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Abstract 
 
Process capability indices were originally invented to enable an organization to make economically sound decisions 
for process management.  Process capability is a comparison of the voice of the process with the voice of the 
customer.  Current practice is to use Cp and Cpk regardless of the validity of the underlying assumptions necessary 
for their use.  Even if all necessary assumptions are satisfied, important problems can be missed if these indices are 
the sole process evaluation examined.  Customer-supplier axioms are introduced to motivate more useful process 
evaluations and foster long-term harmonious relationships.  This paper explores the alternative capability indices 
Cpm, Cpmk, Cjkp, Cθ, and Cs and loss function approaches including Taguchi’s unbounded quadratic loss function and 
the multivariate upside-down normal loss function.  Illustrative case studies are presented. 
   
Keywords 
Process Capability, Voice of the Process, Voice of the Customer, Quadratic Loss Function 
 
1. Introduction 
Process capability is a measure of the repeatability of a process.  A process must be in a state of statistical control 
prior to establishing process capability.  Process capability has three main uses.  First, process capability is used to 
determine the ability of a process to meet specifications.  Process capability is also used to establish new 
specifications or modify existing specifications.  Finally, process capability can be used as a basis for constructing 
process control charts.   
 
Process capabilities should allow for a scale-free comparison of process performance quality.  A process capability 
index should also be useful over a wide variety of process types and applications.  Process capability should be easy 
to compute and require a minimum number of reasonable supporting assumptions.  Finally, a process capability 
index should be easy to explain to non-technical decision makers. 
 
2. Process Capability Indices 
The two most commonly used capability indices include Cp and Cpk.  Cp is a measure of the ability of a process to 
produce constituent results.  It is the ratio between the permissible spread of the process (total tolerance) and the 
actual process spread.  Cpk is intended to relate process performance to the likelihood of producing bad material.  Cpk 
assumes that process data is normally distributed and the usefulness of Cpk depends directly on the validity of the 
specification limits.  Cpk is a point estimate and, therefore, provides no indication of variability.   
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Where, 
• LSL = lower specification limit 
• USL = upper specification limit 
• σ = process standard deviation 

 
(2) 

 
 

Where, 
• LSL = lower specification limit 
• USL = upper specification limit 
• σ = process standard deviation 
• μ=process mean 

 
Kotz and Lovelace [1] give a catalog of indices: 

• Cpm incorporates quadratic loss 
• Cpmk combines Cpk and Cpm properties 
• Cjkp accounts for a simple type of heteroscedastiscity 
• Cθ applies to non-normally distributed data 
• Cs applies to skewed data 
• Clement’s method for non-normal or skewed data 

 
3. Loss Function Approaches 
Loss functions relate the product quality distribution directly to economic loss.    Loss function approaches are not 
widely applied because some quantification of loss is required. There are two main techniques for loss functions.  
The first is Taguchi’s quadratic loss function which is unbounded.  The second is the upside-down normal loss 
function (UDNLF).  The Quadratic Loss Function (QLF), also known as the Quality Loss Function, is a metric 
developed by Genichi Taguchi which focuses on achieving the target value rather than of focusing on performance 
within the wider specification limits.  Using the quadratic loss function allows the Six Sigma team to quantify 
improvement opportunities in monetary terms, the language of upper management.  The quadratic loss function 
translates variability into economic terms by calculating the relationship between performance and financial 
outcome.  The general quadratic loss function is shown in Equation 3. 
 

Loss at any point (L) = (monetary constant) * (average – target)2    (3) 
 
The quadratic loss function is used to determine the average loss per product or encounter, and it enables Six Sigma 
teams to focus on performance relative to target and avoid the goalpost mentality.  The loss function approximates 
the long term loss from performance failures and encourages continuous improvement.  The quadratic loss function 
is helpful both as a philosophical approach and as a quantitative method.  Figure 1 illustrates the quadratic loss 
function. 
 

