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On the Direct Strength Design of Continuous 

Cold-Formed Steel Beams 

 

Cilmar Basaglia and Dinar Camotim1 
 

Abstract 

The work reported in this paper concerns an ongoing investigation aimed at 
developing an efficient methodology to design continuous cold-formed steel 
beams failing in modes that combine local, distortional and global features. 
At this stage, it is intended to assess how accurately can the load-carrying 
capacity of lipped channel continuous (two and three-span) beams subjected 
to non-uniform bending be predicted by means of the current Direct Strength 
Method (DSM) design curves. “Exact” ultimate strength values yielded by 
geometrically and materially non-linear shell finite element analyses are 
compared with estimates provided by the DSM equations and, on the basis of 
this comparison, it is possible to identify some features that must be included 
in a DSM approach applicable to continuous cold-formed steel beams. 

Introduction 

The vast majority of cold-formed steel members exhibit very slender cross-
sections, a feature rendering them highly prone to geometrically non-linear 
effects, namely those related to local, distortional and global (flexural or 
flexural-torsional) buckling. Indeed, a fair amount of research work has been 
recently devoted to the development of efficient design rules for isolated 
(single-span) members, mostly subjected to uniform internal force and 
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moment diagrams. The most successful end product of this intense research 
activity is the “Direct Strength Method” (DSM), which (i) has its roots in the 
work of Hancock (1994), (ii) was originally proposed by Schafer & Peköz in 
1998 and (iii) has been continuously improved since (e.g., Schafer 2008). 
The DSM provides estimates of the load-carrying capacity of cold-formed 
steel members exhibiting local, distortional or global failure mechanisms, as 
well as those undergoing local/global interaction − design curves to account 
for interaction phenomena involving distortional buckling are currently under 
investigation (e.g., Kwon et al. 2009, Silvestre et al. 2009). Since the member 
ultimate strength can be accurately predicted solely on the basis of its elastic 
(critical) buckling and yield stresses, the DSM is an efficient alternative to the 
more traditional “effective width method”. Following the universal acceptance 
of the DSM approach to design cold-formed steel members, it has already been 
included in the latest editions of the corresponding North American (NAS 
2007) and Australian/New Zealander (AS/NZS4600 2005) specifications. 

Concerning the determination of the member elastic buckling stress, the 
current application of the DSM relies heavily on the use of finite strip analysis 
(FSA), easily accessible to a large number of designers, mostly due to the 
freely available software developed by Schafer & Ádány (2006). However, 
at the moment FSA can only handle accurately simply supported single-span 
members subjected to uniform internal forces and moments. 

In practice, many cold-formed steel members exhibit multiple spans (e.g., 
secondary elements such as purlins or side rails) and are often subjected to 
non-uniform bending moment diagrams combining positive (sagging) and 
negative (hogging) regions, a feature making their buckling behavior rather 
complex, as it may (i) combine local, distortional and global features and (ii) 
involve a fair amount of localization (e.g., the occurrence of local and/or 
distortional buckling in the vicinity of intermediate supports, where there 
are relevant moment gradients and little restraint can be offered to the slender 
bottom/compressed flanges). Even so, it seems fair to say that it is still very 
scarce the amount of research devoted to the buckling and post-buckling 
behaviors of cold-formed steel beams subjected to non-uniform bending 
moment diagrams, namely continuous beams. In this context, it is worth 
noting the recent works of (i) Yu & Schafer (2007), who used shell finite 
element models to investigate the influence of linear bending moments on the 
distortional buckling and post-buckling behaviors of single-span steel beams, 
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and applied their findings to examine and extend the DSM design procedure 
to such members, (ii) Camotim et al. (2008), who employed Generalized 
Beam Theory (GBT) to analyze the buckling behavior of steel beams with 
several loadings and support conditions (including intermediate supports), 
and (iii) Pham & Hancock (2009), who proposed a DSM-based design criterion 
for purlin-sheeting systems using elastic lateral-torsional buckling moments 
evaluated through the so-called Cb-factor approach or finite element analyses. 

