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St. Louis, Missouri U.S.A., October 19-20,2000 

MECHANICAL PROPERTIES OF STAINLESS STEEL LIPPED CHANNELS. 

by 

M.Macdonaldl , J.Rhodes2 and G.T.Taylor3 

l.Department of Engineering, Glasgow Caledonian University, Glasgow, UK 

2.Depalin!-ent of Mechanical Engineering, University of Strathclyde, Glasgow, UK 

3.Department of Energy and Environmental Technology, Glasgow Caledonian University, 

Glasgow, UK 

SUMMARY 

This paper describes and discusses the results obtained from a series of tensile tests performed 

on cold formed stainless steel Type 304 members of lipped channel cross-section. Standard 

tensile tests on coupons cut from the webs of the sections were carried out, as were full 

section tensile tests. Ramberg-Osgood type curves based on the procedure suggested in the 

ASCE design code were fitted to the stress-strain results and these are compared with the 

experimental results and Ramberg-Osgood type curves derived on an alternative basis. 

INTRODUCTION 

The mechanical properties of stainless steels are significantly different from those of carbon 

steel. Stainless steels can display anisotropy and non-linear stress-strain behaviour, and often 

have low prop011ionai limits and a pronounced response to cold working. The material 

properties of various stainless steels have been thoroughly investigated since the 1960s, by a 

number of investigators, e.g (I), (2), (3), (4). It has been generally concluded that the stress

strain behaviour of stainless steels can be best described by the Ramberg-Osgood model (5), 

and a modified form of the Ramberg-Osgood equation is used in design specifications. 

The main design specification for stainless steels is the ASCE specification (6) and in Europe 

Eurocode 3, Part 1.4 (7) has been recently developed for the design of stainless steel 

members. The two codes use different approaches when dealing with the mechanical 

properties of the material . The ASCE code employs the modified form of the Ramberg

Osgood model used to describe the stress-strain behaviour of a material, whereas the 

Eurocode relies for most purposes on the specification of a linear stress-strain law, with the 

yield strength taken as the 0.2% proof stress. In a companion paper (8) a comparison of the 

Eurocode and ASCE code predictions for lipped channel columns is illustrated, and the 

simpler Eurocode analysis has been found to give reasonable estimates of concentrically 
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loaded colwnn strength without taking account of the non-linearity of the stress-strain curve. 

As part of this investigation a series of tensile tests were carried out on coupons cut from the 

stainless steel sections, and on full sections, and the stress-strain characteristics are examined 

in this paper. 

MECHANICAL PROPERTIES OF COLD FORMED STAINLESS STEEL LIPPED 

CHANNEL MEMBERS 

In the formation of a profiled section, the cold working occurs in localised areas, with the 

material at the bends being strain hardened. Therefore the properties of the material vary 

throughout the cross-section where at the formed bends, higher yield and tensile strengths 

exist. 

The stress-strain behaviour of stainless steel members is complex when full cross-section 

tensile tests are performed on cold formed members, with the introduction of regions of high 

yield and tensile strength at formed corners. The level of increase is dependent on the ratio of 

corner radius to material thickness (r/t). The cold formed lipped channels under investigation 

have cross-sections with small web, flange and lip dimensions and are considered to be thick 

and hence four corner bends are formed with small rlt ratios «1). These four corners will 

have an effect on the stress-strain response of the material obtained from a full section test, 

which could then be compared to that obtained for virgin material from a standard tensile test. 

The ASCE design specification adopts the modified form of the Ramberg-Osgood formula (5) 

given by equation (1). It is a three-parameter equation for expressing the relationship between 

the stress and strain for stresses up to a value slightly greater than the yield strength of the 

material. 

(I) 

where e = unit strain 

cr = unit stress (N/mm2) 

E = modulus of elasticity (N/mm2) 

K and n are constants for a given curve, which are evaluated through two secant yield strength 

values for slopes ofO.7E and 0.85E. Equation (1) was modified by Hill (9). Instead of using 

secant yield strengths, K and n can be evaluated in terms of two yield strength values: 



l. 0" 1 at an offset E 1 

2. 0"2 at an offset E2 
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The equation of the deviation ofthe curve from the initial modulus can be written: 

From which: 

lnd = InK +nln(~) 

(2) 

(3) 

Substituting 0"1 and d{, and 0"2 and d2 into the equation gives two simultaneous equations in K 

and n, which when solved for n gives: 

(4) 

From equation (2), K can be expressed: 

or K=_d_l _ 

(i)" 
(5) 

Substituting equation (5) into equation (1) gives the equation for the stress-strain curve: 

or (6) 

Using the most common offset (d2) of 0.002 for the yield stress (0"2) and assuming that the 

modulus of elasticity E, is equal to the initial value Eo, equation (6) becomes: 

& = ~ + 0.002(~J Il 
E" u y 

(7) 

The ASCE design code makes use of the modified Ramberg-Osgood formula (equation 7), 

and the three points on the stress-strain curve are defined as: 
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1. the origin; 

2. the point of 0.2% proof stress; 

3. another offset strength (e.g. 0.D1 %). 

