Bohr Density of Simple Linear Group Orbits

Roger Howe
Yale University
Francois Ziegler
Georgia Southern University

Follow this and additional works at: https://digitalcommons.georgiasouthern.edu/math-sci-facpubs
Part of the Mathematics Commons

Recommended Citation

Howe, Roger, Francois Ziegler. 2015. "Bohr Density of Simple Linear Group Orbits." Ergodic Theory and Dynamical Systems, 35 (3): 910-914. doi: 10.1017/etds.2013.73 source: http://arxiv.org/abs/1211.3783
https://digitalcommons.georgiasouthern.edu/math-sci-facpubs/225

Ergodic Theory and Dynamical Systems

http://journals.cambridge.org/ETS
Additional services for Ergodic Theory and Dynamical
Systems:

Email alerts: Click here
Subscriptions: Click here
Commercial reprints: Click here
Terms of use : Click here

Bohr density of simple linear group orbits

ROGER HOWE and FRANÇOIS ZIEGLER
Ergodic Theory and Dynamical Systems / FirstView Article / September 2014, pp 1-5
DOI: 10.1017/etds.2013.73, Published online: 09 October 2013
Link to this article: http://journals.cambridge.org/abstract_S0143385713000734
How to cite this article:
ROGER HOWE and FRANÇOIS ZIEGLER Bohr density of simple linear group orbits. Ergodic Theory and Dynamical Systems, Available on CJO 2013 doi:10.1017/etds.2013.73

Request Permissions : Click here

Bohr density of simple linear group orbits

ROGER HOWE \dagger and FRANÇOIS ZIEGLER \ddagger
\dagger Department of Mathematics, Yale University, New Haven, CT 06520-8283, USA (e-mail: howe@math.yale.edu)
\ddagger Department of Mathematical Sciences, Georgia Southern University, Statesboro, GA 30460-8093, USA
(e-mail: fziegler@georgiasouthern.edu)

(Received 15 November 2012 and accepted in revised form 26 July 2013)

Abstract. We show that any non-zero orbit under a non-compact, simple, irreducible linear group is dense in the Bohr compactification of the ambient space.

1. Introduction

Let V be a locally compact abelian group, V^{*} its Pontryagin dual and $b V$ its Bohr compactification, that is, $b V$ is the dual of the discretized group V^{*}. On identifying V with its double dual we have a dense embedding $V \hookrightarrow b V$, namely,

$$
\left\{\text { continuous characters of } V^{*}\right\} \hookrightarrow\left\{\text { all characters of } V^{*}\right\} .
$$

The relative topology of V in $b V$ is known as the Bohr topology of V. Among its many intriguing properties (surveyed in [G07]) is the observation due to Katznelson [K73a] (see also [G79, §7.6]) that very 'thin' subsets of V can be Bohr dense in very large ones.

While Katznelson was concerned with the case $V=\mathbf{Z}$ (the integers), we shall illustrate this phenomenon in the setting where V is the additive group of a real vector space, and the subsets of interest are the orbits of a Lie group acting linearly on V. Indeed our aim is to establish the following result, which was conjectured in [Z96, p. 45].

Theorem 1. Let G be a non-compact, simple real Lie group and V a non-trivial, irreducible, finite-dimensional real G-module. Then every non-zero G-orbit in V is dense in $b V$.

We prove this in $\S 3$ on the basis of four lemmas found in $\S 2$. Before that, let us record a similar property of nilpotent groups. In that case, orbits typically lie in proper affine subspaces, so we cannot hope for Bohr density in the whole space; but we have the following theorem.

Theorem 2. Let G be a connected nilpotent Lie group and V a finite-dimensional G-module of unipotent type. Then every G-orbit in V is Bohr dense in its affine hull.

Proof. Recall that unipotent type means that the Lie algebra \mathfrak{g} of G acts by nilpotent operators. So $Z \mapsto \exp (Z) v$ is a polynomial map of \mathfrak{g} onto the orbit of $v \in V$, and the claim follows immediately from [Z93, Theorem].

2. Four lemmas

Our first lemma gives several characterizations of Bohr density—each of which can also be regarded as providing a corollary of Theorem 1 .

