
Missouri University of Science and Technology Missouri University of Science and Technology 

Scholars' Mine Scholars' Mine 

International Specialty Conference on Cold-
Formed Steel Structures 

(1971) - 1st International Specialty Conference 
on Cold-Formed Steel Structures 

Aug 20th, 12:00 AM 

Shock Loading of Thin Compression Elements Shock Loading of Thin Compression Elements 

Charles G. Culver 

Richard Van Tassel 

Follow this and additional works at: https://scholarsmine.mst.edu/isccss 

 Part of the Structural Engineering Commons 

Recommended Citation Recommended Citation 
Culver, Charles G. and Tassel, Richard Van, "Shock Loading of Thin Compression Elements" (1971). 
International Specialty Conference on Cold-Formed Steel Structures. 1. 
https://scholarsmine.mst.edu/isccss/1iccfss/1iccfss-session3/1 

This Article - Conference proceedings is brought to you for free and open access by Scholars' Mine. It has been 
accepted for inclusion in International Specialty Conference on Cold-Formed Steel Structures by an authorized 
administrator of Scholars' Mine. This work is protected by U. S. Copyright Law. Unauthorized use including 
reproduction for redistribution requires the permission of the copyright holder. For more information, please 
contact scholarsmine@mst.edu. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Missouri University of Science and Technology (Missouri S&T): Scholars' Mine

https://core.ac.uk/display/229101107?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.mst.edu/
http://www.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/isccss
https://scholarsmine.mst.edu/isccss
https://scholarsmine.mst.edu/isccss/1iccfss
https://scholarsmine.mst.edu/isccss/1iccfss
https://scholarsmine.mst.edu/isccss?utm_source=scholarsmine.mst.edu%2Fisccss%2F1iccfss%2F1iccfss-session3%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/256?utm_source=scholarsmine.mst.edu%2Fisccss%2F1iccfss%2F1iccfss-session3%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsmine.mst.edu/isccss/1iccfss/1iccfss-session3/1?utm_source=scholarsmine.mst.edu%2Fisccss%2F1iccfss%2F1iccfss-session3%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsmine@mst.edu


SHUCK LOADING OF THIN COMPRESSION 

ELEMENTS 

Hy Charles G. Culver1, and Richard Van Tassel 2, 1\ssoc. Members, ASCE 

INTHOOUCT!rtl 

. The existing. specification (11) 3 governing the design of cold-formed steel 

structural members used for load-carrying purposes in buildings is based on 

s ta tic loading cons i dera ti ons. The extensive theoreti ca 1 and experimenta 1 

investigations which form the basis for these specifications have prov1ded 

a thorough understanding of the behavior of these members subjected to stat1c 

loads. 

The use of cold-formed me!lbers is not restricted to building construction, 

however, and under various environmental condit10ns these members are sub-

jected to time-dependent or dynamic loads (8). · Conta1ners fabricated from 

cold-formed elements subject to shock or impact loading during transportation 

or collision problems involving vehicles which utilize cold-formed load car

rying members are two examples of this type of environmental condition. 

A considerable n•Jmber of theoretical and experimental investigations 

dealing with structural response due to time-dependent loading have been con-

ducted, Th1s information ranges from the analysis and design of structures 

subjected to blast or earthquake loads to the response of simple beams sub

jected to trans verse 1moact. Severa 1 comprehensive reviews and 1 i terature 

surveys of these studies are available. These existing studies deal primar

ily ~<i th s tructura 1 elements corm~on ly encountered in heavy construction such 

as hot-ro 11 ed \4F beams and co 1 umns. Due to fundamenta 1 differences between 

the behavior of cold-formed members and that of the heavier hot-rolled sec-

tions. a direct application of this information to problems involvinq cold

formed members is not always possible. 

The purpose of this paner is to oresent the results of the first phase 

of a research project directed toward develooing a fundamental understanding 

of the response of cold-formed members Stlbjected to time-dependent loading. 