The objective of this work is to report the available results concerning an 
ongoing investigation aimed at developing an efficient methodology to 
design continuous cold-formed steel beams failing in arbitrarily complex 
collapse modes. The first step consists of assessing how accurately can the 
ultimate strength of lipped channel continuous (two and three-span) beams 
subjected to non-uniform bending (due to uniformly transverse loads) be 
predicted by the current DSM design curves, developed primarily for single-
span (isolated) members. In order to achieve this goal, one incorporates into 
the DSM expressions “exact” (i) critical load factors, evaluated by means of 
GBT analyses, and (ii) ultimate load (collapse load) factors, obtained from 
first-order elastic-plastic shell finite element (SFE) analyses carried out in the 
code ANSYS (SAS 2004). The DSM ultimate strength estimates are compared 
with “exact” values, yielded by geometrically and materially non-linear SFE 
analyses, also performed in ANSYS. The paper closes with the discussion of 
the results obtained – in particular, it is possible to draw some interesting 
(preliminary) conclusions concerning the features that must be incorporated 
in a DSM-based design approach applicable to continuous cold-formed steel 
beams similar to those considered in this work. 

DSM Design Procedure 

The current DSM approach adopts “Winter-type” design curves, calibrated 
against experimental and numerical results concerning the ultimate strength 
of single-span (isolated) members subjected to uniform compression and/or 
bending. In the case of beams, the nominal bending strengths against local 
(Mnl), distortional (Mnd) and global (Mne) failures are given by the expressions 
 

 ynl MM =  if 7760MM crlyl ./ ≤=λ   
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 crene MM =  if λe > 1.336 ,   (3) 
 
where (i) λl, λd, λe and Mcrl, Mcrd and Mcre are local, distortional and global 
slenderness and elastic critical buckling moment values, and (ii) yyy fWM =  
is the cross-section first yield moment − yW is its elastic modulus. 

Numerical Investigation: Scope and Modeling Issues 

The continuous steel (E=205GPa and v=0.3) beams analyzed have (i) lipped 
channel cross-sections (dimensions in fig. 1(a)) and (ii) two or three identical 
spans (2s and 3s) with lengths L=2.0m (B2), L=4.0m (B4) and L=5.0m (B5). 
They are subject to a uniformly distributed load applied along the shear centre 
axis (causing only pre-buckling major-axis bending) and acting on either all 
spans (all) or just one of them (one) − see figure 1(b). The beam end sections 
are locally/globally pinned and may warp freely, and all the in-plane cross-
section displacements are restrained at the intermediate supports. 

Concerning the GBT analysis, the following modelling issues are worth noting: 
(i) Cross-Section Discretization. Figure 2(a) shows the nodes considered 

in the lipped channel section. This discretization leads to 17 deformation 
modes, which are global (1-4), distortional (5-6) and local (7-17) − figure 
2(b) shows the in-plane configurations of the most relevant ones. 
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Fig. 1: Continuous beam (a) cross-section dimensions and (b) loading 
and first-order elastic bending moment diagrams 

 
(ii) Member Discretisation. The equilibrium equations were solved using 

the beam finite element developed by Camotim et al. (2008): 2-node 
elements with 2n d.o.f. per node (n is the number of deformation modes 
included in the analysis), and mode amplitude functions approximated 
by Hermite cubic polynomials. Each beam span was discretized into 20 
finite elements in all cases. 

 

End node

Natural node
Intermediate node

 

 

2 4 5 6 3 

 
                 Global                        Distortional 

10 11 7 8 9 

 
                               Local 

 (a) (b) 

Fig. 2: (a) Lipped channel GBT discretization and (b) in plane shapes 
of the 10 most relevant deformation modes 
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Concerning the SFE analyses are concerned, the following issues are relevant: 
(i) Discretization. The beam mid-surfaces were discretized into SHELL181 

finite elements (ANSYS notation: isoparametric 4-node shell elements) – 
earlier investigations showed the adequacy of these elements. The beam 
discretization involved 20 elements along the cross-section mid-line and 
length-to-width ratios of about 1.3 (web and flanges) and 4 (lips). 

(ii) Support Conditions. The support conditions were modeled in the “usual 
fashion”: null transverse membrane and flexural displacement imposed 
at all cross-section nodes associated with the end and intermediate 
supports − in order to preclude the longitudinal rigid-body motion, the 
axial displacement was prevented at a beam mid cross-section node. 