Lemma 1. Let \mathcal{O} be a subset of the locally compact abelian group V. Then the following are equivalent:
(1) \mathcal{O} is dense in $b V$;
(2) $\alpha(\mathcal{O})$ is dense in $\alpha(V)$ whenever α is a continuous morphism from V to a compact topological group;
(3) every almost periodic function on V is determined by its restriction to \mathcal{O};
(4) Haar measure η on $b V$ is the weak* limit of probability measures μ_{T} concentrated on \mathcal{O}.

Proof. (1) \Leftrightarrow (2): Clearly (2) implies (1) as the special case where α is the natural inclusion $\iota: V \hookrightarrow b V$. Conversely, suppose (1) holds and $\alpha: V \rightarrow X$ is a continuous morphism to a compact group. By the universal property of $b V$ [D82, Theorem 16.1.1], $\alpha=\beta \circ \iota$ for a continuous morphism $\beta: b V \rightarrow X$. Now continuity of β implies $\beta(\overline{\iota(\mathcal{O})}) \subset$ $\overline{\beta(\iota(\mathcal{O}))}$, which is to say that $\beta(b V) \subset \overline{\alpha(\mathcal{O})}$ and hence $\alpha(V) \subset \overline{\alpha(\mathcal{O})}$, as claimed.
(1) \Leftrightarrow (3): Recall that a function on V is almost periodic if and only if it is the pull-back of a continuous $f: b V \rightarrow \mathbf{C}$ by the inclusion $V \hookrightarrow b V$. If two such functions coincide on \mathcal{O} and \mathcal{O} is dense in $b V$, then clearly they coincide everywhere. Conversely, suppose that \mathcal{O} is not dense in $b V$. Then by complete regularity [H63, Theorem 8.4] there is a non-zero continuous $f: b V \rightarrow \mathbf{C}$ which is zero on the closure of \mathcal{O} in $b V$. Now clearly this f is not determined by its restriction to \mathcal{O}.
(1) \Leftrightarrow (4) [K73a]: Suppose that η is the weak* limit of probability measures μ_{T} concentrated on \mathcal{O}. So we have $\mu_{T}(f) \rightarrow \eta(f)$ for every continuous f, and the complement of \mathcal{O} in $b V$ is μ_{T}-null [$\mathbf{B 0 4}$, Definition V.5.7.4 and Proposition IV.5.2.5]. If f vanishes on the closure of \mathcal{O} in $b V$ then so do all $\mu_{T}(|f|)$ and hence also $\eta(|f|)$, which forces f to vanish everywhere. So \mathcal{O} is dense in $b V$. Conversely, suppose that \mathcal{O} is dense in $b V$. We have to show that given continuous functions f_{1}, \ldots, f_{n} on $b V$ and $\varepsilon>0$, there is a probability measure μ concentrated on \mathcal{O} such that $\left|\eta\left(f_{j}\right)-\mu\left(f_{j}\right)\right|<\varepsilon$ for all j. Writing

$$
F=\left(f_{1}, \ldots, f_{n}\right) \quad \text { and } \quad \eta(F)=\left(\eta\left(f_{1}\right), \ldots, \eta\left(f_{n}\right)\right),
$$

we see that this amounts to $\|\eta(F)-\mu(F)\|<\varepsilon$, where the norm is the sup norm in \mathbf{C}^{n}. Now by [B04, Corollary V.6.1] $\eta(F)$ lies in the convex hull of $F(b V)$ (which is compact by Carathéodory's theorem [B87, Corollary 11.1.8.7]). So $\eta(F)$ is a convex combination $\sum_{i=1}^{N} \lambda_{i} F\left(\omega_{i}\right)$ of elements of $F(b V)$. But $F(\mathcal{O})$ is dense in $F(b V)$, so we can find $w_{i} \in \mathcal{O}$ such that $\left\|F\left(\omega_{i}\right)-F\left(w_{i}\right)\right\|<\varepsilon$. Putting $\mu=\sum_{i=1}^{N} \lambda_{i} \delta_{w_{i}}$, where $\delta_{w_{i}}$ is Dirac measure at w_{i}, we obtain the desired probability measure μ.

