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On the generalized linear and non-linear DFC
in non-linear dynamics

D.Dmitrishin, A.Khamitova and A.Stokolos

Abstract The article is devoted to investigation of robust stability
of the generalized linear control of the discrete autonomous dynamical
systems. Sharp necessary conditions on the size of the set of multipliers
that guaranty robust stabilization of the equilibrium of the system
are provided. Surprisingly enough it turns out that the generalized
linear delayed feedback control has same limitation as the classical
Pyragas DFC. This generalized Ushio 1996 DFC limitation statement.
Note that in scalar case a generalized non-linear control can robustly
stabilize an equilibrium for any admissible range of multipliers [2]. In
the current article similar result is obtained in the vector-valued setting.
The article is an updated version of [5].

1. Introduction.

The problem of optimal impact on a chaotic mode is one of the most
fundamental in nonlinear dynamics [13, 4]. To solve it various schemes
where proposed. Some of them are based on a special representation
of the delayed feedback (DFC) [15] that allows to stabilize a-priori not
known equilibriums or cycles. Despite simplicity of implementation of
DFC scheme, it does have restrictions in application, that are connected
with its linearity and the use only one previous state [20]. The classical
scheme of DFC works only for a limited region in the spaces of the
parameters of the initial nonlinear system. To increase the area of
applicability of the DFC various generalizations of the classical scheme
were suggested. E.g. in [16] the control involves the information about
previous states; in [21] the nonlinear scheme of DFC with one delay
was considered and advantages at such modification were discussed. In
particular, the control became robust. In [12] a mixed linear-nonlinear
DFC scheme was investigated; in [14] the so-called, predictive DFC
scheme was studied. In [6] the ideas of [20, 21] were synthesized and
the most intrinsic control - the non-linear scheme with several delays -
was proposed

(1) u = −
N−1∑
j=1

εj (Fh (xn−j+1)− Fh (xn−j)) ,

where strengthening coefficients are small, e.g. |εj| < 1, j = 1, ..., N−1.
Despite of simplicity of the classical and generalized DFC schemes,

analytical investigation of the closed system is a difficult task. The
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complexity is caused by a geometry of the canonical region of Schur
stability for polynomials in the space coefficients [7]. Thus only numer-
ical and experimental results relating to properties and to applicability
of DFC schemes are known. In general, the problem obtaining suffi-
cient conditions that guarantee applicability of various algorithms still
open.

For a scalar case of the non-linear DFC with several delays the prob-
lem is completely solved in [6], where it was reduced by means of har-
monic analysis to the problem if linear optimization.

For the classical linear DFC with several delays it is impossible to
reduce the same problem to linear optimization even in a scalar case. In
this case the methods of complex analysis connected with properties of
mappings of the unit disc of the complex plane turns out to be effective.
These methods were extended from a class of univalent functions to
any analytical functions in the disc. It was discovered that the use of
several delays does not give any advantages in comparison with one
delay. Notice that for the non-linear control the situation is totally
opposite.

2. Linear Control

Let consider an open-loop vector nonlinear discrete system

(2) xn+1 = Fh (xn) , xn ∈ Rm, n = 1, 2, . . . ,

which has an unstable equilibrium x∗, perhaps more then one. It is
assumed that a differentiable function Fh depends on finitely-many pa-
rameters, and that for each parameter vector h from the admissible set
of these parameters H it is defined on some bounded simply-connected
set of m-dimensional space and maps it in itself. A location of the equi-
librium of x∗ and the spectrum {µ1, . . . , µm } of Jacobi matrix F ′h(x

∗)
depend on these parameters, i.e. the multipliers µj, j = 1, . . . , m in
general are known only approximately. If the admissible set H consists
only on one point then the function Fh and the multipliers are known
precisely.

In other words, instead of the functions family Fh the set of possible
location of the multipliers M ⊂ C̄ is considered. Here C̄ denotes the
extended complex plane. For example, if Fh(x) = hx(1− x), h ∈ (1, 4]
then M = [−2, 1). If Fh(x) = h sin πx, h ∈ [−1, 1/π) then M = [−π, 1).
If Fh(x, y, z) = h(sin(x+ y), sin(y + z), sin(z + x)), h ∈ [−2,−1] then

M =
{
ρei

π
3 : ρ ∈ [1, 2]

}
∪
{
ρei

2π
3 : ρ ∈ [1, 2]

}
∪
{
ρeiπ : ρ ∈ [2, 4]

}
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If the function Fh is known exactly (i.e. the set H consists of one
element) then the set M consists of no more then m points of complex
plane.

