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Twelfth International Specialty Conference on Cold-Formed Steel Structures 
St. Louis, Missouri, U.S.A., October 18-19,1994 

1.0 Introduction 

The Analysis of Restrained Purlins 
using Generalised Beam Theory 

by J M Davies!, C Jiang! and P Leach! 

A paper presented at the Eleventh Speciality Conference in 1992(1) introduced the Generalized Beam 
Theory (GBT) and illustrated its use. It was used in ftrst-order analyses t6 calculate the stress 
distribution in a cross section takeing account of cross section distortion, and in second-order 
bifurcation problems to calculate the critical buckling load of a free cross section subject to axial 
load. Subsequent papers(2·3) have given more detailed information on the basis of GBT and used its 
second-order facilities to investigate the buckling of sections under both uniform and non-uniform 
bending moment. 

This paper extends the use of GBT to consider the behaviour of a cross section which is elastically 
restrained continuously along its length. A typical application of this facility is in the analysis of 
a purlin which receives both lateral and torsional restraint from the sheeting which it supports. The 
paper illustrates how the basic equations of GBT can be used to calculate the buckling load of an 
elastically restrained cross section taking account of interaction between the different buckling 
modes. Using this estimate of the buckling load, an assessment of the collapse load of a restrained 
section can be made using the interaction formulae of Eurocode 3(4) to allow for both buckling and 
yielding. 

2.0 The basic equations of Generalised Beam Theory 

Analysis using GBT is carried out in two parts. In the first part, generalised section properties are 
evaluated which may include second-order terms. The second part of GBT then uses these 
properties in a global analysis which takes account of the loads and boundary conditions. 
Continuous elastic restraints are taken into account in the ftrst part of GBT, the second part 
remaining essentially unchanged. 

The essential concept of GBT is the separation of the behaviour of a prismatic member into a series 
of orthogonal displacement modes. It is one of the strengths of the procedures arising from GBT 
that these modes may be then considered separately or in any combination in order to investigate 
different aspects of structural response. 

The number of displacement modes available in the analysis of any given cross-section is related to 
the number of nodes. In general, these are the natural nodes at the extremities of an open cross
section and at the fold lines as shown in Fig.1(a). In addition, in order to allow local buckling in 
second-order analyses, intermediate nodes may be introduced, as shown in Fig.1(b). For the 
analyses described in this paper, any face element may be restrained either lateral or torsionally or 
both as shown in Fig.1(c). As purlins are generally sufftciently stocky for elastic local buckling to 
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be insignificant, and as we are particularly concerned with the interaction of lateral torsional 
buckling and cross-section distortion, it has not been considered necessary to introduce intermediate 
nodes into the analyses considered in this paper. It may be noted that GBT also allows the complete 
restraint of any natural node as shown in Fig.2. 
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(a) natural nodes (b) intermediate nodes 

Fig!. Nodes and restraints in GBT analysis 
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(c) elastic restraints 

(a) symmetry condition (b) antisymmetry condition 
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(c) periodic construction (d) rigid restraint 

Fig.2 Further examples of restrained cross-sections 

As shown in Reference 1, the following equation is valid for all first and " second-order problems: 

n 

:E [E Jcc ky "" - G kJ) ky" + Jcs ky 
k·t 

+ :E ii~a( iW iVY + ii~« iW" iV + 2 iW' iV~ 
iJ 

(1) 
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where: 

kB Stiffness in mode k with respect to transverse bending (distortion) 

kC Stiffness in mode k 'Yith respect to longitudinal strains 

kD Torsional stiffness in mode k 

E Young's modulus 

G Shear modulus 

ijk/(q Second-order terms resulting from longitudinal stress 

ijk/(, Second-order terms resulting from shear stress 

iW Stress resultant in mode i 

jy Non-dimensional shape function for mode j 

kq Applied distributed load in mode 'k' 

n Number of nodes in the cross section (number of plate elements = n-l) 

In the above family of equations, the unknown values are the non-dimensional shape functions, jy 
which may be considered to be generalised displacements. For first order problems, the kappa terms 
are zero and these equations are uncoupled and reduce to the standard equation for 'beam on elastic 
foundation' problems for which several alternative methods of solution are available. For second
order problems, the equations become coupled and it is necessary to use numerical methods of 
solution. The finite difference method has proved to be the most appropriate to date. 

