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ABSTRACT 

  Compositional and textural maturity of sandstones may reflect provenance 

lithology and sediment transport distance, which are useful for paleogeographic 

reconstruction. 37 sandstones in six outcrop stratigraphic sections in Tarlong-

Taodonggou and Zhaobishan areas in the greater Turpan-Junggar rift basin were studied 

to investigate the fluvial-lacustrine sandstone provenance in lower Permian Lucaogou 

(LCG) low-order cycle, Bogda Mountains, NW China. 400 points were counted in each 

thin section. All the samples are classified into lithic arenites, subarenites, wackes, and 

mudrocks. Three Petrofacies are defined. Petrofacies A is characterized by a high lithic 

content which is dominantly basaltic lithics with minor sedimentary lithics and felsic 

volcanic lithics with mean compositions of Q3F11L86, Qm2F12Lt86, Qp1Ls7Lv92, and 

Qm15P84K1
 
from four ternary classifications, respectively. Petrofacies B has a relatively 

high content of sedimentary lithics indicating a sedimentary source in the local rift 

shoulders with mean compositions of Q3F5L92, Qm3F8Lt89, Qp1Ls36Lv63, and Qm23P71K6. 

Petrofacies C has a higher content of felsic volcanic lithics with mean compositions of 

Q3F8L89, Qm4F9Lt87, Qp1Ls10Lv89, and Qm33P63K4. Tectonic setting is interpreted from 

ternary diagrams. All the samples fall in the recycled orogen and magmatic arc fields. 

Two sources, northern Tian Shan and rift shoulders, are differentiated on the basis of 

grain size and roundness. In Tarlong-Taodonggou area, similar trends of textural and 

compositional properties are present in N and NW Tarlong, and S Tarlong and 

Taodonggou indicating similar depositional history. SW Tarlong shows a unique trend 

due to the local sedimentary source. In Zhaobishan, the trend is highly variable, 

indicating episodic sediments influx from rift shoulders or a different catchment basin. 
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1. INTRODUCTION 

The fluvial-lacustrine sandstones in Lucaogou low-order cycle (LCG LC) in 

Bogda Mountains, NW China, were deposited in a half graben in a rift basin setting 

(Yang et al., 2010). Half-grabens in rifts form due to block rotations along listric and 

planar-normal faults in zones of lithospheric attenuation (Wernicke and Burchfield, 

1982). Fluvial sedimentation results from deposition in relatively low-gradient rivers that 

are oriented parallel to the basin axis. Lakes are developed in topographic depressions 

that commonly are elongate and parallel to the basin axis (Blair, 1987). Ancient fluvial-

lacustrine sediments recorded tectonic, paleoclimate, and depositional conditions on the 

earth surface (Basu, 1976, Mack and Suttner, 1970). Provenance analysis of sandstone is 

an important and widely used means of tracing the origins of sedimentary basin fill and 

reconstructing the orogenic history of basin-bounding uplifts (Greene et al., 2005). 

This study focuses on provenance lithology, transport distance and depositional 

environments during the deposition of sandstones in LCG LC. The well exposed LCG LC 

in the southern Bogda Mountains, NW China, offers an opportunity to study 

compositional and textural characteristics of fluvial-lacustrine sandstones. 400 points 

were counted on each of the 37 sandstone samples from six measured sections, five from 

Tarlong-Taodonggou area and one from Zhaobishan area. Compositional and textural 

characteristics are analyzed to determine provenance lithology, tectonic setting and 

transport distance. Provenance lithology is mainly determined by compositional 

properties; and transport distance is largely determined by textural properties. The results 

indicate a regional basaltic source and local rift shoulders including volcanic and 

sedimentary lithologies in all sections. A trend of increasing textural maturity from 

southern sections to northern sections is observed. If they share the same source, the 

northern Tian Shan source would be supported.  

 

1.1. GEOLOGICAL BACKGROUND 

This study focuses on the well exposed LCG LCs in Taodonggou-Tarlong area 

and Zhaobishan area in the southern foothill of the Bogda Mountains (Figure 1.1). The 

Tarlong-Taodonggou area is located ~15 km north of the town of Daheyang, a train depot 
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along the transcontinental railway. The Zhaobishan area is located ~90 km east of the 

Tarlong-Taodonggou area, ~ 15 km to the north of Shanshan railway station. During the 

early Permian time, this study area was in the southeastern Kazakhstan Plate, at the 

northwestern coast of Paleo-Tethys Sea at approximately 30
o
-40

o
N in the arid climate 

zone (Figure 1.1C). The LCG LC was deposited in the intracontinental greater Turpan-

Junggar basin during the early Permian (Yang et al., 2010). The basin was developed on 

an Upper Carboniferous volcanic arc basement (Yang et al., 2010). The Bogda 

Mountains had not been uplifted by Early Triassic on the basis of provenance studies, the 

regional distribution of organic-rich lacustrine mudrock, and timing of unconformities 

(Carroll et al., 1992; Shao et al., 2001; Greene et al., 2005). Hence, the Turpan Basin was 

jointed with the Junggar Basin during the Permian; and the Permo-Trassic fluvial-

lacustrine sedimentary rocks in Tarlong were deposited in the greater Turpan-Junggar 

Basin (Greene et al., 2001; Shao et al., 2001). 

Northwestern China and adjacent areas of central Asia comprise a collage of 

disparate tectonic elements that amalgamated during the late Paleozoic (Burrett, 1974; 

Wang et al., 1990). However, the Permian tectonic evolution of the greater Turpan-

Junggar Basin is poorly understood. Proposed models vary widely from extension, 

transtension, to foreland loading (Hsu, 1988; Peng and Zhang, 1989; Carroll et al., 1990; 

Allen et al., 1995). Yang et al. (2010) suggests the LCs formed during a rifting-drifting 

tectonic cycle. There are several lines of evidence supporting the extension rift origin of 

the Turpan-Junggar Basin. A N-S-oriented two-dimensional seismic profile across the 

Lunan Depression in central Junggar Basin, revealing half-graben structures with 

Permian syn-rift sediments (Peng and Zhang. 1989). The arrangement of depocenters in 

the basin and their proximity to normal faults, from geologic mapping and seismic 

profiles, suggest a series of half-graben in a rift basin (Yang et al., 2010). Half-grabens 

similar to those in the greater Turpan-Junggar basin in the latest Carboniferous to Early 

Triassic are present in the Quaternary Basin and Range Province of the western US 

(Yang et al., 2010). Bimodal magmatism as indicated by swarms of mafic-felsic dike in 

the Bogda Mountains has been interpreted as evidence for Permian extension (Allen et 

al., 1991).  
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The Bogda Mountains are a giant anticline and composed mostly of mid-

Carboniferous volcanic arc rocks with scattered Permo-Quaternary sedimentary rocks 

exposed on both flanks (Xu et al., 2007). Permo-Triassic fluvial-lacustrine sediments are 

extensively exposed along the foothill of the Bogda Mountains (Liao et al., 1987; Carroll 

et al., 1995). The sedimentary rocks were deposited in the greater Turpan-Junggar rift 

basin on the uppermost Carboniferous volcanic-arc basement formed by collision 

between the Junggar and Northern Tian Shan plates according to the new dates (Yang et 

al., 2010). Lake expansion and contraction and source uplift to the south had occurred 

episodically in the region during the deposition of LCG LC (e.g., Shao et al., 2001; 

Wartes et al., 2002; Greene et al., 2005). 

 

 

 

Figure 1.1. Location of the study area. A) Location of the study area in Xinjiang Uygur 

Autonomous Region, NW China. B) Geological map of eastern Xinjiang, showing 

locations of Tarlong-Taodonggou and Zhaobishan. Modified from XBGMR (1993). C) 

Global paleogeographic reconstruction for the early Permian. Modified from Scotese 

(1996). The location of the study area is marked with a red star. 
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1.2. STRATIGRAPHY 

The Carboniferous–Triassic chronostratigraphy in the greater Turpan–Junggar 

basin is poorly constrained mainly by biostratigraphy of invertebrates (mainly ostracods 

and choncostracans), plants, spores and pollens, and vertebrates (Yang et al., 2010). The 

LCG LC is an informal cyclostratigraohic unit defined by Yang et al. (2010). The lower 

Daheyan, middle Daheyan, upper Daheyan, Lucaogou, and Hongyanchi LCs are 

constrained to a late Gzhelian–Artinskian age by an age of 281.42 Ma obtained from a 

volcanic ash in profundal shale in the uppermost Hongyanchi in SE Tarlong (Yang et al., 

2010).In addition, biotite and sanidine from the ash-flow tuff underneath the Daheyan–

Taoxigou unconformity in Taodonggou are dated as 301.61 and 300 Ma, respectively, 

which are used to determine the lower limit (Yang et al., 2010). The radiometric dates 

indicate the great uncertainty of previous biostratigraphy-based chronostratigraphy for 

the lower Permian. Thus, the age of the LCG LC was changed from Rodian to lower-

middle Sakmarian and basal Artinskian (291-284 Ma; Figure 1.2). The LCG LC is 

overlain by Hongyanchi LC and underlain by upper Daheyan LC. The base of LCG LC is 

a sharp erosional surface mantled with a thin layer of well-washed and well sorted 

conglomerate, arenite, or pisolitic rudstone, interpreted as lag deposits on a graben-wide 

transgressive surface. The top of the LCG LC is a high-relief fluvial channel base in 

Taodonggou and NE Tarlong, and well-washed beach conglomerate and arenite in 

southern Tarlong, signifying a major regression (Yang et al., 2010). In Zhaobishan, the 

base of LCG LC is an unconformity in direct contact with upper Carboniferous basaltic 

basement and the top is a sharp conformable surface with sublittoral wackestone to 

mudrock deposits overlain by lacustrine shales of Hongyanchi LC. . 