It is required to determine a necessary condition on the set M, that
allows local stabilization of the equilibrium x∗ of the system (2) for all
admissible parameters by one additive control of the form

(3) u = −
N−1∑
j=1

εj (xn−j − xn−j+1) ,

i.e. for all µj ∈M, j = 1, . . . , m.
A necessary conditions will be stated in terms of the size of the

set M and its connected components. At the same time the problem
of determining general conditions on the set M that guaranty robust
stability still open.

Let underline some important properties of the considering control.
The control depends not on a state of the system but on the difference of
the states in certain pervious instances of time. At synchronized state
xn = xn−1 the control (3) became zero, i.e. the close-loop system takes
the same form as it is with no control. It means, that the equilibriums
of open and closed-loop systems coincide and the control (3) does not
depend on a position of the equilibrium which is unknown.

The characteristic polynomial for the linear part of the closed sys-
tem(2) and (3) is

(4) f(λ) =
m∏
j=1

(
λN + (−µj + a1)λN−1 + a2λ

N−2...+ aN
)
,

where a1 = −ε1, aj = εj−1 − εj, j = 2, . . . , N − 1, aN = εN−1 . It

is clear that
∑N

j=1 aj = 0. The multipliers {µ1, . . . µm} depends on the
parameter vector h.

Denote f(λ) =
∏m

j=1 χµj(λ), where

(5) χµ(λ) = λN + (−µ+ a1)λN−1 + a2λ
N−2...+ aN .

Assume that the M is not empty, i.e. that for some µ = µ0 ∈M the
polynomial (5) is Schur stable. Since χµ0(1) = 1 − µ0 and χµ0(λ) > 0
for large values of λ then χµ0(1) > 0 otherwise by a mean value theorem
there is a root outside a unit disc which is impossible. Thus µ0 < 1.
Vieta theorem implies that the sum of the coefficients of Schur stable
polynomial does not exceed 2N , i.e. 1 − µ0 < 2N . On the other hand,
if 0 < 1− µ0 < 2N , then there exist coefficients a1, ..., aN ,

∑N
j=1 aj = 0,

such that the polynomial (5) is Schur stable at µ = µ0 [18]. Thus, all
real numbers from the set M are in the interval (−2N + 1, 1).
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Note that zeros of polynomials continuously depend on parameters
and with the change of µ can escape from the disc. In this case the
sequence of bifurcations is observing in the system (2) closed by the
control (3), which under quite general assumptions lead to emergence
of a chaotic attractor. The first bifurcation value of the parameter
corresponds to loss of the stable equilibrium by the system. We will
assume that local stabilization of an equilibrium means regularization
of a chaotic behavior of system solutions up to complete suppressing
the chaos in the system. It happen if basin of attraction coincides with
the whole space of the initial values.

Let fixed µ0 ∈M define the region

AN(µ0) =
{

(a1, ..., aN) : λN + (a1 − µ0)λN−1 + a2λ
N−2...+ aN is Schur stable

}
For a vector of coefficients a = (a1, ..., aN) from a region AN(µ0) define
the set

Ma =
{
µ ∈ C : λN + (−µ+ a1 − µ0)λN−1 + a2λ

N−2...+ aN is Schur stable
}

which contains µ0 and therefore is non-empty. The set Ma is not nec-
essary a connected [2].

The existence of the control (3) that locally stabilize the equilibrium
of the system (2) for all admissible values of parameters means existence
of a vector a ∈ AN(µ0) such that M ⊂Ma.

Let

Ma =
k⋃
j=1

M (j)
a ,

where k is a number of simply-connected components M
(j)
a . Define

diameters of the sets Ma and M
(j)
a , j = 1, ..., k, i.e. the quantities

d(Ma) = sup
z1∈Ma,z2∈Ma

|z1 − z2|

and

d(M (j)
a ) = sup

z1∈M(j)
a ,z2∈M(j)

a

|z1 − z2|, 1 ≤ j ≤ k.