3.0 Elastic Torsional and Translational Restraints 

The calculation of the cross sectional properties for an unrestrained cross section has been fully 
described in a previous paper(5). The method used to derive the properties consisted of calculating 
the virtual work done by the cross section when displacing in any mode, and equating this to the 
virtual work done by the load. In order to introduce lateral or torsional restraints to the section, it 
is therefore simply necessary to evaluate the virtual work done by these restraints, and to add this 
to the work done by the section, before solving the energy equation. The following sections describe 
the calculation of these additional terms. 

3.1 Work Done by a Torsional Restraint 

The notation for displacements in the plane of the cross-section is given in Fig.3 and, with this 
notation, the work W, done by any torsional restraints to a short length dx of a section is given by: 
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a-I 

We = 'Efe.IPe,ldx = FePe 
I-I 

(2) 

Where F, is the matrix of plate rotations and P, is the matrix of the forces induced by these 
displacements in each of the (potentially) 'n-l' rotational springs attached to the section. 
The latter term can be replaced by: 

(3) 

where C, is the matrix of torsional spring stiffnesses restraining the cross section. In all cases the 
only non zero terms are on the leading diagonal and, in the most common case of a single torsional 
restraint on the section, this matrix consists of a single number with all other entries zero . 
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Fig.3 Notation for the displacements of plate elements in the cross-section 

Combining equations (2) and (3) gives: 

(4) 

·This term should be taken into account by adding it to the virtual work of the transverse bending 
moments calculated according to Reference 5. 

3.2 Work Done by a Translational Restraint 

The work W. done by any translational restraints to a short length of section is given by: 



113 

B-1 

Wa = L f.,IP.,l dx = F.P. 
1=1 

(5) 

where F, is the matrix of plate displacements (around the cross-section) and P, is the matrix of forces 
induced by these displacements in each of the (potentially) 'n-l' translational springs attached to the 
section. The latter term can be replaced by: 

(6) 

where Ca is the matrix of translational spring stiffnesses restraining the cross section. In all cases 
. the only non zero terms are on the leading diagonal, and in the most common case of a single 
translational restraint on the section, this matrix consists of a single number with all other entries 
zero. 

Combining equations (5) and (6) gives: 

(7) 

This term should also be taken into account by adding it to the virtual work of the transverse 
bending moments calculated according to Reference 5. The assembly of the virtual work matrices, 
the orthogonalisation of the deformation modes and the extraction of the rigid-body modes is 
otherwise unchanged, leading to the section properties tc, kJ> and tB and the I(-terms in equation (1) 
as well as other information about the properties of the cross-section. 

4. Solution of the Second Order Equation of Generalised beam Theory 

The solution of equation (1) requires the use of numerical techniques such as the finite difference 
method or the finite element method. In this paper the finite difference method has been exclusively 
used although the finite element method may in some cases provide a more elegant solution. 

Equations (1) can be rewritten in finite difference form (6) using the following substitutions: 

Y(i)"" 

Y(i)" = Y(i-l) - 2Y(i) + Y(i+l) 

dx2 

Y(i-2) - 4Y(i-l) + 6Y(i) - 4Y(i+l) + Y(i+2) 

dx4 

(8) 

If the member is divided into 'm-l' slices along its length, this gives 'm' finite difference equations 
for each of the 'n' modes considered. In order to solve these (n x m) equations, the boundary 
conditions must be introduced. The boundary conditions can all be stated in terms of the 
displacement ty or its derivatives (Le. tyl = dtv/dz or tyll = d2kY/dz2 etc). Most cases of support 
condition can be covered by the following four boundary conditions: 