(iii) Loading. Transverse load distributions q’ were applied along the cross-
section mid-line covering the whole span length. These transverse 
loads are (iii1) statically equivalent to a uniformly distributed load q 
applied along the beam shear centre axis (see fig. 3(a)) and also (iii2) 
qualitatively similar to the first moment of the cross-section with respect 
to the its major axis (see fig. 3(b)). 

 
q'

q

S.C

q'

 
 (a) (b) 

Fig. 3: (a) Applied transverse loads q’ statically equivalent to a load q along 
the shear centre (S.C) axis and (b) cross-section distribution of the load q’ 

 
(iv) Material Modeling. The steel material behavior was deemed either 

linear elastic (bucking analyses) or a linear-elastic/perfectly-plastic with 
a von Mises yield criterion (post-buckling analyses). 

(v) Initial Imperfections. All initial geometrical imperfections have the beam 
critical buckling mode shape and amplitude equal to either 10% of the 
wall thickness (local/distortional buckling) or L/1000 (global buckling). 
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Buckling Analysis 

In all existing design procedures, a crucial step is the identification of the 
buckling mode nature, by no means clear in continuous beams. This can be 
confirmed by examining figure 4, which provides two representations of the 
B5-2s-all beam critical buckling mode shapes, namely (i) a 3D-view yielded 
by an ANSYS SFE analysis and (ii) the GBT modal amplitude functions. 
Note (i) the excellent agreement between the ANSYS and GBT results and (ii) 
how the critical buckling mode combines the three deformation mode types: 
contributions from local (7+8) and distortional (5+6) modes, mostly in the 
close vicinity of the intermediate support, and global (3+4) modes with higher 
participations at the mid-span regions. 
 

 

5.0m 

 
 

 

-1.0

0.0

1.0

0.0 2.5 5.0 7.5 10.0
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3 4 x (2) 
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Fig. 4: ANSYS and GBT-based B5-2s-all beam critical buckling mode shapes 

 
In order to attempt to establish the “dominant nature” of the beam critical 
buckling modes, GBT analyses were carried out including only global (2-4), 
distortional (5-6) and local (7-17) deformation modes. Table 1 shows the critical 
load values (qcr), yielded by the ANSYS and GBT (including all deformation 
modes) analyses, and the relation between the “pure” global (qb.e), distortional 
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(qb.d) and local (qb.l) buckling loads and qcr.GBT − the “dominant buckling 
mode nature”, given in the last column, reflects the “closeness” between the 
corresponding “pure” buckling load and qcr.GBT (lowest of the three ratios). 
 
Table 1: Relation between the “pure” (qb) and critical (qcr) load values 

Crit. Load (kN/m) 
Beam 

qcr.GBT qcr.ANSYS GBTcr

eb

q

q

.

.  
GBTcr

db

q

q

.

.  
GBTcr

lb

q

q

.

.  Dominant buckling 
mode nature 

B2-2s-all 46.66 46.78 5.193 1.399 1.032 Local 

B4-2s-all 10.82 10.71 1.439 1.104 1.187 Distortional 

B5-2s-all 6.06 5.92 1.074 1.172 1.391 Global 

B2-2s-one 44.42 44.81 5.091 1.067 1.293 Distortional 

B4-2s-one 10.21 10.00 1.416 1.044 1.505 Distortional 

B5-2s-one 5.61 5.61 1.073 1.178 1.785 Global 

B2-3s-all 53.19 52.42 4.585 1.074 1.021 Local 

B4-3s-all 12.35 12.38 1.267 1.046 1.329 Distortional 

B5-3s-all 6.13 6.09 1.063 1.303 1.805 Global 

Post-Buckling Analysis 

The ultimate load values qu presented in the next sections were obtained 
through beam elastic-plastic SFE analyses carried out up to failure. To convey 
the meaning of these values, figure 5 (a) shows the post-buckling equilibrium 
paths (q vs. V1) of the B2-2s-all beam with different yield stresses (fy=250, 

350, 550, 850 MPa) – (i) the symbols  ,  ,  and  indicate the ultimate loads 
and (ii) V1 is the displacement selected to provide a better characterization of 
the beam post-buckling behavior, corresponding to the vertical displacement 
of the bottom flange-lip corner of the cross-section located in the beam left 
span, 23.4 cm away from the intermediate support (see fig. 5(b)). As expected, 
the amount of post-critical strength reserve increases with the yield stress. 

