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Abstract. We show that any non-zero orbit under a non-compact, simple, irreducible linear
group is dense in the Bohr compactification of the ambient space.

1. Introduction
Let V be a locally compact abelian group, V ∗ its Pontryagin dual and bV its Bohr
compactification, that is, bV is the dual of the discretized group V ∗. On identifying V
with its double dual we have a dense embedding V ↪→ bV , namely,

{continuous characters of V ∗} ↪→ {all characters of V ∗}.

The relative topology of V in bV is known as the Bohr topology of V . Among its many
intriguing properties (surveyed in [G07]) is the observation due to Katznelson [K73a] (see
also [G79, §7.6]) that very ‘thin’ subsets of V can be Bohr dense in very large ones.

While Katznelson was concerned with the case V = Z (the integers), we shall illustrate
this phenomenon in the setting where V is the additive group of a real vector space, and
the subsets of interest are the orbits of a Lie group acting linearly on V . Indeed our aim is
to establish the following result, which was conjectured in [Z96, p. 45].

THEOREM 1. Let G be a non-compact, simple real Lie group and V a non-trivial,
irreducible, finite-dimensional real G-module. Then every non-zero G-orbit in V is dense
in bV .

We prove this in §3 on the basis of four lemmas found in §2. Before that, let us
record a similar property of nilpotent groups. In that case, orbits typically lie in proper
affine subspaces, so we cannot hope for Bohr density in the whole space; but we have the
following theorem.

THEOREM 2. Let G be a connected nilpotent Lie group and V a finite-dimensional
G-module of unipotent type. Then every G-orbit in V is Bohr dense in its affine hull.
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Proof. Recall that unipotent type means that the Lie algebra g of G acts by nilpotent
operators. So Z 7→ exp(Z)v is a polynomial map of g onto the orbit of v ∈ V , and the
claim follows immediately from [Z93, Theorem]. 2

2. Four lemmas
Our first lemma gives several characterizations of Bohr density—each of which can also
be regarded as providing a corollary of Theorem 1.

LEMMA 1. Let O be a subset of the locally compact abelian group V . Then the following
are equivalent:
(1) O is dense in bV ;
(2) α(O) is dense in α(V ) whenever α is a continuous morphism from V to a compact

topological group;
(3) every almost periodic function on V is determined by its restriction to O;
(4) Haar measure η on bV is the weak∗ limit of probability measures µT concentrated

on O.

Proof. (1)⇔ (2): Clearly (2) implies (1) as the special case where α is the natural
inclusion ι : V ↪→ bV . Conversely, suppose (1) holds and α : V → X is a continuous
morphism to a compact group. By the universal property of bV [D82, Theorem 16.1.1],
α = β ◦ ι for a continuous morphism β : bV → X . Now continuity of β implies β(ι(O))⊂
β(ι(O)), which is to say that β(bV )⊂ α(O) and hence α(V )⊂ α(O), as claimed.
(1)⇔ (3): Recall that a function on V is almost periodic if and only if it is the pull-back

of a continuous f : bV → C by the inclusion V ↪→ bV . If two such functions coincide on
O and O is dense in bV , then clearly they coincide everywhere. Conversely, suppose that
O is not dense in bV . Then by complete regularity [H63, Theorem 8.4] there is a non-zero
continuous f : bV → C which is zero on the closure of O in bV . Now clearly this f is not
determined by its restriction to O.
(1)⇔ (4) [K73a]: Suppose that η is the weak∗ limit of probability measures µT

concentrated on O. So we have µT ( f )→ η( f ) for every continuous f , and the
complement of O in bV is µT -null [B04, Definition V.5.7.4 and Proposition IV.5.2.5].
If f vanishes on the closure of O in bV then so do all µT (| f |) and hence also η(| f |),
which forces f to vanish everywhere. So O is dense in bV . Conversely, suppose that O
is dense in bV . We have to show that given continuous functions f1, . . . , fn on bV and
ε > 0, there is a probability measure µ concentrated on O such that |η( f j )− µ( f j )|< ε

for all j . Writing

F = ( f1, . . . , fn) and η(F)= (η( f1), . . . , η( fn)),

we see that this amounts to ‖η(F)− µ(F)‖< ε, where the norm is the sup norm in Cn .
Now by [B04, Corollary V.6.1] η(F) lies in the convex hull of F(bV ) (which is compact
by Carathéodory’s theorem [B87, Corollary 11.1.8.7]). So η(F) is a convex combination∑N

i=1 λi F(ωi ) of elements of F(bV ). But F(O) is dense in F(bV ), so we can findwi ∈O
such that ‖F(ωi )− F(wi )‖< ε. Putting µ=