If the diameter of the set M will be bigger then maxa∈AN (µ0){d(Ma)}
or a diameter of some connected component of the set M will be bigger

then maxa∈AN (µ0),1≤j≤k{d(M
(j)
a )} then there does not exist the control

(3) that locally stabilizes the equilibrium of the system (2) for all ad-
missible values of parameters incorporated in that system.

Let us turn to the evaluation of the diameters of the sets Ma and
M

(j)
a .
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2.1. Preliminary results. From the statement of the problem follows
that the coefficients a1, ..., aN are real, and

N∑
j=1

aj = 0.

In this section the above restrictions wont be used.
So, let a1, ..., aN be arbitrary complex numbers from AN(µ0). Let

write the polynomial χ∆µ+µ0(λ) in the form

λN + (−∆µ+ a1 − µ0)λN−1 + a2λ
N−2...+ aN = λN −∆µλN−1 + p(λ)

and denote q(z) = (a1 − µ0)z + . . . + aNz
N , Φ(z) = z

1+q(z)
.

The following lemma formalizes a very useful and very practical ob-
servation due to A.Solyanik [17].

Lemma 1. Polynomial χµ+µ0(λ) = λN−∆µλN−1+p(λ) is Schur stable
if and only if

(6)
1

∆µ
∈ C̄\Φ(D),

where D = {z ∈ C : |z| < 1}, D = {z ∈ C : |z| ≤ 1}.

Proof. Polynomial χ∆µ+µ0(λ) is Schur stable if and only if the image
of the set C̄\D under the map χ∆µ+µ0(λ) does not contain zero, i.e.
χ∆µ+µ0(λ) 6= 0 for all λ ∈ C̄\D.

This is equivalent to

1

∆µ
6=

1
λ

1 + 1
λN
p(λ)

, λ ∈ C̄\D

or
1

∆µ
6= z

1 + q(z)
, z ∈ D̄

Thus, a polynomial χ∆µ+µ0(λ) is Schur stable if and only if 1
∆µ

/∈ Φ(D)

or 1
∆µ
∈ C̄\Φ(D). The Lemma is proved.

Let introduce an inversion of complex numbers by the rule (z)∗ = 1
z̄
.

By inverse set we will understand the set consisting of inverse elements
of the initial one. Condition of robust stability (6) is equivalent to the
inclusion

∆µ ∈
(
C̄\Φ1(D)

)∗
,

where Φ1(z) = z
1+q1(z)

and q1(z) = (ā1 − µ̄0)z + . . . + āNz
N .

Since the polynomial λN + p(λ) is Schur stable, all poles of the func-
tion Φ(z) lie outside the unit disc D. I.e. the function Φ(z) is analytic
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in D. The size of the set associated with Ma are related to the size
of Φ(D). The image set Φ(D) is an open but not necessarily a simply
connected set. Denote by Φs(D) a minimal simply connected set con-
taining Φ(D).

Lemma 2. The set Φs(D) contains the disc of radius 1/4.

Proof. By Riemann mapping theorem there exists a function ϕ(z)
univalent in D, such that ϕ(D) = Φs(D), wherein ϕ(0) = 0, ϕ′(0) > 0.
Consequently, ϕ−1(Φ(D)) ⊆ D. This means that function F (z) =
ϕ−1(Φ(z)) posesses the inequality |F (z)| < 1 for z ∈ D and satis-
fies the conditions of Schwarz’s lemma, from where |F ′(0)| < 1. But

F ′(0) = Φ′(0) (ϕ−1)
′

z=0 = (ϕ−1)
′

z=0. This gives the required estimates

(ϕ−1)
′

z=0 < 1, ϕ′(0) > 1. Köbe theorem [2] implies that the set ϕ(D)

contains a circle of radius ϕ′(0)
4

and therefore one of the radius 1/4. The
lemma is proved.

Remark. Lemma 2 can be viwed as an extension of Köbe theorem
to arbitrary mappings of the unit disc, not necessarily univalent: a
minimal connected domain containing the image of the unit disc under
any analytic in the disc function of the type

z + c1z
2 + c2z

3 + . . . ,

contains a central disc of radius 1
4
.

