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National Bureau of Standards Special Publication 431 
Proce.edings of the FOURTH INTERNATIONAL CONGRESS FOR STEREOLOGY 
held at NBS. Gaithersburg, Md .. September 4·9, 1975 (Issued January 1976) 

INTERPRETATION OF SOME OF THE BASIC FEATURES OF FIELD-ION IMAGE PROJECTIONS 
FROM A HEMISPHERICAL TO A PLANAR SURFACE USING MOIRE PATTERNS 

by P. Darrell Ownby*, Robert M. Doerr,** Walter Bollmann,*** 
*Ceramic Engineering Dept., University of Missouri, Rolla, Missouri 65401, U.S.A. 
**U.S. Bureau of Mines, Rolla, Missouri 65401, U.S.A. 
.. *Battelle Institute, Geneva, Switzerland 

A common problem in projection geometry is that of analyzing the pattern 
formed in a planar observation surface by the projection of point, lineal, or 
areal features on a hemispherical surface. In this study, the most prominent 
ellipses representing successive ledges on off-axis oriented planes, are 
simulated by the Moire patterns produced by the intersection of a simple grid 
representing the crystal lattice parallel to the projection plane and a 
spherical projection of concentric circles representing successive ledges of 
atomic planes proceeding normal to the projection plane. The Moire patterns 
are analyzed mathematically by considering the coincidence of the equivalent 
points in both the circle set and the parallel line (grid) set. Computer 
plotted patterns using this analysis are shown to coincide with the Moire 
patterns. Examples of orthographic and stereographic projections are shown 
for comparison with the actual field-ion image. 

The surface geometry of a single crystal which produces a field-ion micro
scope image is to a first approximation, a hemispherical surface which is 
intersected by sets of lattice planes. For cubic crystals, three sets of or
thogonally oriented planes intersect the surface. These intersections determine 
the ledge-step geometry of the surface which is seen projected onto a plane in 
atomic detail in field-ion microscopy. 

In the present work the intersection of each plane of the three sets with 
the surface of the sphere is projected to a plane, forming three families 
of lines. Each of these sets of curves interacts with the others to form a 
Moire pattern which faithfully represents many of the main features of the 
spherical surface geometry and therefore resembles, to a limited degree, the 
field-ion micrograph. 

Curves representing the Moire interference bands can be produced by an 
analytical calculation without actually drawing the families of lines. The 
guiding principle for calculating the Moire pattern between two parametrized 
sets of curves is the "coincidence of equivalent positions" (1). 

For simplicity consider first the orthographic projection. The (001) 
oriented, face-centered cubic crystal lattice geometry will be used for illus
tration. Orthographically projected Moires of other orientations and Bravais 
lattices are shown elsewhere (2). The first set of projected curves becomes a 
spherical projection of concentric circles. The circles tend to overlap as the 
great circlett is approached, making a full hemisphere projection impractical. 
The second and third sets of curves are simply two orthogonal sets of parallel 
straight lines. Note that in the FCC lattice those lines are 45° to the cube 
axes. The resulting indexed Moire pattern is shown in figure 1. Each set of 
parallel lines produces Moire ellipses along a circle diameter perpendicular to 
the lines. The three sets of lines combine to produce the ellipses which lie 
along the cube axes (at 45° to the straight line sets). 

For the analytical calculation of the Moire ellipses, consider the inter
action of a set of parallel equidistant straight lines numbered from - oo to oo 

and a set of concentric circles numbered from 1 to N, from the smallest to the 

tt 
The radius of the reference sphere and the maximum radius of the projected 
circles in both projections shown herein was 4 inches (101.6 mm) before 
reduction for publication. 
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largest. The "Coincidence of equivalent positions" are the intersections of 
circle No. 1 with line No. 1, of circle No. 2 with line No . 2, etc. Then we 
consider a continuous distribution of lines and circles so that, i.e., line No. 
1.376 intersects circle 1.376, etc. This gives a continuous curve of inter
sections which represents a curve of the Moire pattern. A second set of curves 
(ellipses in the present example) is obtained by the intersection of circle No. 
1 with line No. 2, circle No. 2 with line No. 3, circle No. 1.376 with line 
2.376, etc. 

For the set of straight lines parallel to the y-axis, x = na where a is the 
spacing of the lines (for FCC (001), a is the unit cell dimension/ /2) and n 
is an integer. The other set of straight lines are given by y = na. The set 
of circles is given by N equidistant cuts of thickness d through a hemisphere, 
(for FCC (001) this thickness is ~ of the unit cell dimension) so tha t 
N • d = R, the radius of the sphere. The radius, p , of each circle is given by 

2 2 2 
p = X + y (Nd) 

2 
- [ (N 

d
2 

(2Nn - n
2

) 

n)d]
2 

(1) 

Now we change the integer n into a continuous z and introduce in x the integer 
b, which is the difference in the numbering of the two sets. 