∑N
i=1 λiδwi , where δwi is Dirac measure at

wi , we obtain the desired probability measure µ. 2
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Remark 1. One might wonder if condition (2) is equivalent to the following a priori weaker
but already interesting property:
(2′) O has dense image in any compact quotient group of V .
Here is an example showing that (2′) does not imply (2). Let V = R and O = Z ∪ 2πZ.
Then clearly O has dense image in every compact quotient R/aZ. On the other hand,
considering the irrational winding α : R→ T2 defined by α(v)= (eiv, e2π iv), one can
check without difficulty that α(O)= T× {1} ∪ {1} × T, which is strictly smaller than
α(V )= T2.

Remark 2. A net of probability measures µT converging to Haar measure on bV as in (4)
has been called a generalized summing sequence by Blum and Eisenberg [B74]. They
observed, among others, the following characterization.

LEMMA 2. The following conditions are equivalent:
(1) µT is a generalized summing sequence;
(2) the Fourier transforms µ̂T (u)=

∫
bV ω(u) dµT (ω) converge pointwise to the

characteristic function of {0} ⊂ V ∗.

Proof. This characteristic function is the Fourier transform of Haar measure η on bV .
Thus, condition (2) says that µT ( f )→ η( f ) for every continuous character f (ω)= ω(u)
of bV , whereas condition (1) says that µT ( f )→ η( f ) holds for every continuous function
f on bV . Since linear combinations of continuous characters are uniformly dense in the
continuous functions on bV (Stone–Weierstrass), the two conditions imply each other. 2

For our third lemma, let G be a group, V a finite-dimensional G-module, and write V ∗

for the dual module wherein G acts contragrediently: 〈gu, v〉 = 〈u, g−1v〉.

LEMMA 3. Suppose that V is irreducible and φ(g)= 〈u, gv〉 is a non-zero matrix
coefficient of V . Then every other matrix coefficient ψ(g)= 〈x, gy〉 is a linear
combination of left and right translates of φ.

Proof. Irreducibility of V and (therefore) V ∗ ensures that u and v are cyclic, that is, their
G-orbits span V ∗ and V . So we can write x =

∑
i αi gi u and y =

∑
j β j g jv, whence

ψ(g)=
∑

i, j αiβ jφ(g−1
i gg j ). 2

Our fourth and final preliminary result is the following famous lemma.

LEMMA 4. (Van der Corput) Suppose that F : [a, b] → R is differentiable, its derivative
F ′ is monotone, and |F ′|> 1 on (a, b). Then |

∫ b
a ei F(t) dt |6 3.

Proof. See [S93, p. 332], or [R05, Lemma 3] which actually gives the sharp bound 2. 2

3. Proof of Theorem 1
By Lemma 1, it is enough to show that Haar measure on bV is the weak∗ limit of
probability measures µT concentrated on the orbit under consideration; or equivalently
(Lemma 2), that the Fourier transforms of the µT tend pointwise to the characteristic
function of {0} ⊂ V ∗. (Here we identify the Pontryagin dual with the dual vector space
or module.)

http://journals.cambridge.org
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To construct such µT , we assume without loss of generality that the action of G on
V is effective, so that we may regard G ⊂ GL(V ). Let K ⊂ G be a maximal compact
subgroup, g= k+ p a Cartan decomposition, a⊂ p a maximal abelian subalgebra, C ⊂ a∗

a Weyl chamber, P ⊂ a the dual positive cone, and H an interior point of P; thus we
have that 〈ν, H〉 is positive for all non-zero ν ∈ C . (For all this structure see, for example,
[K73b].) We fix a non-zero v ∈ V , and for each positive T ∈ R we let µT denote the image
of the product measure Haar × (Lebesgue/T ) × Haar under the composed map

K × [0, T ] × K Gv bV

(k, t, k′) k exp(t H)k′v

w ei〈·,w〉.

