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ABSTRACT 

The generalized l1 greedy algorithm was recently introduced and used to reconstruct medical images in computerized 
tomography in the compressed sensing framework via total variation minimization. Experimental results showed that 
this algorithm is superior to the reweighted l1-minimization and l1 greedy algorithms in reconstructing these medical 
images. In this paper the effectiveness of the generalized l1 greedy algorithm in finding random sparse signals from un-
derdetermined linear systems is investigated. A series of numerical experiments demonstrate that the generalized l1 
greedy algorithm is superior to the reweighted l1-minimization and l1 greedy algorithms in the successful recovery of 
randomly generated Gaussian sparse signals from data generated by Gaussian random matrices. In particular, the gener-
alized l1 greedy algorithm performs extraordinarily well in recovering random sparse signals with nonzero small entries. 
The stability of the generalized l1 greedy algorithm with respect to its parameters and the impact of noise on the recov-
ery of Gaussian sparse signals are also studied. 
 
Keywords: Compressed Sensing; Gaussian Sparse Signals; l1-Minimization; Reweighted l1-Minimization; l1; Greedy 

Algorithm Generalized l1 Greedy Algorithm 

1. Introduction 

In signal processing one wants to reconstruct a signal 
from highly incomplete sets of linear measurements of 
the signal, that is, the number of measurements is much 
smaller than the dimension of the signal. More precisely, 
assuming m nA   with , one wants to recon-
struct an unknown signal 0  from a set of m 
measurements b = Ax0. This requires one to solve the 
system of linear equations 

m n
x n

Ax = b                 (1) 

to determine the solution that is exactly equal to x0. Since 
system (1) is consistent and underdetermined, it has infi-
nitely many solutions making it difficult to find the cor-
rect solution x0. In many actual applications, such as im-
age reconstruction and decoding, however, the signal one 
wants to reconstruct is known to be sparse (or nearly 
sparse) in the sense that its coefficients in some or-
thonormal basis are mostly zero (or approximately zero). 
The theory of compressed sensing [1-5] reveals that sig-

nals that have sparse representations can be reconstructed 
with high precision from far fewer measurements than 
the dimension of the signal itself. In fact, if the columns 
of A are chosen from a suitable distribution and the sig-
nal is sufficiently sparse, then the signal can be exactly 
recovered by solving the following standard l1-norm 
minimization problem: 

1
min subject to

nx
x Ax b





       (2) 

where 11

n
i ix x  . This optimization problem of a 

convex objection function can be solved effectively and 
it has broad applications [6-10]. But the iterative 
l1-minimization method has a shortcoming in finding the 
sparsest solution. Since the larger entries of x in each 
iteration skew the l1-norm, they are more heavily penal-
ized in the l1-minimization process. To address this im-
balance, weighted algorithms were introduced to reduce 
the influence of the larger entries. Two major algorithms 
designed for this purpose are the reweighted l1-minimi- 
zation and l1 greedy algorithms [11,12]. 

Suppose that  kx  is the sequence of vectors gener-*Corresponding author. 
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ated by l1-minimization. In the k-th iteration of the re-
weighted l1-minimization method [11], one minimizes 

1

kW x  instead of 
1

x  in (2), where  

 1

1

diag , ,

1
, 0, 1, ,

k k k
n

k
i k

i

W w w

w
x


 



  




i n
        (3) 

Observe that the weights in (3) are roughly inversely 
proportional to the sizes of the entries of the previous 
iterate xk−1. So the larger entries are weighted down to 
rectify their undue influence in the next iteration of the 
l1-minimization process. Numerical experiments [11] 
have indicated that the reweighted l1-minimization re-
covers random sparse signals with a much higher prob-
ability than the standard l1-minimization in (2). The re-
weighted l1-minimization algorithm has been extensively 
studied in recent years. The lq-minimization problem, 0 < 
q ≤ 1, was discussed and implemented using the re-
weighted l1-minimization scheme [13,14]. A two-step 
reweighted l1-minimization was introduced to improve 
the recovery of sparse signals [15], and a reweighted l1- 
minimization for a nonuniform sparsity model was pro-
posed [16]. The performance of the reweighted l1-mini- 
mization with noisy data was also rigorously analyzed 
[17], and some convergence conditions of reweighted 
l1-minimization for a special family of measurement ma-
trices were studied [18].  