 
 

Figure 1: Quadratic Loss Function 
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Taguchi developed the quality loss function based on the economic consequences of not meeting target 
specifications.  Taguchi defined quality as the “[avoidance of] loss a product causes to society after being shipped, 
other than any losses caused by its intrinsic functions” [2].  Losses to society encompass costs incurred by the 
manufacturer, the customer, and anyone affected by product deficiencies.   
 
The quality loss function unifies quality and cost to drive on-target engineering.  It also relates economic and 
engineering terms in one model.  The function enables optimization of costs through the production and use of a 
product [3].  The loss to society includes costs incurred due to a product or service not meeting customer 
expectations, not meeting performance characteristics, and harmful side effects [4].  The quality loss function 
associates a dollar value to the current state of quality for a product or process.  The quality loss function 
approximates losses due to scrap, rework, poor performance, lack of customer satisfaction, etc.  This dollar amount 
can be used to identify areas for improvement and evaluate improvement efforts.  The quality loss function focuses 
on target values rather than specifications for process output.  The measured loss, L(y) for a single product is 
estimated as shown in Equation 4. 
 

(4) 
 

where, 
• L(y) is the loss in dollars, 
• y is the measured response, 
• T is the target value of the product’s response, and 
• k is the quality loss coefficient. 

 
The quality loss coefficient, k, is determined using customer tolerance and the economic consequence.  The 
economic consequence, A0, is the cost to replace or repair the product.  The associated costs include losses incurred 
by the manufacturer, customer, or a third party.  The customer tolerance is the point at which the product reaches 
unacceptable performance. 
 

(5) 
 

 
where, 

• 0A  is the economic consequence of failure, and 

• 0Δ  is the functional limits or customer tolerance for the measured response. 
 
The quality loss function can also be used to determine the average loss per product.  The expected loss, E(L), is 
used to depict the average loss.  To reduce the estimated loss, the variability and deviation from target must be 
reduced [5].  Equation 6 shows the estimated loss. 
 

(6) 
 

where, 
• 2

yσ  is the process variance, 

• y  is the response average, 
• T is the target value, and 
• k is the quality loss coefficient. 

 
One disadvantage of the Taguchi quadratic loss function is the fact that it is unbounded, but losses in the real world 
are bounded.  This is a serious problem in high-tech industries where specifications are very tight and it is entirely 
possible to manufacture products several standard deviations from target.  In these cases a quadratic loss function 
does not fit well:  it would either have to give unrealistically low losses near target or unrealistically high losses far 
from target.  The upside-down normal loss function (also known as the inverted-normal loss function) is a bounded 
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alternative to quadratic loss.  It was introduced by Leung and Spiring [9] and further developed by Drain and Gough 
[8].  UDNLF is defined as follows: 

(7) 
 
 
Where, 

• x=point where loss is evaluated 
• μ=process mean 
• τ=process target 
• λ=loss function scaling parameter 
 

 
 

Figure 2: Upside-down Normal Loss Function 
 
The loss function scaling parameter can be chosen to match actual loss data:  larger values mean the customer is 
more tolerant of variation from target.  In the absence of actual loss data a reasonable default value for L is 42.5 
percent of the specification range.  In this case, the loss when a process is centered on a specification limit is 50% 
(corresponding to step-function loss in the same situation.)  One convenient feature of the UDNLF is that, if the 
process is normally distributed, the expected loss due to variation from target can be calculated with the following 
formula: 

(8) 
 
 
 
Where, 

• μ=process mean 
• σ=process standard deviation 
• τ=process target 
• λ=loss function scaling parameter 

 
6.0 Supplier Practices 
Current practice is to require a minimum Cp or Cpk value.  This practice is based on the assumption that the 
specification limits are valid and a step-function loss is appropriate.  Another implicit assumption is that the process 
data is normally distributed.  Finally, there is an assumption that Cpk is immune to sampling error which is evidenced 
by the lack of a confidence level when the data is reported. 
 