Figure 6 concerns the B2-2s-all beam with fy=250 MPa and displays the 
deformed configurations and von Mises stress distributions associated with 
(i) the full yielding of the mid-cross-section (first plastic hinge formation), at 
q=33.4 kN/m (point I – fig. 5(a)), and (ii) the beam collapse, at qu=37.8 kN/m 
(point II) and corresponding to the nearly simultaneous yielding of the two 
mid-span cross-sections. Note the very clear bending moment redistribution. 
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Fig. 5: B2-2s-all beam (a) equilibrium paths and (b) measured displacement 
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Fig. 6: B2-2s-all beam deformed configuration and von Mises stresses 
concerning the formation of the first plastic hinge and the beam collapse 

Assessment of the DSM Strength Estimates 

In beams subjected to non-uniform bending, it is convenient to replace the 
various “My and Mcr values” appearing in (1)-(3) by “first yield qy and critical 
buckling qcr load values” − in this case, the obvious choices are 
 

 2
yy L1250Mq .=  2

crcr L1250Mq .=  for beams B_-2s-all  
 
 2

yy L09570Mq .=  2
crcr L09570Mq .=  for beams B_-2s-one  
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 2
yy L10Mq .=  2

crcr L10Mq .=  for beams B_-3s-all .   (4) 
 
Note that using expressions (1)-(3) corresponds to neglecting (i) the cross-
section elastic-plastic strength reserve, in both statically determinate and 
indeterminate beams, and (ii) the bending moment redistribution, in statically 
indeterminate beams − i.e., overly conservative predictions are to be expected 
in statically indeterminate beams, particularly in the lower slenderness range. 

Figures 7 to 9 show comparisons between the ultimate load predictions yielded 
by the current DSM design curves and the ultimate loads obtained through 
SFE analyses involving B_-2s-all, B_-2s-one and B_-3s-all beams with 15 
different yield stresses, associated with yield-to-critical load ratios qy /qcr 
varying from 0.06 to 3.74 and covering a wide slenderness range – these 
results are summarized in table A1, presented in the Appendix of this paper). 
The numerical (“exact”) ultimate loads, normalized w.r.t. qy, are identified by 
the symbols  ,  and , for local, distortional and global buckling/failure 
modes. Since the beams exhibit buckling/failure modes that are not “pure”, 
the DSM curve choice was based on their “dominant buckling mode nature”, 
given in table 1 − however, λl, λd and λe are calculated with the “real” beam 
critical buckling load qcr, which is neither “purely” local, distortional or global. 
The observation of these results/comparisons prompts the following remarks: 
(i) The DSM predictions are (i1) excessively safe in the low slenderness 

range, (i2) slightly safe in the intermediate slenderness range and (i3) too 
unsafe (local and distortional) or moderately safe (global) in the high 
slenderness range. 

(ii) None of the DSM curves provides a set of efficient (safe and economic) 
predictions of the continuous beam ultimate loads, which is due to a 
combination of factors: (ii1) neglecting both the cross-section elastic-
plastic strength reserve and (mostly) the moment redistribution (low 
slenderness range) and (ii2) the “mixed” nature of the failure mechanisms 
(high slenderness range). 

(iii) Since the beam ultimate loads already incorporate the local, distortional 
and global buckling effects, it seems to make little sense to neglect the 
cross-section elastic-plastic strength reserve and moment redistribution. 
The recent work by Shifferaw & Schafer (2007) partially confirms this 
assertion, as it reports experimental and numerical evidence, involving 
simply supported isolated beams (no moment redistribution), of the 
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Fig. 7: B_-2s-all beams – comparison 
between the SFE ultimate loads and 

DSM design curve predictions 
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Fig. 8: B_-2s-one beams – comparison 
between the SFE ultimate loads and 

DSM design curve predictions 
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Fig. 9: B_-3s-all beams – comparison 
between the SFE ultimate loads and 

