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Abstract 

Sixteenth International Specialty Conference on Cold-Formed Steel Structures 
Orlando, Florida USA, October 17-18, 2002 

Shear Lag Effect on Bolted C-Shaped Cold-Formed Steel 
Tension Members 

Chi-Ling Panl and Pen-Chun Chiang2 

This study is concentrated on the investigation of the shear lag effect on 

cold-formed steel tension members. C-shaped sections with different dimensions 

tested by using bolted connections were discussed in this study. The comparisons were 

made between the test results and predictions computed based on several specifications. 

In order to study the stress distribution at the various locations of the cross section of 

specimen, the finite-element software ANSYS was also utilized in this research. Based 

on the experimental results, it was found that the tension strengths of test specimens 

predicted by the AISC-Code (1999), which takes account of the shear lag effect, provide 

good agreement with the test values. The predictions according to AISI-Code (1996) and 

AS/NZS 4600 Code (1996) seem to be overestimated as comparing to the test results. 

It is also noted that there is quite a discrepancy between the test results and the values 

predicted by British Standard (1998). 

1. Introduction 

According to the AISC Specification, a tension member can fail by reaching one of two 

limit states: (1)Excessive Deformation - the load on the member must be small enough that the 

stress in the cross section is less than the yielding stress of the steel; (2)Fracture - the load on the 

member must be small enough that the stress in the effective net section is less than the tensile 

strength of the steel. The main factor considered in the AISC Specification (1999) for computing 
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the effective net area is the shear lag effect. Shear lag effect occurs when some elements of the 

tension member are not connected. This effect reduces the strength of the member because the 

stresses distributed over the entire section are not uniform (Easterling and Giroux, 1993). The 

average value of stresses on the net section may thus be less than the tensile strength of the steel. 

The reduced strength of the member can be expressed as the efficiency of the net section. 

Research reported by Munse and Chesson (1963) suggests that the shear lag effect can be 

accounted for by using a reduced net area. Based on this assumption, AISC Specification (1999) 

states that the effective net area, Ae, of such a member is to be determined by multiplying its net 

area (if bolted or riveted) by a reduction factor U, that is, when the tension load is transmitted 

only by fasteners: 

where U = reduction factor 

x = 1--:5;0.9 
L 

x = connection eccentricity 

L = length of the connection in the direction of loading 

(1) 

(2) 

Due to the variety of cross sectional shapes for cold-formed steel members, it is not 

normally possible or convenient to connect each element to the end connection. Currently, the 

design formulas of the 1996 AISI Specification do not consider the effect of shear lag. So, as 

described in the AISI Specification, the nominal tensile strength (Tn) of axially loaded 

cold-formed steel tension members is simply determined by the net area of the cross section (An) 

and the yield stress of steel (Fy): 

(3) 

When a bolted connection is used, the nominal tensile strength is further limited by the 

capacity specified in Specification Section E3.2 (1996). Based on the research finding by 

LaBoube and Yu (1995), design equations have been proposed and adopted in AISI Specification 

Supplement No.1 (1999) to estimate the influence of shear lag. The amended design criteria for 

the channel and angle sections under axial tension load are listed as follows: 

(4) 

where Fu = tensile strength of the connected part 

A. = UAn, effective net area with U defined as follows: 
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U = (1) for angle members having two or more bolts in the line of force 

U = 1.0-1.20xlL < 0.9 but shall not be less than 0.4 (5) 

(2) for channel members having two or more bolts in the line of force 

U = 1.0-0.36 x IL < 0.9 but shall not be less than 0.5 (6) 

x = connection eccentricity (distance from shear plane to centroid of the cross section) 

L = length of the connection 

In accordance with British Standard: Structural Use of Steelwork in Building - Part 5. 

Code of Practice for Design of Cold-Formed Sections (199S), the tensile capacity, Ph of a plain 

channel can be determined from: 

(7) 

where py = design strength, should be taken as Y s (nominal yield strength) but not greater than 

0.S4Us (nominal ultimate tensile strength) 

Ae = effective net area of the net section 

= al (3al + 4a2) 
(3al + a2) 

at = the net sectional area of the connected leg 

a2 = the cross sectional area of the unconnected legs 

(S) 

Equation (7) may only be used when the width to thickness ratios of the unconnected elements 

are less than 20. 

AustralianlNew Zealand Standard: Cold-Formed Steel Structures (1996) gives formula 

similar to that in the AISC Specification as shown here as Equation (9). The nominal design 

tensile strength is determined by the smaller value of Equations 9a and 9b. Instead of using Ae, 

a term of 0.S5KtAn is used in Equation (9b) to express the effective net area. 