  



 

 

5 

5
 

 

 

Figure 1.2. Chrono-, litho-, and cyclostratigraphy of upper Carboniferous-middle 

Permian strata in the Tarlong-Taodonggou area. Wavy lines are major unconformities; 

dashed lines disconformity; and hatched areas missing strata. Absolute ages at stage 

boundaries from Gradstein et al. (2004). Modified from Yang et al. (2010, 2013) and 

Obrist-Farner and Yang (2015). 
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2. METHOD AND DATA 

Provenance and depositional conditions of sandstones in Lucaogou low-order 

cycle are the main concerns of the study. Fieldwork is essential for preliminary 

interpretation of structure, depositional environments, paleogeography, paleoclimate and 

tectonics based on cyclostratigraphy. Further composition and texture analysis was done 

through detailed petrographic work in lab. 

 

2.1. FIELD OBSERVATIONS 

Six stratigraphic sections of the Lucaogou low-order cycle were measured at a 

cm-dm scale in the Tarlong-Taodonggou area and Zhaobishan area by Dr. Yang and his 

colleagues in 2004, 2005, 2007, 2009, and 2014 (Figure 2.1). The author had visited the 

measured sections and collected some extra samples in 2015. First, lithology, 

sedimentary structures, texture, fossil content, boundary relationships, and stratal 

geometry of individual units were described. Depositional environments were interpreted 

based on lithofacies combined with stacking patterns and lateral changes. Second, three 

orders of sedimentary cycles were delineated by Yang et al. (2010) on the basis of 

repetitive depositional environment changes. A high-order cycle (HC) is the most basic 

cyclostratigraphic entity which is defined by a cycle of environment change associated 

with lake expansion and contraction or erosion and deposition of fluvial sedimentation. 

The stacking of one or more HCs will form a longer trend of depositional environment 

changes associated with larger scale transgression and regression, which can be defined 

as intermediate-order cycle (IC). An IC contains transgressive, condensed section, 

highstand, and regressive systems tracts (Yang et al., 2010). Low-order cycle (LC) is 

defined by repetitive stacking of ICs that show similar environments and climatic and/or 

tectonic conditions.  

Thirty seven sandstones  were collected from the LCG LCs. Five samples are 

from Taodonggou, four from SW Tarlong, six from S Tarlong, five from N Tarlong, eight 

from NW Tarlong, and nine from Zhaobishan, covering all parts of each section.  Hand 

samples were cut to slabs, and then sent to Texas Petrographic Services for thin 

sectioning. 
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2.2. PETROGRAPHY 

Microscopic petrographic study of thirty-seven sandstones was carried out to 

document framework grain compositions, size, roundness and angularity, grain contact, 

matrix composition, and cement types. 400 points were counted in each thin section, 

where altered grains were interpreted for their original grain types whenever possible, 

using the traditional point counting method. Another counting method is the Gazzi-

Dickinson method (Gazzi, 1966, Dickinson, 1970). The two methods mainly differ in 

identifying the lithic grains. The traditional counting method would count a basaltic lithic 

grain containing feldspar laths as lithic. However, in the Gazzi-Dickinson method, 

basaltic lithics containing feldspar laths are counted as feldspar instead of basaltic lithic. 

In this study, the traditional method is applied due to the small size of the feldspar laths 

which are difficult to count. The small size of the feldspar laths will also largely reduce 

the size of the lithics, which will reduce the estimate of transport distance. All points 

were counted using the Nikon Labophot-pol polarizing binocular microscope. Thin 

sections were mounted on the stage using Nikon attachable graduated mechanical stage. 

The step size was one increment on the stage. 

Quartz was divided into monocrystalline and polycrystalline varieties. Feldspars 

were divided into plagioclase and potassium feldspars. Volcanic and sedimentary lithics 

are recognized with no metamorphic lithics in the samples. Volcanic lithics were 

subdivided into basaltic and intermediate-felsic volcanic lithics. Sedimentary lithics 

including chert, mudrock, shale, and carbonate lithics were identified. Other accessory 

minerals including amphibole, biotite, chlorite, chalcedony, and zeolite were identified. 

Detailed subdivisions can be found in Table 2.1. 

Grain shapes were described as equant, ellipse, elongate, very elongate, and 

wedge. Roundness and angularity were described as very angular, angular, subangular, 

subrounded, rounded, and well-rounded based on Powers’ grain images for estimating 

roundness of sedimentary particles (Powers, 1953). Grain contacts were divided into 

floating, point, line, and concave and convex types. 

The percentages of each component, framework work grains, matrix, and cement, 

among all counts were calculated. Sandstone classification is modified from Dott (1964). 
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A sandstone with 0-5% matrix is classified as arenite; 5-15% matrix subarenite; 15-50% 

matrix wacke; > 50% matrix mudrock. 

Statistical analyses were carried out to determine mean grain size, sorting, and 

average roundness. Grain size is determined by 

𝑀𝑧 =
∅16 + ∅50 + ∅84

3
 (2.1) 

Where Mz is the graphic mean size of all the framework grains,∅16, ∅50 and ∅84 

are the 16th, 50th, and 84th percentile values of the cumulative curve (Folk and Ward, 

1957). 

Sorting is determined by the inclusive graphic standard deviation: 

𝜎𝑖 =
∅84 − ∅16

4
+

∅95 − ∅5

6.6
 (2.2) 

Where 𝜎𝑖 is inclusive graphic standard deviation,∅5, ∅16, ∅50, ∅84, ∅95 are the 

5th, 16th, 50th, 84th and 95th percentile values of the cumulative curve (Folk and Ward, 

1957). 

The QFL ternary diagram (Folk, 1980) was plotted to determine petrofacies. Q 

includes monocrystalline quartz, polycrystalline quartz, and chalcedony; F plagioclase 

and potassium feldspars; L volcanic and sedimentary lithics. Other grains were not used 

in the plotting; and the QFL contents were normalized to 100%. Three ternary diagrams, 

QmFLt, QmLvLs, and QmPK (Dickinson 1985) were plotted using Tri-plot 4.1.2 

software (Todd Thompson, 2009) to determine the tectonic setting of the sandstones. 

Compositional and textural properties are plotted along each measured section with 

interpreted depositional environments. Vertical and lateral changes of provenance and 

transport distance were interpreted from vertical and lateral trends in individual sections. 
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Figure 2.1. Geologic map and satellite photo of the study areas. (A) Tarlong-Taodonggou 

modified from Yang et al. (2010), (B) Zhaobishan area showing names and location 

(black and red lines) of measured sections. Satellite photo is from Google Earth.  

A 
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Table 2.1. Grain types and modal parameters used in this study 

Symbol Definition 

Qm Monocrystalline quartz 

Qp Polycrystalline quartz 

Qc Chalcedony 

K Potassium feldspar 

P Plagioclase feldspar 

Lvi Intermediate volcanic lithic 

Lvb 

Lvu 

Basaltic lithic 

Undifferentiated volcanic lithic 

Lv Lvi+Lvb+Lvu 

Lsm Mudrock lithic and mud clasts 

Lsc Chert 

Lss 

Lsca 

Shale lithic and siltstone lithics 

Carbonate lithic 

Ls Lsm+Lsc+Lss+Lsca 

Calculated parameters for sandstone classification (Folk, 1980) 

Q Qm+Qp 

F K+P 

L Lv+Ls 

Calculated parameters for Dickinson’s ternary diagrams 

Q Qm+Qp 

Qp Qp+Qc 

F K+P 

L Lv+Ls 

Lt L+Qp 
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3. SANDSTONE PETROGRAPHY 

Sandstone petrography is a powerful tool for determining the origin of ancient 

terrigenous deposits and tectonic reconstructions of sedimentary basins (e.g., Blatt 1967; 

Dickinson, 1970; Pettijohn et al., 1972).Thirty seven sandstones range from coarse silt to 

coarse sand in size, are poorly sorted to moderately well sorted, and contain very angular 

to well-rounded framework grains. Intergranular components are pore-filling calcite, 

microcrystalline quartz, chalcedony, and calcitic mud. The raw point-counting and 

statistic data are shown in Table 3.1 and 3.2. 

 

3.1. FRAMEWORK GRAINS 

Framework grains are silicate detrital grains. Their function is to support the 

sandstone. Framework grains range in size from 1/16 to 2 mm. They are classified into 

three categories on the basis of their mineral composition: quartz, feldspar, and lithics, 

among which eight types were identified. Grain composition, size, sorting, roundness, 

and contact were examined. 

3.1.1. Quartz (Q). Quartz is hard and chemically stable and, thus, can survive 

multiple recycling. As a result, it is the most abundant mineral with a 50%-60% 

occurrence in most sandstones in the geological history (Boggs, 2014). However, quartz 

content is low in Lucaogou sandstones, only 1.8% on average. This may be related to 

quartz-poor provenance lithology. Two types of quartz, monocrystalline and 

polycrystalline, are identified in the samples.  

