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Tenth International Specialty Conference on Cold-formed Steel Structures
St. Louis, Missouri, U.S.A., October 23-24, 1990

THE EFFECT OF WORKHARDENING AND RESIDUAL STRESSES DUE
TO COLD WORK OF FORMING ON THE STRENGTH OF COLD-FORMED
STAINLESS STEEL LIPPED CHANNEL SECTIONS

Coetsee, J.S.1, Van den Berg, G.J.2, Van der Merwe, P.3
ABSTRACT

The purpose of this investigation was to obtain the necessary information on the effects
of workhardening and residual stresses due to cold work of forming on the strength of
cold—formed stainless steel lipped channel sections. A comparison was made between
the mechanical properties of the virgin sheet, the weighted average mechanical proper-
ties of a section determined by cutting the section into flat and corner strips and the
mechanical properties of a section determined through stub column tests. It can be
concluded that the difference in strength between the weighted average stress—strain
curve and the stub column stress—strain curve is due to residual stresses in the section
caused by cold forming.

GENERAL REMARKS

Changes in the mechanical properties of steel sheets and plates are brought about by
workhardening induced by cold forming, such as brake forming and deep drawing.
These changes can be an increase in yield strength and ultimate strength and decrease
in ductility. Such changes in the mechanical properties depend on the chemical compo-
sition of the steel, its prior metallurgical history, its prior history of cold work and the
type and magnitude of plastic strains caused by the cold work.! The mechanical
properties of cold—formed sections are thus sometimes substantially different from that
of virgin sheet before forming. The mechanical properties in various parts of the cross
section are different because the material in the corners is cold—worked to a conside-
rably higher degree than the material in the flat elements.

‘When a steel member is formed into its final form there are stresses left in the member
and these stresses are called residual stresses. The residual stresses in cold—formed
members are caused by the cold forming process while the residual stresses in hot—
rolled and welded shapes are caused by the uneven cooling after hot rolling or welding.

Galambos? derived a general equation for the stress—strain relationships of hot—rolled
carbon steel wide flange cross sections. He concluded that if the residual stresses are
neglected it will cause earlier yielding than is expected and a reduction in stiffness of
the member. Figure 1 shows typical stress—strain curves for residual free test coupons
and members with residual stresses. Yu? reported that although the effect of residual
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stresses may not be very great as far as the ultimate stress is concerned, the residual
stresses will nevertheless lower the proportional limit. Also the inelastic behaviour of
members can not be predicted correctly without consideration of the residual stresses.

As shown in Figure 1 the shape of the stress—strain curve for carbon steels is influenced
by the residual stresses in that the proportional limit is significantly reduced. The
stress—strain curve of the member changed to a irladua.l yielding curve. Stainless steels
yield gradually under load. It will be shown in this study that the influence of residual
stresses on the strength of cold—formed stainless steel structural members differ to that
of cold—formed carbon steel members.

MATERIALS UNDER CONSIDERATION

The stainless steels under consideration in this study are limited to annealed
AIST types 304 and 316 as well as a modified Type 409 stainless steel designated
3CR12, a corrosion resisting steel manufactured by the specially stéel producing
company, Middelburg Steel and Alloys.

STAINLESS STEEL TYPE 304

Stainless steel, Type 304 is an austenitic stainless steel and is commonly available. It
has a wide range of applications such as architectural, brewing industry, cook ware,
cryogenic plants, food and dairy processing equipment, heat exchanger tubes and
supports, pressure vessels and process plants. It has a corrosion resistance in industrial
areas where there is a combination of moisture, carbonaceous and other pollutants.

STAINLESS STEEL TYPE 316

Stainless steel Type 316 is an austenitic stainless steel and have almost the same
characteristics as Type 304 stainless steel except that it is more corrosion resistant and
is thus more expensive.

TYPE 3CR12 CORROSION RESISTING STEEL

Type 3CR12 corrosion resisting steel was developed by the specialty steel producing
company, Middelburg Steel and Alloys from AISI Type 409 stainless steel. The aim
with the development of this steel was to create a low chromium steel of which the
mechanical properties and the weldability would be superior to that of Type 409. The
chemical composition of this steel falls typically within the limits of Type 409, except
for nickel, manganese and titanium. The carbon and nitrogen levels are kept low and
it has therefore improved toughness over AISI Type 409 and 430 in both the annealed
and welded conditions.