Lemma 3. The set Φ(D) contains a disc of radius 1/16.

The proof follows directly from Caratherodory theorem [3]: if ana-
lytic in the disc D function c0z + c1z

2 + c2z
3 + ... does not have zeros

in D\{0} then for any exceptional value γ in D we have |γ| ≥ |c0|
16
, i.e.

if γ 6∈ Φ(D) then γ ≥ 1
16
.

2.2. Main result.

Theorem 1. Let for some µ0 the set AN(µ0) is not empty and let
a = (a1, . . . aN) ∈ AN(µ0). Then d(Ma) ≤ 16.

Proof. Lemma 2 implies that the set C̄\Φ(D) does not contain the
central disc of radius 1/16. Then Lemma 1 implies that for µ1 ∈Ma

1

|∆µ|
=

1

|µ0 − µ1|
≥ 1

16
,
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therefore |µ0 − µ1| ≤ 16. This estimate is valid for arbitrary µ0 and µ1

from Ma. The theorem is proved. �

Theorem 2. Let for some µ0 the set AN(µ0) is not empty and let a =

(a1, . . . aN) ∈ AN(µ0). Then d(M
(j)
a ) < 4, where M

(j)
a is a connected

component of the set Ma that contains µ0.

Proof. Lemma 2 implies that that the set C̄\Φs(D does not contain a
central disc of radius 1/4. Now, by Lemma 1 if 1/µ1 ∈ C̄\Φs(D then

µ1 ∈M (j)
a .

From here 1
|∆µ| = 1

|µ0−µ1| >
1
4
, and |∆µ| = |µ0−µ1| < 4. The estimate

is valid for any µ0 and µ1 in M
(j)
a . The theorem is proved. �

Remark that the value of the radius in the Theorem 2 can not
be reduced in general. Indeed, for µ0 = 0, ε ∈ (0, 1) the vector
(a1, a2) = (2(1− ε), 1− ε) belongs to the set A2(0) = {(a1, a2) :
a2 + 1 > |a1|, a2 < 1}. Then the multiplier µ1 = 4 − 3ε belongs to
the set Ma. It is clear that supε∈(0,1) |µ0 − µ1| = 4.

On the Fig. 1 the set Φ(D) is displayed for a1 = 2(1− ε), a2 = 1− ε
where ε = 0.1. It is simply connected and contains entirely the central
disc of the radius 1/4 (a black spot at the origin). The set Ma is
inverse with respect to the unit circle of the exterior of the set Φ(D).
It is entirely containing in the disc of radius 4, which is an inversion of
the exterior of the disc of radius 1/4 (see Fig. 2). With decreasing ε
the diameter of the set Ma approaches 4.
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Fig. 1
Figure 1 displays image of the circle D under the mapping F (z) =
z

1+a1z+a2z2
and center circle radius 1/4 (ε = 0.1).

Fig. 2
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Fig. 2 displays the region Ma and a central circle of radius 4 (ε =
0.1).

Theorem 3. If diameter of the set M is larger then 16 or a diameter
of any of its connected component is larger then 4, then for any N
there is no control (2) that stabilizes equilibrium of the system (1) for
all admissible parameters of the system.

Proof. If exist stabilizing control (2) then there exists a vector of coef-
ficients a = (a1, . . . , aN) such that the family of polynomials

{λN − µλN−1 + a1λ
N−1 + a2λ

N−2 + · · ·+ aN : µ ∈M}
is Schur robust stable. By theorem 2 the diameter of the set M cannot
exceed 16 while the diameter of any of its connected component cannot
exceed 4. The theorem is proved. �

Now, let us consider the case where the function Fh in the system (1)
is defined precisely, i.e. the set of the admissible parameters consists
of one point: H = {h0}. Denote Fh0 = F and x∗h0 = x∗.

Theorem 4. If spectrum {µ1, . . . , µm} of Jacobi matrix F ′(x∗) has a
diameter greater then 16, then there is no control (3) that stabilizes the
equilibirum x∗.

If M consists of real numbers then it is possible to state not only a
necessary condition of existing the stabilizing control (Theorem 5) but
a sufficient as well (Theorem 6).

