),Ωn

≤ 1
8

∫
Ωn

1
p(x)

(|∇u|p(x) + |u|p(x)) dx.

Similarly, we have

C(ε)
∫

Ωn

|v|β(x) dx ≤ 1
8

∫
Ωn

1
q(x)

(|∇v|q(x) + |v|q(x)) dx.

Thus, we have

J(u, v) ≥ 1
2

Φ(u, v)− C(ε)
∫

RN
(|u|α(x) + |v|β(x)) dx
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=
1
2

∞∑
n=1

∫
Ωn

1
p(x)

(|∇u|p(x) dx+ |u|p(x)) dx

+
1
2

∞∑
n=1

∫
Ωn

1
q(x)

(|∇v|q(x) + |v|q(x)) dx

−
∞∑
n=1

C(ε)
∫

Ωn

(|u|α(x) + |v|β(x)) dx

≥ 1
8

Φ(u, v).

It means that assertion (i) holds.
(ii) Obviously, J(0, 0) = 0. When t ≥ 1, by (3.1), we have

J(t1/θ1u, t1/θ2v)

=
∫

RN

1
p(x)

t
p(x)
θ1 (|∇u|p(x) + |u|p(x)) dx+

∫
RN

1
q(x)

t
q(x)
θ2 (|∇v|q(x) + |v|q(x)) dx

−
∫

RN
λ[
a(x)
γ(x)

t
γ(x)
θ1 |u|γ(x) +

b(x)
δ(x)

t
δ(x)
θ2 |v|δ(x)] dx−

∫
RN

F (x, t1/θ1u, t1/θ2v) dx

≤
∫

RN

1
p(x)

t
p(x)
θ1 (|∇u|p(x) + |u|p(x)) dx+

∫
RN

1
q(x)

t
q(x)
θ2 (|∇v|q(x) + |v|q(x)) dx

−
∫

RN
λ[
a(x)
γ(x)

t
γ(x)
θ1 |u|γ(x) +

b(x)
δ(x)

t
δ(x)
θ2 |v|δ(x)] dx−

∫
RN

tF (x, u, v) dx.

Note that γ(x) << p(x), δ(x) << q(x), θ1 > p+ and θ2 > q+, then for any
nontrivial (u, v) ∈ X, it is not hard to check

J(t1/θ1u, t1/θ2v)→ −∞ as t→ +∞.
�

We remark that it is easy to see that J∞ > 0.

Lemma 3.5. If F satisfies (A0)–(A2), {(un, vn)} is a PS sequence of J , that is
J(un, vn)→ c which is the mountain pass level, and J ′(un, vn)→ 0, then {(un, vn)}
is bounded.

Proof. Since 1 << γ(·) << p(·), a(·) ∈ L
p(·)

p(·)−γ(·) (RN ), 1 << δ(·) << q(·), b(·) ∈
L

q(·)
q(·)−δ(·) (RN ), we have∣∣ ∫

RN
λ[
a(x)
γ(x)

|u|γ(x) +
b(x)
δ(x)
|v|δ(x)] dx

∣∣
≤
∫

RN
[|λa(x)||u|γ(x) + |λb(x)||v|δ(x)] dx

≤
∫

RN
[
γ(x)
p(x)

(ε1)
p(x)
γ(x) |u|p(x) +

p(x)− γ(x)
p(x)

| 1
ε1
λa(x)|

p(x)
p(x)−γ(x) ] dx

+
∫

RN
[
δ(x)
q(x)

(ε1)
q(x)
δ(x) |v|q(x) +

q(x)− δ(x)
q(x)

| 1
ε1
λb(x)|

q(x)
q(x)−δ(x) ] dx

≤ ε1

∫
RN

[|u|p(x) + |v|q(x)] dx+ C(ε1),

where ε1 is a positive small enough constant.
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By (A1), we have for large values of n

c+ 1

≥ J(un, vn)

=
∫

RN

1
p(x)

(|∇un|p(x) + |un|p(x)) dx+
∫

RN

1
q(x)

(|∇vn|q(x) + |vn|q(x)) dx

−
∫

RN
λ[
a(x)
γ(x)

|un|γ(x) +
b(x)
δ(x)
|vn|δ(x)] dx−

∫
RN

F (x, un, vn) dx

≥
∫

RN

1
p(x)
{|∇un|p(x) + |un|p(x) − un

θ1
Fu(x, un, vn)} dx

+
∫

RN

1
q(x)
{|∇vn|q(x) + |vn|q(x) − vn

θ2
Fv(x, un, vn)} dx

−
∫

RN
λ[
a(x)
γ(x)

|un|γ(x) +
b(x)
δ(x)
|vn|δ(x)] dx,

=
∫

RN
(

1
p(x)

− 1
θ1

)(|∇un|p(x) + |un|p(x)) dx+ J ′(un, vn)(
1
θ1
un,

1
θ2
vn)

+
∫

RN
(

1
q(x)

− 1
θ2

)(|∇vn|q(x) + |vn|q(x)) dx− l

2

∫
RN

[|un|p(x) + |vn|q(x)] dx− C

≥ l

2

∫
RN

(|∇un|p(x) + |un|p(x)) dx+
l

2

∫
RN

(|∇vn|q(x) + |vn|q(x)) dx

− 1
θ1
‖D1J(un, vn)‖∗,p(·)‖un‖p(·) −

1
θ2
‖D2J(un, vn)‖∗,q(·)‖vn‖q(·) − C,

where l = min{( 1
p+ − 1

θ1
), ( 1

q+ − 1
θ2

)}.
Without loss of generality, we assume that ‖vn‖q(·) ≤ ‖un‖p(·) → ∞, n =

1, 2, . . . . Therefore for large enough n, we have

c+ 1 ≥ l

2
‖un‖p

−

p(·) − (
1
θ1
‖D1J(un, vn)‖∗,p(·) +

1
θ2
‖D2J(un, vn)‖∗,q(·))‖un‖p(·) − C.