Remark 1. One might wonder if condition (2) is equivalent to the following a priori weaker but already interesting property:
(2') \mathcal{O} has dense image in any compact quotient group of V.
Here is an example showing that (2') does not imply (2). Let $V=\mathbf{R}$ and $\mathcal{O}=\mathbf{Z} \cup 2 \pi \mathbf{Z}$. Then clearly \mathcal{O} has dense image in every compact quotient $\mathbf{R} / a \mathbf{Z}$. On the other hand, considering the irrational winding $\alpha: \mathbf{R} \rightarrow \mathbf{T}^{2}$ defined by $\alpha(v)=\left(e^{i v}, e^{2 \pi i v}\right)$, one can check without difficulty that $\overline{\alpha(\mathcal{O})}=\mathbf{T} \times\{1\} \cup\{1\} \times \mathbf{T}$, which is strictly smaller than $\overline{\alpha(V)}=\mathbf{T}^{2}$.

Remark 2. A net of probability measures μ_{T} converging to Haar measure on $b V$ as in (4) has been called a generalized summing sequence by Blum and Eisenberg [B74]. They observed, among others, the following characterization.

Lemma 2. The following conditions are equivalent:
(1) μ_{T} is a generalized summing sequence;
(2) the Fourier transforms $\hat{\mu}_{T}(u)=\int_{b V} \omega(u) d \mu_{T}(\omega)$ converge pointwise to the characteristic function of $\{0\} \subset V^{*}$.

Proof. This characteristic function is the Fourier transform of Haar measure η on $b V$. Thus, condition (2) says that $\mu_{T}(f) \rightarrow \eta(f)$ for every continuous character $f(\omega)=\omega(u)$ of $b V$, whereas condition (1) says that $\mu_{T}(f) \rightarrow \eta(f)$ holds for every continuous function f on $b V$. Since linear combinations of continuous characters are uniformly dense in the continuous functions on $b V$ (Stone-Weierstrass), the two conditions imply each other.

For our third lemma, let G be a group, V a finite-dimensional G-module, and write V^{*} for the dual module wherein G acts contragrediently: $\langle g u, v\rangle=\left\langle u, g^{-1} v\right\rangle$.

Lemma 3. Suppose that V is irreducible and $\phi(g)=\langle u, g v\rangle$ is a non-zero matrix coefficient of V. Then every other matrix coefficient $\psi(g)=\langle x, g y\rangle$ is a linear combination of left and right translates of ϕ.

Proof. Irreducibility of V and (therefore) V^{*} ensures that u and v are cyclic, that is, their G-orbits span V^{*} and V. So we can write $x=\sum_{i} \alpha_{i} g_{i} u$ and $y=\sum_{j} \beta_{j} g_{j} v$, whence $\psi(g)=\sum_{i, j} \alpha_{i} \beta_{j} \phi\left(g_{i}^{-1} g g_{j}\right)$.

Our fourth and final preliminary result is the following famous lemma.
Lemma 4. (Van der Corput) Suppose that $F:[a, b] \rightarrow \mathbf{R}$ is differentiable, its derivative F^{\prime} is monotone, and $\left|F^{\prime}\right| \geqslant 1$ on (a, b). Then $\left|\int_{a}^{b} e^{i F(t)} d t\right| \leqslant 3$.
Proof. See [S93, p. 332], or [R05, Lemma 3] which actually gives the sharp bound 2.

3. Proof of Theorem 1

By Lemma 1, it is enough to show that Haar measure on $b V$ is the weak* limit of probability measures μ_{T} concentrated on the orbit under consideration; or equivalently (Lemma 2), that the Fourier transforms of the μ_{T} tend pointwise to the characteristic function of $\{0\} \subset V^{*}$. (Here we identify the Pontryagin dual with the dual vector space or module.)