3.1.1.1 Monocrystalline quartz (Qm). Monocrystalline quartz makes up 85.14% 

of all quartz. Two types of mono-quartz grains are identified. Those from volcanic lithics 

show a euhedral to subhedral shape with embayed edges, straight extinction, and are clear 

and inclusion-free (Figure 3.1A). The other type is subrounded to rounded, and has 

straight or slightly undulose extinction, and possible internal fractures inside grain 

(Figure 3.1B). These features indicate that the grains had experienced transport and some 

compaction. Grain size Qm varies from coarse silt to coarse sand, and very fine sand on 

average. The roundness of Qm grains ranges from very angular to rounded and is mainly 

subrounded.  



 

 

 

1
2
 

Table 3.1. Raw point-counting data and results of statistical grain size analysis of Taodonggou, S, SW, N Tarlong sections 

Section Sample No. Qm Qp Qc K P Lvi Lvb Lvu Lsm Lsc Lss Lsca Cement Matrix Mz σ1 Sk1 

Ta
o

d
o

n
gg

o
u

 TD21 3 0 0 21 3 60 152 25 10 3 3 0 7 86 1.61 0.7 0.14 

TD27 3 0 0 3 0 6 39 45 0 0 3 0 10 272 3.34 0.73 0.66 

TD29 3 1 0 7 2 46 227 1 12 7 7 0 53 14 1.82 0.63 0.03 

TD35 4 0 0 16 2 39 143 5 7 6 12 0 97 46 2.3 0.57 -0.03 

TD37 22 3 0 7 3 4 66 24 11 2 22 0 133 51 3.41 0.62 -0.04 

S 
Ta

rl
o

n
g 

TR1-13 3 1 0 15 0 9 154 13 10 3 4 0 148 14 2.34 0.77 -0.03 

S7-59 5 1 0 43 0 5 13 23 1 0 0 0 3 158 2.32 0.91 -0.15 

S7-65 2 0 0 18 0 14 147 63 4 2 1 7 76 61 3.07 0.77 -0.18 

S7-66 2 3 0 12 0 6 72 8 2 6 5 2 2 20 2.4 0.7 0.16 

S7-67 2 0 0 54 0 2 162 43 8 0 7 3 57 55 2.4 0.89 -0.07 

S7-73 7 1 0 34 5 16 41 90 16 1 0 0 79 67 3.83 0.73 -0.02 

SW
 T

ar
lo

n
g B09-1 7 0 0 22 0 5 153 0 3 1 6 0 117 38 2.47 1.02 -0.24 

B09-3 3 0 1 7 1 17 32 10 79 6 0 0 185 33 2.5 1.33 -0.21 

B09-4 6 0 0 15 5 11 51 10 93 5 29 0 141 18 1.54 0.89 0 

B09-7 5 0 0 6 1 21 70 91 13 0 1 1 38 177 4.05 0.66 -0.03 

N
 T

ar
lo

n
g 

TR30 0 0 0 8 0 69 278 2 0 4 0 0 0 35 1.61 0.61 0 

TR31 3 0 7 35 0 26 273 3 10 0 11 0 1 26 2.72 0.8 -0.15 

TR34-1 3 2 15 45 1 18 258 0 4 3 5 0 9 8 3.19 0.69 0.04 

TR34-3 4 1 25 47 0 21 225 1 2 1 9 2 44 0 2.72 0.73 -0.16 

TR40 6 0 0 11 0 12 152 31 6 0 16 0 142 23 1.8 1.001 -0.01 
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Table 3.2. Raw point-counting data and results of statistical grain size analysis of NW Tarlong and Zhaobishan sections 

Section Sample No. Qm Qp Qc K P Lvi Lvb Lvu Lsm Lsc Lss Lsca Cement Matrix Mz σ1 Sk1 

N
W

 T
ar

lo
n

g 

S7-42 2 0 0 10 0 5 55 32 0 0 0 1 1 198 1.24 1.74 0.12 

S7-44 1 0 0 15 1 33 197 6 0 0 3 0 52 88 0.07 1.27 0.22 

S7-47 8 7 0 59 0 36 184 10 0 0 24 0 54 0 2.9 0.6 0.07 

S7-48 16 0 0 68 0 9 201 22 1 0 31 0 35 7 2.7 0.55 0.03 

S7-52 1 0 0 26 0 1 57 23 2 0 9 0 133 144 2.54 0.7 -0.18 

S7-57 1 1 3 20 0 3 191 27 1 0 39 0 9 41 2.23 0.78 -0.19 

S8nw-2 2 1 8 46 5 23 228 32 1 0 10 0 34 14 1.96 0.59 0.01 

S8nw-16 0 1 0 3 0 6 273 31 18 1 2 1 54 0 1.35 0.89 0.1 

Zh
ao

b
is

h
an

 

SZ15-1 13 5 0 35 0 26 96 41 2 17 5 0 6 153 2.34 0.88 -0.28 

SZ15-2 2 2 0 35 0 15 128 34 14 0 6 1 43 108 2.41 0.54 0.04 

SZ15-3 0 1 2 19 0 16 60 30 8 6 47 2 170 24 2.01 0.75 0.03 

SZ15-4 2 0 0 14 0 6 98 22 2 9 17 5 171 43 2.12 0.87 -0.28 

SZ15-5 3 0 0 4 0 9 56 45 1 0 27 0 204 18 2.75 0.71 -0.2 

SZ14-45 0 0 11 2 0 5 86 159 4 1 21 0 24 46 2.11 1.2 -0.53 

SZ14-46 4 0 2 2 0 17 37 93 15 2 3 4 46 106 2.23 0.85 -0.03 

SZ14-48-1 12 0 0 24 2 17 92 39 6 0 3 1 44 57 2.68 0.63 -0.11 

SZ14-50 24 2 0 13 3 96 139 68 3 0 3 0 0 11 3.79 0.85 0.1 
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3.1.1.2 Polycrystalline quartz (Qp). Polycrystalline quartz only makes up 

14.86% of all quartz. Most Qp grains are composed of interlocking subcrystals showing 

slight to high undulosity (Figure 3.1C). The properties of polycrystallinity and undulatory 

extinction can be used to distinguish quartz derived from different sources. Some authors 

(Folk, 1974; Basu et al., 1975) suggest that this property indicates plutonic or 

metamorphic sources. The size of Qp grains varies from coarse silt to coarse sand with an 

average fine sand size. Roundness varies from very angular to rounded, mainly 

subrounded. 

3.1.2. Feldspar (F). Although feldspars are the most common minerals in igneous 

and metamorphic rocks, feldspars are less stable than quartz at conditions near the Earth's 

surface. Thus, feldspars make up only 10-15% of all framework grains in sandstones in 

the geologic record (Boggs, 2014). Feldspars account for 9.46% of all framework grains 

in Lucaogou sandstones, which is similar to that of world average. Feldspars have two 

types, plagioclase and potassium feldspars. Both types are observed in the samples. 

Twinning makes it easy to distinguish between feldspars and quartz. However, some 

potassium feldspars don’t show twinning. Cleavage is another feature that can be used to 

identify feldspar. Feldspars have two cleavage planes that intersect at ~90
o
. Plagioclase is 

the dominant feldspar in the samples while potassium feldspars are minor. The average 

P/F ratio is 0.93, which indicates a dominant volcanic source (Dickinson, 1985). 

3.1.2.1 Plagioclase (P). Plagioclase feldspars form a complex solid solution series 

ranging in composition from albite through anorthite. They account for 92.85% of all 

feldspars. Plagioclase can be easily distinguished from potassium feldspar on the basis of 

optical properties such as albite twinning and zoning (Figure 3.1D, E). The grain size 

varies from coarse silt to very coarse sand with an average size of fine sand. Roundness 

varies from very angular to well-rounded, mainly subangular to subrounded. High 

plagioclase content, relatively angular shape, and compositional zoning support a nearby 

volcanic source. 

3.1.2.2 Potassium feldspar (K). Potassium feldspars only account for 7.15% of 

all feldspars. Common species of potassium feldspar are orthoclase, microcline, and 

sanidine. But only orthoclase is observed in the studies samples. Orthoclase is identified 

by its platy shape, two sets of cleavages, and Carlsbad twinning (Figure 3.1F). Its size 
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varies from coarse silt to medium sand with an average of very fine sand. Roundness 

varies from very angular to rounded, mainly subrounded. 

3.1.3. Lithics (L). Lithics are fragments of ancient source rocks and sediments 

that have not yet disintegrated to yield individual mineral grains. Lithics are the most 

dominant component in the studied samples, accounting for 88.74% of all framework 

grains. Volcanic lithics include basaltic and intermediate-felsic volcanic fragments; and 

sedimentary lithics including chert, mudrock, shale, and carbonate fragments. No 

metamorphic lithics were seen. The abundance of lithics indicates a low compositional 

maturity.  

3.1.3.1 Volcanic lithics (Lv). Volcanic lithics in the sandstones are differentiated 

based on texture into felsitic, vitric, microlithic, and lathwork types. Felsitic grains are 

anhedral, microcrystalline mosaic composed of mainly quartz and feldspar. Vitric grains 

are glass or altered glass. Microlithic grains are subhedral to euhedral feldspars in 

pilotaxitic, felted, trachytic, or hyalopilitic groundmass of microlites, and represent 

mainly intermediate volcanic lithics (Figure 3.2D). Lathwork grains contain plagioclase 

laths in intergranular and intersertal textures representing mainly basaltic lithics 

(Dickinson, 1970; Figure 3.2A, B, C). The average percentage of basaltic grains is 88.4% 

of all grains; that of intermediate volcanic lithics ~10%; and felsic volcanic lithics 1~2%. 