The scope of this investigation is limited to structural elements subjected 

to rapidly apnlied short duration force, disphcement, velocity or accelera-

tion pulses. Loadinqs of this type are aenerally referred to as mechanical 

shock. 

foi.\THEMATI CAL MODEL 

The basic concept underlyino the design of cold-formed members involves 

the utilization of the postbuckling strenath of the compression elements which 

comprise the cross sections of these members. This postbucklin~ behavior and 

the associated concept of "effective width" introduce noolinearities in the 

response of co 1 d-formed sections and necessitate an iterative tyoe tria 1 and 

error design procedure for static loading. In order to understand the behavior 

of cold-formed members subjected to shock loading, it is therefore necessary to 

first establish the postbuckliog behavior of thin compression elements subjected 

to in-plane shock loadinq. 

The postbuckling behavior of thin plates subjected to static edge loads 

has been studied bY several investigators. A sunrnary of the princioal results 

in this area has been presented by Jombock and Clark (6). Only a limited 

amount of work has been done on the behavior of thin plates subjected to dy 

1Associate Prof@ssor of Civil Engin~ering, Carnegie-Mellon Universit,v, 
Pittsburqh, Pennsylvania. 

2ri rs t Lieutenant, u. S. AI'II\Y, Corps of Engineers; fonnerly graduate 
student, Carnegie-Mellon University, Pittsburgh, Pennsylvania. 

3Numerals in parentheses refer to corresponding items in Appendix I -
References . 

namic forces applied in the middle-olane of the plate. Zizicas (15) applied 

small deflection plate theory to problems of this type to investigate the re

lationship between transverse vibrations and overall plate instability. Other 

studies in this area (3, 10) have been concerned with the dynamic stability 

of plates subjected to periodically varying forces apolied in the middle plane. 

To the writer's knowledge, studies of the postbucklinq response of thin plates 

subjected to transient edge loading have not been conducted. 

The problem considered in this paper is illustrated in Fig. 1. The thin 

compression element shown in Fig. 1 is subjected to a time varyinq load P(t) 

applied in the middle plane. It is assumed that the load is applied through 

a rigid loading bar and does not vary across the width of the element. The 

initial deflection of the middle surface prior to application of the load is 

denoted by w0 (x,y). The element is assumed to be simply supported with re

spect to deflections nonnal to the middle plane. Two conditions of restraint 

with respect to in-plane displacements along the longitudinal unloaded edges 

w1ll be considered. In the first case the longitudinal edges remain strijight 

but are free to move laterally. For Case 2, lateral displacement of the longi

tudlnal edges is completely restrained. 

The mathematical model used in this study was the same as that developed 

by Bolotin (3) for dynamic stability studies of plates stbjected to periodic 

edge loadinq. Bolotin's model was extended, however, to include initial im

perfections, w0 (x,y), by using the strain-displacement relations derived by 

Hu, et. al. (5). Using the following large deflection plate equation 

(1) 

and the differential equations for the in-plane displacements, u, v, the fol

lowing nonlinear differential equation for the transverse deflections was de

rived using Galerkin's method 
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~ + S(T) 

dT 

0 
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(2) 

In applying GalerUn's method, the initial transverse deflection, w0 (x,y), and 

the total deflection, w(x,y), including deflection w0 , which satisfy the bound

ary conditions for simply supported edqes were taken as 

w = 

f 0 sin M sin "1.. 
a b 

f(t) sin ~ 
a 

sin l!l. 
b 

(3a) 

(3b) 

The initial and final deflection amplitudes and the time variable in Eq. 2 

were nondimensionalized as 

so . ~ (f-f0 ) 
(4a) s. ---

h h 

T = t 
tn 

. "'nt (4b) 

The fonn of Eq. 2 for botn conditions of restraint with respect to in-plane 

displacements, Case 1, Case 2 is the same. The parameters used to nondimen

sionalize the results were as follows 
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In deriving Eq. 2, the inertia terms associated with in-plane dlsplace

ments, stress wave propagation, were neglected. For a square plate, the ratio 

of the time required for the stress wave to traverse the plate once to the 

natural period is equal to 0.8/(a/h). For a/h • 60 this ratio Is approxi

mately 0.013. Since the time duration of the shock loads of interest in this 

study are usually longer than 0.1 times the natural period, the above assump

tion is reasonable. 