Pt=Agfy 

= 0.S5ktAnfu 

where Ag = gross area of cross section 

An = net area of cross section 

fu = tensile strength used in design 

fy = yield stress used in design 

kt = correction factor for distribution of forces 

(9a) 

(9b) 

Kulak and Wu (1997) conducted physical tests using single and double angle tension 
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members to obtain the net sectional strength and thereby examine the shear lag effect. 

Developing from the tests, the prediction of ultimate load based on the failure mode is proposed 

by adding the ultimate strength of the critical section of the connected leg and the strength 

contributed by the critical section of the outstanding leg, resulting in the following formula: 

where Ao = area of the outstanding leg (gross area) 

Acn = net area of the connected leg at the critical section 

Fy = yield strength of the material 

Fu = ultimate tensile strength of the material 

~ = 1.0 for members with four or more fasteners per line in the connection 

0.5 for members with three or two fasteners per line in the connection 

(10) 

Holcomb, LaBoube and Yu (1995) studied both angle and channel sections subjected to a 

tensile load parallel to their longitudinal axis. The primary intent of the test program was to 

determine the effect of shear lag. It was found that the geometric parameter (tis') has an 

influence on the strength of bolted connections of cold-formed steel members. The stress 

reduction factor is listed as Equation 11. 

U' = [3.987(tls') +0.514][0.5597(X/L)-O.3008] 

where L = connection length 

= thickness of steel sheet 

s' = connected width + x 
x = distance from the shear plane to the center of gravity of the cross section 

2. Experimental Study 

(11) 

The test material used in this study is SSC400 sheet steel specified in Chinese National 

Standard (1994) with a nominal ultimate tensile strength of 41 kgf/mm2 (400 N/mm2) and up. 

Two different thicknesses, 2.3 mm and 3.2 mm, of sheet steels were used to fabricate the 

specimens. The material properties of both steels were obtained by tensile coupon tests. The 

yield stress and tensile strength of the 3.2 mm-thick sheet steel are 306.20 MPa and 431.90 MPa, 

respectively. And for the 2.3 mm-thick sheet steel, the yield stress and tensile strength are 

312.57 MPa and 437.10 MPa, respectively. The fasteners used to connect the C-shaped 

specimens were ASTM A325T high strength bolts. The nominal diameter (d) of the bolts was 

12.7 mm. 
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2.1 Specimens 

For the selection of the dimensions of cross sections, the specimens were designed to have 

a failure type of fracture on the net cross section, so that the shear lag effect can be evaluated. 

The specimens were also numerically verified to avoid bearing failure of cross section and 

bearing failure and shear failure of the bolt in accordance with AISI Specification (1996). Four 

groups of specimens were used to conduct in this study: 

Group A: C-shaped section with a nominal overall web width of 100 mm and nominal overall 

flange width of 50 mm fabricated from 3.2 mm-thick sheet steel (l00x50x3.2). 

Group B: C-shaped section with a nominal overall web width of 100 mm and nominal overall 

flange width of 50 mm fabricated from 2.3 mm-thick sheet steel (l00x50x2.3). 

Group C: C-shaped section with a nominal overall web width of 80 mm and nominal overall 

flange width of 40 mm fabricated from 3.2 mm-thick sheet steel (80x40x3.2). 

Group D: C-shaped section with a nominal overall web width of 80 mm and nominal overall 

flange width of 40 mm fabricated from 2.3 mm-thick sheet steel (80x40x2.3). 

Two C-shaped sections were assembled back to back by using four high-strength bolts. A 

total of 24 pairs of sections were tested in this study. One half of the specimens (12 pairs of 

sections) were connected through the webs using two bolts in two lines of force, the other half of 

the specimens were connected through four bolts in one line in the direction of applying load. 

The spacing between the centers of bolt holes was chosen to be larger than three times the bolt 

diameter. The distance from the end of the specimen to the nearest center of bolt holes was 

designed to be larger than 1.5 times the bolt diameter according to the AISI Specification. All 

holes were drilled to 14.3 mm in diameter, and were accommodated with 12.7 mrn diameter 

ASTM A325T bolts as a bearing-type connection. 

3.2 Test Setup 

A tensile testing machine with a capacity of 50 tons was used to conduct all the tests. 