DSM design curve predictions 

 
 (logical) presence of a non-negligible inelastic strength in the low 

slenderness range − obviously due to the cross-section plastic strength. 
(iv) The most rational approach to account for the beam inelastic strength 

reserve (including moment redistribution) is to replace the beam first 

yield loads qy by (geometrically linear) plastic collapse loads qpl in (1)-(3). 
Figures 7 to 9 also compare, for each beam, the ultimate load predictions 
yielded by the modified DSM design curves with the SFE values, now 
normalised w.r.t. qpl and represented by the symbols  ,  and . 
Moreover, figures 10 to 11 display all these results grouped according 
to the beam dominant buckling mode nature. The observation of this 
new set of results leads to the following comments: 

 (iv.1) In the low slenderness range, the modified DSM predictions are 
quite accurate (a few of them are slightly unsafe), which confirms 
the presence and relevance of the beam inelastic strength reserve. 

 (iv.2) In the intermediate slenderness range, most of the modified DSM 
predictions are fairly accurate, although there are a number of 
slightly unsafe (beams B2-2s-all and B2-2s-one) and safe (beams 
B4-2s-all, B4-2s-one, B5-2s-one, B2-3s-all, B4-3s-all and B5-3s-all) 

196



 

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0.0 0.4 0.8 1.2 1.6 2.0 2.4

DSM local curve

Elastic buckling

B2-2s-all

B2-3s-all

(qpl /qcr)
0.5 

(q
u
 /q

p
l) 

 
Fig. 10: SFE ultimate loads and modified DSM predictions (local failure) 
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Fig. 11: SFE ultimate loads and modified DSM predictions (distort. failure) 
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Fig. 12: SFE ultimate loads and modified DSM predictions (global failure) 
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  estimates. The beam B5-2s-all predictions (predominantly global 
failures) are the exceptions, as they are clearly unsafe. 

 (iv.3) In the high slenderness range, there is practically no difference 
between the current and modified DSM predictions, due to the fact 
that failure stems mainly from stability effects (plasticity plays a 
lesser role). Indeed, in this slenderness range, the elastic critical 
buckling curves (dashed lines) provide almost always safe and 
accurate ultimate load estimates. The exception are now the beam 
B4-3s-all ultimate loads (predominantly distortional failures), which 
lie slightly below the corresponding elastic critical buckling curve. 

Although considerable more research work is obviously needed before 
firm guidelines concerning the DSM design of continuous cold-formed steel 
beams can be established, it is possible to make some preliminary comments 
on the basis of the limited amount of results presented in this work: 
(i) Since there are no “pure” buckling and failure modes, the DSM curve 

choice should be based on the concept of “dominant buckling/failure 
mode nature”. Nevertheless, the local, distortional and global slenderness 
values are based on the “real” critical buckling load. 

(ii) The first yield load (moment) should be replaced by the first-order plastic 
collapse load (moment), thus accounting for the cross-section elastic-
plastic strength reserve and bending moment redistribution. Failing to do 
this will inevitably lead to overly conservative prediction in the low-to-
intermediate slenderness range. 

(iii) Apparently, the most rational approach is to develop and calibrate 
design curves based on (iii1) the elastic-plastic collapse load, for stocky 
beams, and (iii2) the elastic buckling load, for slender beams. Nothing 
can yet be said about intermediate beams (or about the slenderness limits 
separating the three ranges) − nevertheless, the current DSM design 
curves provide satisfactory ultimate load estimates in this range. 

Conclusion 

This work reported the available results of an ongoing investigation aimed at 
developing an efficient methodology to design continuous cold-formed 
steel beams failing in arbitrarily complex collapse modes. At this stage, it 
was assessed how accurately can the ultimate strength of continuous lipped 
channel beams (two and three spans) subjected to non-uniform bending 
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be predicted by the current DSM design curves. It was found that, in order to 
achieve a better accuracy, “exact” (i) critical load factors, evaluated by means 
of GBT analyses, and (ii) ultimate load factors, obtained from elastic-plastic 
first-order SFE ANSYS analyses, had to be incorporated into the DSM 
expressions. Then, the (modified) DSM ultimate strength estimates were 
compared with “exact” values, yielded by geometrically and materially non-
linear SFE ANSYS analyses. The following aspects deserve to be mentioned: 
(i) The beam buckling and failure modes combine at least two deformation 

mode types, which precludes a straightforward classification. Thus, one 
must resort to the “dominant buckling/failure mode nature” concept in 
order to choose of the appropriate DSM design curve. 