This is a contradiction. Thus {‖un‖p(·)} and {‖vn‖q(·)} are bounded. �

Lemma 3.6. . Suppose F satisfies (A0)–(A3), {(un, vn)} satisfy J(un, vn)→ c >
0, where c is the mountain pass level, J ′(un, vn) → 0, λ is small enough, passing
to a subsequence still labeled by n, we have

(i) {(un, vn)} has a nontrivial weak limit (u, v) ∈ X or∫
RN

F̃u(un, vn)un dx+
∫

RN
F̃v(un, vn)vn dx ≥ δ > 0;

(ii) If c < J∞, then {(un, vn)} has a nontrivial weak limit.

Proof. (i) It follows from Lemma 3.5 that {(un, vn)} is bounded in X. Without
loss of generality, we may assume that (un, vn) ⇀ (u, v) in X. If (u, v) = (0, 0),
then Proposition 2.6 implies

un → 0 in L
α(·)
loc (RN ), p(·) ≤ α(·) < p∗(·),

vn → 0 in L
β(·)
loc (RN ), q(·) ≤ β(·) < q∗(·).

(3.4)
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Since (un, vn) ⇀ (0, 0), then Theorem 2.9 implies∫
RN

λ
a(x)
γ(x)

|un|γ(x) dx = o(1) =
∫

RN
λ
b(x)
δ(x)
|vn|δ(x) dx. (3.5)

Recall that (A0)–(A1) imply (A0’). Then from (A0’), (A3) and (3.4), it follows
that ∣∣ ∫

RN
(Fu(x, un, vn)− F̃u(un, vn))un dx|

≤
∫
|x|≥R

|Fu(x, un, vn)− F̃u(un, vn)||un| dx

+ C

∫
|x|≤R

(|un|p(x) + |un|α(x) + |vn|q(x) + |vn|β(x)) dx

≤ ε(R)
∫
|x|≥R

(|un|p(x) + |un|α(x) + |vn|q(x) + |vn|β(x)) dx

+ C

∫
|x|≤R

(|un|p(x) + |un|α(x) + |vn|q(x) + |vn|β(x)) dx,

which implies∫
RN

Fu(x, un, vn)un dx =
∫

RN
F̃u(un, vn)un dx+ o(1) as n→ +∞. (3.6)

Similar to the proof of (3.6), we can verify∫
RN

Fv(x, un, vn)vn dx =
∫

RN
F̃v(un, vn)vn dx+ o(1) when n→ +∞, (3.7)∫

RN
F (x, un, vn) dx =

∫
RN

F̃ (un, vn) dx+ o(1) as n→ +∞. (3.8)

Since F (x, u, v) ≥ 0 and J(un, vn)→ c > 0, we have

Φ(un, vn)−Ψ1(un, vn) ≥ J(un, vn) ≥ C1 > 0, for n w∞, (3.9)

which together with (3.5)-(3.8) and J ′(un, vn)→ 0 implies∫
RN

F̃u(un, vn)un dx+
∫

RN
F̃v(un, vn)vn dx ≥ δ > 0. (3.10)

(ii) By (A0), (3.1) and (3.2), there exist tn > 0 such that (t1/θ1n un, t
1/θ2
n vn) ∈ N ;

that is,
1
θ1

∫
RN

(
|∇t1/θ1n un|p(x) + |t1/θ1n un|p(x)

)
dx

+
1
θ2

∫
RN

(
|∇t1/θ2n vn|q(x) + |t1/θ2n vn|q(x)

)
dx

=
1
θ1

∫
RN

F̃u(t1/θ1n un, t
1
θ2
n vn)t1/θ1n un dx

+
1
θ2

∫
RN

F̃v(t1/θ1n un, t
1
θ2
n vn)t1/θ2n vn dx.

(3.11)

Suppose (u, v) is trivial, then (3.10) is valid. Noting that {(un, vn)} is bounded in
X. Obviously, there exist positive constants c1 and c2 such that

c1 ≤ tn ≤ c2. (3.12)
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From (3.5) and (3.12), we have∫
RN

λ
a(x)
γ(x)

|t1/θ1n un|γ(x) dx = o(1) =
∫

RN
λ
b(x)
δ(x)
|t1/θ2n vn|δ(x) dx. (3.13)

Since J ′(un, vn)→ 0 and {(un, vn)} is bounded in X, it follows from (3.6) and (3.7)
that ∫

RN
(|∇un|p(x) + |un|p(x)) dx

=
∫

RN
Fu(x, un, vn)un dx+ o(1) =

∫
RN

F̃u(un, vn)un dx+ o(1),
(3.14)