The configuration of test setup is shown in Figure 1. Two C-shaped sections in same group 

were assembled back to back by using four bolts and were pulled to failure in the opposite 

direction. The bearing-type connection was adopted in the bolt assembly as specified in 

Section E3 of the AISI Specification. During the test, two LVDTs (Linear Variable Differential 

Transformer) were used to measure the axial deformation for each specimen. Strain gages were 

also attached on the surfaces of specimens to monitor the strain variations through the test. 

Figures 2 and 3 show the placements of strain gages on the schematic unfolded specimens 
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connected using two bolts in two lines of force and four bolts in one line of force, respectively. 

After the test, a statistical analysis was performed to study the difference between the predicted 

value and the test result for each specimen. 

4. Evaluation of Experimental Data 

Figures 4 and 5 show the stress distributions in the different cross sections under the 

ultimate loads for the Group B specimens connected using two bolts in two lines of force and 

four bolts in one line of force, respectively. It can be seen that more shear lag effect can be 

observed on the specimen connected using two bolts in two lines of force. As expected, the 

failure mode of net section fracture was observed for the specimens connected using two bolts in 

two lines of force. A typical failure photo is shown in Figure 6. On the other hand, a 

combined tearing and bearing failure was found for the specimens connected using four bolts in 

one line of force. 

In this study, the comparisons were only made between the test results and predictions 

computed based on several specifications for the specimens having net section failure (specimens 

connected using two bolts in two lines of force) in order to study the shear lag effect. Table I 

summaries the measured dimensions of the cross sections for the specimens having the failure 

mode of net section fracture. 

4.1 Comparison with AISI Specification 

The predicted values calculated based on the 1996 AISI Code (Pnl and Pn2) and tested 

values for the specimens are listed in Table 2. The smaller of the computed values (Pnl) is 

designated as the design tensile strength as can be seen in column (1) of Table 2. The ratios of 

tested to computed tensile strengths for each specimen (column (5) of Table 2) are all smaller 

than unity varying from 0.670 to 0.966. The computed tensile strength, Pnl, is based on 

considering the yield stress occurred uniformly in the net section. Due to ignoring connection 

eccentricity, the predictions of tensile capacity using the 1996 AISI Specification for a member 

under axial tension seems to be over estimated. 

The predicted values calculated according to the AISI Specification Supplement No.1 are 

listed in column (3) of Table 2. Equation (6) used to compute the predicted values was 

established mainly based on the consideration of the shear lag effect. It was observed from 

column (6) of Table 2 that the standard deviation of the tested to computed tensile strengths can 

be improved, but all values of the tested to computed tensile strength are still smaller than 1.0. 
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It seems that the amended formula (Equation (6)) also gives an over estimated result for channel 

members having two or more bolts in the line of force. 

4.2 Comparison with BS Specification 

The comparisons between test values and the computed tensile strength based on the BS 

Specification are listed in Table 3. The computed tensile strengths listed in Table 3 were 

calculated according to Equation 7. It can be seen from Table 3 that the mean value of PtestlPn 

ratios (tested to computed tensile strength ratios) is 1.028 with a standard deviation of 0.185. 

The scatter between the tested and predicted values of tensile strength is probably due to the lack 

of consideration of the connection length and type, even though the areas of connected and 

unconnected elements of the member are considered in the calculation of tensile strength for the 

BS Specification. 

4.3 Comparison with ASINSZ Specification 

The predicted tensile strength for each specimen according to the ASINSZ Specification 

are listed in column (2) of Table 4. It was observed from Table 4 that the ratios of tested to 

computed tensile strength for each specimen are between 0.658 and 0.949. The equation 

(Equation 8) for predicting the tensile strength of a tension member is quite simple and 

convenient to use. However, failure to consider the connection length may have caused the 

discrepancies between the tested and computed values of tensile strength. 

4.4 Comparison with Holcomb Recommendation 

The comparisons between the tested and computed tensile strengths based on the Holcomb 

Recommendation are presented in Table 5. The computed tensile strengths listed in Table 5 

were calculated according to Equation 11. The range of values for the ratio of tested to 

computed values for the specimens with larger width of web is from 0.922 to 1.007. For the 

specimens with smaller width of web, the ratios varied from 1.116 to 1.265. Thus the tensile 

strength is under estimated for the specimens with larger width tested in this study. 

4.5 Comparison with AISC Specification 

Table 6 compares tested tensile strengths with values according to the AISC Specification. 