Since Eq. 2 1s a nonlinear differential equation with variable coefficients, 

a closed form solution would be difficult if not impossible to obtain. This 

equation was therefore solved on a CDC G-20 digital computer using a special 

The relationship for determining the effective ltidth in Eq. 8 1s the 

same for both conditions of lonqitudinal edge restraint, cases 1 and 2. The 

P(t) tr•--ah 

b II II 

'I 

tr•fill 
ah 

I· a •I 
CASE 1-Longltudlnal Edges Free to Move Laterally (Mean Edge Stress=O) 
CASE 2-Longltudinol Edges Cannot Move Laterally (Mean Edge Strain •OJ 

td 
1- •I 

RECTANGULAR PULSE TRIANGULAR PULSE 
FIGURE 1 - COIIIPression Element Subjected to Ti~~~e-Oeoenoent Loadinn 

program (12) written in ALGOL. This computer program is based on analog computer actual resulting effective widths for the two cases differ, however, since 

concepts and utilizes numerical integration operations to solve the differential the nondimensional deflection, S, obtained from Eq. 2 for the two cases 1s 

equation. An iterative prediction correction scheme which is required to con- different. 

verge to a specified error criterion is used to simulate the feedback principle Based on an extensive series of static beam tests, Winter ~evelooed the 

inherent in analog computers. following formula for effective width 

Three pulse shapes or time variation of the transient edge loading were 

considered as shown in Fig. 1. These forcing functions have been used in pre

vious dynamic response studies (1, 3, 4) and in certain cases they approximately 

simulate the shock loading induced in practical situations. 

After solving Eq. 2 for the time function S(-r), the transverse deflections 

may be found using Eq. 3. The longitudinal strain and stress in the middle 

plane may then be evaluated using the strain-displacement and stress-strain 

equations (3). 

Before discussing the general results obtained from this mathematical model, 

it is of interest to compare certain specific results obtained in this study 

with those of earlier studies. Comparison with both static and dynamic studies 

will be made. 

As mentioned previously, the concept of effective width introduced by von 

K~rmh has been used when considering the elastic postbuckling strength of 

plates. Eq. 2 is valid for the case of static loading if the first term, 

d2S(T)/d-r2, is set equal to zero. Note that if this is done and the initial 

deflection parameter, 50 , is also set equal to zero, Bleich's expression (2) 

for the postbuckling deflections 1s obtained. Defining effective width as 

(7) 

solving Eq. 2, substituting the result into the stress-strain relations to 

obtain (Nylmax and using Eq. 7 gives the following relationship for a square 

plate 

aeff 

aeff ft. r 1 11 • 1.9 If 11 - 0.415 (ilh) 
max L (9) 

Note that the design equation used for the effective width of stiffened com

pression elements (ll) may be obtained from Eq. 9 by introducing an aporopri

ate factor of safety of 1 .67. 

A comparison of the effective width obtained from Eqs. 8, 9 for the two 

cases of longitudinal edge restraint as well as two values of initial imper

fections, is presented in Table 1 in nondimensional form, (aeff I a>. The 

values of S used in Eq. 8 to obtain these results are presented elsewhere (13). 

The edge stress used in Eqs. 8, g is specified In terms of the buckling stress 

for the square plate. 

Referring to Table 1, the effective widths for cases 1 and 2 decrease as 

the Initial imperfections increase. Also for lower values of stress, cr/crcr ~ 

1.0, the effective width for a particular value of initial imperfections is 

less for case 2 than for case 1. As the stress increases, however, this ten

dency is reversed. The difference between case 1 and 2 results from the Pois

son ratio effect associated with the longitudinal edge restraint. 