Abundant lathwork grains with little microlithic and minor felsitic and vitric grains is 

typical of all the samples, indicating the dominance of a basaltic source and a distant 

secondary intermediate-felsic volcanic source. The size of volcanic lithics varies from 

very fine sand to granule. The roundness varies from very angular to rounded, mainly 

subangular to subrounded. A major portion of the volcanic lithics is partially or 

completely replaced by calcite, which makes it hard to interpret the exact type of volcanic 

lithics. These grains are not included in the calculation of basaltic and felsic volcanic 

lithics, but they are included in the calculation of volcanic lithics and lithics. 

Basaltic lithics (Lvb) are the most abundant component in both lithic grains and 

framework grains. The Lvb can be identified by feldspar laths encased in brown or black 

groundmass (Figure 3.2A, B).  The black graoundmass is probably due to the abundance 

of Fe-bearing opaque minerals. The light color groundmass is the result of alteration into 

clay or calcite. Some of the Lvb show a preferred orientation of feldspar laths, referred as 
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trachyte and included in the Lvb on ternary diagrams. The size of the Lvb grains varies 

from coarse silt to fine pebble with an average size of fine sand. Roundness varies from 

very angular to well rounded, mainly subrounded. 

Intermediate-felsic volcanic lithics (Lvi) are minor, accounting for 10% of all volcanic 

lithics. In some cases, they are hard to differentiate from chert grains. One difference 

between them is the relief of the feldspars and quartz can be differentiated in volcanic 

lithics under plane light based on Becker line, while chert shows a relative flat surface. 

The size of Lvi varies from coarse silt to fine pebble with an average size of fine sand. 

Roundness varies from very angular to well-rounded, mainly subrounded. 

3.1.3.2 Sedimentary lithics (Ls). Sedimentary lithics account for 12.4% of all the 

lithics. Four main types of Ls, mudrock, shale, chert, and carbonate, are recognized in the 

samples.  

Mudrock lithic (Lsm) is the most common Ls in the samples, and accounts for 

35.5% of all Ls. It is characterized by clay matrix with scattered silt or sand grains 

(Figure 3.2E). Lsm are mainly rounded and well-rounded, indicating that the clasts were 

lithified or semi-consolidated during deposition. These grains can be interpreted as 

fragments of mudrocks or cohesive muddy sediments. Some of the mudrock clasts are 

subangular to subrounded with embayed edges, and may be rip-up mud clasts (Figure 

3.2F).  

Chert (Lsc) is the second most abundant Ls in the samples. It is characterized by 

relatively equant, uniform-sized grains in crenulate, sharp contacts (Figure 3.3A). Chert 

is not observed in NW Tarlong, but in other sections, and accounts for 9.3% of all Ls.  

Shale lithics (Lss) are also present in the samples. It can be identified by clear 

laminations and deformation by adjacent hard grains (Figure 3.3B), indicating a shale 

origin. The shale lithics could have been derived from uplifted rift shoulders exposing 

shale, because shale would not have survived long-distance transport. 

Some carbonate lithics (Lsca) are also seen in some samples, accounts for 6.9% of 

all Ls, and mostly occur as ooids (Figure 3.3C). The small amount of carbonate lithics 

suggests they are not formed in-situ. These lithics were derived from a provenance 

containing carbonate rocks. 
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In SW Tarlong, Ls grains account for 38.4% of all the lithics, while in other 

sections, the percentage is 10.0%. Most of the Ls in SW Tarlong are rounded to well-

rounded mudrock lithics. The wide range of variation in abundance of of Ls grains 

suggests a nearby local sedimentary source in SW Tarlong in addition to a regional 

dominant volcanic source. The small amount of Ls in other sections suggests a secondary 

sedimentary source. The size of the Ls varies from coarse silt to granule with an average 

fine sand size. Roundness varies from very angular to well-rounded, mainly (66.8%) 

subrounded to rounded.  

3.1.4. Accessory Minerals. A wide variety of accessory minerals are present and 

account for less than 1% of all framework grains. Biotite, muscovite, chalcedony, 

chlorite, zeolites, magnetite, hematite, and amphibole (Figure 3.3D, E, F). Some of them 

are depositional, whereas others are formed through diagenesis. The size of the accessory 

minerals varies from very fine to medium sand. Roundness varies from angular to 

rounded.  

 

3.2. MATRIX AND CEMENTS 

Matrix and cements are dominantly calcitic. Grains in sandstones smaller than 

0.03 mm, which fill interstitial spaces among framework grains, are referred to as matrix. 

Cements are minerals bounding the framework grains in most siliciclastic sedimentary 

rocks. 

3.2.1. Matrix. Matrix originates in two principal ways. First, primary detrital 

matrix is transported and deposited with the sand-size framework grains. Second, matrix 

can also be produced by diagenesis: rock fragments are squashed and disaggregated; and 

feldspar is transformed into clay. In this study, the matrix is likely to be a diagenesis 

product. Two lines of evidence support the interpretation. First, no available source is 

known for the calcitic matrix. Most grains in the samples are terrestrial siliciclastic grains 

with scattered carbonate lithics. Second, replacement of volcanic grains by calcite is 

common in thin sections, which could be the first stage of alteration of volcanic grains 

into matrix. 

Matrix in the samples is mainly calcitic mud of silt and clay size (Figure 3.4A). 

The calcitic composition is identified by HCL test on hand samples and staining with 
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Alizarin red S on thin sections. Some of the matrix is clay minerals which are hard to 

distinguish by routine petrographic microscope. Further identification using X-ray 

diffraction and electron microscopy would be needed. The percentage of matrix varies 

from 0% to 44.25% in all samples. Two mudrocks, described as muddy wackes in the 

field, are identified in Taodonggou and NW Tarlong with matrix percentages of 68.51% 

and 65.3%, respectively. The average matrix percentage in S Tarlong, Tadonggou, SW 

Tarlong, and Zhaobishan is 15% to 25%. In NW Tarlong, the matrix amount is 10.73%, 

and 4.6% in N Tarlong. This trend indicates a textural maturity decrease trend from south 

to north in the Tarlong-Taodonggou area. 

3.2.2. Cements. Cements in the studied samples are mainly of two types, 

isopachous and pore-filling (blocky). Cement minerals are calcite, chalcedony, and 

microcrystalline quartz. Most samples experienced severe diagenesis. The amount of 

cements varies from 0 to nearly 50%. The average cements in S Tarlong, Taodonggou, 

SW Tarlong, N Tarlong, NW Tarlong and Zhaobishan are 15.36%, 15.00%, 29.75%, 

9.80%, 11.68%, and 19.88%, respectively. Isopachous and blocky calcite cements are 

well developed in most samples; zeolite cement is well developed in NW Tarlong and 

rare in N Tarlong; and silica cement occurs in NW Tarlong, Taodonggou, and 

Zhaobishan. The formation of isopachous calcite cements (Figure 3.4B) could have been 

related to hydrothermal fluids; but more evidence is needed to support the interpretation. 

Poikilotopic calcite cements were observed in some samples.   

In NW Tarlong, Zhaobishan and middle part of Taodongou section, silica 

cements, such as microcrystalline quartz and chalcedony (Figure 3.4C, D), were present. 

This may indicate different pore water chemistry.  

 

3.3. SANDSTONE CLASSIFICATION 

There are more than 50 schemes of classifying sandstones, but the most 

commonly used ones incorporate both texture and mineralogy. In this study, the 

classification is from Dott (1964). This classification is better to portray the continuous 

nature of texture variation from mudrock to arenite and from stable to unstable grains. 

The classification is based on both the relative abundances of quartz (Q), feldspar (F), 

and rock fragments (R) and the abundance of matrix, modified from Dott (1964) (Boggs, 
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2014).  Two parameters of relative abundance are used to subdivide terrigenous 

sandstones. The first parameter is the percentage of matrix in the mixture of framework 

grains and matrix, without considering cement and porosity. The second is the percentage 

among three types of framework grains, i.e., quartz, feldspar and rock fragments (lithics). 

Sandstones are divided into three groups: arenites, containing little or no matrix (<5%); 

subarenites, containing some matrix (5-15%); and wackes, containing perceptible matrix 

of 15-50%. Siliciclastic sedimentary rocks containing more than 50% matrix are called 

mudrock. The relative percentage of quartz, feldspar and rock fragments is used to 

subdivide arenites, subarenites and wackes. Other framework grains, such as micas and 

heavy minerals, are ignored. The arenites are subdivided into quartz arenite (more than 

95% quartz grains), arkosic arenite/subarenite (more than 25% feldspar and more feldspar 

than rock fragments), subarkose arenite/subarenite (5–25% feldspar grains and more 

feldspar than rock fragments), lithic arenite/subarenite (more than 25% rock fragments 

and more rock fragments than feldspar), and sublitharenite/subarenite (5–25% rock 

fragments and more rock fragments than feldspar). The wackes are divided into quartz 

wacke (more than 95% quartz grains), lithic wacke (more than 5% rock fragments and 

more rock fragments than feldspar), and feldspathic (arkosic) wackes (more than 5% 

feldspar and more feldspar than rock fragments). 

According to Folk (1959), the name of a rock must convey as much information 

as possible without being a complete description. Five properties including grain size, 

chemically precipitated cements, textural maturity, miscellaneous transport constituents, 

and clan designation, are proposed to define sandstone. Textual maturity is reflected by 

terms of arenite/subarenite and wacke in Dott’s classification. Thus, the name could be in 

the following format: (Grain size) (chemically precipitated cements) (miscellaneous 

transported constituents) (clan designation). The grain size and clan designation should 

always be mentioned, while the other two aspects should be mentioned whenever 

observed. Due to severe diagenesis, the boundary of whether or not describing cements is 

set at 10% to differentiate degrees of cementation. 