ANALYTICAL EQUATION FOR MECHANICAL PROPERTIES

The analytical stress—strain curves can be drawn by using the Ramberg—Osgood4
equation as revised by Hill,5 Johnson ¢ and Wang.”

e = §;+0,002(F;)n )
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where

o -l @
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€ = strain

€y = yield strength offset strain

€ = proportional limit offset strain
]5P = stress

Eo = initial elastic modulus

Fy = yield strength

Fp = proportional limit

n = constant

It has been found in a study by Van der Merwe? en Van den Berg® that Equations 1
and 2 give conservative curves in the vicinity of the proportional limit, Fp. This
equation will be used to compare the virgin sheet, weighted average and stub column
stress—strain curves.

MECHANICAL PROPERTIES FOR VIRGIN SHEET
TESTING PROCEDURES

Uniaxial tensile and compression tests were carried out on specimens taken form the
sheet in the longitudinal and transverse directions of rolling. The tensile and com-
pression tests were conducted generally in accordance with the procedures outlined by
the ASTM Standard, A370—77.10 Average strain was measured by two strain gauges
mounted on either side of the specimen in a full bridge configuration with temperature
compensation. Compression test specimens were mounted in a specially manufactured
compression test fixture which prevents buckling of the specimen about the minor axis.
All specimens were tested using an Instron universal testing machine. A detailed
testing procedure is given in Reference 9.

RESULTS

Stainless steels yield gradually under load. This is in contrast to carbon and low alloy
steels. In order to compute the initial elastic modulus, E,, and subsequently the
proportional limit, Fp, defined as the 0,01% offset strength, and the yield strength, Fy,
defined as the 0,2% offset strength, a computer program has been developed. This
program enables the computation of the best fit straight line for the initial part of the
stress—strain curve through a process of iterative linear regression. The slope of the
best fit straight line is considered to be the initial elastic modulus, E,. The experi-
mental data is then shifted along the strain axis to accommodate the initial straight
line which has to go through the origin of the stress—strain axis. This procedure also
partly compensates for zero point errors encountered in experimental work of this
nature.

On the basis of the above procedure, the mechanical properties of the different steels
were determined and are given in Table 1. These mechanical properties were used in
Equations 1 and 2 to produce the analytical stress—strain curves shown in Figures 2 to
4. The four distinctive stress—strain curves for longitudinal tension, LT, transverse
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tension, TT, longitudinal compression, LC, and transverse compression, TC, for the
different stainless steels are shown in these curves.

WEIGHTED AVERAGE MECHANICAL PROPERTIES FOR A MEMBER
SECTION

The weighted average mechanical properties are computed from the mechanical proper-
ties of strips which have been cut from the section. It can be considered that these
strips are free of residual stresses caused by the cold forming process.

PREPARATION OF MEMBERS

The profiles chosen for this study were limited to lipped channel sections. The profiles
were formed by a press braking process. The cross section of the lipped channels for
the three different types of stainless steels is shown in Figure 5 and the dimensions are
given in Table 2.

PREPARATION OF SPECIMENS

Tension and compression test specimens were prepared from each of the stainless steel
sections. The member section was divided into a number of strips to study the effect
of cold—forming on the corners and the flat portions, as shown in Figure 6. The length
of the tension test specimens were 180 mm for the flat specimens between the corner
specimens, and 320 mm for the corner specimens. The tension test specimens for the
corners were taken longer to minimize the effect that the grips could have on the
middle portion. The grips tend to crush the ends of the specimens. The nominal
lengths of the compression test specimens were chosen as 70 mm to fit in a specially
manufactured compression test fixture.

The width of the test specimens varied depending on where they were cut from the
profile. The corner specimens were cut at the point where the corner started. The
cross sectional area of the corner specimens were determined by first determining the
mass. With the mass per unit volume of the steel known, the cross sectional area of
the corner specimen could be determined and subsequently the stress in a stress—strain
curve.

TESTING PROCEDURE

The same procedure and methods described previously were used to determine the
mechanical properties. For the flat specimens, two strain gauges, one on either side of
the specimen were used and for the corner specimens, one strain gauge on the outside
of the specimen was used. Karreni! used a similar procedure.