In the l1 greedy algorithm [12], instead of using vari-
able weights as in (3) the weights are set to a fixed small 
constant   for entries whose magnitude is above a cer-
tain threshold and to 1 for the other entries. This thresh-
old is lowered after each iteration so that more and more 
large entries are weighted down by   in each subse-
quent iteration step. More precisely, the weights  in 
the k-th iteration of the l1 greedy algorithm are defined by 

k
iw

1, for
, 1, ,

1, otherwise

k k
ik

i

x M
w

   


i n  

where  0 0max i
1 i n

M x x 
  

, x0 is generated by the 
standard l1-minimization,  0,1   and 0,0.001  . 
Numerical experiments showed that the l1 greedy algo-
rithm outperforms both the unweighted and reweighted 
l1-minimization algorithms in recovering random sparse 
signals [12,19]. 

A generalized l1 greedy algorithm in the compressed 
sensing framework was recently introduced by the au-
thors of [20]. The new algorithm not only incorporates 
the threshold feature of the l1 greedy algorithm to coun-
teract the influence of large entries but also assigns sig-
nificantly large weights to the smallest nonzero entries to 
speed up the identification of nonzero entries. Moreover, 
in contrast to the l1 greedy algorithm where the remain-
ing entries are assigned a neutral weight, the remaining 

entries in the generalized l1 greedy algorithm receive 
weight roughly inversely proportional to their magni-
tudes as in the reweighted l1-minimization algorithm. 
Thus the generalized l1 greedy algorithm not only incor-
porates features of both the l1 greedy and reweighted 
l1-minimization algorithms but also enhances the impact 
of the small entries in the l1-minimization process. 

Generalized l1 greedy algorithm 
1) Generate x0 by the reweighted l1-minimization; 
2) For k = 1 to kmax; 
a) Update the weight matrix Wk; where  

  

1 1

1 1

1

0

, for

, for

1
, otherwise

, 1,

0,0.001 , 0,1 , 0

k k
i

k k
i i

k
i

1,

k

x Ms

w x

x

M x O

s

 

 



  

 

 

 






 
 


 

    

 

Ms



 

b) Solve weighted l1-minimization problem: 

1
arg min subject to

n

k k

x
x W x Ax b


 


 

c) Return if a stopping criterion is met.  
In [20] the generalized l1 greedy algorithm was applied 

to the problem of reconstructing essentially piecewise 
constant medical images in computerized tomography 
(CT) in the compressed sensing framework via total 
variation minimization. Tested with the Shepp-Logan 
phantom and a real cardiac CT image, the generalized l1 
greedy algorithm was shown to perform better than the 
reweighted l1-minimization and l1 greedy algorithms. In 
particular, it was observed that in the context of recon-
structing these two images the generalized l1 greedy al-
gorithm was superior to the others at distinguishing small 
gradients. However, to show that the generalized l1 
greedy algorithm is truly superior to the other two algo-
rithms at detecting small entries in general we should 
compare the performance of the three algorithms in re-
covering random sparse signals. So in this paper, follow-
ing [11,12], we present a series of rigorous numerical 
studies of the performance of the generalized l1 greedy 
algorithm in the general setting of Gaussian random ma-
trices A and random sparse signals x. The rest of this pa-
per is organized as follows. In Section 2, the relative 
frequencies of successful recovery of random Gaussian 
sparse signals for the reweighted l1-minimization, l1 
greedy, and generalized l1 greedy algorithms are com-
pared. Section 3 presents the stability of the generalized 
l1 greedy algorithm with respect to its parameters. Sec-
tion 4 studies the performance of the generalized l1 
greedy algorithm on noisy data. Section 5 shows that the 
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generalized l1 greedy algorithm is better at detecting 
smaller entries in the general setting than the other two 
algorithms. Section 6 concludes with a brief summary of 
the generalized l1 greedy algorithm and the results. 