∫
RN

(|∇vn|q(x) + |vn|q(x)) dx

=
∫

RN
Fv(x, un, vn)vn dx+ o(1) =

∫
RN

F̃v(un, vn)vn dx+ o(1).
(3.15)

Obviously, there exist ξn, ηn ∈ RN such that∫
RN

(
|∇t1/θ1n un|p(x) + |t1/θ1n un|p(x)

)
dx = t

p(ξn)
θ1

n

∫
RN

(
|∇un|p(x) + |un|p(x)

)
dx,∫

RN

(
|∇t1/θ2n vn|q(x) + |t1/θ2n vn|q(x)

)
dx = t

q(ηn)
θ2

n

∫
RN

(|∇vn|q(x) + |vn|q(x)) dx,

which together with (3.11), (3.14) and (3.15) implies

1
θ1
t
p(ξn)
θ1

n [
∫

RN
F̃u(un, vn)un dx+ o(1)] +

1
θ2
t
q(ηn)
θ2

n [
∫

RN
F̃v(un, vn)vn dx+ o(1)]

=
1
θ1

∫
RN

F̃u(t1/θ1n un, t
1
θ2
n vn)t1/θ1n un dx+

1
θ2

∫
RN

F̃v(t1/θ1n un, t
1
θ2
n vn)t1/θ2n vn dx.

Thus

1
θ1
t
p(ξn)
θ1

n {
∫

RN
[F̃u(t1/θ1n un, t

1
θ2
n vn)t

1−p(ξn)
θ1

n un − F̃u(un, vn)un] dx+ o(1)}

+
1
θ2
t
q(ηn)
θ2

n {
∫

RN
[F̃v(t1/θ1n un, t

1
θ2
n vn)t

1−q(ξn)
θ2

n vn − F̃v(un, vn)vn] dx+ o(1)}

= 0.

(3.16)

From (A2), it is easy to see that

∂2F (x, τ1/θ1s, τ1/θ2t)s/|τ |
θ1−1
θ1 and ∂3F (x, τ1/θ1s, τ1/θ2t)t/|τ |

θ2−1
θ2

are increasing about τ when τ > 0; obviously, ∂1F̃ (τ1/θ1s, τ1/θ2t)s/|τ |
θ1−1
θ1 and

∂2F̃ (τ1/θ1s, τ1/θ2t)t/|τ |
θ2−1
θ2 are increasing when τ > 0. By (A1) and (3.16), we

have
(1) If tn ≥ 1, then

0 ≤ 1
θ1
t
p(ξn)
θ1

n (t
θ1−p(ξn)

θ1
n − 1)

∫
RN

F̃u(un, vn)un dx

+
1
θ2
t
q(ηn)
θ2

n (t
θ2−q(ξn)

θ2
n − 1)

∫
RN

F̃v(un, vn)vn dx ≤ o(1);
(3.17)
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(2) If tn < 1, then

0 ≤ 1
θ1
t
p(ξn)
θ1

n (1− t
θ1−p(ξn)

θ1
n )

∫
RN

F̃u(un, vn)un dx

+
1
θ2
t
q(ηn)
θ2

n (1− t
θ2−q(ξn)

θ2
n )

∫
RN

F̃v(un, vn)vn dx ≤ o(1).
(3.18)

From (3.10), (3.12), (3.17) and (3.18), it follows that

lim
n→∞

tn = 1. (3.19)

Together with (3.5), (3.8) and the definition of (un, vn), we have

c = J(un, vn) + o(1) = Ĵ(un, vn) + o(1). (3.20)

From the bounded continuity of Nemytskii operator, we can see

Ĵ(un, vn) = Ĵ(t1/θ1n un, t
1/θ2
n vn) + o(1). (3.21)

Note that (t1/θ1n un, t
1/θ2
n vn) ∈ N . It follows from (3.19), (3.20) and (3.21) that

c = Ĵ(t1/θ1n un, t
1/θ2
n vn) + o(1) ≥ J∞ + o(1)→ J∞ > c.

This is a contradiction. �

Proof of Theorem 3.1. From Lemmas 3.4 and 3.5, we know that there exist a
bounded PS sequence {(un, vn)} ⊂ X such that

J(un, vn)→ c > 0, J ′(un, vn)→ 0,

where c is the mountain pass level of J . Moreover, from Proposition 2.6 we have

un → u in L
α(·)
loc (RN ), p(·) ≤ α(·) << p∗(·),

vn → v in L
β(·)
loc (RN ), q(·) ≤ β(·) << q∗(·),

(3.22)

then
un → u a.e. in RN , and vn → v a.e. in RN . (3.23)

Since c < J∞, Lemma 3.6 implies that (u, v) is nontrivial. It only remains to
prove that (u, v) is a solution for (1.1). Since J ′(un, vn) → 0 as n → ∞, for any
(ϕ,ψ) ∈ X, we have∫

RN
(|∇un|p(x)−2∇un∇ϕ+ |un|p(x)−2unϕ) dx

−
∫

RN
{λa(x)|un|γ(x)−2un + Fu(x, un, vn)}ϕdx→ 0∫

RN
(|∇vn|q(x)−2∇vn∇ψ + |vn|q(x)−2vnψ) dx

−
∫

RN
{λb(x)|vn|δ(x)−2vn + Fv(x, un, vn)}ψ dx→ 0.