If the above points are substituted into equation (6) then the only unknown, n, can be 

evaluated. The term n is referred to in the ASCE design code as the plasticity factor. The 

accuracy of the above method is largely based on how well the analytical equation fits the 

stress-strain relationship of the material. The code lists for particular grades of stainless steel, 

tables of yield stress, tangent modulus and plasticity factors that can be used in the above 

calculations. 

The results obtained for the stress-strain relationship from both virgin material and full 

section tensile tests will be used for comparison with the results obtained from the above 

ASCE Ramberg-Osgood approach and by a trial and error 'best fit' method using the 

experimental stress-strain curves. These will then be examined in the far post-yield range, and 

modifications suggested to improve the accuracy of the Ramberg-Osgood formula at large 

strains. 

EXPERIMENTAL INVESTIGATION 

Figure 1 shows a typical cross-section of the cold formed stainless steel lipped channel 

member under investigation. The member is commercially available and was supplied in two 

different sizes of cross-section with the details given in Table 1. In order to determine the 

material properties of the sections, tensile tests were set-up where the applied load and gauge 

specimen elongation were recorded continuously until fracture of the specimen occurred. The 

measured load and elongation were normalised to give a stress-strain relationship. Due to the 

anisotropy of stainless steel, a full analysis of the material properties would require tensile 

tests in the longitudinal and transverse directions, as well as compression tests in the same 

directions. Indeed, provision is made in the ASCE design code to enable use to be made of 

them in specific applications. However, compression tests were not carried out as there would 

be difficulty in establishing the true material properties of the material due to likely buckling 

effects. Also, transverse direction tensile tests could not be carried out because of the 

limitations in the geometry of the sections. Hence tensile testing was limited to the 

longitudinal direction. 

All tensile tests were carried out in accordance with BSENlO002-1 (10). Standard tensile tests 

were perforined to ascertain the material properties of the stainless steel for the 2 different 

thicknesses. Coupons were cut from the webs of the columns and tested to obtain the 0.2% 

proof stress and the modulus of elasticity. 
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Tensile tests were also performed on full sections to include the effects of the cold formed 

corners and from these tests the 0.2% proof stress and the initial modulus of elasticity were 

determined. 

For the standard coupons, a total of three thin (THN) specimens and six thick (THK) 

specimens were tested and the average results were noted. For the full section tests, two THN 

and two THK specimens were tested and again, the average results were noted. It should be 

mentioned here that the thick sections have wider webs than the thin sections, and in the 

graphs reference is often made to "W" sections (which are THK specimens) and "T" sections 

(THN specimens). 

RESULTS 

All results obtained from tensile tests to establish virgin material and full cross-section 

mechanical properties are shown in Table 2. 

The results obtained from the standard coupon tensile tests on the column web material 

showed that the 0.2% proof stress varied from 475 N/mm2 to 487.5 N/mm2 for the THN 

section with the average being 480 N/mm2• The modulus of elasticity was found to be 174 

kN/mm2. For THK section material, the 0.2% proof stress varied from 446.79 N/mm2 to 483.8 

N/mm2 with the average being 460 N/mm2, and the modulus of elasticity was evaluated as 

180 kN/mm2. 

From the full section tensile tests, the 0.2% proof stress for the THN sections ranged from 518 

N/mm2 to 522 N/mm2 with the average being 520 N/mm2, The modulus of elasticity was 

calculated to be 174 kN/mm2• For the THK sections, the 0.2% proof stress varied from 536.5 

N/mm2 to 543.5 N/mm2 with the average being 540 NlInm2, and the modulus of elasticity 

obtained from the tests was 180 kN/mm2. 

The results obtained for the plasticity factors n from the ASCE design code, i.e. the modified 

form of the Ramberg-Osgood equation given by equation (7) above, are shown in Table 3. 

Also shown in Table 3 are the plasticity factors obtained from comparative plots and a trial 

and error (' best fit') process using the stress-strain curves obtained from the tensile tests. 

Figures 2 and 3 show graphs of stress v. strain for the THN and THK standard coupon tensile 

tests respectively, comparing the curves obtained from experiments with those obtained using 

the plasticity factors from ASCE and from the 'best fit' procedure. Figures 4 and 5 show 

graphs of stress v. strain for the THN and THK full section tensile tests respectively, 
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comparing the curves obtained from experiments with those obtained using the plasticity 

factors from ASCE and from the 'best fit' procedure. 