0 0.001x x


  , 

where x is the reconstruction of x0 by the algorithm. The 
parameters chosen for the three algorithms are listed as 
follows: 

1) In the reweighted l1-minimization: 0.1  . 2. Relative Frequency of Success in  
Recovering Gaussian Sparse Signals 2) In the l1 greedy algorithm: 0.8  ; 0.001  ; 

others are the same as in 1). 
3) In the generalized l1 greedy algorithm: 0.25  ; s 

= 0.8; 40  ; others are the same as in 2). 
In our first experiment we want to determine how well 
each of the three algorithms can recover random Gaus-
sian sparse signals from random Gaussian measurements 
b = Ax. Following the same approach taken in [11], we 
implement each of the three algorithms in MATLAB and 
invoke the l1eq-pd solver from the l1-MAGIC software 
package developed by E. Candes and J. Romberg (avail-
able at www.l1-magic.org). We set m = 128 and n = 256. 
For each trial, a random matrix m nA 

n

 with i.i.d. 
Gaussian entries is selected and its columns are normal-
ized. A random k-sparse signal 0  is also selected 
in such a way that the k nonzero positions are randomly 
distributed and the nonzero components satisfy the stan-
dard Gaussian distribution 

x

 0,1N . We run 150 trials 
for each sparsity level k between 50 and 90. The total 
number of iterations (excluding the initial l1-minimiza- 
tion step) for each of the three algorithms is set to 16. For 
the generalized l1 greedy algorithm we start with 4 itera-
tions of the reweighted l1-minimization. The criterion for 
successful recovery for all three algorithms is set to  

The settings in this section will be used throughout the 
paper unless changes are explicitly stated otherwise. 

The output of this experiment is presented in Figure 1. 
As one can see from the graph, for a fixed sparsity level k 
the probability of successful recovery of a k-sparse signal 
by the generalized l1 greedy algorithm is higher than in 
the both cases of the reweighted l1-minimization and l1 
greedy algorithms. On average, the l1 greedy algorithm 
and the generalized l1 greedy algorithm recover about 
14% and 18% more entries than the reweighted l1-mini- 
mization method, respectively, for 50 ≤ k ≤ 90. Further-
more, on average, the generalized l1 greedy algorithm 
recovers about 6% more entries than the l1 greedy algo-
rithm. 

3. Influence of the Parameters on  
Reconstruction Success 

An empirical analysis of the reweighted l1-minimization  
 

 

Figure 1. Improvements in recovering sparse solutions from the generalized l1 greedy algorithm when compared to the re-
weighted l1-minimization and l1 greedy algorithms. 
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algorithm determined that the algorithm is robust with 
respect to   (chosen from a suitable range) and that 
much of the improvement in recovery comes from the 
first few reweighting iterations [11]. We performed a 
similar analysis of the generalized l1 greedy algorithm, 
and our results indicate that the algorithm is stable with 
respect to each of its parameters (within a certain range 
of values). We illustrate this behavior with the parameter 
  using the same settings as in Section 2 for the re-
maining parameters. From Figure 2 one can see that the 
algorithm is fairly stable for the following values of  : 
0.2; 0.3; 0.4. Our experimental results also show that the 
algorithm is very robust with respect to   for 10   
and fairly robust with respect to s and   for values 
between 0.7 and 0.9. It is also evident from Figure 3 that 
the number of iterations kmax of the generalized l1 greedy 
algorithm has minimal affect on the performance of the 
algorithm when kmax ≥ 10. So in practice only a few itera-
tions are needed to achieve the best performance of the 
generalized l1 greedy algorithm. 

4. Influence of Noise on  
Reconstruction Success 

In real life applications measured data are often cor-
rupted by a small amount of noise. Thus one needs to 
recover the original signal x0 from noisy data  

*
0b Ax 

where  is an unknown noise term. The signal-to- 
noise ratio (SNR) in dB is defined by  

me

2
10 *

2

SNR 20log
b

b b



, 

where b = Ax0 is noise-free data. In this section we show 
how white Gaussian noise at SNR levels 40 dB and 60 
dB, respectively, affect the performance of the general-
ized l1 greedy algorithm. We also compare the perform-
ance of the reweighted l1-minimization, l1 greedy, and 
generalized l1 greedy algorithms on noisy data with an 
SNR of 60 dB. As in [12] the precision of recovery is set 
according to the noise level. More precisely, the criterion 
for successful recovery are taken to be 0 0.001x x


 

and 
 

0 0.002x x


 for noisy data with an SNR of 40 
dB and with an SNR of 60 dB, respectively. All the other 
settings are the same as in Section 2. Figure 4 shows that 
the performance of the generalized l1 greedy algorithm is 
very robust with respect to noise at an SNR level 60 dB 
and fairly robust with respect to noise at an SNR level 40 
dB for 30 ≤ k ≤ 90. Figure 5 compares the performance 
of the three algorithms on noisy data with an SNR of 60 
dB. Clearly, the generalized l1 greedy algorithms outper-
form the other two algorithms. Moreover, for noisy data 
with an SNR of 60 dB, on average, the generalized l1 
greedy algorithm recovers about 17% more entries than 
the reweighted l1-minimization algorithm and about 5% 
more entries than the l1 greedy algorithm for 50 ≤ k ≤ 90.  