- pinned end: 

- fIxed end: 

- clamped end: 

-free end: 

kVi = 0 
kVi 1/ = 0 

kyi = 0 
kyo ' = 0 I 

kyi' == 0 
kyi '1/ = 0 

kV/, = 0 
kyi 1/' = 0 
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i.e. kyi-l = kyi+l 

i.e. kyi-l = 2kV i + kVi+1 

and kyi-2 = 4kyi - 4kyi+l + 4kyi+2 

It may be noted that a more sophisticated form of the finite difference method and its boundary 
conditions is given in Reference (2). This latter method allows a reduction in the number of finite 
difference slices for a given accuracy. 

For second-order bifurcation problems, the applied load in the direction of the displacement is zero, 
so that the right hand side of equation (1) becomes zero. This equation can then be re-arranged to 
become: 

(9) 

where: 

E I<c ky"" - G Icov" + 93 k:y (10) 

(11) 

These equations can be applied to any second-order bifurcation problem. 

5.0 Solution of the Buckling Equation 

For second order problems, the buckling load coefficient A can be obtained by solving the following 
equations: 

n 

L (kp - A ijkS) ky o (12) 
k=l 

where S and F are the matrices defined in section 4. 

For a free section, if only a single mode k is taken into account in equation (12), the critical load 
of this single mode can be obtained by solving the finite difference form of a single differential 
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equation. If modes 1 to 4 are taken into account (Le. k = 1,4) in equation (12), the critical loads 
calculated are those related to rigid body displacements. If all 'n' modes are taken into account in 
equation (12), the critical loads calculated are those related to interactive buckling of the section 
allowing for cross section distortion in addition to rigid body displacements. Similarly, by taking 
a single value of 'i' in matrix S, the critical loads under a single load (e.g. axial load or lIllijor axis 
bending moment) can be obtained. 

For a member with arbitrary boundary conditions and loading, a computer is needed to solve the 
above eigenvalue problem. In this work, the Jacobi method has been used to solve equation (12) 
but, in general, any standard eigenvalue routine is suitable. 

For a section which is restrained along its length, the number of rigid body modes is usually 
decreased to either 2 or 3. The reason for this reduction is that if a section is torsionally restrained 
along one element, the torsional mode which would be possible in a free section becomes mixed with 
. the distortional modes. Similarly if the section is laterally restrained along one element, the lateral 
buckling mode which would be possible in a free section is also mixed with the distortional modes. 

6.0 Comparison of GBT Analyses with Full Scale Tests 

In the development of their new Multibeam III range of purIins and sheeting rails, a comprehensive 
series of full scale single span tests were carried out by Ward Building Systems in the UK. The 
tests were carried in a vacuum loading rig and, in some of the tests, the test specimens were inverted 
in order to simulate wind suction with the free flange in compression. A range of purlin sections 
with different sheeting types were considered. In some tests the top flange of the purlin was 
connected directly to the sheeting and in others a layer of insulation was introduced between the 
sheeting and purIin. The tests considered here were all on a single simply-supported span subject 
to wind suction loading. Critical buckling analyses of all the purlins were carried out using the GBT 
method described above. 

In the analyses, the boundary conditions assumed were simply supported with regard to rigid body 
modes and fIxed with respect to the higher-order distortional modes. The load was assumed to be 
applied through the shear centre of the cross· section. A rigid translational restraint was assumed 
to the top flange of the section and an elastic rotational restraint was also introduced in order to 
simulate the restraining effects of the sheeting on the purlin. The values of the rotational restraints 
CB were derived from small scale 'F' tests as recommended in Eurocode 3 Part 1.3 