Here exp : a→ A is the usual matrix exponential with inverse log : A→ a, and the
brackets 〈·, ·〉 denote both pairings, a∗ × a→ R and V ∗ × V → R. By construction the
µT are concentrated on the subset Gv of bV [B04, Corollary V.6.2.3]. It remains to show
that as T →∞ we have, for every non-zero u ∈ V ∗,∫

K×K
dk dk′

1
T

∫ T

0
ei〈u,k exp(t H)k′v〉 dt→ 0. (∗)

To this end, let
Fkk′(t)= 〈u, k exp(t H)k′v〉

denote the exponent in (∗). We will show that Lemma 4 applies to almost every
Fkk′ . In fact, it is well known (see, for example, [K73b, Proposition 2.4 and proof of
Proposition 3.4]) that a acts diagonalizably (over R) on V . Thus, letting Eν be the projector
of V onto the weight ν eigenspace of a, we can write

Fkk′(t)=
∑
ν∈a∗
〈u, k Eνk′v〉e〈ν,H〉t .

Now we claim that there are non-zero ν such that the coefficient fν(k, k′)= 〈u, k Eνk′v〉
is not identically zero on K × K . (Then fν , being analytic, will be non-zero almost
everywhere.) Indeed, suppose otherwise. Then, writing any g ∈ G in the form kak′ (K AK
decomposition [K02]), we would have

〈u, gv〉 =
∑
ν∈a∗
〈u, k Eνk′v〉e〈ν,log(a)〉

= 〈u, k E0k′v〉.

In particular, the matrix coefficient 〈u, gv〉 would be bounded. Hence so would all matrix
coefficients, since they are linear combinations of translates of this one (Lemma 3); and
this would contradict the non-compactness of G ⊂ GL(V ).

So the set N = {ν ∈ a∗ : ν 6= 0, fν 6= 0} is not empty. It is also Weyl group invariant,
hence contains weights ν ∈ C for which we know that 〈ν, H〉 is positive. Therefore,
maximizing 〈ν, H〉 over N produces a positive number 〈ν0, H〉, in terms of which our
exponent and its derivatives can be written

dn

dtn Fkk′(t)= e〈ν0,H〉t
∑
ν∈a∗

fν(k, k′)〈ν, H〉ne〈ν−ν0,H〉t ,

where 〈ν − ν0, H〉< 0 in all non-zero terms except the one indexed by ν0. (Here we
assume, as we may, that H was initially chosen outside the kernels of all pairwise

http://journals.cambridge.org
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differences of weights of V .) From this it is clear that for almost all (k, k′) there is a
T0 beyond which the first two derivatives of Fkk′ are greater than 1 in absolute value. So
Lemma 4 applies and gives ∣∣∣∣∫ T

T0

ei Fkk′ (t) dt

∣∣∣∣6 3 for all T .

Therefore, limT→∞(1/T )
∫ T

0 ei Fkk′ (t) dt = 0 for almost all (k, k′), whence the conclusion
(∗) by dominated convergence. This completes the proof.

4. Outlook
Theorem 1 says that the G-action on V \{0} is minimal [P83] in the Bohr topology. It
would be interesting to determine if it is still minimal, and/or uniquely ergodic, on bV \{0}.

It is also natural to speculate whether our theorems have a common extension to
more general group representations. Here we shall content ourselves with noting two
obstructions. First, Theorem 1 clearly fails for semisimple groups with compact factors.
Secondly, Theorem 2 fails for V not of unipotent type, as one sees by observing that the
orbits of R acting on R2 by exp

(t 0
0 −t

)
(i.e., hyperbolas) already have non-dense images in

R2/Z2.

Acknowledgement. We thank Francis Jordan, who found the example in Remark 1.
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