Theorem 5. Assume that the spectrum of Jacobi matrix of the system
(1) is real for all admissible values of the parameters. And assume
that the set M is simply connected. Then a necessary condition for the
existence of stabilizing control (2) is the length of the interval, defined
by M to be at most 4 and all the numbers from it are less then 1.

Theorem 6. Let M = (a, b), where −3 < a < b < 1. Then there is a
control un = −ε(xn−1− xn) that locally stabilizes the equilibrium of the
system (1).

Proof. The characteristic polynomial of the closed-loop system can be
written in the form

f(λ) =
m∏
j=1

(λ2 + (−µj − ε)λ+ ε),

where µj ∈ (a, b). If ε ∈ (−1+a
2
, 1) the vectors (−µj − ε, ε), j = 1, ...,m

belongs to the stability region A2(0) = {(a1, a2) : a2 + 1 > |a1|, a2 <
1}. Therefore for ε ∈ (−1+a

2
, 1) the characteristic polynomial of the
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closed-loop system is Schur stable for all µj ∈ (a, b). The theorem is
proved. �

Let us mention, that even when all conjectures of the Theorem 6
are fulfilled, i.e. when it is known that there exists linear stabilizing
control, practically it cannot be implemented. As it mentioned in [21]
the basin of attraction of the stable equilibrium can turns to be too
small.

2.3. Examples. A. Consider the controllable chaotic system

(7) xn+1 = h sin(πxn) + un,

(8) u = −
N−1∑
j=1

εj (xn−j − xn−j+1) ,

where h ∈ (−h0, 1/π), 1/π < h0 ≤ 1. In this case M = (−πh0, 1).
If h0 ≤ 3

π
then accordingly to the Theorem 6 there exists a control

(7) for N = 2 that locally stabilizes the trivial equilibrium x∗ = 0 of the
system (7) for all h from M. As closer h0 is to 3/π as smaller become
the basin of attraction of the trivial equilibrium.

Now, let 3/π < h0 ≤ 1. For every fixed h ∈ (−h0,− 3
π
) there exists

the stabilizing control (8). I.e. the strength coefficients in (8) should
depend on h. At the same time µ ∈ (−π,−3) and the condition 22 <
1 − µ ≤ 23 implies that for N = 3 it is possible the stabilization with
two-steps control un = −ε1(h)(xn−1 − xn)− ε2(h)(xn−2 − xn−1).

However, there is no N that admits the control (8) independent on
h and stabilizing the trivial equilibrium for all h ∈ (−h0, 1).

B. Let consider controllable chaotic system linearised around an
equilibrium:

(9)
xn+1 = µ1xn + u

(1)
n

yn+1 = µ2xn + u
(2)
n

,

(10) un =

(
u

(1)
n

u
(2)
n

)
= −

N−1∑
j=1

εj

(
xn−j − xn−j+1

yn−j − yn−j+1

)
,

where µj ∈M, j = 1, 2.
Let us show that there exists a set M of the diameter larger then 4

that admits a local stabilization of the trivial equilibrium of the system
(9) by the control (10) for all µj ∈M, j = 1, 2..

To construct such control we will use the results from [11]. Let
µ0

1 = −79
24

and µ0
2 = −23

24
. Since µ0

1 + µ0
2 = 17

4
> 4 then if the stabilizing
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control does exists then the set M cannot be connected. Let determine
the necessary restriction on N. Since 1−µ0

1 ≈ 4.29 < 23 then N ≥ 3. If
N = 3 then the polynomials fj(λ) = λ3−µjλ2+a1λ

2+a2λ+a3, j = 1, 2
should be stable.

For any stable polynomials fj(λ) of the degreeN ≤ 3 the polynomials
from the family {θf1(λ) + (1− θ)f1(λ)} should be stable as well [11] .
However by the the Theorem 3 it is impossible. Therefore, N ≥ 4. Let
consider the vector a = (−7

6
, 3

2
, 0,−1

3
) ∈ A4

(
23
24

)
and let construct the

image of the of the unit disc under the map Φ(z) = z
1− 23

24
z− 7

6
z+ 3

2
z2− 1

3
z4

(see the Fig. 3). This image is not a simply connected set (see the Fig.
4). The figures 5 and 6 displays the region of the possible location of
∆µ of the displacement of the multiplier µ from µ0

2.