Comparison of the results obtained from Eq. 9 with those from Eq. 8 Indi

cate that Eq. 9 predicts a smaller effective width In most cases. This result 

Is not surprising since Eq. 9 represents a conservative or lower bound approx

Imation to test data. The percent difference ·between these effective widths 

1s a function of stress level. The maxlmUII percent difference between the 

results in Table 1 for Eqs. 8, 9 is 10%. 

h 
. (8) The actual amount of initial Imperfections, S0, present fn the elements 

which comprise the cross section of cold-formed beam specimens Is difficult 
.M 



TABLE 1 • COMPARISON OF EFFECTIVE "!lOTH 

a 
"cr 
(1) 

0,5 

1.0 

1.5 

2.0 

(aeff/a)case 1 

(aeff1aJ 
Oi fference, 

so • 0.1 as a so • 0,2 
Eq 9 percentage 

(2) (3) (4) (5) 

0.978 0.977 0 0.943 

0.782 0.867 9.8 0.808 

0.672 0.727 7.5 0.690 

0.599 0.640 6.4 0.632 

Oi fference, as a percentage • Eq 8 • Eq 9 Eq a 

( aeff/a) case 2 

Oi fference, Oi fference, Difference, 
as a s 0. 0.1 as a so • 0.2 as a 

percentage percentage percenta9e 
(6) {7) {8) (9) (10) 

-3.7 0.959 -2.0 0,910 -7.5 

2.5 0.820 4.6 0.789 0 

2.6 0.730 7.9 o. 706 4.8 

5.2 0.666 9.9 0.645 7.1 

"cr E • 29,500 Ksi , v • 0.3 

to establish. Althot•3h "out of flatness" tolerances are soecified for the 

sheet material to be used to cold form these soecimens, similar tolerances 

are not specified for the finished cross section, In addition, the compres

sion elements in beam sections are not simply supported as assumed but are 

rotationally restrained by the other elements of the cross section. Based 

on the results presented in Table 1, however, it appears that the mathematical 

model reasonably represents the behavior of compression elements in cold

formed sections. The va 1 i di ty of these results for the case of dynamic load

ing and the influence of initial imperfections and rotational edge restraint 

should be experimentally verified in a manner similar to that used in develop

ing Eq. g for static loading. 

The dynamic response of an element subjected to a long duration rectangular 

pulse, \ = 0.1, s' = 1.6, obtained by solving Eq. 1s shown in Fig. 2. The 

results are presented in nondimensional form for several values of the magnitude 

of the applied load. The dynam1c response according to linear small deflection 

theory (15) is also shown. The dimensionless parameter used for the ordinate 

in Fig. 2 is the same as that used by Zizicas. 

Note that both snall deflection and large deflection theory oredict the 

same initial response. As time increases, however, small deflection theory 

overestimates the response. The difference between the 1 i near and nonlinear 

response is a function of the load magnitude, rx' = P/P• . As d increases the 

difference between the response using the linear and nonlinear theory also 

increases. For loads greater than the buckling load, a'> 1, the dynamic de

flections according to small deflection theory increase indefinitely with time. 

Due to the inclusion of the nonlinear terms in the strain-displacement equa-

ti ons, 1 arge deflection theory, however, predicts finite deflect! ons. 

The influence of the load function or pulse shape for case 1 on the 

transverse deflections is shown in Fig. 3. The response is plotted as a func

tion of time for the three pulse shapes considered in Fig. 1. Equal values 

of the maximum load were used for each pulse and the load durations were chosen 

such that the impulse or area under the load-time curve was the same for each 

pulse; i.e. with<>' • 2 and impulse = 1.274. a' = 0.637 for the rectangular 

pulse and e' • 1. 274 for the ramp and triangular pulses. 

The response curves in Fig. 3 indicate that the rectangular pulse causes 

the largest deflection. Over the first few time units~ the response due to 

the ramp pulse and rectangular pulse ~re nearly equa 1. After some time, how· 

ever, the two curves show considerable difference. Initially the trianqular 

pulse has negligible response compared to the other pulses. This 1s due to 

the low initial magnitude of the forcino function in the equation of motion, 

Eq. 2. After approximately five time units, the deflection due to the triangu

lar pulse exceeds that of the ramp pulse, which has started decreasing. Upon 

removal of the load, the deflections are due to free vibration. Note that 

the fl!!evibration is unsymmetrical with respect to the Taxis. This behavior 

occurs because of the nonlinear terms in the equation of motion. Also, the 

periods of free vibration are inversely related to the amplitude of vibration. 