Since {‖un‖p(·)} and {‖vn‖q(·)} are bounded, for any (ϕ,ψ) ∈ X, it is easy to see
that the following two groups are uniformly integrable in RN ,

{(|un|p(x)−1 + |λa(x)||un|γ(x)−1 + |Fu(x, un, vn)|) · |ϕ|},

{(|vn|q(x)−1 + |λb(x)||vn|δ(x)−1 + |Fv(x, un, vn)|) · |ψ|} .
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Combining this, (3.23) and Vitali convergent theorem implies∫
RN
|un|p(x)−2unϕdx−

∫
RN
{λa(x)|un|γ(x)−2un + Fu(x, un, vn)}ϕdx (3.24)

→
∫

RN
|u|p(x)−2uϕdx−

∫
RN
{λa(x)|u|γ(x)−2u+ Fu(x, u, v)}ϕdx as n→∞,∫

RN
|vn|q(x)−2vnψ dx−

∫
RN
{λb(x)|vn|δ(x)−2vn + Fv(x, un, vn)}ψ dx (3.25)

→
∫

RN
|v|q(x)−2vψ dx−

∫
RN
{λb(x)|v|δ(x)−2v + Fv(x, u, v)}ψ dx as n→∞.

Thus, to prove that (u, v) is a weak solution of (1.1), we only need to prove that
for any (ϕ,ψ) ∈ X there holds∫

RN
|∇un|p(x)−2∇un∇ϕdx→

∫
RN
|∇u|p(x)−2∇u∇ϕdx, n→ +∞,∫

RN
|∇vn|q(x)−2∇vn∇ψ dx→

∫
RN
|∇v|q(x)−2∇v∇ψ dx, n→ +∞.

(3.26)

Choose φ ∈ C∞0 (RN ) with 0 ≤ φ ≤ 1, we have∫
RN

φ(|∇un|p(x)−2∇un − |∇w|p(x)−2∇w)(∇un −∇w) dx ≥ 0,∀w ∈ X1. (3.27)

Since {(un, vn)} is bounded in X and J ′(un, vn)→ 0, we have∫
RN

[|∇un|p(x)−2∇un∇(φ(un − w)) + |un|p(x)−2unφ(un − w)] dx

=
∫

RN
[λa(x)|un|γ(x)−2un + Fu(x, un, vn)]φ(un − w) dx+ o(1),

(3.28)

for all w ∈ X1. It follows from (3.27) and (3.28) that∫
RN
{[λa(x)|un|γ(x)−2un + Fu(x, un, vn)]− |un|p(x)−2un}φ(un − w) dx

−
∫

RN
(un − w)|∇un|p(x)−2∇un∇φdx

−
∫

RN
φ|∇w|p(x)−2∇w(∇un −∇w) dx+ o(1) ≥ 0, ∀w ∈ X1.

(3.29)

Note that (un, vn) is bounded in X, we may assume

(un, vn) ⇀ (u, v) in X,

∇un ⇀ ∇u in (Lp(·)(RN ))N , (3.30)

∇vn ⇀ ∇v in (Lq(·)(RN ))N

|∇un|p(x)−2∇un ⇀ T in (Lp
0(·)(RN ))N , (3.31)

|∇vn|q(x)−2∇vn ⇀ S in (Lq
0(·)(RN ))N .
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Note that φ has compact support, letting n→ +∞, according to (3.24), (3.29),
(3.30) and (3.31), we obtain∫

RN
{[λa(x)|u|γ(x)−2u+ Fu(x, u, v)]− |u|p(x)−2u}φ(u− w) dx

−
∫

RN
(u− w)T∇φdx−

∫
RN

φ|∇w|p(x)−2∇w(∇u−∇w) dx ≥ 0,
(3.32)

for all w ∈ X1. On the other hand |∇un|p(x)−2∇un ⇀ T J ′(un, vn) → 0, which
implies that∫

RN
(T∇ϕ+ |u|p(x)−2uϕ) dx =

∫
RN

[λa(x)|u|γ(x)−2u+ Fu(x, u, v)]ϕdx. (3.33)

Set ϕ = φ(u− w), it follows from (3.32) and (3.33) that∫
RN

φ(T − |∇w|p(x)−2∇w)(∇u−∇w) dx ≥ 0, ∀w ∈ X1. (3.34)

Set w = u− εξ, where ξ ∈ X1, ε > 0. From (3.34) we have∫
RN

φ(T − |∇u|p(x)−2∇u)∇ξ dx ≥ 0, ∀ξ ∈ X1,

then ∫
RN

φ(T − |∇u|p(x)−2∇u)∇ξ dx = 0, ∀ξ ∈ X1,

it is easy to see that∫
RN

(T − |∇u|p(x)−2∇u)∇ξ dx = 0,∀ξ ∈ X1.

Thus (3.26) is valid. Therefore∫
RN

(|∇u|p(x)−2∇u∇ϕ+ |u|p(x)−2uϕ) dx

=
∫

RN
[λa(x)|u|γ(x)−2u+ Fu(x, u, v)]ϕdx,∀ϕ ∈ X1.