GBT analysis gives rise to the elastic buckling load Mer and, in order to introduce a yield criterion 
into the analysis, the equations of Eurocode 3 Annex 1.3 (Clause 6.1) were adopted, with an 
imperfection factor aLT equal to 0.21 giving the failure moment Mf in the tables of results which 
follow. This is in accordance with the trend in current design standards to express all cases of 
interaction between buckling and yielding by a "Perry-Robertson" type equation in which the 
imperfection factor is chosen to give safe results. Thus: 

where XLT 

My 
the reduction factor for lateral torsional buckling 
the yield moment of the cross-section 

(13) 
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(14) 

(15) 

(16) 

The cross-section of the Multibeam Mark III purlin is shown in Fig.4 and Table 1 below gives the 
dimensions of the purlins which were tested and then compared to the GBT analysis. The results 
of these analyses are then shown in Table 2. 

o 

Fig.4 Cross-section of the Multibeam Mark m purlin 

Section Depth D Breadth B Thickness t 
(mm) (mm) (mm) 

2070 145 57.56 1.228 

2071 145 57.32 1.232 

3062 175 57.53 1.226 

3063 175 60.48 1.224 

2316 145 48.43 1.235 

2317 145 48.64 1.234 

Table 1. Dimensions of the tested purlins 
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Section C8 SpanL Yield Mer Mf Mrest M/ 
(kNm/m Strength Mtest 

/radian) (m) (N/mm2) (kNm) (kNm) (kNm) 

2070 0.810 6.0 409.60 6.07 4.33 4.33 1.000 

2071 0.763 6.0 406.07 5.07 4.27 4.33 0.986 

3062 1.102 6.0 421.00 6.67 5.15 5.32 0.968 

3063 1.141 6.0 424.98 6.76 5.27 5.32 0.991 

2316 0.695 6.0 411.86 4.72 3.56 3.96 0.899 

2317 0.707 6.0 410.00 4.73 3.56 3.96 0.899 

Table 2 Comparison of GBT and test results 

It can be seen that the complex shape of Multibeam Mark III includes 10 folds and this gives rise 
to 12 natural nodes and 12 modes of deformation in the GBT analysis. These are 4 rigid body 
modes and 8 different modes of distortion and all of these were included in the analyses. In the 
unrestrained section, the behaviour is dominated by modes 3 and 4 (lateral torsional buckling) and 
the distortional modes play no part unless the span is unrealistically small. However, this situation 
may change when restraints are introduced and distortion of the cross-section occurs over the whole 
range of spans. 

It can be seen from Table 2 that in all cases the theoretical arialysis offers a conservative estimate 
of the failure load and that the prediction is within 10% of the test load. 

7.0 Further development of the use of GBT for purlin design 

GBT has an extremely useful second-order form whereby solutions to a range of bifurcation 
problems may be obtained simply and conveniently. This simplified form is applicable to cases 
where the applied load causing buckling is either an axial load or a uniform bending moment and 
the displacement function of each of the active modes is a half sine wave. This includes many 
problems of practical significance. 

The theory for this application of GBT has been given in References 1 and 3. 

Here, the applied load is a uniform bending moment about the major axis, which is an 
approximation to the bending moment arising from a uniformly distributed load. The half sine wave 
is a very good approximation to the deflected shape of a simply-supported purlin undergoing lateral 
torsional buckling. For the purposes of this study, a particular case of the Multibeam Mark III 
shown in Fig.4 will be considered with D = 175mm, B = 60mm and t = 0.198mm. As before, 
when unrestrained, this purlin has 10 folds and therefore 12 natural buckling modes which are 
orthogonal to each other. Four of these are the basic rigid-body modes (axial, bending about the 
two principal axes and torsion) and the remaining eight are distortional. 
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It appears that none of the 8 distortional modes has independent significance but that for short 
wavelength buckling, several of them may combine with the lateral and torsional modes to form a 
composite distortional mode which, for the typical purlin size being considered, has a wavelength 
of about 50cm. The buckling stresses for some critical mode combinations as a function of the 
buckling length is shown in Fig.5. 

An important point to note is that, once the buckling half wave length exceeds a certain value (about 
160 cm in Fig.5), the distortional modes cease to have any influence on the lateral torsional buckling 
stress which may be calculated with excellent accuracy by considering only the rigid body modes 
3 and 4. 