X a(z + b) 

2 2 2 d2 2 
p X + y (2Nz - z ) 

Now we calculate z from these equations as the solution of a quadratic 
equation. 
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Next we eliminate z by introducing equation (4) into (2); this yields the 
equation of an ellipse. 
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where x is the center and a and b are the two semi-axes of the ellipse. By 
varying0 b, the whole set of gllipse~ is obtained. However, analytically, the 
values of b cannot b e chosen fully arbitrarily. There is an upper and lower 
limit of b which depends upon the relative placement of the o~igin of the inter
se2ting sets of curves, and is d e t ermined by the condition a

0 
> 0. For 

a = 0, we obtain the equation 
0 

0 (9) 

which is a quadratic equation for b with the solutions: 
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b 
max 
m1n 

(10) 

The next integer smaller than b corresponds to the smallest ellipse of the 
max 

set and the smallest integer larger than b i to the largest ellipse. 
Other sets of Moire ellipses are obta~n~d if e.g. the first circle inter

sects the second line, the second circle the fourth line, etc. This means 
that the Moire appears as though the spacing, a, were doubled or tripled, etc., 
i.e. a is replaced by 2a, by 3a, and so on. The smaller the ratio d/a, the more 
circle-like become the ellipses which is seen from equation (8). As can be 
seen on Figure 1, ellipses perpendicular to the line sets, i.e. those along the 
cube diagonals, have the spacing a • nd/ 12. For ellipses inclined by 45° to 
the straight line sets, i.e. those along the cube axes, the spacing a becomes 
nd. 

If a Moire pattern such as on figure 1 is already given, the data can be 
analyzed in the following way. From the ratio of the square of the radius of 
the inner circle with number n, to that of the limiting circle, 

2 
2Nn 

2 
_e_ 

~ 
- n 

R2 N2 (11) 

we obtain 

N=.!!. 
~ 

[1 + (1 - ~)"] (12) 

Since ~ depends on n, N should prove to be independent of n. In the case of 
Figure 1, for n > 10, (where the errors are small) N = 100, and since Nd = R, 
d = 1.016 mm and the unit cell dimension in the projection = 2.032 mm (before 
reduction). 

In the second quadrant of Fig. 1 some analytical results are shown. Only a 
few of the ellipses from each set were drawn and they show very good agreement 
with the Moire. For example, for the set where a = d, 83 ellipses are possible 
according to equation (10), whereas only 5 ellipses were drawn. Also, not all 
poles predicted by the analysis were drawn - only those corresponding to the 
most obvious ones in the Moire pattern. The "b" value for each ellipse is shown 
as well as the "a" value for each set. The poles are indexed in the fourth 
quadrant. 

Having given the explanation of the approach, we will proceed to the 
stereographic projection, which has the following advantages: 

(a) The complete hemisphere can be visibly projected. 

(b) It more closely resembles the projection obtained in the field-ion 
microscope. 

(c) The angular relationships between poles is preserved so that indexing 
with a Wulff net is facilitated. This characteristic of stereographic 
projections renders the pole steps circular instead of elliptical, 
preserving their spherical surface character. 

The computer program by which the Moire is plotted is a general one which 
considers three (or four in the hexagonal case) sets of planes intersecting the 
surface of a sphere. The interplanar spacings for each set and the angles 
between sets are variables. The point of projection can also be varied. 

In stereographic projection, all three seta of circles on the reference 
sphere produced by the planar-sphere intersections are projected as circles 
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(as opposed i.e. to the orthographic, where two sets project as straight lines) 
as shown on Figure 2. The Moire pattern is seen to include many more poles 
and more closely resembles the FIM. The analytical Moire circles are shown in 
the second quadrant. They were produced by projecting the analytical ellipses 
from the orthographic projection, back to the reference sphere, and then repro
jecting them stereographically. As in the orthographic case only a few of the 
possible circles are drawn for each pole (not necessarily the same ones), 
however, in this case, all possible poles from the orthographic analysis are 
represented by at least one circle. The general position of these circles 
coincides very closely with the Moire pattern as before. The exact size of the 
small circles in the Moires varies considerably and is not important here. 
Small changes in the relative position of each of the original sets of planes 
make large differences in the size of the smallest Moire fringes. This should 
not surprise anyone who has observed the field evaporation process in a field
ion microscope where all of the circles representing the atomic plane edges are 
continually collapsing to zero radius as the last atom from each plane evapor
ates. Consequently, in field-ion images the size of the smallest ledge circle 
from the same type of plane will vary from quadrant to quadrant in the same 
image as is also true and can be seen in the Moires. 

The most notable discrepancy between the stereographic Moire pattern and 
the analytical circles produced by reprojection from the orthographic is that 
many prominent outer poles are not predicted. This is because they require that 
the circles from the 2nd and 3rd sets be projected as non-straight lines. This 
requires a modification of the details of the described procedure, but the same 
approach is applicable and should yield equally good agreement with all of the 
Moire poles. Differences between the FIM image and the Moires arise with 
deviations from sphericity, changes in local radii of curvature, and physical 
properties beyond the scope of purely geometrical considerations such as finite 
sizes of atoms, ionization potentials, field sublimation energies, directional 
bonding, distribution of surface charges, etc. 

The use of Moire models for the geometrical description of crystalline 
interfaces has been well established (1). The present work has demonstrated 
that the same general geometry which produces the successive rings of planar 
edge atoms around low index poles in field-ion images can be used to produce 
Moire patterns of rings around "low index poles" which greatly resemble those 
of the basic field-ion image. 

The assistance of Dr. H.L. Lukas with the electronic calculations and graphics 
is gratefully acknowledged. 
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Figure 1: Indexed Orthographic Moire with corresponding analytical ellipses 
labeled. 
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FCC (001} STEREOGRAPHIC 

Figure 2: Indexed Stereographic Moire with re-projected orthographic 
analytical ellipses labeled. 
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