Previous studies have indicated that the following parameters affect the 

dynamic response, of simple structures subjected to shock loading: 

1. Time variation of load (pulse shape) 

2. Load duration 

3. Load magnitude 

Based on the behavior of compression elements subjected to static loading {6), 

the following additional oarameters should be included for the specimens in 

in this investigation: 

4. Initial imoerfections 

5. Boundary conditions 

The influence of these five parameters on the transverse deflection at an 

antinode point, point of maximum deflection, and the mid-plane strain at the edoe 

of the element is shown in Figs. 4 through 9 in nondimensional form for a square 

plate, Note that the aopropriate value of p*, Eqs. Sa, 6a, was used for cases 
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1 and 2 to nondimensional ize the load. These results were obtained bv dividing 

the maximum response, deflection or strain, oroduced by the dynamic load by the 

corresponding value produced by a statically applied load equal to the maximum 

dynamic load. This dimensionless ratio may be referred to as an imooct factor, 

amplification factor or dynamic load factor. 

Referring to Figs. 4, 5 and 6, the influence of the time variation or oulse 

shape of the externally applied load is apparent. On the basis of the maximum 

impact factor, the rectangular pulse is obviously the most severe loading case, 

The ramp pulse approaches this case as the time duration, 8' , increases. Note 

in Fig. 6 that as the time duration of the triangular pulse increases, ,the im

pact factor approaches unity and the maximum respanse aoproaches that produced 

by static loading. 

The influence of the pulse shape discussed above is similar to that obtained 

in previous studies (1) of the response of a linear single mass oscillator. The 

non11nearities in the present problem apparently do not affect this influence. 

Note that the use of Eq. 3b in the analysis essentially reduces the system under 

consideration to a single degree of freedom. 
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rJGUR! ) . Influence of Load Function on RI!Sponse - Case 1 

The influence of load duration on the maximum response is also similar to 

that obtai ned from the analysis of I i near sys terns. For a very short load dura

tion, the dynamic effect is less than the static effect. For extremely short 

moval of the load pulse as the element began to vibrate freely, The second bump 

in Fig. 4 for S0 = 0.2 and ~· = 1.4 was also caused by this same effect. The 

range of time durations for which this phenomenon occurred was small and, in 

load durations, the effects of stress wave propagation should be considered. f.s general, the maximum response occurred during the time interval B' associated 

the load duration increases, the dynamic effect is pronounced. The time durations with application of the load pulse. This phenomenon also occurred for the other 

required for the impact curves to reach their maximum values, however, are pulse shapes considered but the associated time duration did not correspond to 

longer than the time durations for the linear single mass oscillator (1). that for which the maximum impact factor occurred. This effect is not apparent 

This beha·,ior is in agreement with previous studies of the dynamic resoonse of for the other pulse shapes since the resulting irregularities in the impact fac-

non 1 i near sys terns ( 1 , 4, 9) . tor curves were sma 11. 

The irregularity or bump in the curves for the rectangular pulse in Fig. 4 The influence of infttal imperfections on the dynamic response may be eval-

which occurs as the impact factors reach their maximum value is related to the uated by comparing the two graphs presented for each pulse ~hl!le and load 

nonlinearity of the equations of motion. Over this range of time durations, magnitude in Figs. 4, 5, 6, Referring to Fig. 4, for example, not that an in-

the maximum transverse deflections occurred in the first.cycle just after re- crease in initial imperfections from S0 • 0.1 to S0 • 0.2 tends to shift the 
68 



response curve to the left. 