To construct such μ_{T}, we assume without loss of generality that the action of G on V is effective, so that we may regard $G \subset \mathrm{GL}(V)$. Let $K \subset G$ be a maximal compact subgroup, $\mathfrak{g}=\mathfrak{k}+\mathfrak{p}$ a Cartan decomposition, $\mathfrak{a} \subset \mathfrak{p}$ a maximal abelian subalgebra, $C \subset \mathfrak{a}^{*}$ a Weyl chamber, $P \subset \mathfrak{a}$ the dual positive cone, and H an interior point of P; thus we have that $\langle v, H\rangle$ is positive for all non-zero $v \in C$. (For all this structure see, for example, [K73b].) We fix a non-zero $v \in V$, and for each positive $T \in \mathbf{R}$ we let μ_{T} denote the image of the product measure Haar $\times($ Lebesgue $/ T) \times$ Haar under the composed map

$$
\begin{aligned}
& K \times[0, T] \times K \longrightarrow G v \\
&\left(k, t, k^{\prime}\right) \longmapsto k \exp (t H) k^{\prime} v \\
& w \longmapsto e^{i \leftharpoonup \cdot w\rangle} .
\end{aligned}
$$

Here $\exp : \mathfrak{a} \rightarrow A$ is the usual matrix exponential with inverse $\log : A \rightarrow \mathfrak{a}$, and the brackets $\langle\cdot, \cdot\rangle$ denote both pairings, $\mathfrak{a}^{*} \times \mathfrak{a} \rightarrow \mathbf{R}$ and $V^{*} \times V \rightarrow \mathbf{R}$. By construction the μ_{T} are concentrated on the subset $G v$ of $b V[\mathbf{B 0 4}$, Corollary V.6.2.3]. It remains to show that as $T \rightarrow \infty$ we have, for every non-zero $u \in V^{*}$,

$$
\begin{equation*}
\int_{K \times K} d k d k^{\prime} \frac{1}{T} \int_{0}^{T} e^{i\left\langle u, k \exp (t H) k^{\prime} v\right\rangle} d t \rightarrow 0 . \tag{*}
\end{equation*}
$$

To this end, let

$$
F_{k k^{\prime}}(t)=\left\langle u, k \exp (t H) k^{\prime} v\right\rangle
$$

denote the exponent in $(*)$. We will show that Lemma 4 applies to almost every $F_{k k^{\prime}}$. In fact, it is well known (see, for example, [K73b, Proposition 2.4 and proof of Proposition 3.4]) that \mathfrak{a} acts diagonalizably (over \mathbf{R}) on V. Thus, letting E_{v} be the projector of V onto the weight v eigenspace of \mathfrak{a}, we can write

$$
F_{k k^{\prime}}(t)=\sum_{v \in \mathfrak{a}^{*}}\left\langle u, k E_{v} k^{\prime} v\right\rangle e^{\langle v, H\rangle t}
$$

Now we claim that there are non-zero v such that the coefficient $f_{v}\left(k, k^{\prime}\right)=\left\langle u, k E_{v} k^{\prime} v\right\rangle$ is not identically zero on $K \times K$. (Then f_{v}, being analytic, will be non-zero almost everywhere.) Indeed, suppose otherwise. Then, writing any $g \in G$ in the form $k a k^{\prime}$ ($K A K$ decomposition [K02]), we would have

$$
\langle u, g v\rangle=\sum_{v \in \mathfrak{a}^{*}}\left\langle u, k E_{v} k^{\prime} v\right\rangle e^{\langle v, \log (a)\rangle}=\left\langle u, k E_{0} k^{\prime} v\right\rangle .
$$

In particular, the matrix coefficient $\langle u, g v\rangle$ would be bounded. Hence so would all matrix coefficients, since they are linear combinations of translates of this one (Lemma 3); and this would contradict the non-compactness of $G \subset \mathrm{GL}(V)$.

So the set $N=\left\{v \in \mathfrak{a}^{*}: v \neq 0, f_{v} \neq 0\right\}$ is not empty. It is also Weyl group invariant, hence contains weights $v \in C$ for which we know that $\langle v, H\rangle$ is positive. Therefore, maximizing $\langle v, H\rangle$ over N produces a positive number $\left\langle v_{0}, H\right\rangle$, in terms of which our exponent and its derivatives can be written

$$
\frac{d^{n}}{d t^{n}} F_{k k^{\prime}}(t)=e^{\left\langle\nu_{0}, H\right\rangle t} \sum_{\nu \in \mathfrak{a}^{*}} f_{v}\left(k, k^{\prime}\right)\langle v, H\rangle^{n} e^{\left\langle\nu-\nu_{0}, H\right\rangle t},
$$