 

e ; 

 

α
α
α

 

Figure 2. Stability of the generalized l1 greedy algorithm with respect to the parameter α. 
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Figure 3. Effect of the number of iterations on the performance of the generalized l1 greedy algorithm. 
 

 

Figure 4. Performance of the generalized l1 greedy algorithm with noisy data with an SNR of 40 dB and 60 dB, respectively. 
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Figure 5. Improvements in recovering sparse solutions with noisy data with an SNR of 60 dB from the generalized l1 greedy 
algorithm when compared to the reweighted l1-minimization and l1 greedy algorithms. 
 
5. Reconstruction of Sparse Signals  

Containing Nonzero Small Entries 

It is known that the l1 greedy algorithm outperforms the 
reweighted l1 minimization algorithm in finding spare 
signals [12,19]. However, the reweighted l1-minimization 
algorithm was designed to help speed up the detection of 
small entries [11]. The generalized l1 greedy algorithm of 
[20], which incorporates features of both algorithms, 
should have the performance advantage of the l1 greedy 
algorithm while enhancing the power of the reweighted 
l1-minimization algorithm in detecting small entries. In 
fact, the generalized l1 greedy algorithm appears to be 
superior to the other two algorithms in distinguishing 
small gradients in the task of reconstructing images via 
total variation minimization [20]. In this section we want 
to see how well the generalized l1 greedy algorithm 
would perform in recuperating random sparse signals 
with a guaranteed percentage of small entries. More pre-
cisely, in our last experiment we want to determine the 
extent to which the ratio of very small entries in the 
sparse signals affects the probability of successful recov-
ery by each of the algorithms under consideration. The 
entries of the sparse signal in each trial are obtained from 
a mixed Gaussian distribution as follows: a random 30% 
of the entries are generated using a Gaussian distribution 
with mean 0 and standard deviation 0.01 while the re-
maining 70% of the entries are generated using the stan-

dard Gaussian distribution . We need to fine 
tune the generalized l1 greedy algorithm to make it most 
efficient at detecting the small entries in the range we set. 
Experimental trials show that setting 

 0,1N

0.01   results 
in the best performance. The values of the other parame-
ters are left unchanged. We then run 150 trials for each 
sparsity level k, 50 ≤ k ≤ 105, and set the criterion for 
successful recovery to 0 0.001x x 


. As one can see 

from Figure 6, the generalized l1 greedy algorithm vastly 
outperforms both the reweighted l1-minimization and the 
l1 greedy algorithms in recovering sparse solutions con-
taining a few nonzero small entries. Moreover, on aver-
age, the generalized l1 greedy algorithm recovers 32% 
more entries than the reweighted l1-minimization algo-
rithm and 11% more entries than the l1 greedy algorithm 
for 50 ≤ k ≤ 105. 

6. Conclusion 

Our statistical experiments indicate that the generalized l1 
greedy algorithm outperforms the reweighted l1-mini- 
mization and l1 greedy algorithms in recovering random 
sparse signals from random Gaussian measurements. In 
fact, the generalized l1 greedy algorithm recovers more 
entries than the other two algorithms. Moreover, the per-
formance of the algorithm is robust with respect to its 
parameters and to noisy data at different noise levels. 
Finally, the generalized l1 greedy algorithm performs  
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Figure 6. Improvements in recovering sparse solutions with a mixed Gaussian distribution from the generalized l1 greedy 
algorithm when compared to the reweighted l1-minimization and l1 greedy algorithms. 
 
extremely well in detecting small entries of unknown 
sparse signals thereby dramatically speeding up their 
recovery via l1-minimization. It is expected that more 
details of signals could be recovered by using the gener-
alized l1 greedy algorithm without extra cost. 
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