The predicted tensile strength for each specimen is determined by Pn2 and listed in column (2) of 

Table 6. The difference between the computed and tested values is within 10 percent for all 

specimens as can be seen in column (4) of Table 6. The computed values calculated based on 

the AISC Specification provide good correlation with the test results. Therefore, the current 

AISC Specification is a relatively good predictor of the tensile strength for the specimens tested 
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in this study. 

The tensile strength of a C-Shaped section can be evaluated in terms of the ratio of its 

average stress at ultimate load (Pult/An) to the ultimate tensile strength (Fu) of the material. The 

ratio is called the net section efficiency, U'. In fact, net section efficiency represents the 

strength reduction as discussed in Equation 1. Table 7 presents the calculated net section 

efficiencies (column (1)) and reduction factors computed according to AISC Specification listed 

in column (2) for the tested specimens. From column (3) of the Table 7, it can be seen that the 

AISC equation considering the shear lag effect can provide a fair prediction for the specimens 

tested in this study. 

4.6 Comparison with Numerical Model 
A commercial finite-element analysis software, ANSYS (version of 5.6), was used to 

evaluate the stress distribution at different cross sections and to compare the structural behavior 

of the specimen under ultimate load with the test results. Considering the characteristics of 

nonlinearity, the 3-D lO-Node Isotropic Structural Solid, SOLID 45, was chosen for the element 

type used to model the specimen. Since the bearing-type bolted connections was adopted in the 

assembly of specimens, the friction between the connection area of two C-shaped sections was 

ignored, and it was assumed that the load was transmitted directly to the holes of the specimens 

by bearing in the bolts. The restraints of the seven bolts that are used to connect the specimen 

to the support of test frame are assumed to be fixed in three directions (x, y, and z directions) as 

can be seen in Figure 7. Three loading stages, O.25AgFy, O.5AgFy, and (PUlt)tesb were used to 

investigate the stress distribution on the three cross sections shown in Figure 2. 

Figure S show the comparisons between the computer outputs and test results for the stress 

distribution of specimen BA-2 under three loading stages. Based on these three figures 

(Figures, Sa, Sb, and Sc), the following observations are made: 

1. Figure Sa shows that the calculated stresses in three sections agree fairly well with the 

experimental results for the specimen under the load stage of O.25AgFy. 

2. Due to the axial loading, tensile stresses were observed in most segments at three different 

cross sections. Some segments were affected by the bending stresses because of the 

eccentricity of connection, in addition, compressive stresses were found in the edge area of 

flanges (unconnected elements) as can be seen in Figure S. 

3. It was found that the out-of-plane bending behavior affected the stresses in the web area at 

the end of the specimen as ultimate load was reached. This behavior induced the 

compressive stresses in the center area of section 3-3 as can be seen in Figures Sb and Sc. 
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4. It was observed from the tests that the deformation in the flanges is less than that of the web 

of specimen. On the other hand, the farther the segment from the center line of specimen, 

the less stress can be obtained. Similar phenomenon can be found in Figure 8. Therefore, 

an overestimation result can be expected by applying tensile strength, AnFy, according to 

1996 AISI Specification for a member subjected to an eccentric load. 

Figure 9 shows the stress distribution of specimen BA-2 under the load stage of 0.25AgFy 

from the ANSYS analysis result. As can be expected, the segment having the maximum tensile 

stress is below the bottom area of the bolt holes. The compressive stresses can be observed in 

the edge regions of two flanges in Figure 9. 

5. Conclusions 

In order to investigate the effect of shear lag on the C-shaped cold-formed steel sections, 

four groups of specimens were tested under tension. A total of 24 pairs of sections were tested 

in this study. Based on the test specimens having the failure mode of net section fracture, the 

following conclusions can be drawn for the C-shaped cold-formed steel tension members: 

1. From observing the strain readings in the test and the simulation results carried out by the 

ANSYS program, it is apparent that the stress distribution over the entire section of the 

specimen is not uniform. The stresses in the connected element (web) are larger than the 

stresses in the unconnected elements (flanges). Thus, the effect of shear lag is 

demonstrated, and the effect of eccentricity noted 

2. It was found that the tensile strengths of test specimens predicted by the AISC Code (1999), 

which takes into account the shear lag effect, are in the best agreement with the test values. 

The predictions according to AISI Code (1996), AISI Specification Supplement No.1 

(1999), and ASINZS 4600 Code (1996) seem to be overestimated as compared to the test 

results. It was also noted that there is quite a discrepancy between the test results and the 

values predicted by British Standard (1998). 