Fig. 3. The image of the unit disc Φ(D).
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Fig. 4 The set
(
C̄\Φ̄(D)

)∗
is not connected and can be written as a

union of two simply-connected sets

Fig.5 Fig.6

For the existence of the stabilizing control the equality µ0
1 = µ0

2 +∆µ

should happen for some ∆µ ∈
(
C̄\Φ̄(D)

)∗
. Indeed, the equality is valid

for ∆µ = −17
4

. Therefore for M = {µ : µ− µ0
2 ∈M1} the stabilization

is possible, the strength coefficients of the stabilizing control (10) are
defined by the vector a and they are ε1 = 7

8
, ε2 = −1

3
and ε3 = −1

3
.

C. Let us consider a system

(11)

 xn+1

yn+1

zn+1

 = h

 sin(xn + yn)
sin(yn + zn)
sin(zn + xn)

 , h ∈ H

The system (11) has a trivial equilibrium that corresponds to the set
of multipliers

M1 =
{
|h|ei

π
3 , |h|e−i

π
3 ,−2|h|

}
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If H = {−h0} then for |h0| > 16√
3

diameter of the set M1 is bigger then

16 and by the Theorem 3 there is no control (3) that stabilizes the
trivial equilibrium of the system (11) for h = −h0.

Let H = (−h0, 0). If h0 > 2 there is no control (3) that stabilizes the
trivial equilibrium of the system (11) for all h ∈ (−h0, 0).

2.4. Conclusion. In the above section the properties of the control
with specific structure that involves difference of the system stages
computed in a certain shifted instants of time. Such type controls as
well as classical ones, have a long history of applications in problems
of stabilization (detecting) of unknown equilibriums or cycles in the
systems with continuous or discrete time. However, the possibility of
application of such control (or definite impossibility) has studied only
in simplest partial cases.

The action of such controls can be explained by the following aspects:

a) The space of the initial stages of the system (2) has dimension m
while after closing the system by the control (3) the space of the initial
stages is changing, its dimension became (N − 1)m.

b) The space of the initial stages of the closed-loop system is splitting
in the collection of invariant sets among them appear stable minimal
sets (and the basins of their attraction).

c) In the initial m-dimensional space this minimal sets correspond
locally stable cycles, therefore the chaotic structure of the solutions is
regularizing.

By this reason the problem of local stabilization of the equilibriums of
the system (2) tunes out to related to the problem of chaos suppressing.

We do not touch the problem of estimating the basins of attraction.
Our main goal is to demonstrate the limitation of the applicability of
the linear controls thus justify the necessity of the nonlinear control.
The theorem 3 demonstrates that the set M of the possible location
of multipliers of the system (2) cannot be arbitrary large for any lin-
ear control (3), i.e. its diameter cannot exceed 16 and the diameter
of any connected component cannot exceed 4 regardless of the system
dimension m and the number N in the control (3). On contrary, the
application of the nonlinear control allows to stabilize chaos in the sys-
tems with arbitrary large set of locations of multipliers [6] by increasing
the number N of the strength coefficients of the control (1).
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Additionally, we have risen a problem of determine necessary and
sufficient conditions on the setM that guaranties stability of the system
(2) by the linear control (3) in a general situation. Let us mention that
this problem is not solved even in simplest cases. Say, if M = {µ},
where µ is a real number, then the necessary and sufficient condition
for the stability is µ < 1. However, if µ is complex and M = {µ, µ̄} the
problem is open.

3. Non-Linear Control

Having understanding of the limited power of the linear DFC it is
naturally to consider the non-linear control (1). The scalar case was
considered in [7]. Below we consider the vector valued case. There is
a significant difference between these cases. Namely, the scalar case
deals with real multiplier while the vector deals with complex ones.

Assume again that the multipliers are located in a region M. A close-
loop system is of the form

(12) xn+1 = fh(xn) + un

where the control is non-linear.
The system (12) linearized around an equilibrium point takes the

form

(13) xn+1 = A ·
N−1∑
j=0

αjxn−j.

where Jacoby matrix can be transformed by a non-degenerate trans-
formation to the upper triangular form

A =


µ1 a12 ... ... a1m

0 µ2 ... ... a2m

... ... ... ... ...
0 ... µj ... ajm
... ... ... ... ...
0 ... ... ... µm


Remarkably enough α0 + ... + αN−1 = 1 therefore we bypass the first
obstacle in the linear control - now the close-loop system has solutions
within the range.