Overall, all the studied samples can be classified into four groups: eleven lithic 

arenites, fifteen lithic subarenites, nine lithic wackes, and two lithic mudrocks. More 

detailed classification of each sample is shown in Table 3.3. 
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Table 3.3. Classification of studied sandstones 

Section Sample No. Classification 

T
ao

d
o
n
g
g
o
u

 TD21 Medium sand lithic wacke 

TD27 Very fine sand lithic mudrock 

TD29 Medium sand lithic arenite 

TD35 Fine sand calcitic lithic subarenite 

TD37 Very fine sand calcitic lithic subarenite 

S
 T

ar
lo

n
g

 

TR1-13 Fine sand calcitic lithic arenite 

S7-59 Fine sand lithic wacke 

S7-65 Very fine sand calcitic lithic wacke 

S7-66 Fine sand lithic subarenite 

S7-67 Fine sand calcitic lithic subarenite 

S7-73 Fine sand calcitic lithic wacke 

S
W

 T
ar

lo
n
g

 

B09-1 Fine sand calcitic lithic subarenite 

B09-3 Fine sand calcitic lithic subarenite 

B09-4 Medium sand calcitic lithic arenite 

B09-7 Coarse silt lithic wacke 

N
 T

ar
lo

n
g

 TR30 Medium sand lithic subarenite 

TR31 Fine sand lithic subarenite 

TR34-1 Very fine sand lithic arenite 

TR34-3 Fine sand calcitic lithic arenite 

TR40 Medium sand calcitic lithic subarenite 

N
W

 T
ar

lo
n
g

 

S7-42 Medium sand lithic mudrock 

S7-44 Coarse sand calcitic lithic wacke 

S7-47 Fine sand calcitic lithic arenite 

S7-48 Fine sand lithic arenite 

S7-52 Fine sand calcitic lithic wacke 

S7-57 Fine sand lithic subarenite 

S8nw-2 Medium sand lithic arenite 

S8nw-16 Medium sand chalcedony lithic arenite 

Z
h
ao

b
is

h
an

 

SZ15-1 Fine sand lithic wacke 

SZ15-2 Fine sand calcitic lithic wacke 

SZ15-3 Fine sand calcitic lithic subarenite 

SZ15-4 Fine sand calcitic lithic subarenite 

SZ15-5 Fine sand calcitic lithic arenite 

SZ14-45 Fine sand lithic subarenite 

SZ14-46 Fine sand calcitic lithic subarenite 

SZ14-48-1 Fine sand calcitic lithic subarenite 

SZ14-50 Very fine sand lithic arenite 
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Figure 3.1. Photomicrograph of quartz and feldspars. A) Photomicrograph (XL) showing 

typical volcanic quartz indicated by a biprism shape and embayed edge. Adjacent grains 

are coated with isopachous calcite. Sample TR1-13 from S Tarlong. B) Photomicrograph 

(XL) showing a rounded monocrystalline quartz indicating long transport distance. 

Sample TR40 from N Tarlong. C) Photomicrograph (XL) showing a polycrystalline 

quartz or composite grain. Sample TD29 from Taodonggou. D) Photomicrograph (XL) 

showing a plagioclase with albite twinning. Sample TD35 from Taodonggou. E) 

Photomicrograph (XL) showing a subaugular zoned plagioclase feldspar indicative of a 

volcanic origin. Sample B09-3 from SW Tarlong. F) Photomicrograph (XL) showing a 

rounded Carlsbad twinning potassium feldspar surrounded by rock fragments. Sample 

TD29 from Taodonggou. Lvb-basaltic lithic, Lsm-mudrock lithic, Lss-shale lithic.  
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Figure 3.2. Photomicrograph of volcanic lithics and mud clasts. A) Photomicrograph (PL) 

showing a volcanic lithic. Feldspar laths are visible, and the groundmass is altered into 

clay. Sample B09-1 from SW Tarlong. B) Photomicrograph (XL) showing an angular 

basaltic lithic in a black groundmass. Sample B09-1 from SW Tarlong. C) 

Photomicrograph (XL) showing a lathwork grain indicating basaltic origin. Sample TR40 

from N Tarlong. D) Photomicrograph (XL) showing a microlithic grain suggesting a 

felsic origin. Sample TR30 from N Tarlong. E) Photomicrograph (XL) showing a brown 

well-rounded mudrock indicating long transport distance. Sample S7-67 from S Tarlong. 

F) Photomicrograph (PL) showing a very angular mudclast indicating short transport. 

Sample b09-4 from SW Tarlong. Lsm-mudrock lithic, P-plagioclase. 
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Figure 3.3. Photomicrograph of sedimentary lithics and accessory minerals. A) 

Photomicrograph (XL) showing a chert grain. Sample SZ15-1 from Zhaobishan. B) 

Photomicrograph (XL) showing a dark brown deformed rounded shale lithic in the 

middle. Sample TD29 from Taodonggou. C) Photomicrograph (PL) showing a carbonate 

fossil. Sample Snw8-16 from NW Tarlong. D) Photomicrograph (XL) showing a 

chalcedony grain. Sample SZ15-2 from Zhaobishan. E) Photomicrograph (XL) showing 

an amphibole characterized by pleochroism and two sets of cleavages. Sample B09-3 

from SW Tarlong. F) Photomicrograph (XL) showing a chlorite characterized by its 

green color. The grain to the left could be a zeolite based on previous XRD result. 

Sample S7-65 from S Tarlong. P-plagioclase, Lvb-basaltic volcanic lithic, Z-zeolite. 
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Figure 3.4. Photomicrograph of matix and cements. A) Photomicrograph (XL) showing 

silt grains floating in calcitic mud tested by HCL acid from hand sample. Sample TD27 

from Taodonggou. B) Photomicrograph (PL) showing abundant isopachous calcite 

growing inside and around grains. Sample SZ15-5 from Zahobishan. C) Photomicrograph 

(XL) showing a pore-filling silicate cement, probably microcrystalline quartz or zeolite. 

Sample TD29 from Taodonggou. D) Photomicrograph (XL) showing isopachous 

chalcedony cement around basaltic volcanic lithics. Sample S8nw-16 from NW Tarlong. 

Lvb-basaltic lithics. 
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4. PETROFACIES 

A petrofacies (i.e., petrographic facies) is defined as facies distinguished 

primarily on the basis of appearance or composition, without respect to form, boundaries, 

or mutual relations (Bate and Jackson, 1984). Quantitative analysis by counting 400 

points in each sample provides critical data to define petrofacies.  

All the sandstones in this study cluster tightly on the QFL compositional ternary 

diagram of Folk (1980), with a mean composition of Q3F9L88 (Figure 4.1). This 

clustering, essentially, defines one petrofacies for the entire LCG samples, signifying a 

first-order underlying control on the sandstone composition of LCG LC. 

 

 

Figure 4.1. QFL Ternary diagram showing all 37 samples from the LCG LC fall in 

litharenite field in the LCG LC, according to Folk’s (1980) sandstone classification. 
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With respect to the mean QFL composition of all the sandstones, average LCG 

sandstone is a litharenite according to Folk’s (1980) classification. Mono- and 

polycrystalline quartz account for 85% and 15% of total quartz content, respectively. 

Plagioclase dominates the feldspars with a 96% and potassium feldspar is only 4%. 

Volcanic lithics account for 84% of the lithics where basaltic lithics (84%) dominate with 

minor intermediate volcanic lithics (16%). Basaltic lithics would have a low silca content 

(<52%), while intermediate-felsic would have higher silica content (>52%). Sedimentary 

lithics make up 16% of all the lithics with chert and mud clasts as the main types. Grain 

size varies from coarse silt to fine pebble. Roundness of the grains varies from very 

angular to well-rounded; and sorting from poorly to moderately well sorted.  

However, a close examination of the apparently closely-related 37 sandstones 

differentiates three groups, that is, petrofacies. They have variable Lv/Ls and Lvb/Lvi 

ratios and are described as petrofacies A, B, and C in detail below. 

 

4.1. PETROFACIES A 

The mean compositions of Petrofacies A, as defined in three types of ternary 

diagrams, are Q3F11L86, Qm2F12Lt86, Qp1Ls7Lv92, and Qm15K1P84. This petrofacies 

encompass 22 samples in all sections. Volcanic litihcs dominate in Petrofacies A, of 

91.4% of all lithic grains, while sedimentary lithics of 7.2%. Of all the volcanic lithics, 

basaltic lithics account for 92.1% and intermediate-felsic lithics 7.9%. The average size is 

fine sand with a range from very fine to coarse sand. Roundness of the grains varies from 

subrounded to rounded (Figure 4.2); and sorting from poorly sorted to moderately well-

sorted, and mainly moderately sorted. The skewness is mainly near symmetrical to coarse 

skewed. The amount of matrix varies from 0-39.5% with an average of 16.6%. The 

amount of cements varies from 0.33-35.5% with an average of 12.9%. 