(ii) The direct application of the current DSM design curves leads to 
either overly conservative (stocky beams) or clearly unsafe (slender 
beams) ultimate load predictions. After a few modifications, the 
“quality” of the DSM ultimate strength estimates improved significantly. 

(iii) The numerical (SFE) ultimate loads obtained clearly indicated that 
(iii1) the beams with low-to-intermediate slenderness exhibit a fair 
amount of inelastic strength reserve, stemming mostly from moment 
redistribution, and (iv2) the ultimate loads of the slender beams are 
fairly well approximated by their critical buckling loads. Although 
further studies are required to confirm these preliminary findings, it seems 
that the incorporation of a few modifications in the current DSM design 
curves will make it possible to account efficiently for these two aspects. 
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Appendix 

Table A1 shows the ultimate load predictions yielded by current (qu.y) and 
modified (qu.pl) DSM design curves, as well as the “exact” ultimate loads 
obtained through SFE ANSYS analyses (qu) of the beams dealt with in 
this work. Moreover, the beam dominant buckling mode nature (BM), which 
may be either local (L), distortional (D) or Global (G), is also provided. 
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Table A1: Comparison between the “exact” beam ultimate load values 
and the two DSM estimates 

   SFE  DSM  
Beam BM qy qpl qu  qu.y qu.pl  

  (kN/m)  u

yu

q

q .  
u

plu

q

q .  

0.030 0.046 0.047  0.030 0.046  0.62 0.98 
0.059 0.093 0.094  0.059 0.093  0.63 1.00 
0.118 0.183 0.182  0.118 0.183  0.65 1.01 
0.177 0.266 0.258  0.177 0.266  0.69 1.03 
0.236 0.356 0.320  0.236 0.330  0.74 1.03 
0.295 0.447 0.377  0.291 0.385  0.77 1.02 
0.354 0.537 0.401  0.329 0.436  0.82 1.09 
0.413 0.642 0.420  0.366 0.490  0.87 1.17 
0.531 0.812 0.485  0.433 0.572  0.89 1.18 
0.649 0.992 0.532  0.494 0.652  0.93 1.23 
0.768 1.184 0.555  0.552 0.731  0.99 1.32 
0.886 1.359 0.570  0.606 0.799  1.06 1.40 
1.004 1.559 0.587  0.657 0.873  1.12 1.49 
1.181 1.809 0.590  0.730 0.960  1.24 1.63 

B2-2s-all L 

1.417 2.184 0.590  0.821 1.083  1.39 1.84 
0.007 0.011 0.011  0.007 0.011  0.65 1.01 
0.015 0.023 0.023  0.015 0.023  0.65 1.00 
0.030 0.043 0.043  0.030 0.043  0.69 1.02 
0.044 0.066 0.061  0.044 0.061  0.73 1.00 
0.059 0.091 0.078  0.056 0.075  0.72 0.97 
0.074 0.111 0.086  0.066 0.086  0.76 1.00 
0.089 0.136 0.089  0.074 0.097  0.83 1.09 
0.103 0.158 0.096  0.082 0.107  0.85 1.12 
0.133 0.201 0.107  0.096 0.124  0.90 1.16 
0.162 0.251 0.111  0.109 0.141  0.98 1.27 
0.192 0.292 0.115  0.120 0.154  1.05 1.34 
0.221 0.342 0.116  0.131 0.169  1.13 1.45 
0.251 0.386 0.117  0.141 0.181  1.21 1.54 
0.295 0.447 0.116  0.155 0.196  1.33 1.69 

B4-2s-all D 

0.354 0.537 0.116  0.172 0.217  1.48 1.87 
0.005 0.007 0.007  0.005 0.007  0.71 1.01 
0.009 0.013 0.013  0.009 0.013  0.73 1.03 
0.019 0.028 0.024  0.019 0.027  0.79 1.11 
0.028 0.043 0.032  0.027 0.038  0.84 1.18 
0.038 0.056 0.039  0.035 0.046  0.89 1.19 
0.047 0.069 0.044  0.041 0.052  0.94 1.19 
0.057 0.086 0.049  0.047 0.058  0.94 1.17 
0.066 0.101 0.053  0.051 0.060  0.96 1.13 

B5-2s-all G 

0.085 0.128 0.059  0.058 0.061  0.97 1.02    
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Table A1: Comparison between the “exact” beam ultimate load values 
and the two DSM estimates (cont.) 