Buckling stress (kN/cm**21 
400r---~----------------------------------------' 

Rigid body modes 3.4 -+- All modes 

--- Modes 3.4.5.8' -e-- Mode. 3.4.5.8.7 
300 

200 

100 

oL-----~~----~------~------~------~----~ 

o 50 100 150 200 250 300 
Buckling length (cm) 

Fig.S Buckling stress as a function of buckling half wavelength - unrestrained section 

Bucknng stress IkN/cm**21 
350~~~~~---------------------------------' 

300 

250 

200 

150 
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50 

-+- All modes --- Mode. 3.4.5.6 

- Mode. 4.5 

oL-____ -L ______ ~ ____ _L ______ ~ ____ _L ____ ~ 

o 50 100 150 200 250 300 

Buckling length (cm) 

Fig.6 Buckling stress as a function of half wavelength - lateral and torsional restraints 
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In addition to the unrestrained cross-section considered in Fig.5, similar studies were carried out 
with the upper flange of the cross section torsionally restrained (ce = 1.0 kNrnlrnlradian), fully 
restrained laterally and with a combination of lateral and torsional restraint. Fig.6 shows the results 
obtained for the combined case. For short wavelength buckling, some of the combination cases are 
different from those for the unrestrained pUrlin but the result when all of the modes are considered 
is surprisingly similar in both shape and magnitude. Equally important is the fact that once a similar 
critical buckling length has been exceeded, the behaviour is again entirely a form of lateral torsional 
buckling (with some distortion) given by a combination of the two dominant modes. 

What the vertical scale of Fig.6 conceals, however, is the very significant effect of the lateral and 
torsional restraints at realistic buckling lengths. Table 3 summarises the results obtained from the 
four alternative systems of restraint at the typical span of 6 metres. The results given in this table 
are precisely the same whether the two dominant modes or all modes .are considered. 

Evidently, it is very important to consider the combination of lateral and torsional restraint and, 
when this is done, very significant increases in buckling stress are obtained. Furthermore, accurate 
values of these enhanced buckling stresses are obtained by consideration of the two dominant modes. 
Once the enhanced section properties have been obtained for a given purlin and restraint system 
using the first part of GBT, the second part is a simple explicit calculation that can be done "on the 
back of an envelope". The use of GBT in this context is being studied further and will be the 
subject of another technical paper in due course. 

Restraints Critical moment Buckling stress 
(kNm) (N/mm2) 

Unrestrained section 1.78 47.6 

Torsional restraint ce = 1.0 6.22 166 

Full lateral restraint 1.85 49.4 

Lateral and torsional restraint 14.9 398 

Table 3 Effect of different restraints on a simply-supported purlin of 6 metres span 

8.0 Conclusions 

This paper has illustrated the procedure for the calculation of the critical buckling load of any 
restrained cross section with arbitrary boundary conditions and loading. The Generalised Beam 
Theory (GBT) method which was used distinguishes between a free cross section and a restrained 
cross section in the calculation of the cross section properties. The fundamental equation of GBT 
is unchanged. 

In order to confirm the analysis technique, a series of tests were carried out on the most common 
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restrained cross section used in practice, namely that of a purlin subject to uplift load in which the 
tension flange is restrained laterally and torsionally by the sheeting. 

By combining a yield criterion with the buckling analysis, a theoretical failure load can be calculated 
which can then be compared to test results. The comparisons showed that the theoretical predictions 
were all accurate to within 10% and in all cases the method of analysis proved to be safe. This type 
of calculation assumes considerable practical importance when a particular family of purlins is to 
be used with a range of cladding systems all providing different amounts of restraint to the purlins. 

The procedure used in the main part of the paper is capable of considerable simplification as 
illustrated in section 7. Once the enhanced section properties have been determined, the global 
analysis for buckling stress becomes trivial. The practical implications of this are still being 
explored. 
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