 

4.2. PETROFACIES B 

Petrofacies B has mean compositions of Q3F5L92, Qm3F8Lt89, Qp1Ls36Lv63, and 

Qm23K6P71, which can be differentiated from QpLvLs ternary diagram (Figure 4.3). This 

petrofacies occurs in 8 samples from Taodonggou, SW Tarlong, N Tarlong, and 

Zhaobishan sections. It is characterized by a great percentage of sedimentary lithics 
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(36.5%). They are mainly mudrock and shale lithics. Volcanic lithics are still dominant in 

the samples (62.9%), where basaltic lithics are 87.1% and intermediate-felsic lithics 

12.9%. The average size of the framework grains is fine sand, ranging from very fine to 

medium sand. Roundness is mainly subrounded to rounded (Figure 4.4); and sorting 

varies from poorly sorted to moderately well sorted. The skewness is coarse skewed to 

near symmetrical. The average amount of matrix is 11.6%, ranging from 8.3-21.5%. The 

average amount of cements is 27.1%, ranging from 0-42.8%. The relatively large amount 

of sedimentary lithics indicates a secondary sedimentary source. 

 

4.3. PETROFACIES C 

Petrofacies C has mean compositions of Q3F8L89, Qm4F9Lt87, Qp1Ls10Lv89, and 

Qm33K4P63, which can be differentiated from QmLvbLvi ternary diagram (Figure 4.5). 

Petrofacies C occurs in 7 samples in the upper part of the Taodonggou, SW Tarlong, S 

Tarlong sections and most parts of the Zhaobishan section. This petrofacies is 

characterized by a relatively high content (26.8%) of intermediate-felsic volcanic lithics 

of all volcanic lithics, while basaltic lithics only account for 73.2%. Volcanic lithics are 

dominant (89.3%), and sedimentary lithics account for 9.9% of all lithics. The average 

size of the framework grains is fine to very fine sand, ranging from coarse silt to fine 

sand. Roundness is mainly subrounded (Figure 4.6); and sorting is moderately-

moderately well sorted. Near symmetrical is the main skewness. The average percentage 

of matrix is 20.9%, ranging from 2.8-44.3%. The average amount of cements is 15.6%, 

ranging from 0-42.5%. The relatively high content of intermediate-felsic volcanic lithics 

indicates a felsic volcanic source was exposed in the area. A slightly higher quartz 

content in Petrofacies C would also suggest intermediate-felsic source due to the presence 

of quartz in intermediate-felsic volcanic source rocks. 

All three petrofacies show a very low compositional maturity. Texturally, 

Petrofacies B has the least amount of matrix (11.6%), which can be classified into 

subarenite, whereas the other two petrofacies are wackes. Roundness is almost identical 

among all petrofacies due to the large amount of lithics. Petrofacies C is slightly better 

sorted than the other facies. The smallest grain size is also observed in Petrofacies C. 
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Overall, all the petrofacies are immature to submature based on the amount of matrix and 

textural properties on the basis of Folk’s textural maturity classification (Folk, 1951).  

 

 

Figure 4.2. Roundness distribution of Petrofacies A 

 

 

Figure 4.3. QpLvLs ternary diagram to differentiate Petrofacies B from the other two 

petrofacies. 
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Figure 4.4. Roundness distribution of Petrofacies B 

 

 

Figure 4.5. QmLvbLvi ternary diagram showing relatively high Lvi content in Petrofacies 

C compared with the other two petrofacies 
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Figure 4.6. Roundness distribution of Petrofacies C 

 

4.4. PETROFACIES AND DEPOSITIONAL ENVIRONMENTS 

Fluvial, lake plain, littoral, and delta are the depositional environments for the 

sandstones in this study. The interpretation of depositional environments was done in the 

field based on sedimentary texture and structures, stacking pattern, and stratal geometry 

by Dr. Wan Yang (see Yang et al., 2010 for interpretation criteria; Appendix). Of all the 

samples, three are fluvial, one lake plain, twenty-five littoral, and eight deltaic. The 

distribution of sandstones with respect to Petrofacies and depositional environments is 

shown in Table 4.1. 

Petrofacies A occurs in all the depositional environments. Fluvial sandstones are 

only observed in Petrofaices A. The abundant basaltic lithics with minor sedimentary and 

felsic lithics would indicate low source lithology diversity.  Petrofacies B occurs in eight 

delta-front and littoral facies. It is characterized by a relatively large amount of 

sedimentary lithics and mostly subrounded to rounded. The relative roundness of all the 

sedimentary lithics would indicate high total energy or softness of the lithic grains. These 

two environments are of relatively high energy. Petrofacies C occurs in seven samples 

from lake plain, delta, and littoral facies. No clear link between Petrofacies C and 

depositional environments is present.  
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 Overall, the link between petrofacies and depositional environments are not clear. 

Petrofacies are distinguished by compositional differences, which are largely determined 

by provenance lithology. However, the composition of sandstones in different 

depositional environments are largely affected by both provenance lithology, transport 

distance, and diagenesis. As a result, the direct relationship between petrofacies and 

depositional environments is not well defined.  

 

Table 4.1. Occurrence of petrofacies in relation to depositional environments 

 
Fluvial Lake plain Delta Littoral 

Petrofacies A 3 0 5 14 

Petrofacies B 0 0 2 6 

Petrofacies C 0 1 1 5 
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5. PROVENANCE 

The use of quantitative detrital modes, calculated from point-counting data, to 

infer sandstone provenance is well established (Dickinson and Suczek, 1979). The 

tectonic setting of the provenance apparently exerts primary control on sandstone 

compositions, though relief, climate, transport mechanism, depositional environment, and 

diagenesis all can be important secondary factors (Dickinson, 1985). Provenance refers 

specifically to the composition, location, and dimensions of source rocks, and relief, 

climate, and tectonic setting of the source area. Point-counting data are plotted on various 

ternary diagrams from Dickinson (1985) to speculate provenance conditions. 

 

5.1. TECTONIC SETTING 

Fourteen of the 37 samples fall in the undissected arc field, and the rest 23 

samples in the lithic recycled field on the QmFLt plot (Figure 5.1). Half of the samples 

from Petrofacies A fall in the undissected field, while the other half in the lithic recycled 

area. Most samples of Petrofacies B, except one sample from the lower part of the 

Taodonggou section, fall in the lithic recycled area. Two samples of Petrofacies C fall in 

the undissected arc field, and the rest five samples in the lithic recycled field.   

Undissected arc is inferred from volcaniclastic debris shedding from volcanogenic 

highlands along active island arcs and on some continental margins where arc volcanic 

chains have undergone only limited erosion. This would indicate that a nearly continuous 

volcanic cover was present during the deposition of the samples in the undissected arc 

field. The lithic recycled field is defined as subduction complexes of sediments and lavas 

(Dickison, 1985). This field indicates that tectonically uplifted subduction complexes 

composed of old rocks form a structural high along the trench-slope break between the 

trench axis and the volcanic chain within an arc-trench system. The distribution on the 

QmFLt plot indicates that most of the samples have a lithic recycled orogen provenance 

and some undissected arc provenance. 
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Figure 5.1. QmFLt ternary diagram showing the Lucaogou sandstones fall in lithic 

recycled and undissected arc fields on the global tectono-sandstone composition scheme. 

Modified from Dickinson (1985). 

 

The other ternary plot used to determine provenance is the QpLvLs ternary 

diagram, showing the relative proportions of lithics of different origins. This diagram 

shows a slightly different story from the QmFLt plot. Most samples, except Sample B09-

4 of Petrofacies B from SW Tarlong, are plotted in the magmatic arc field (Figure 5.2). 

This indicates a predominant magmatic arc provenance, which is in conflict with the 

magmatic arc and lithic recycled provenances interpreted from the QmFLt diagram. 

Sample B09-4 and B09-3 are characterized by a very high sedimentary lithic content, 

more than 50% of all lithics. This suggests the presence of a local sedimentary source. 

According to the ternary diagram, sample B09-4 is classified as mixed orogenic 

provenance.  
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Figure 5.2. QpLvLs ternary diagram showing most of the Lucaogou sandstones are 

plotted in the arc orogen field suggesting a magmatic arc provenance. Modified from 

Dickinson (1985). 

 

QmKP ternary diagram is used to compare the abundance of monocrystalline 

quartz with both potassium feldspars and plagioclase, using common monomineralic 

grains. This diagram shows concentration of monocrystalline quartz and plagioclase with 

minor potassium feldspar (Figure 5.3). For all the samples, the average P/F ratio is 95%. 

From Petrofacies A to B and B to C, average Qm content shows an increasing trend. 

Based on Dickinson (1985), this trend indicates an increase in plutonic source in a 

magmatic arc provenance. However, the trend is poorly defined, indicating a mixed 

provenance or the increasing influence of other non-provenance factors. 

 

5.2. INTERPRETATION OF PROVENANCE 

Magmatic arc is the provenance interpreted from two ternary diagrams. However, 

the location of the magmatic arc still needs to be determined. 

B09-4 B09-3 
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Figure 5.3. QmPK ternary diagram showing a high P/F ratio of Lucaogou sandstones. 

Modified from Dickinson (1985). 

 

The young arc signature combined with tectonic studies from previous workers 

(Shao et al., 2001; Greene et al., 2001) suggests that the late Carboniferous northern Tian 

Shan volcanic arc to the south is the primary provenance of the Tarlong-Taodonggou 

sandstones. However, basaltic lithics from different sources are difficult to differentiate. 

In the study area, thick basalt basement is observed in the field, which could also be a 

possible source. Regional versus local volcanic sources can be distinguished based on 

textural attributes. Some of the volcanic lithics are rounded, suggesting a long transport 

distance, which will support the distant Tian Shan origin. However, some of the volcanic 

lithics and zoned plagioclase are angular to subangular and indicate a close source. The 

surrounding rift shoulders could have exposed underlying upper Carboniferous oceanic 

arc basement basalts (Carroll et al., 1990; Graham et al., 1993; Yang et al., 2013). 