   SFE  DSM  
Beam BM qy qpl qu  qu.y qu.pl  

  (kN/m)  u

yu

q

q .  
u

plu

q

q .  

0.104 0.158 0.060  0.060 0.061  1.01 1.01 
0.123 0.183 0.061  0.061 0.061  1.00 1.00 
0.142 0.213 0.059  0.061 0.061  1.03 1.03 
0.161 0.243 0.061  0.061 0.061  1.00 1.00 
0.189 0.287 0.061  0.061 0.061  1.00 1.00 

B5-2s-all G 

0.227 0.337 0.061  0.061 0.061  1.00 1.00 
0.039 0.047 0.047  0.039 0.047  0.82 0.99 
0.077 0.092 0.092  0.077 0.092  0.84 1.01 
0.154 0.176 0.167  0.154 0.176  0.92 1.05 
0.231 0.273 0.239  0.223 0.251  0.93 1.05 
0.308 0.372 0.306  0.272 0.309  0.89 1.01 
0.386 0.472 0.362  0.316 0.360  0.87 0.99 
0.463 0.562 0.403  0.356 0.402  0.88 1.00 
0.540 0.652 0.427  0.392 0.440  0.92 1.03 
0.694 0.832 0.451  0.458 0.510  1.01 1.13 
0.848 1.027 0.465  0.516 0.578  1.11 1.24 
1.003 1.207 0.473  0.570 0.634  1.20 1.34 
1.157 1.409 0.476  0.619 0.693  1.30 1.46 
1.311 1.580 0.478  0.665 0.740  1.39 1.55 
1.542 1.894 0.478  0.730 0.819  1.53 1.72 

B2-2s-one D 

1.851 2.259 0.478  0.809 0.904  1.69 1.89 
0.010 0.011 0.011  0.010 0.011  0.89 1.02 
0.019 0.021 0.020  0.019 0.021  0.96 1.02 
0.039 0.041 0.040  0.039 0.041  0.96 1.03 
0.058 0.066 0.060  0.054 0.060  0.91 1.00 
0.077 0.091 0.079  0.066 0.074  0.84 0.94 
0.096 0.117 0.096  0.077 0.087  0.80 0.91 
0.116 0.140 0.102  0.086 0.097  0.85 0.95 
0.135 0.160 0.102  0.095 0.106  0.93 1.03 
0.174 0.206 0.105  0.111 0.123  1.05 1.16 
0.212 0.265 0.105  0.125 0.142  1.18 1.35 
0.251 0.298 0.105  0.137 0.152  1.30 1.44 
0.289 0.348 0.105  0.149 0.166  1.42 1.57 
0.328 0.392 0.105  0.160 0.178  1.52 1.68 
0.386 0.462 0.105  0.176 0.195  1.67 1.85 

B4-2s-one D 

0.463 0.552 0.105  0.195 0.215  1.85 2.04 
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Table A1: Comparison between the “exact” beam ultimate load values 
and the two DSM estimates (cont.) 

   SFE  DSM  
Beam BM qy qpl qu  qu.y qu.pl  

  (kN/m)  u

yu

q

q .  
u

plu

q

q .  