3. For convenience, all members having only two fasteners per line in the direction of stress, 

the reduction factor U may be taken as 0.75 according to commentary B3 of AISC 

Specification (1999). However, it was found from observing Table 7 that the values of net 

section efficiency (U') varied from 0.475 to 0.685 for the tests in this study. Therefore, it 

is suggested that the reduction factor, U, should only be determined according to AISC 

Specification (Equation (2)) rather than by the Commentary suggestion in the calculation of 

tensile strength for C-shaped cold-formed steel sections. 
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In summary, the tensile strength of a C-shaped cold-formed steel section can be influenced 

by the shear lag effect. The cross section is termed not fully effective when it is not connected 

through all elements of the cross section. The tensile strengths of test specimens computed 

based on the AISC Code (1999) can provide a relatively good prediction. Other shapes like 

angles need to be investigated to see whether they also meet this finding. The test specimens in 

this study were fabricated using two C-shaped sections assembled back to back by using four 

high-strength bolts. If the C-shaped section connects to a gusset plate with much greater 

thickness, it is believed that the out-of-plane stiffness of the gusset plate enhances the constraints 

applied to the end of C-shaped section. Future tests can be used to verify this consideration. 
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Notation 

Acn = net area of the connected leg a.t the critical section 

Ae = effective net area of the net section 

Ag = gross area of cross section 

An = net area of cross section 

Ao = area of the outstanding leg (gross area) 

al = the net sectional area of the connected leg 

a2 = the cross sectional area of the unconnected legs 

Fu = tensile strength of the connected part 

Fy = yield strength of the material 

fu = tensile strength used in design 

fy = yield stress used in design 

kt = correction factor for distribution of forces 

L = length of the connection in the direction of loading 

P n = computed tensile strength 

Pt = tensile capacity 

P ult = tested ultimate strength 

py = design strength 

Tn = nominal tensile strength 

= thickness of steel sheet 

U = reduction factor 

Ys = nominal yield strength 

s' = connected width + x 
x = connection eccentricity 
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Figure 9 Stress Distribution of the Specimen BA-2 under a load of 0.25AgFy 

Table I Nominal Dimensions of Cross Sections 

Specimen 
H(mm) W(mm) t (mm) R(mm) Ag (mm2) 

(I) (2) (3) (4) (5) 
AA-I 99.47 50.18 3.20 2.04 608.94 
AA-2 99.60 49.98 3.20 2.04 608.08 
AA-3 99.33 50.38 3.20 2.04 609.80 
BA-I 99.70 49.93 2.30 2.04 442.09 
BA-2 99.93 50.08 2.30 2.04 443.35 
BA-3 100.14 49.98 2.30 2.04 443.35 
CA-I 80.10 40.47 3.20 2.04 484.83 
CA-2 79.82 40.43 3.20 2.04 483.65 
CA-3 80.27 40.60 3.20 2.04 486.21 
DA-I 80.12 40.13 2.30 2.04 351.98 
DA-2 80.12 40.13 2.30 2.04 351.98 
DA-3 79.63 40.21 2.30 2.04 351.26 

Note: H = web overall width, W = flange overall width (average value of two flanges) 

t = thickness of steel, R = inside radius Of comer, Ag = gross area 
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Table 2 Comparison of Test Results with AISI Specification 

Specimen 
Pn1 (kN) Pn2 (kN) Pn3 (kN) Ptest (kN) 

(1) (2) (3) (4) 
AA-l 158.44 200.43 130.lw'7. 110.25 
AA-2 158.17 200.10 119,8'l 106.08 
AA-3 158.70 200.76 180.4'1 110.71 
BA-1 11'7.62 147.52 132.~ 79.51 
BA-2 118.02 148.02 1~2~~ 79.05 
BA-3 118.Q2 148.02 132~~ 81.13 
CA-1 12D.43 152.35 148044 113.95 
CA-2 120.07 151.90 147,99 116.03 
CA-3 120.86 152.89 148.96 115.33 
DA-1 89046 112.20 108.95 83.21 
DA-2 89.46 112.20 108.95 84.59 
DA-3 89,23 111.91 108.68 85.52 

mean 
standard deviation 

Note: Pn]= AnFy, Pn2 = (1.0 - r + 2.5 r d / s )FuAn 

Pn3= (1.0-0.36x/L)AnFu 

PtestlPnl PtestIPn3 
(5) (6) 

0.696 0.612 
0.671 0.590 
0.698 0.613 
0.676 0.602 
0.670 0.596 
0.687 0.612 
0.946 0.768 
0.966 0.784 
0.954 0.774 
0.930 0.764 
0.946 0.776 
0.958 0.787 
0.817 0.690 
0.134 0.090 