Similarly, we have∫
RN

(|∇v|q(x)−2∇v∇ψ + |v|q(x)−2vψ) dx

=
∫

RN
[λb(x)|v|δ(x)−2v + Fv(x, u, v)]ψ dx,∀ψ ∈ X2.

Thus (u, v) is a solution of (1.1). �

3.2. Proof of Theorem 3.2. Motivated by the property of translation invariant
for p-Laplacian, we get a sufficient condition for c < J∞. To prove Theorem 3.2,
we need the following Lemma.

Lemma 3.7. If F satisfies (A0)–(A2), then for any (u, v) ∈ X\{(0, 0)}, there
exists a unique t(u, v) > 0 such that

(1) Ĵ((t(u, v))1/θ1u, (t(u, v))
1
θ2 v) = max

s∈[0,+∞)
Ĵ(s

1
θ1 u, s1/θ2v),

(2) ((t(u, v))1/θ1u, (t(u, v))1/θ2v) ∈ N ,
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(3) The operator (u, v) 7→ t(u, v) is continuous from X\{(0, 0)} to (0,+∞),
and the operator (u, v) 7→ ((t(u, v))

1
θ1 u, (t(u, v))1/θ2v) is a homeomorphism

from the unit sphere in X to N .

Proof. For any (u, v) ∈ X\{(0, 0)}, define

g(t) = Ĵ(t1/θ1u, t1/θ2v), ∀t ∈ [0,+∞).

(1) Similar to the proof of (3.11), we have g(t) > 0 as t > 0 is small enough, and
g(t) < 0 as t → +∞. Obviously, g is continuous, then g attains it’s maximum in
(0,+∞).

(2) From (A2), it is not hard to check that (t1/θ1u, t1/θ2v) ∈ N if and only if
tg′(t) = 0; that is,∫

RN
[|∇u|p(x) 1

θ1
t
p(x)
θ1 dx+ |u|p(x) 1

θ1
t
p(x)
θ1 ] dx

+
∫

RN
[|∇v|q(x) 1

θ2
t
q(x)
θ2 dx+ |v|q(x) 1

θ2
t
q(x)
θ1 ] dx

=
∫

Ω

F̃1(t1/θ1u, t1/θ2v)
1
θ1
t1/θ1u dx+

∫
Ω

F̃2(t1/θ1u, t1/θ2v)
1
θ2
t1/θ2v dx,

which can be rearranged as∫
RN

1
θ1

[|∇u|p(x)t
p(x)
θ1
−1 dx+ |u|p(x)t

p(x)
θ1
−1] dx

+
∫

RN

1
θ2

[|∇v|q(x)t
q(x)
θ2
−1 dx+ |v|q(x)t

q(x)
θ1
−1] dx

=
∫

Ω

1
θ1

F̃1(t1/θ1u, t1/θ2v)

t
θ1−1
θ1

u dx+
∫

Ω

1
θ2

F̃2(t1/θ1u, t1/θ2v)

t
θ2−1
θ2

v dx.

It follows from (3.1) and (3.2) that the left hand is strictly decreasing with respect
to t, while the right hand is increasing. Thus g′(t) = 0 has a unique solution t(u, v)
such that ((t(u, v))1/θ1u, (t(u, v))1/θ2v) ∈ N .

We claim that g(t) is increasing on [0, t(u, v)], and decreasing on [t(u, v),+∞).
Denote (u∗, v∗) = ((t(u, v))1/θ1u, (t(u, v))1/θ2v). Define ρ(t) = Ĵ(t1/θ1u∗, t1/θ2v∗).
We only need to prove that ρ(t) is increasing on [0, 1], and ρ(t) is decreasing on
[1,+∞). From (1), it is easy to see that there exists t# > 0 such that

ρ(t#) = max
t≥0

Ĵ(t1/θ1u∗, t1/θ2v∗),

therefore ρ′(t#) = 0.
Suppose t > 1. By (A2), we have

ρ′(t)

=
∫

RN

1
θ1
t
p(x)
θ1
−1(|∇u∗|p(x) + |u∗|p(x)) dx+

∫
RN

1
θ2
t
q(x)
θ2
−1(|∇v∗|q(x) + |v∗|q(x)) dx

−
∫

RN
F̃1(t1/θ1u∗, t1/θ2v∗)

1
θ1
t

1
θ1
−1u∗ dx−

∫
RN

F̃2(t1/θ1u∗, t1/θ2v∗)
1
θ2
t

1
θ2
−1v∗ dx

<

∫
RN

1
θ1

(|∇u∗|p(x) + |u∗|p(x)) dx+
∫

RN

1
θ2

(|∇v∗|q(x) + |v∗|q(x)) dx

−
∫

RN
F̃1(u∗, v∗)

1
θ1
u∗ dx−

∫
RN

F̃2(u∗, v∗)
1
θ2
v∗ dx



18 L. YIN, Y. LIANG, Q. ZHANG, C. ZHAO EJDE-2015/63

= Ĵ ′(u∗, v∗)(
1
θ1
u∗,

1
θ2
v∗) = 0.

Thus ρ(t) is strictly decreasing when t > 1.
Suppose t < 1. Similarly, we have

ρ′(t) > Ĵ ′(u∗, v∗)(
1
θ1
u∗,

1
θ2
v∗) = 0.