Some samples are characterized by a relatively high intermediate-felsic volcanic 

lithic content, which is defined as Petrofacies C. In addition, most of the Lvi are 
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subangular to subrounded, which suggests a short transport distance. This can be 

interpreted as exposure of felsic volcanic rocks in the rift shoulders.  

A small quartz content (<10%) in all the samples indicates the absence of or 

limited source for quartz. Therefore, other possible sources should be considered. 

Angular subhedral quartz with embayment on the edge suggests a volcanic source with a 

short transport distance. This could come from rift shoulder exposure of felsic volcanic 

lithics or contemporary volcanic ash deposits. Some rounded quartz are also present in 

the samples. This type of quartz could have been recycled from sedimentary rocks 

exposed in the local rift shoulder or could be the first-cycle quartz transported from long 

distance. Yang et al. (2013) reported turbidites and shallow marine sandstones 

intercalated with basement basalts, which can be the possible source of quartz. It is 

difficult to tell the two origins apart solely based on petrographic data. Other techniques 

should be applied to interpret the exact provenance of the quartz grains. 

Petrofacies B is characterized by a high percentage of sedimentary lithics, where 

most of them are mudrock lithics and mud clasts. Mud clasts are augular to subangular, 

indicating a short transport distance. Their source could be intrabasinal mudrocks or 

semi-consolidated muddy sediments. Rounded mudrock lithics indicate a relatively long 

transport distance. Nevertheless, the low resistance of mudrock to physical transport 

suggests that the source would still be in the local area. This characteristic suggests a 

secondary sedimentary source.  

Overall, basaltic, intermediate-felsic volcanic and sedimentary lithics were all 

possibly exposed in the rift shoulders during the deposition of LCG LC. The diverse 

lithology of the rift shoulders makes the trace of sediment sources more complicated. 

Textural attributes are closely linked with transport distance. In Taodongou-

Tarlong area, the highest textural maturity is observed in N Tarlong section, which would 

indicate the longest transport distance. While the other sections show a decreasing trend 

of maturity from south to north. If all the sections are receiving sediments from the same 

source, this would support the northern Tian Shan source area to the south. In Zhaobishan 

area, the samples are dominantly subarenite, subrounded to rounded, fine to very fine 

sand-sized, and moderately sorted. These characteristics indicate that the sandstones are 

texturally mature, which, in turn, suggests a long transport distance. In addition, 
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Petrofacies C is more developed, while Petrofacies A is less observed in Zhaobishan. 

Both compositional and textural differences from those in Tarlong and Taodonggou 

suggest that Zhaobishan and Tarlong-Taodonggou areas were in different catchment 

systems.  
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6. STRATIGRAPHIC TREND 

Systematic trends of compositional and textural characteristics of sandstones 

would provide clues on long-term changes in environmental conditions and elements of 

catchment basins (Obrist-Farner, 2015). Petrofacies A occurs in all sections; Petrofacies 

B in middle and upper parts of the Taodonggou, middle part of the SW Tarlong, lower 

part of N Tarlong, and middle part of Zhaobishan sections (Figure 6.1-6.6); and 

Petrofacies C mostly in Zhaobishan (Figure 6.6). Vertical trend of depositional 

environments, grain size and sorting, grain composition, and petrofacies are compared 

within and between sections to identify the differences and similarities between them. 

 

6.1. TAODONGGOU 

In Taodonggou, the section started from Petrofacies B, then switched to 

Petrofacies A in the middle part, and finally back to Petrofacies B. The amount of matrix 

is the least in the middle part, while the upper and lower parts have more matrix. Grain 

size shows two upsection fining trends. Sorting gets slightly better upsection. Roundness 

shows no trend through the section. Quartz content increases upsection. Sedimentary 

lithics are most concentrated in the middle part. Volcanic lithics show the opposite trend. 

Overall, compositional maturity inferred from quartz content increases upsection, while 

textural maturity is the highest in the middle part (Figure 6.1).  

All the samples are from littoral environment. Thus, the two upsection grain size 

decreases suggest episodic expansion and contraction of the catchment basin, resulting in 

a longer transport distance with minor influence from depositional environment. The 

decrease in matrix content in the middle part indicates a decrease in suspension load. The 

upward increase in quartz content indicates an increasing compositional maturity. High 

Ls content in the middle section suggest a sedimentary source from the rift shoulder. 

 

6.2. SOUTHWESTERN TARLONG 

In SW Tarlong, the samples are in the middle-upper part of the section. The 

section starts with Petrofacies A; the middle two samples show Petrofacies B with a high 

Ls content; the uppermost sample belongs to Petrofacies C. The matrix content is the 
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lowest in the middle part. Grain size in the middle is the coarsest, while the upper and 

lower parts are finer. Sorting is the worst in the middle part. The highest quartz content 

and sedimentary lithic occur also in the middle part. Basaltic lithics decrease in the 

middle part (Figure 6.2).  

The low matrix content in the middle part indicates a low suspension load. Coarse 

grain size in the middle is caused by the local sedimentary source. The high amount of 

quartz content in the middle is caused by the increasing amount of felsic volcanic lithics. 

The high Ls/Lv ratio in Petrofacies B suggests a local sedimentary source in the middle 

part.  

 

6.3. NORTHWESTERN TARLONG 

In NW Tarlong, a simple trend composed only Petrofacies A is observed. Two 

upsection decrease trends of matrix are observed. Grain size shows a general upsection 

increase trend from fine to medium sand. Sorting gets better upsection in the lower part 

from poorly sorted to moderately well sorted, and then maintains the moderately sorting 

to upper section. Quartz content is high in the lower part with an exception of S7-44, then 

a decrease trend upsection. Basaltic lithics are dominant in the section with minor 

sedimentary lithics (Figure 6.3).  

Two upward-decreasing trends of matrix indicate decrease of suspension load. 

The upward-coarsening trend indicates the contraction of catchment basin, resulting in a 

shorter transport distance. The relatively high quartz content in the lower part is caused 

by a local felsic source, which is supported by the small decrease trend of the Lvb/Lv in 

the lower part.  

 

6.4. SOUTHERN TARLONG 

In S Tarlong, only the uppermost part shows Petrofacies B, the rest of the section 

shows Petrofacies A. The amount of matrix is the highest in the middle part. Grain size is 

very fine sand in the middle part, while fine in the lower and upper parts. Sorting is the 

best in the middle section, being moderately well sorted, while less well sorted in the 

other parts, being moderately sorted. Roundness also is the best, as rounded, in the 
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middle section. Quartz content varies between 1-3%. Ls shows a relatively low content in 

the middle section (Figure 6.4). 

The high matrix content in the middle section indicates a high suspension load. 

The smallest grain size in the middle indicates expansion of catchment basin followed by 

a contraction, resulting in a longer transport distance in the middle section. The variations 

in quartz content indicate slight difference in compositional maturity difference, which 

could have been caused by a slightly variation of source rock type between mafic and 

felsic. 

 

6.5. NORTHERN TARLONG  

The N Tarlong section starts with Petrofacies B, and then changes to Petrofacies 

A upsection. The amount of matrix is the lowest in the middle part. Grain size decreases 

in the middle part to very fine sand from upper and lower medium sand. Sorting gets 

slightly worse upsection from moderately well sorted to moderately sorted. Roundness is 

subrounded through the section. Quartz content increases upsection from 0-2%. 

Sedimentary lithics increase upsection with an exception of TR30 of Petrofacies B in the 

lowermost section (Figure 6.5).  

The low matrix content in the middle part indicates a low suspension load in the 

middle part. Fine grain size in middle section indicates expansion of catchment basin 

followed by a contraction, resulting in the longest transport distance in the middle LCG 

LC. Increasing quartz content indicates increasing compositional maturity. The relatively 

high content of Ls indicates the existence of a local sedimentary source. 

 

6.6. ZHAOBISHAN 

In Zhaobishan, the lower part varies between Petrofacies C and B; the middle part 

is dominantly Petrofacies B; and the upper part varies between Petrofacies C and A. 

Petrofacies A is the least common in all sections. Two upward-decreasing trends of 

matrix are observed. Grain size shows a general fining-upward trend from fine to vert 

fine sand. Slightly worse sorting is observed in the middle part. High quartz content 

occurs in the lower and upper parts. Ls/L ratio is high in the middle part. Lvb/Lv varies 

greatly from 95% to 60%, but overall shows an upsection decrease trend (Figure 6.6). 
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The trend of matrix indicates episodic decrease of suspension load. Upsection 

fining grain size trend indicates expansion of catchment basin, resulting in a longer 

transport distance. The high quartz content in upper and lower sections suggests a local 

felsic source, which is supported by the low Lvb/Lv percentage.  

 

6.7. CORRELATION 

In Taodonggou-Tarlong area, a general upward-coarsening trend is observed in N 

Tarlong and NW Tarlong, and a general upward-fining trend is observed in S Tarlong, 

Taodonggou, and SW Tarlong. In addition, a similar compositional trend and the 

dominance of Petrofacies A in N and NW Tarolong indicate a similar depositional 

history. S Tarlong and Taodonggou are also similar in grain composition trend, 

suggesting a similar depositional history. SW Tarlong has the unique trend showing high 

sedimentary lithics in the middle, indicating a local sedimentary source. The increase in 

average grain size from Taodonggou, S and SW Tarlong to N and NW Tarlong indicates 

progressively shorter transport distance. Decrease in average matrix amount from 

Taodonggou, S Tarlong, SW Tarlong to N and NW Tarlong indicates a progressively 

longer transport distance for the source area. This is apparently in conflict with the 

interpretation from grain size trend. Possible reasons could be the different depositional 

environments and complex source lithology. Sandstones from different depositional 

environments experienced different total energy which will affect the amount of matrix 

and grain size. In addition, different types of grains have varying resistance to weathering 

and transport. Thus, the grain size may not be solely determined by transport distance. 