RESULTS

The mechanical properties, calculated from experimental stress—strain curves, obtained
from tensile and compression tests done on the test specimens cut into strips from the
profiles, for stainless steels Type 304, 316 and Type 3CR12 corrosion resisting steel are
given in Tables 3 to 5. Also shown in these tables are the weighted average mechanical
properties of the member section. By cutting the section into strips the section is
released of all its residual stresses due to the cold forming process. Figures 7 to 9
represent the variation of the mechanical properties in the section
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STUB COLUMN MECHANICAL PROPERTIES

Stub column tests were carried out to determine the mechanical properties of the full
section. When a section is manufactured by a cold forming process, residual stresses
are induced in the section. The results of the stub column tests will give the mecha-
nical properties of a section which will include the effects of the residual stresses in the
section as well as the effect of workhardening. The mechanical properties of the stub
column tests are given in Tables 3 to 5.

COMPARISON OF STRESS—STRAIN CURVES

Figures 10 to 12 show stress—strain curves drawn with the mechanical properties
obtained from experimental results. The three stress—strain curves were drawn by
using Equations 1 and 2 and are:

1.  The stress—strain curve of the virgin sheet drawn with the mechanical
properties in Table 1 for longitudinal compression.

2. The stress—strain curve drawn by using the weighted average mechanical
properties for longitudinal compression in Tables 3 to 5.

3.  The stress—strain curve drawn by using the stub column mechanical
properties in Tables 3 to 5.

DISCUSSION OF RESULTS

From Figures 10 to 12 it can be concluded that residual stresses influence the
behaviour of stainless steel structural members. From these curves it can be seen that
the virgin sheet mechanical properties give the lowest stress—strain curves and that the
stress—strain curves drawn by using the weighted average mechanical properties give
the highest stress—strain curves. It can be assumed that the latter mentioned stress—
strain curves take into account the increase in strength in the corners due to cold work
of forming. These stress—strain curves are free from residual stresses. The stress—
strain curves drawn by using the stub column mechanical properties give the actual
strength of the section and they take into account the increase in strength in the
corners due to cold work of forming and also reflect the effect of residual stresses on the
strength of a section.

It can be concluded that the difference in strength between the weighted average
stress—strain curve and the stub column stress—strain curve is due to residual stresses

in the section caused by cold—forming. These residual stresses decrease the strength of
the section.

Residual stresses in sharp yielding carbon steels have been studied by Galambos.2 The
quantification of residual stresses in sharp yielding steels is relatively simple. However
stainless steels have gradual yielding stress—strain curves. It is difficult to quantify the
effects of measured residual stresses in the aforementioned stress—strain curves.
Similar results were obtained by Van den Berg? in a study on hat sections.
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TABLE 1. MECHANICAL PROPERTIES OF STAINLESS STEEL

SENSE AND DIRECTION OF STRESS

MECHANICAL PROPERTY LT TT LC TC
Tnitial Elastic Modulus E(GPa)

304 186,5 201,0 208,3 207,2

316 180,6 203.9 196.3 215.5

3CR12 196,7 227,6 201,1 228,2
Yield strength Fy(MPa)

304 295,8 305,9 308,2 311,5

316 276,9 287,9 268,6 303,1

3CR12 299,4 3412 309.4 3477
Proportional limit Fy(MPa)

304 184,2 223,3 168,0 225,6

316 179,1 198,2 154,7 229,5

3CR12 207.9 253.5 206,8 290,1
Ultimate Strength Fy(MPa)

304 685 674

316 621 619

3CR12 462 500
Ratio of Fp/Fy

304 0,62 0,73 0,55 0,73

316 0,65 0,69 0,58 0,76

3CR12 0,70 0,74 0,67 0,80
Ratio of F/Fy

304 2,32 2,21

316 2.24 215

3CR12 1,55 1,47
Elongation (%)

304 54,7 57,0

316 56,2 60,5

3CR12 32,3 28,1
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TABLE 2. DIMENSIONS OF LIPPED CHANNEL SECTIONS
TYPE OF STEEL

Dimension 304 316 3CR12
A(mm 84,6 82,3 82,7
B(mm 51.8 52.4 51,9
C(mm 16.9 16.8 16.2
1 mmg 2,47 2,43 2,48
A(mm?) 502,9 4924 479,1
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