Thus ρ(t) is strictly increasing when t < 1. Therefore g(t) is increasing on [0, t(u, v)]
and decreasing on [t(u, v),+∞).

(3) We only need to proof that t(·, ·) is continuously. Let (um, vm)→ (u, v) in X,
then Ĵ(t1/θ1um, t1/θ2vm) → Ĵ(t

1
θ1 u, t1/θ2v). We choose a constant t0 large enough

such that Ĵ(t
1
θ1
0 u, t

1/θ2
0 v) < 0, then there exists a M > 0 such that

Ĵ(t1/θ10 um, t
1/θ2
0 vm) < 0

for any m > M . Therefore t(um, vm) < t0 when m > M , then {t(um, vm)} has a
convergent subsequence {t(umj , vmj )} satisfying t(umj , vmj )→ t∗. Thus

Ĵ((t(umj , vmj ))
1/θ1umj , (t(umj , vmj ))

1/θ2vmj )→ Ĵ(t1/θ1∗ u, t
1/θ2
∗ v).

From (1) we know that

Ĵ((t(umj , vmj ))
1
θ1 umj , (t(umj , vmj ))

1/θ2vmj )

≥ Ĵ((t(u, v))1/θ1umj , (t(u, v))1/θ2vmj ),

and hence letting j →∞, we obtain

Ĵ(t1/θ1∗ u, t
1/θ2
∗ v) ≥ Ĵ((t(u, v))1/θ1u, (t(u, v))1/θ2v).

From (1), we have t∗ = t(u, v). Thus t(u, v) is continuous. �

Proof of Theorem 3.2. Let {(un, vn)} ⊂ N be a minimizing sequences of Ĵ , that is

lim
n→+∞

Ĵ(un, vn) = J∞ > 0.

Similar to the proof of Lemma 3.5, we can see {(un, vn)} is bounded in X. Thus
there exists a positive constant κ > 1 such that∫

RN
(|un|p(x) + |vn|q(x)) dx ≤ κ, n = 1, 2, . . . . (3.35)

We claim that for any fixed δ > 0 andp(·) << α(·) << p∗(·), q(·) << β(·) << q∗(·),
there exist a εo > 0 such that

sup
y∈RN

∫
B(y,δ)

|un|α(x) dx+ sup
y∈RN

∫
B(y,δ)

|vn|β(x) dx ≥ 2εo, n = 1, 2, . . . . (3.36)

Indeed, suppose otherwise. Then it follows from Proposition 2.7 that

un → 0 in Lα(·)(RN ), ∀p(·) << α(·) << p∗(·), (3.37)

vn → 0 in Lβ(·)(RN ), ∀q(·) << β(·) << q∗(·). (3.38)

We claim that ∫
RN

F̃u(un, vn)un dx→ 0, n→ +∞. (3.39)
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For any ε > 0, (A0)–(A1) imply

|F̃u(un, vn)un| ≤
ε

2κ
(|un|p(x) + |vn|q(x)) + C(ε)(|un|α(x) + |vn|β(x)),

and ∣∣ ∫
RN

F̃u(un, vn)un dx
∣∣

≤ ε

2κ

∫
RN

(|un|p(x) + |vn|q(x)) dx+ C(ε)
∫

RN
(|un|α(x) + |vn|β(x)) dx.

(3.40)

Combining (3.37) and (3.38), there exist N0 > 0 such that

C(ε)
∫

RN
(|un|α(x) + |vn|β(x)) dx ≤ ε

2
, n ≥ N0. (3.41)

From (3.35), (3.40) and (3.41), we have

∣∣ ∫
RN

F̃u(un, vn)un dx
∣∣ ≤ ε,∀n ≥ N0.

Thus (3.39) is valid. Similarly, we can get∫
RN

F̃v(un, vn)vn dx→ 0, n→ +∞. (3.42)

Note that (un, vn) ∈ N . It follows from (3.39), (3.42) and ‖(un, vn)‖ → 0 that

Ĵ(un, vn)→ 0.

This is a contradiction to limn→+∞ Ĵ(un, vn) = J∞ > 0. Thus (3.36) is valid.
From (3.36), without loss of generality, we assume that

sup
y∈RN

∫
B(y,δ)

|un|α(x) dx ≥ εo, n = 1, 2, . . .

We may assume that∫
B(yn,δ)

|un|α(x) dx ≥ 1
2

sup
y∈RN

∫
B(y,δ)

|un|α(x) dx,∫
B(ηn,δ)

|vn|β(x) dx ≥ 1
2

sup
y∈RN

∫
B(y,δ)

|vn|β(x) dx.

From p(·) begin periodic, for any yn,ηn, there exist xn, ξn ∈ Q(xo, A) such that

p(x) = p(yn − xn + x),∀x ∈ RN ,

q(x) = q(ηn − ξn + x),∀x ∈ RN .
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Now, we consider J(t1/θ1un(yn − xn + x), t1/θ2vn(ηn − ξn + x)). Denote J1(u, v) =
Φ(u, v)−

∫
RN F (x, u, v) dx. It follows from (A2) that F (x, t

1
θ1 u, t1/θ2v)/t is increas-

ing with respect to t. Suppose t ∈ (0, 1), it follows from (3.2) that

J1(t1/θ1un(yn − xn + x), t1/θ2vn(ηn − ξn + x))

= Φ(t1/θ1un, t1/θ2vn)−
∫

RN
F (x, t1/θ1un(yn − xn + x), t1/θ2vn(ηn − ξn + x)) dx

≥ tmax{ p
+

θ1
, q

+

θ2
}Φ(un, vn)− t

∫
RN

F (x, un(yn − xn + x), vn(ηn − ξn + x)) dx

= t{tmax{ p
+

θ1
, q

+

θ2
}−1Φ(un, vn)−

∫
RN

F (x, un(yn − xn + x), vn(ηn − ξn + x)) dx}.