In Zhaobishan, which is ~90 km from Tarlong-Taodonggou area, a unique trend is 

observed. This indicates a different catchment system. Thus, it is very hard to correlate 

the Zhaobishan section with the other sections. Attempt has not been made in this study. 

  



 

 

42 

4
2
 

 

Figure 6.1. Stratigraphic variation in depositional environments, grain size, sorting, and 

composition of the LCG sandstones in Taodonggou section.  

 

 

Figure 6.2. Stratigraphic variation in depositional environments, grain size, sorting, and 

composition of the LCG sandstones in SW Tarlong section.  
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Figure 6.3. Stratigraphic variation in depositional environments, grain size, sorting, and 

composition of the LCG sandstones in NW Tarlong section. 
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Figure 6.4. Stratigraphic variation in depositional environments, grain size, sorting, and 

composition of the LCG sandstones in S Tarlong section. 
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Figure 6.5. Stratigraphic variation in depositional environments, grain size, sorting, and 

composition of the LCG sandstones in N Tarlong section. 
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Figure 6.6. Stratigraphic variation in grain size, sorting, and composition of the LCG 

sandstones in Zhaobishan section.   
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7. DISCUSSION 

7.1. COMPLEXITY OF SOURCE 

Provenance information is important to understand basin-filling history and 

paleogeography, and can be inferred from petrographic data of sandstones. However, 

multiple factors, provenance lithology, transport distance, depositional environments, 

paleoclimate, and diagenesis, control the compositional and textural attributes and make 

it hard to disentangle the effects of individual factors.  

Textural properties are applied to differentiate same type of framework grains 

from different sources. For the basaltic grains, it is widely distributed in the study area, 

which makes it hard to tell the exact source areas only based on compositional properties. 

Differences in grain size and roundness would be a good indicator to determiner transport 

distance in order to differentiate sources from different areas. Of all the basaltic lithics, 

30% are rounded-well rounded, and 70% are angular to subrounded.  If all the grains are 

divided by the limit (Φ=3) between fine and medium sand, 23% of the grains are finer 

and 77% are coarser. This trend is consistent with the roundeness trend. Both 

characteristics indicate ~25% of all the basaltic lithics are from distal source, while 75% 

of them from a close source. The distant source could be northern Tian Shan based on 

previous studies (Shao et al., 2001; Yang et al., 2010). Deep-sourced basalts are not 

uncommon in a rift setting (Condie, 1997). Thus, the close source could be the exposure 

of upper Carboniferous oceanic arc basement in rift shoulders, resulting in a short 

transport distance (Obrist-Farner, 2015). Angular and zoned plagioclase would conform 

with a local source from nearby volcanic fields. 

Abundant sedimentary lithics in Petrofacies B are angular mud clasts in some 

cases and occur commonly in the middle part of the SW Tarlong section. The angularity 

of the grains supports a short transport distance. The source could be intrabasinal rip-up 

clasts. The existence of the mud clasts is unique in SW Tarlong; and their absence in 

other sections would indicate a local sedimentary source. Other types of sedimentary 

lithics including mudrock lithics, chert, and shale lithics are also observed. These grains 

show a more rounded shape, indicating a longer transport distance. Finally, these grains 

are widely present in all the sections, suggesting a regional or background distribution 
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trend. This source could also from the exposed sedimentary rocks in the uplifted rift 

shoulders. 

Petrofacies C is characterized by a relatively high felsic volcanic content but still 

dominated by basaltic lithics, and is especially well developed in the Zhaobishan section. 

Two possible sources are possible, one is the central Tian Shan containing felsic volcanic 

lithics; the other local rift shoulder. Grain size and roundness trend would suggest both 

sources contributed to the framework grains. 30% of all the intermediate-felsic grains are 

smaller than fine sand size and rounded to well-rounded, indicating a long transport 

distance. The other 70% suggest a shorter transport distance from local uplifted rift 

shoulder. 

Petrofacies A is dominant in sections in Tarlong-Taodonggou area. However, 

Petrofaices B and C are better developed with minor Petrofacies A in Zhaobishan. This 

suggests a different depositional history in the two areas. The Tarlong-Taodonggou area 

is more controlled by sources from northern Tian Shan and local uplifted rift shoulders. 

But in Zhaobishan, the source from northern Tian Shan is not dominant, changes in local 

sources occurred more frequently. 

Overall, the sediments sources are controlled by distant northern Tian Shan and 

local uplifted rift shoulders with complex rock types. The regional source would only 

account for 30%, whereas the local sources for 70% for all the framework grains. A local 

sedimentary source was available for SW Tarlong in mid-upper LCG LC. The frequent 

petrofacies changes in Zhaobishan suggest episodic introduction of local sedimentary and 

felsic volcanic sources. 

 

7.2. TECTONIC SETTING 

Rift basins are not included in tectonic classification of sandstones by Dickinson 

(1985; see also Dickinson and Suczek, 1979; Dickinson et al., 1983) because of the 

diverse lithology exposed in rift shoulders that generate contrasting results of tectonic 

settings (Ingersoll, 1990). The classification is based mainly on grain composition and 

ignores texture. Lithic recycled orogen and undissected arc are the two contrasting 

provenances interpreted from the ternary diagram. From the QmFLt ternary diagram, 

mixed recycled orogen and magmatic arc are indicated. But in QpLvLs and QmPK 
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diagrams, only magmatic arc provenance is significant. The diversity of lithologies 

exposed in the rift shoulders would explain the different inferences. The coexistence of 

sedimentary and volcanic rocks in the rift shoulders in the study areas would make the 

composition of the sandstones more complicated, resulting in a signal of mixed 

provenance. 

 

7.3. COMPARISON BETWEEN TWO STUDY AREAS 

Samples from two separate areas ~ 90 km apart may provide clues to regional 

paleogeography. LCG sandstones were deposited in the greater Turpan-Junggar basin 

during the early Permian. Relatively similar framework grain compositions suggest 

similar provenance lithology, or even same source. In Tarlong-Taodonngou area, 

Petrofacies A is dominant in all sections except for the local rip-up mud clasts in the SW 

Tarlong. This is an indication of relatively stable and persistent source areas. This feature 

suggests a similar depositional condition in the Tarlong-Taodonggou area. However, in 

the Zhaobishan area, Petrofacies B and C dominate, which are characterized by a 

relatively high sedimentary and felsic volcanic lithic content. Yang et al. (2010) argued 

that the Permian greater Turpan-Junggar Basin was a rift basin composed of many 

grabens and half-grabens. Thus, the difference may indicate that these two areas are in 

two different grabens. The volcanic source from Tian Shan area supplied sediments to 

both half grabens, but local exposed lithology in rift shoulders varies greatly. Correlations 

between different grabens are extremely difficult in lacustrine environment due to the 

high frequency of facies change both vertically and laterally.  
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8. CONCLUSIONS 

Field and petrographic study of fluvial-lacustrine sandstones of Lucaogou low-

order cycle in Tarlong-Taodonggou and Zhaobishan areas in the southern foothill of the 

Bogda Mountains, NW China, documented compositional and textural maturities of 37 

sandstones.  Both vertical and lateral compositional changes indicate changes in 

provenance lithology and transport distance. The diverse grain types, especially abundant 

rock fragments, indicate complex sediment sources. Quartz, feldspar, rock fragments, and 

accessory minerals are subdivided into detailed subcategories. Textural attributes include 

grain size, roundness, and sorting. All these properties provide information on transport 

distance. 

Three petrofacies were defined based on the Ls/Lv and Lvb/Lvi percentages. 

They are related to provenance lithology, transport distance, and depositional 

environments. 

Tectonic interpretation was made using ternary diagrams of grain composition. 

Both recycled orogen and magmatic arc provenances were interpreted. The two 

provenances suggest complexity of the lithology in low rift shoulders and regional 

northern Tian Shan suture zone. The rounded and angular volcanic lithics indicate two 

sources with different transport distances. One source is the Tian Shan area and the other 

local uplifted rift shoulders. For sedimentary lithics, angular intrabasinal rip-up mud 

clasts and more rounded sedimentary lithics coexist. Rift shoulders were also interpreted 

as the source for the rounded sedimentary lithics. The distant volcanic source and local 

rift shoulders both contributed to the sediments in the study area. 

Vertical and lateral stratigraphic trends are delineated on the basis of depositional 

environments, grain size, sorting, and compositional change. Provenance lithology 

change, catchment basin evolution, and transport distance were compared vertically 

within each section and laterally between different sections. A similar trend was observed 

between different sections, indicating similar depositional history. Increasing textural 

maturity from south to north in the Tarlong-Taodonggou area suggests a longer transport  
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distance in the north. The highly variable trend in Zhaobishan indicates episodic sediment 

influx from rift shoulders and/or a different catchment system from that of Taodonggou 

and Tarlong. 
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APPENDIX A 

N TARLONG SECTION 

(Measured by Dr. Wan Yang and Colleagues in 2004, 2005, 2007, 2009, 2014. Further 

inquiries should be directed Dr. Wan Yang at Missouri University of Science and 

Technology) 
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APPENDIX B 

NW TARLONG SECTION
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ZHAOBISHAN SECTION
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