However, the assumptions required to calculate a valid Cpk may be unsatisfied in many common situations.  This 
leads to spending time and money focusing on the unimportant problems.  In turn, the important problems may be 
overlooked.  This also leads to a strained supplier-customer relationship.  There are appropriate alternatives in some 
cases do exist but these are not widely known.  Some other situations do not have any easy solution.  As Peter 
Nelson stated, “. . . the concept of attempting to characterize a process with a single number is fundamentally 
flawed.”  [6]    Kitska stated, “I would prefer eliminating Cp and Cpk statistics.  They grossly oversimplify process 
characteristics and, without adequate exploratory analysis, often lead to erroneous or meaningless conclusions.” [7]   
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More effective methods for determining process capability must be established by agreeing upon some basic axioms 
of supplier-customer relationships.  We here propose a set of such axioms: 
 

• All businesses are in the business to make money.   
• Everyone benefits from long-term, harmonious relationships.   
• Customers want consistent materials meeting their actual needs at the lowest possible cost.  Suppliers want 

a fair price for their time, effort, and goods.   
• Additional burdens imposed on suppliers usually translate to increased customer costs or relationship 

erosion.   
 
In addition to the supplier-customer axioms, there are general guidelines for success.  Standard methods should only 
be used when appropriate and do not apply in all situations.  Next, prior performance must be considered; in fact, all 
information available should be used.  Every decision should be a cost-benefit decision.  Prioritize efforts to focus 
on high risk items using a process failure modes and effects analysis (PFMEA).   
 
7.0 Example 
Polymer molecular weight is very stable as long as the monomer is from the same 60 gallon drum.  Approximately 
six production runs per drum are produced.  Also, in approximately every six production run, a shift in molecular 
weight is observed.  Monomer variation is unavoidable; however, it is well-characterized and controlled.  Current 
quality control techniques at the supplier assure no more than a 1,700 Dalton shift from target in the polymer.  Also, 
process adjustment to compensate for monomer variation causes more harm than good.  Figure 2 shows the batch 
averages and individual run values for 40 runs.  Figure 3 shows the process capability of the molecular weight. 
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Figure 3: Batch Averages and Individual Run Values 
 
The estimate of a Cpk value of 1.09 is not very useful because it over-estimates the percent of material out of 
specification due to inflation of the estimate of standard deviation which is in fact constrained by controlling the 
allowable molecular weight ranges.  The estimation based on the moving range, i.e. the d2 method, yields a Cpk of 
1.50.  This is invalid because it underestimates the total process variation by ignoring batch-induced variation. 
 
A more appropriate solution is to use the knowledge of the bounds on monomer variation together with historical 
estimates of standard deviation to calculate the percent of material that would fall inside the specification limits.  In 
this case, this value is approximately 99.975 percent.  The Cpk value can then be back-calculated to produce 1.22.  
This value actually falls between the two previous estimates.  The percent of product out of specification (% OOS) 
is calculated using Equation 9. 
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where, 

• σMW is an estimate of the MW component variance 
• τ is the process target (22,000 Daltons) 
• f(y) is the uniform distribution (conservative) 

 
The history of batch variation is essential in this example.  We did not follow the usual rule, but took advantage of a 
related precedent.  The information about the cause of batch to batch variation could come only via a good supplier-
customer relationship.   
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Figure 4: Process Capability of the Molecular Weight 
 
8.0 Suggested Research 
In cases where specification limits exist and percent out of specification is the primary concern there are three 
avenues for further research.  First, applying Bayesian process capability assessment should be investigated.  Cpk can 
be adapted to account for batch effects.  Finally, further research on an index for processes with known time-series 
effects can be explored.  In this instance, Cpmr can be a good starting place for the research.  In cases where 
specification limits may be less relevant, but loss is observable a generic and easily implemented loss function 
methodology should be developed.  In addition, loss function approaches for multivariate quality parameters can be 
surveyed.  
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