(3.43)
From (3.36) and the boundedness of {(un, vn)}, we can see that there exists positive
constants C1, C2 such that

C1 ≤ ‖(un, vn)‖ ≤ C2. (3.44)

Since θ1 > p+ and θ2 > q+, there exists a fixed t∗ ∈ (0, 1) such that, for any
n = 1, 2, . . . , we have

t
max{ p

+

θ1
, q

+

θ2
}−1

∗ Φ(un, vn)−
∫

RN
F (x, un(yn − xn + x), vn(ηn − ξn + x)) dx

≥ 1
2

Φ(un, vn) ≥ C3 > 0.
(3.45)

From (3.43) and (3.45), we obtain

J1(t1/θ1∗ un(yn − xn + x), t1/θ2∗ vn(ηn − ξn + x)) ≥ t∗C3 > 0, n = 1, 2, . . . .

Suppose λ is small enough. From the above inequality, we have

J(t1/θ1∗ un(yn − xn + x), t
1
θ2
∗ vn(ηn − ξn + x)) ≥ 1

2
t∗C3 > 0, n = 1, 2, . . . . (3.46)

Obviously, J(0, 0) = 0 and J(t1/θ1un(yn − xn + x), t1/θ2vn(ηn − ξn + x))→ −∞ as
t→ +∞. Thus there exist tn ∈ (0,+∞) such that

J(t1/θ1n un(yn − xn + x), t1/θ2n vn(ηn − ξn + x))

= max
t≥0

J(t
1
θ1 un(yn − xn + x), t1/θ2vn(ηn − ξn + x)) > 0.

(3.47)

It follows from (3.46) and the boundedness of {(un, vn)} that there exist a positive
constant ε such that

tn ≥ ε, n = 1, 2, . . . . (3.48)
Denote

g(t) = Ĵ(t1/θ1un(yn − xn + x), t
1
θ2 vn(ηn − ξn + x)).

Since {(un, vn)} ⊂ N , Lemma 3.7 implies

Ĵ(un(yn − xn + x), vn(ηn − ξn + x))

= max
t≥0

Ĵ(t1/θ1un(yn − xn + x), t1/θ2vn(ηn − ξn + x)).
(3.49)

Suppose λ is small enough. From (3.3), (3.47), (3.48) and (3.49), we have

max
t≥0

J(t1/θ1un(yn − xn + x), t1/θ2vn(ηn − ξn + x))
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= J(t1/θ1n un(yn − xn + x), t1/θ2n vn(ηn − ξn + x))

≤ Ĵ(t1/θ1n un(yn − xn + x), t1/θ2n vn(ηn − ξn + x))

+
∫

RN
λ[
|a(x)|
γ(x)

|t1/θ1n un(yn − xn + x)|γ(x) +
|b(x)|
δ(x)

|t1/θ2n vn(ηn − ξn + x)|δ(x)] dx

− τ

2α+
o

∫
B(xn,δ)

|t
1
θ1
n un(yn − xn + x)|αo(x) dx

− τ

2β+
o

∫
B(ξn,δ)

|t
1
θ2
n vn(ηn − ξn + x)|βo(x) dx

≤ Ĵ(t1/θ1n un, t
1
θ2
n vn)− τε0ε

max{α+
o ,β

+
o }

2 max{α+
o , β

+
o }

+
∫

RN
λ[
|a(x)|
γ(x)

|t1/θ1n un(yn − xn + x)|γ(x) +
|b(x)|
δ(x)

|t1/θ2n vn(ηn − ξn + x)|δ(x)] dx

≤ Ĵ(un, vn)− τε0ε
max{α+

o ,β
+
o }

4 max{α+
o , β

+
o }

< J∞ where ζ ∈ Q(xo, A) .

This completes the proof. �

3.3. Proof of Theorem 3.3. According to the [17, Theorems 2.2 and 3.2], u and v
are locally bounded. From [10, Theorem 1.2], u and v are locally C1,α continuous.
Similar to the proof of [13, Proposition 2.5], we obtain that u, v ∈ C1,α(RN ),
u(x)→ 0, |∇u(x)| → 0, v(x)→ 0 and |∇v(x)| → 0 as |x| → ∞.