The characteristic equation for the linear system (13) is

m∏
k=1

(λN − µkP (λ)) = 0
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where P (λ) =
∑N

j=1 αjλ
N−j and µk ∈M ⊂ C.

Now, the problem is given a region M ⊂ C find a number N and
construct polynomials P (λ) such that the family of the polynomials{
λN − µkP (λ)

}
is Schur stable for all µk ⊂M, k = 1, ..,m.

Modifying the expression we get

1

µk
=

N∑
j=1

αjλ
−j = λ−NP (λ) =: q

(
1

λ

)
.

Now, if all zeros λ are inside the unit disc D (Shur stability) then 1
λ

lie
outside the unit disc, i.e. we came up with the conclusion that

1

µk
∈
{
C̄\q(z) : z ∈ D

}
, q(1) = 1, q(0) = 0.

Therefore, the admissible domain for the multipliers is
{
C̄\q(z) : z ∈ D

}∗
,

where E∗ denote the inversion of E with respect to the unit circle.

Then the stability criteria is M ⊂ (C̄\q(D̄)∗. So, we came up with
the following problem of geometric complex function theory: given set
of multipliers M find a properly normalized polynomial map z → q(z)
such that M ⊂

(
C̄\q(D̄)

)∗
. Then, find the optimal or almost-optimal

coefficients.

A crucial case of the left half plane can be resolved in the following
way. If µ ∈ {<(z) < 0} ∪ {|z| < 1} then this domain may be consider
as a union of the domains MR := {|z+R| < R}∪{|z| < 1}. If R = N/2
then choosing the polynomial map

q : z → 2

N

N∑
j=1

(1− j

N + 1
)zj

we are guaranteed that the image of the unit disc will be to the right of
the line <(z) = 1/N. Therefore the inverse image of all the multipliers
µ with <(µ) ≤ 1/N will be inside the inverse image of that vertical
line which is a circle |z + N/2| < N/2. Therefore, M can be covered
by
(
C̄\q(D̄)

)∗
. On the Fig. 8 the left image is q(D̄) with N = 12 while

the right is
(
C̄\q(D̄)

)∗
.
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Fig. 8
Conjecture A. The suggested polynomial map q has the lowest or-

der among those p : z → p(z), p(0) = 0, p(1) = 1 whose inverse image
of a unit disc contains MR.

Now, the strength coefficients that are defined by the formulas

εk =
2

N

N∑
j=k+1

(1− j

N + 1
), k = 1, ..., N − 1

produce the non-linear control (1).
As an example let us consider the Ikeda map proposed first by Ikeda

[9] as a model of light going around across a non-linear optical res-
onator. It 2D version was considered in [10]

x→ 1 + 0.9

(
x cos

(
0.2− 6

1 + x2 + y2

)
− y sin

(
0.2− 6

1 + x2 + y2

))

y → 0.9

(
x sin

(
0.2− 6

1 + x2 + y2

)
− y cos

(
0.2− 6

1 + x2 + y2

))

Fig. 9 Ikeda chaos Fig. 10 N=2 Fig. 11 N=8
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Fig. 12 N=20 Fig. 13 N=150
The displayed images suggests that any stabilization went through 5

basic stages: Chaos (Fig. 9, 14), Fluctuation (Fig. 10, 15), Separation
(Fig. 11, 16), Concentration (Fig. 12, 17) and Stabilization (Fig. 13,
18).

Another example is a famous Arnold cat map (x, y) → (x + y, x +
2y)mod1 [1] which is a classical case of Anosov diffeomorphism. We
come up with a remarkable discovery - even for a non-smooth mapping
the addition of the control makes a close-loop system more structured.

Fig. 14 Arnold cat Fig. 15 N=3 Fig. 16 N=9

5 Fig. 17 N=15 Fig. 18 N=50

Below are examples of the stabilization of 3D neural sine map
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x→ 12 sin(π(y − x)), y → 12 sin(π(z − y)), z → 12 sin(π(x− z))
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