The influence of the boundary conditions on the response of the plate may 

be evaluated by comparing the curves for case 1 and 2 in Figs. 4, 5, 6. Refer

ring to Fig. 4, for example, this influence depends upon the duration of the 

applfed load. For short duration loads, the increased edge restraint considered 

in case 2 tends to increase the impact factor. As the load duration increases, 

however, the influence of this restraint becomes less significant and the 

1.5 

Soyn. 
---1.0 
Sstotic 

1.5 

Soyn. 1.0 

Sstatic 

0.5 

a'= 0.5 

a'= 1.0 

a'= 2.0 

RECTANGULAR PULSE 
--Case 1 
---- Case 2 

S0 = 0.1 

a'= 0.5 

a'= 2.0 

Sa= 0.2 

1.0 
fj' 

FIGURE 4 - Rectangular Pulse Impact Factors - Deflection 

response for cases 1 and 2 are essentially the same. Thus for long duration 

dynamic 1 oads, the influence of the i n-ol ane boundary conditions is the same as 

that for static loading: i.e., 

(~) ~ 
Sstat Case 1 

...!!l!L -( s ) 
\tat Case 2 

1.5 

So,n. 
--1.0 
Sstatic 

Soyn. 1.0 

Sstatic 

RAMP PULSE 
--Case 1 
---- Case 2 

50 =0.1 

50 =0.2 

2 

FIGURE 5 - Ra111p Pulse l111pact Factors - Deflection 

3 

3 

deflections decrease and are substantially less than those produced under static 

loading. Theoretically for an infinitely short load duration the transverse de

flections and the corresponding impact factors approach zero. The impact factors 

for the strains, however, do not approach zero and the curves level off as the 

load duration decreases. Since stress wave propagation was neglected the strain 

in the plate has a finite value for B' > 0 . The curves however, have a discon

tinuity at B' = 0 , <dyn/•static = 0 , since obviously no load is apolied to 

the plate. 

Note that the edge strain impact factors for cases 1 and 2 are very nearly 

equal over the entire range of load durations and the influence of the in-plane 

boundary conditions on strains is the same as that for static loading . 

The accuracy of the above results were checked by using a two term expansion 

The influence of the boundary conditions also depends upon the shaoe of the load for the deflection in Eq. 3b. The resulting response spectra were the same. 

pulse. For example, the differences between cases 1 and 2 for the triangular The maximum difference beb/een the impact factors ~<as 9l: with the two tern ex~an-

pulse are less than those for the rectangular pulse for short duration loads. sion giving lower values as expected. 

The various parameters mentioned above influence the mid-plane edge strains Based on the preceding discussion and the results presented in Fig. 4 through 

and transverse deflections in a similar manner. Note however, that the maximum 9, the following conclusions may be drawn: 

impact factors for edge strains are less than for transverse deflections. This 1. The influence of the time variation of the applied loads on the impact 

is particularly true when the applied loads are less than the buckling load, "'' factors for deflections is qualitatively similar to that obtained for 

< 1 . For example, referring to Fig. 9, the impact factor for the triangular linear single mass oscillators. 

pulse with "'' • O.!i is only slightly greater than 1.0 regardless of the load 2. The magnitude of the impact factor for edge strains decreases for short 

duration, whereas the maximum impact factor for deflections in Fig. 6 is 1.34. duration loads and increases for longer duration loads, as the maximum 

The dynamic effect of short duration loading is also different for the edge applied load increases. 

strains and transverse deflections. As the load duration decreases the dynamic 3. In general, the influence of the In-plane boundary conditions on the 

~ 
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FIGURE 6 - Triangular Pulse Impact Factors - Deflection 

mid-plane edge strains is the same as for static loading. 

APPLICATION OF RESULTS 

The results presented above dealt with individual compression clements. In 

practical applications where impact or shock loading is of interest, however, 

the structures involved consist of load carrying members cold-fanned to shape 

from flat sheet or plate. In order to extend these results to practical cases 

it is necessary therefore, to comoare the dynamic behavior of individual elements 

to that of cold-formed structural members such as beams and columns. 