Note 1. Let us consider the existence of solutions for the system

− div |∇ui|pi(x)−2∇ui) + |ui|pi(x)−2ui

= λai(x)|ui|γi(x)−2ui + Fui(x, u1, . . . , un) in RN ,

ui ∈W 1,pi(·)(RN ),

i = 1, . . . , n, where u = (u1, . . . , un), suppose λ is small enough, then the system
has a nontrivial solution if it satisfies the following assumptions:

(H0) pi(·) are Lipschitz continuous, 1 << pi(·) << N , 1 << γi(·) << pi(·),
ai(·) ∈ L

pi(·)
pi(·)−γi(·) (RN ), F ∈ C1(RN × Rn,R) and satisfies

|Fui(x, u1, . . . , un)|

≤ C(|ui|pi(x)−1 + |ui|αi(x)−1 +
∑

1≤j≤n, j 6=i

[|uj |pj(x)/α0
i (x) + |uj |αj(x)/α0

i (x)]),

where Fui = ∂
∂ui

F , αi ∈ C(RN ), and pi(·) ≤ αi(·) << p∗i (·), where

p∗i (x) =

{
Npi(x)/(N − pi(x)), pi(x) < N,

∞, p(x) ≥ N,

(H1) F ∈ C1(RN × Rn) and satisfies the following conditions

0 ≤ siFsi(x, s1, . . . , sn), ∀(x, s1, . . . , sn) ∈ RN × Rn, i = 1, . . . , n,

0 < F (x, s1, . . . , sn) ≤
∑

1≤i≤n

1
θi
siFsi(x, s1, . . . , sn), ∀(x, s1, . . . , sn) ∈ RN × Rn;
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(H2) For any (s, t) ∈ (R × R), Fsi(x, τ
1/θ1s1, . . . , τ

1/θnsn)/τ
θi−1
θi (i = 1, . . . , n)

are increasing respect to τ > 0;
(H3) There is a measurable function F̃ (s1, . . . , sn) such that

lim
|x|→+∞

F (x, s1, . . . , sn) = F̃ (s1, . . . , sn)

for bounded
∑

1≤i≤n |si| uniformly,

|F̃ (s1, . . . , sn)|+ |
∑

1≤i≤n

siF̃si(s1, . . . , sn)| ≤ C
∑

1≤i≤n

(|si|p
+
i + |si|α

−
i ),

for all (s1, . . . , sn) ∈ Rn, and

|F (x, s1, . . . , sn)− F̃ (s1, . . . , sn)| ≤ ε(R)
∑

1≤i≤n

(|si|pi(x) + |si|p
∗
i (x)) when |x| ≥ R,

|Fsi(x, s1, . . . , sn)− F̃si(s1, . . . , sn)|

≤ ε(R){|si|pi(x)−1 + |si|p
∗
i (x)−1

+
∑

1≤j≤n,j 6=i

[|sj |pj(x)(p∗i (x)−1)/p∗i (x) + |sj |p
∗
j (x)(p∗i (x)−1)/p∗i (x)]} when |x| ≥ R,

where ε(R) satisfies limR→+∞ ε(R) = 0.
(H4)

F (x, s1, . . . , sn) ≥ F̃ (s1, . . . , sn), ∀(x, s1, . . . , sn) ∈ RN × (R+)n,

F (x, s1, . . . , sn)

≥ F̃ (s1, . . . , sn) +
∑

1≤i≤n

τs
α#
i (x)−1
i , ∀(x, s1, . . . , sn) ∈ B(Q(xo, A), δ)× (R+)n,

where pi(·) << α#
i (·) << p∗i (·).
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[8] L. Diening, P. Harjulehto, P. Hästö, M. Růžička; Lebesgue and Sobolev spaces with variable

exponents, Lecture Notes in Mathematics, vol. 2017, Springer-Verlag, Berlin, 2011.



EJDE-2015/63 EXISTENCE OF SOLUTIONS 23

[9] X. L. Fan, D. Zhao; On the spaces Lp(x)(Ω) and Wm,p(x)(Ω), J. Math. Anal. Appl., 263

(2001), 424-446.

[10] X. L. Fan; Global C1,α regularity for variable exponent elliptic equations in divergence form,
J. Diff. Equa. 235 (2007) 397-417.

[11] X. L. Fan, J. S. Shen, D. Zhao; Sobolev embedding theorems for spaces Wk,p(x), J. Math.

and Appl., 262 (2001), 749-760.
[12] X. L. Fan, Y. Z. Zhao, D. Zhao; Compact imbedding theorems with symmetry of Strauss-

Lions type for the spaces W 1,p(x), J. Math. Anal. Appl., 255 (2001), 333-348.

[13] X. L. Fan; p(x)-Laplacian equations in RN with periodic data and nonperiodic perturbations,
J. Math. Anal. Appl., 341 (2008) 103-119.

[14] X. L. Fan, Q. H. Zhang; Existence of solutions for p(x)-Laplacian Dirichlet problem, Nonlinear

Anal. 52 (2003), 1843-1852.
[15] X. L. Fan, Q. H. Zhang, D. Zhao; Eigenvalues of p(x)-Laplacian Dirichlet problem, J. Math.

Anal. Appl. 302 (2005), 306-317.

[16] X. L. Fan; Solutions for p(x)-Laplacian Dirichlet problems with singular coefficients, J. Math.
Anal. Appl. 312 (2005) 464–477.

[17] X. L. Fan, D. Zhao; The quasi-minimizer of integral functionals with m(x) growth conditions,

Nonlinear Anal. 39, (2000), 807-816.
[18] A. El Hamidi; Existence results to elliptic systems with nonstandard growth conditions, J.

Math. Anal. Appl. 300 (2004) 30-42.
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