OBSERVATIONS 

The curves shown in Figure 2 for standard coupon THN. material show a very good 

correlation between the experimental results and the results obtained by using the 'best fit' 

method where n = 6.22. The ASCE design code where n = 3.80, overestimates the stress in 

the material beyond a strain value of approximately 0.005. A very similar comparison can be 

made for the THK material as shown in Figure 3 where the n = 7.5 from the 'best fit' method 

and n = 4.66 from ASCE. 

The cmves shown in Figure 4 for THN full sections show an improved correlation between 

the experimental results and the results obtained by using the 'best fit' method where n = 

6.65. The ASCE design code where n = 5.02, overestimates the stress in the material beyond a 

strain value of approximately 0.007, but the overestimation is less than that for the standard 

coupon results. For the THK full sections, Figure 5 shows that the experimental and 'best fit' 

where n= 6.00 curves are almost identical, but the ASCE, where n = 3.62, overestimates the 

stress beyond a strain value of 0.006, and the overestimation is more significant in this case. 

The main reason for the discrepancies between the ASCE and the 'best fit' curves is in the 

method used to generate the curves. The ASCE curve has to pass through 3 points: the origin, 

0.2% proof stress and 0.01% offset stress. The 'best fit' method did not use the 0.01% offset 

stress point, but did use a point in the plastic behaviour range, higher up the curve providing a 

much better correlation to the experimental cmve, particularly at strains greater than 0.005. 

The method suggested by the ASCE code ensmes accurate assessment of the stress-strain 

behaviour at stresses up to, and slightly beyond the 0.2% proof stress. For larger stresses and 

strains the cmve thus obtained can become inaccurate. The curves obtained by the "best fit" 

method sacrifice accuracy at low strains to achieve agreement with experiment at higher 

strains. For any given strain a law can be generated that gives the precise result for that strain, 

and for the 0.2% proof strain, but the accuracy at other strain values is not guaranteed. 

Figures 4 and 5 show that for the tensile tests carried out on the full sections, that the cold 

forming process increased the strength of both the THN and THK material quite considerably. 

The modulus of elasticity remained the same value as for those obtained from the standard 

coupon tests, but the yield strength was increased by 8.3% and 17.4% for the THN and THK 

lipped channel sections respectively. Interestingly, this meant that the THK sections had a 

higher yield strength (540 N/mm2) than the THN sections (520 N/mm2) which was in contrast 

with the results obtained from the standard coupon tests. A number of factors can be 
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attributed to this effect including the amount of cold working in the material, e.g. roll pressure 

and corner radii, and also the properties of the stainless steel. However, it is more likely that 

the main factor in this case was that the thicker material required more cold work to be carried 

out during manufacture to produce channels with such very small r/t ratios. 

STRESS - STRAIN BEHAVIOUR FAR BEYOND YIELD 

The results shown indicate that if the modified Ramberg-Osgood curve is derived with the 

0.2% proof stress and 0.01 % offset stress, very accurate approximations to the experimental 

stress-strain curves are obtained at strains up to and slightly beyond the 0.2% proof strain 

(which occurs at a total strain of approximately 0.5%) and thereafter inaccuracies arise. The 

"best fit" approach used here could be used to get accurate results at any specific strain value 

beyond yield, but only at the expense of accuracy in the pre-yield range, which is not at all 

desirable. 

With the ready availability of finite element packages suited to dealing with non-linear 

material behaviour, there is no reason not to have as accurate a specification of the material 

stress-strain behaviour as possible. The Ramberg-Osgood curve as presently used is limited in 

accuracy to curves which follow a combination of linear and single power laws. As has been 

seen the materials examined here only seem to follow such laws with a fairly substantial 

degree of approximation. The use of the 0.2% proof stress and the 0.01% offset stress results 

in relatively low nonlinearity indices "n" which give accurate results at low strains, while 

curve fitting at higher strain values results in higher "n" values. Figure 6, drawn for a test in 

which the material failed at a strain just below 2.5% (specimen W2) shows these curves 

(labelled "ASCE" and "Best Fit") become inaccurate at high strains. The realisation that 

larger values of the index "n" are required for accuracy at large strains suggests that if n is 

allowed to vary as the strain increases then an accurate portrayal of the stress-strain 

relationship at all strains could be derived. 

To examine this hypothesis a simple trial and error approach was used to fit such a curve to 

the test data, and this is reproduced in Figure 6. The equation of this curve is:-

(8) 

As may be observed this curve is extremely close to the experimental stress strain curve at all 

stages of loading. 