0.006 0.008 0.008  0.006 0.008  0.82 0.99 
0.012 0.015 0.015  0.012 0.015  0.84 1.00 
0.025 0.029 0.027  0.024 0.028  0.88 1.01 
0.037 0.045 0.038  0.034 0.039  0.89 1.02 
0.049 0.059 0.047  0.041 0.046  0.89 1.00 
0.062 0.075 0.053  0.048 0.052  0.89 0.98 
0.074 0.090 0.057  0.052 0.055  0.91 0.97 
0.086 0.104 0.059  0.055 0.056  0.92 0.94 
0.111 0.137 0.065  0.056 0.056  0.87 0.87 
0.136 0.166 0.065  0.056 0.056  0.86 0.86 
0.160 0.197 0.072  0.056 0.056  0.78 0.78 
0.185 0.227 0.079  0.056 0.056  0.71 0.71 
0.210 0.255 0.080  0.056 0.056  0.70 0.70 
0.247 0.304 0.081  0.056 0.056  0.69 0.69 

B5-2s-one G 

0.296 0.355 0.081  0.056 0.056  0.69 0.69 
0.037 0.047 0.047  0.037 0.047  0.78 0.99 
0.074 0.093 0.094  0.074 0.093  0.79 1.00 
0.148 0.183 0.184  0.148 0.183  0.80 1.00 
0.221 0.268 0.269  0.221 0.268  0.82 1.00 
0.295 0.363 0.349  0.295 0.349  0.85 1.00 
0.369 0.451 0.418  0.353 0.405  0.84 0.97 
0.443 0.536 0.473  0.400 0.454  0.84 0.96 
0.517 0.627 0.497  0.443 0.505  0.89 1.02 
0.664 0.812 0.514  0.524 0.599  1.02 1.17 
0.812 0.987 0.521  0.599 0.680  1.15 1.31 
0.959 1.185 0.524  0.668 0.767  1.27 1.46 
1.107 1.318 0.526  0.733 0.821  1.39 1.56 
1.255 1.559 0.526  0.795 0.915  1.51 1.74 
1.476 1.809 0.526  0.883 1.007  1.68 1.91 

B2-3s-all L 

1.771 2.159 0.526  0.993 1.127  1.89 2.14 
0.009 0.011 0.011  0.009 0.011  0.81 1.01 
0.018 0.023 0.023  0.018 0.023  0.82 1.00 
0.037 0.045 0.045  0.037 0.045  0.82 1.01 
0.055 0.065 0.063  0.055 0.062  0.88 1.00 
0.074 0.090 0.082  0.068 0.078  0.84 0.96 

B4-3s-all D 

0.092 0.114 0.101  0.080 0.092  0.79 0.91 
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Table A1: Comparison between the “exact” beam ultimate load values 
and the two DSM estimates (cont.) 

   SFE  DSM  
Beam BM qy qpl qu  qu.y qu.pl  

  (kN/m)  u

yu

q

q .  
u

plu

q

q .  

0.111 0.136 0.112  0.090 0.102  0.80 0.91 
0.129 0.156 0.113  0.099 0.112  0.88 0.99 
0.166 0.198 0.113  0.116 0.129  1.03 1.15 
0.203 0.243 0.113  0.131 0.146  1.17 1.30 
0.240 0.291 0.113  0.145 0.162  1.29 1.44 
0.277 0.333 0.113  0.158 0.176  1.40 1.56 
0.314 0.382 0.113  0.170 0.190  1.51 1.69 
0.369 0.452 0.113  0.186 0.209  1.66 1.86 

B4-3s-all D 

0.443 0.532 0.113  0.207 0.229  1.84 2.04 
0.006 0.008 0.008  0.006 0.008  0.76 0.98 
0.012 0.015 0.015  0.012 0.015  0.78 1.00 
0.024 0.029 0.028  0.023 0.028  0.85 1.01 
0.035 0.043 0.039  0.033 0.039  0.84 0.98 
0.047 0.058 0.051  0.041 0.048  0.81 0.94 
0.059 0.073 0.059  0.048 0.054  0.81 0.91 
0.071 0.086 0.064  0.053 0.058  0.84 0.91 
0.083 0.102 0.067  0.057 0.061  0.85 0.90 
0.106 0.131 0.072  0.061 0.061  0.85 0.85 
0.130 0.156 0.074  0.061 0.061  0.83 0.83 
0.154 0.192 0.074  0.061 0.061  0.83 0.83 
0.177 0.222 0.074  0.061 0.061  0.83 0.83 
0.201 0.242 0.074  0.061 0.061  0.83 0.83 
0.236 0.286 0.074  0.061 0.061  0.83 0.83 

B5-3s-all G 

0.283 0.342 0.074  0.061 0.061  0.83 0.83 
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