Table 3 Comparison of Test Results with BS Specification 

Specimen 
Pn (kN) Ptest (kN) PtestlPn 

(1) (2) (3) 
AA-1 127.97 110.25 0.862 
AA-2 127.96 106.08 0.829 
AA-3 127.98 110.71 0.865 
BA-1 95.34 79.51 0.834 
BA-2 95.66 79.05 0.826 
BA-3 95.79 81.13 0.847 
CA-1 94.16 113.95 1.210 
CA-2 93.74 116.03 1.238 
CA-3 94.49 115.33 1.221 
DA-1 70.30 83.21 1.184 
DA-2 70.30 84.59 1.203 
DA-3 69.88 85.52 1.224 

mean 1.028 
standard deviation 0.185 

Note: Pn= Aepy 
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Table 4 Comparison of Test Results with ASINSZ Specification 

Specimen 
Pn1 (kN) Pn2 (kN) Pn3 (kN) Ptest (kN) PtestIPn2 

(1) (2) (3) (4) (5) 
AA-l 186.46 161.46 200.43 110.25 0.683 
AA-2 186.19 161.19 200.10 106.08 0.658 
AA-3 186.72 161.73. 200.76 110.71 0.685 
BA-l 138.18 118.84 147.52 79.51 0.669 
BA-2 138.58 119.24 148.02 79.05 0.663 
BA-3 138.58 119.24 148.02 81.13 0.680 
CA-l 148.45 122.73 152.35 113.95 0.928 
CA-2 148.10 122.37 151.90 116.03 0.948 
CA-3 148.88 123.16 152.89 115.33 0.936 
DA-l 110.02 90.39 112.20 83.21 0.921 
DA-2 110.02 90.39 112.20 84.59 0.936 
DA-3 109.79 90;16 111.91 85.52 0.949 

mean 0.805 
standard deviation 0.132 

Table 5 Comparison of Test Results with Holcomb Equation 

Specimen 
Pn (kN) Ptest (kN) Ptest IPn 

(1) (2) (3) 
AA-l 115.10 110.25 0.958 
AA-2 115.11 106.08 0.922 
AA-3 115.09 110.71 0.962 
BA-l 80.34 79.51 0.990 
BA-2 80.50 79.05 0.982 
BA-3 80.58 81.13 1.007 
CA-l 97.76 113.95 1.166 
CA-2 97.53 116.03 1.190 
CA-3 97.96 115.33 1.177 
DA-l 67.82 83.21 1.227 
DA-2 67.82 84.59 1.247 
DA-3 67.58 85.52 1.265 

mean 1.091 
standard deviation 0.125 
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Table 6 Comparison of Test Results with AISC Specification 

Specimen Pnl (kN) Pn2 (kN) Ptest (kN) PtesJPnl 
(1) (2) (3) (4) 

AA-l 186.46 JOal16 110.25 1.069 
AA-2 186.19 .1(2)9. 106.08 1.030 
AA-3 186.72 lO~,a4·. 110.71 1.071 
BA-l 138.18 74;65 79.51 1.065 
BA-2 138.58 74;90 79.05 1.055 
BA-3 138.58 74.90 81.13 1.083 
CA-l 148.45 mt34. 113.95 1.033 
CA-2 148.10 109.9~. 116.03 1.055 
CA-3 148.88 110ar 115.33 1.042 
DA-l 110.02 8026 .. 83.21 1.037 
DA-2 110.02 8026 84.59 1.054 
DA-3 109.79 80;06 85.52 1.068 

mean 1.055 
standard deviation 0.016 

Table 7 Comparison of Net Section Efficiencies and Reduction Factors 

Specimen PtestiAnFu U [(1)-(2)]/(2)x100% 
(1) (2) (3) 

AA-1 0.493 0.462 -6.29% 
AA-2 0.475 0.462 -2.74% 
AA-3 0.495 0.462 -6.67% 
BA-1 0.483 0.454 -6.00% 
BA-2 0.479 0.454 -5.22% 
BA-3 0.492 0.454 -7.72% 
CA-1 0.671 0.649 -3.28% 
CA-2 0.685 0.649 -5.26% 
CA-3 0.677 0.649 -4.14% 
DA-l 0.665 0.642 -3.46% 
DA-2 0.676 0.642 -5.03% 
DA-3 0.685 0.642 -6.28% 

average -5.17% 
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