680 

Specimen W3 strained to approximately 7% before failing, and this was felt to be a good test 

of the hypothesis. Figure 7 shows the experimental curve, the curves fitted using the 

Ramberg-Osgood laws and a trial and error modified curve of the form:-

s (9) 

As may be observed this curve is an excellent approximation to the experimental curve over 

the complete range, while the Ramberg-Osgood curves only follow the initial experimental 

curves with accuracy. 

CONCLUSIONS 

The main conclusion from the investigation is that the material properties of stainless steel 

can be accurately modelled in the range up to and just beyond yield using the ASCE design 

code recommendations, but an improvement can be obtained by using the 'best fit' method 

described in the paper. This is true not only for standard coupon material properties, but also· 

significantly, for full section material properties where increased yield strength is largely 

ignored in structural design. The investigation of stainless steel lipped channel sections has 

shown that an improvement in material properties is gained from the cold forming process for 

stainless steel members even with very small rlt ratios. 

An accurate approximation to the stress-strain behaviour of stainless steels far beyond the 

yield strain can be obtained by considering that the nonlinearity index "n" varies as the strain 

varies. 
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b1 

b3 

Figure 1: Typical Lipped Channel Cross-Section 

Table 1. 
Average Dimensions of Lipped Channel Cross-Sections 

Thickness, Radius, Radius, 
Section Web, bl Flange, b2 Lip, b3 t rl r2 

Ref: (mm) (mm) (mm) (mm) (mm) (mm) 

THN (T) 28.00 14.88 7.45 2.43 1.10 1.10 

THK (W) 38.00 17.19 9.99 3.05 0.735 2.255 
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Table 2. 
Tensile Test Results: Virgin Material and Full Section Mechanical Properties 

Thickness Average Average Average Average 
Material t Virgin Virgin Full Section Full Section 

Ref: (mm) O.2%P.S. UTS O.2%P.S. UTS 
(N/mm2) (N/mm2) (N/mm2) (N/mm2) 

THN (T) 2.43 480 553 520 689 

THK (W) 3.05 460 541 540 744 

Table 3. 
Plasticity Factors 

Tensile n n 
Test (Best Fit) (ASeE) 

Coupon - THN (T) 6.22 3.80 

Coupon - THK. CW) 7.50 4.66 

Full Section - THN (T) 6.65 5.02 

Full Section - THK (W) 6.00 3.62 



600 

soo 

~400 

1: 
.§ 
~300 
en 
en 
I!! 

US 200 

684 

Coupon I Rarmerg-Osgood Comparison (T -section) 

~ 
. _ .. --

..--_ .. -_. -
~ "...--

/ 
~ 

, ,~ 

y 
,I 

I --Experimental (T2) 

100 - •• . Best Fit (n=6.22) ,---

V -ASCE(3.8) 

o 
o 

600 

500 

.-. 400 
Ole 
.§ 
~ 300 
1Il 
I!! 
iii 200 

100 

o 

0.002 0.004 0.006 

strain 

Figure 2 

0.008 

Coupon Test I Ramberg Comparison (W-Section) 

0.01 0.012 

~ 
~ -_ ... -_ .. - ... 

.. - .. --" 

./ ~ 

/~ 
I 

/ 
V 
o 0.002 0.004 0.006 

Strain 

Figure 3 

--Experimental (W2) 

- •• Best Ftt (n=7.5) 
I--

-ASCE (n=4.66) 

I 

0.008 0.01 0.012 



685 
Full Section I Ramberg-Osgood Comparison (T-Section) 

700 --~ 
I-- .. ---' -

600 .-----~ 
/ 

,..... 

.4j ~ 
/ --- Experimental (FS-T2) e-

/ -.- 'Best Fit (n~6,65) 
I--

500 

~ 
E 400 
~ 
III 

~ 300 

200 

100 

V --ASCE (n=5,02) 

o 
o 

800 

700 

600 

200 

100 

o 

0,002 0.004 0,006 

Strain 

Figure 4 

0.008 

Full Section I RaJriJerg-Osgoo CorllJariscn (WSecI:ioo) 

0,01 0,012 

~ -- . - .-

~ 
~-' 

~/ 
AI ~ 

/' 
/ 

Ii 
o 0,002 0,004 0,(0) 

Strain 

Figure 5 

" . -

--8q:lai1'l'B1ta (FS-
W2.) -

- .. 'BeSt Fit (n=6) 

-N?I:E (n=3,62) -

o,em 0,01 0,012 



800 

700 

600 

"'E 500 
.e 
~ 400 

.~ :: 300 

200 

100 

o 

800 

700 

800 

200 

100 

o 

686 

Coupon Test showing large strains (W-Section) 
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