where $\left\langle v-v_{0}, H\right\rangle<0$ in all non-zero terms except the one indexed by ν_{0}. (Here we assume, as we may, that H was initially chosen outside the kernels of all pairwise
differences of weights of V.) From this it is clear that for almost all $\left(k, k^{\prime}\right)$ there is a T_{0} beyond which the first two derivatives of $F_{k k^{\prime}}$ are greater than 1 in absolute value. So Lemma 4 applies and gives

$$
\left|\int_{T_{0}}^{T} e^{i F_{k k^{\prime}}(t)} d t\right| \leqslant 3 \quad \text { for all } T .
$$

Therefore, $\lim _{T \rightarrow \infty}(1 / T) \int_{0}^{T} e^{i F_{k k^{\prime}}(t)} d t=0$ for almost all $\left(k, k^{\prime}\right)$, whence the conclusion $(*)$ by dominated convergence. This completes the proof.

4. Outlook

Theorem 1 says that the G-action on $V \backslash\{0\}$ is minimal $[\mathbf{P 8 3}]$ in the Bohr topology. It would be interesting to determine if it is still minimal, and/or uniquely ergodic, on $b V \backslash\{0\}$.

It is also natural to speculate whether our theorems have a common extension to more general group representations. Here we shall content ourselves with noting two obstructions. First, Theorem 1 clearly fails for semisimple groups with compact factors. Secondly, Theorem 2 fails for V not of unipotent type, as one sees by observing that the orbits of \mathbf{R} acting on \mathbf{R}^{2} by $\exp \left(\begin{array}{cc}t & 0 \\ 0 & -t\end{array}\right)$ (i.e., hyperbolas) already have non-dense images in $\mathbf{R}^{2} / \mathbf{Z}^{2}$.

Acknowledgement. We thank Francis Jordan, who found the example in Remark 1.

References

[B87] M. Berger. Geometry. I. Springer-Verlag, Berlin, 1987.
[B74] J. Blum and B. Eisenberg. Generalized summing sequences and the mean ergodic theorem. Proc. Amer. Math. Soc. 42 (1974), 423-429.
[B04] N. Bourbaki. Integration. I. Springer, Berlin, 2004, Chs 1-6.
[D82] J. Dixmier. C ${ }^{*}$-algebras. North-Holland, Amsterdam, 1982.
[G07] J. Galindo, S. Hernández and T.-S. Wu. Recent results and open questions relating Chu duality and Bohr compactifications of locally compact groups. Open Problems in Topology. II. Ed. E. Pearl. Elsevier, Amsterdam, 2007, pp. 407-422.
[G79] C. C. Graham and O. Carruth McGehee. Essays in Commutative Harmonic Analysis. Springer, New York, 1979.
[H63] E. Hewitt and K. A. Ross. Abstract Harmonic Analysis. Vol. 1 Springer, Berlin, 1963.
[K73a] Y. Katznelson. Sequences of integers dense in the Bohr group. Proc. Roy. Inst. Tech. (Stockholm) (June 1973) 79-86, available at http://math.stanford.edu/~katznel/.
[K02] A. W. Knapp. Lie Groups beyond an Introduction. Birkhäuser, Boston, 2002.
[K73b] B. Kostant. On convexity, the Weyl group and the Iwasawa decomposition. Ann. Sci. Éc. Norm. Sup. (4) 6 (1973), 413-455.
[P83] K. Petersen. Ergodic Theory. Cambridge University Press, Cambridge, 1983.
[R05] K. M. Rogers. Sharp van der Corput estimates and minimal divided differences. Proc. Amer. Math. Soc. 133 (2005), 3543-3550.
[S93] E. M. Stein. Harmonic Analysis: Real-variable Methods, Orthogonality, and Oscillatory Integrals. Princeton University Press, Princeton, NJ, 1993.
[Z93] F. Ziegler. Subsets of R^{n} which become dense in any compact group. J. Algebraic Geom. 2 (1993), 385-387.
[Z96] F. Ziegler. Méthode des orbites et représentations quantiques. PhD Thesis, Université de Provence, Marseille, 1996, arXiv:1011.5056.