A qual it~tive extension of these results is given in Fig. 10. The ratio of 

the maximum mid-plane dynamic edge strain to the maximum static edge strain is 

plotted as a function of a' for the triangular load pulse. Note that thiS 

RECTANGULAR PULSE 
-Case 1 
----Case 2 

s0 = 0.1 

oL--------~.----~ t.O 

___ .._ __ ...., ___ _ 

S0 =0.2 

0~------------~----~ 1.0 
p' 

FIGURE 7 - Rectangular Pulse Impact Factors - Edge Strain 

fections and boundary conditions. 

For the case of static loading, the primary difference beb1een the behavior 

of an individual element in edge compression and the compression flange of a 

beam specimen or the elements comprising the cross section of an axially loaded 

column is the rotational restraint or boundary conditions provided by the ad

joining elements of the cross section. The influence of this rotational restraint 

fs obviously a 1 so important for the case of shock loading. In addition, the 

influence of cold-forming on the material properties in the vicinity of the junc

ture of two plates is also important (7). 

A direct analytical extension of the results presented herein to the case 

of cold-fanned beams and columns subjected to shock loading would be extremely 

complicated. A combined analytical and experimental approach was therefore ini-

relationship was obtained by idealizing the response curve in Fig. g for "' = 2.0, t1ated in order to establish the behavior of these members (14). The qualitative 

s0 = 0.1 by four straight lines. Using this ratio as a modification factor for results established from the parameter study in the preceding section are being 

the edge stress in Ea. 9 in computing the effective 1·1idth, a "dynamic effective utilized in these further studies. For example, in the case of a cold-fanned 

width" was calculated. The ratio of the dynamic effective width to the static beam subjected to shock 1 cadi ng, the i nterna 1 force in the como res s ion flange 

value is also shown in Fig. 10. These results represent the minimum value of varies with time due to the overall beam vibrations. Based on the results of 

effective width which would occur during the dynamic response of the elements. the dynamic response of linear elastic beams (1) the most severe shock loading, 

For short duration loads, 8'' 1.3 the dynamic effective width is greater than maximum amplification of bending moment, due to inertia effects associated wfth 

the static value. As the time duration of the load increases, a• > 1.3 , the the beam vibrations would occur for a duration of the external load p~lse equal 

dynamic value is less than the static value. For extremely long duration loads, to the natural period of the beam. For the nonlinear beam, however, considering 

this value obviously approaches unity. For an 8" square 16 gage olate, the value the compression flange of ·the beam as a rotationally restrained compression ele-

of 8' • 3.2 at which the static and dynamic effective widths are approximately ment loaded fnto the postbucklfng range, results presented ha.-.fn indicate that 

equal corresponds to a load duration of 0.018 seconds. Note that the above re- the time varfatfon, period, of the Internal moment wfth respect to the natural 

sults would change for different pulse shapes, load magnitudes, initial imper- . period of the compression flange, f .e •. II' , fs Important, Sfnce the natural 
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period of the compression flange is usually considerably different from the natural 

period of the overall beam, both the beam res~onse and the response of the ele

ments comprising the beam cross section may have to be considered in order to 

establish design criteria related to the severity of shock loading. Note that 

load durations S' of the order of magnitude of those in Fig. 10 would be con

siderably less than the natural period of the beam for practical cold-formed 

beams. Considerations of this nature were used in developing the experimental 

program mentioned above. 

For the case of axially loaded columns subjected to shock loading it may be 

possible to use the preceding results to develop modified form factors, Q , (11) 

for cold-formed column sections. Studies of this type are also underway. 

The analytical results and the ap~lications mentioned above were based on 

the assumption of linear elastic behavior of the material. It was therefore im

plicitly assumed that initial yielding at the edges of the element constitutes 

failure. A similar assumption was used to formulate static design specifications 

for cold-formed members and plastic design procedures are not permitted. For 

the case of shock loading, however, the behavior of these members after failure 

1111.1' be important in certain applications. For example, in designing collapsible 

t,ype structures with high energy absorption capabilities (8), the total behavior 

of the specimen up to conmlete rupture or tearing of the metal may be important, 

Therefore, the fa11ure modes of cold-formed members as well as their load-deflec-

tion history after the edge strains reach yield should be studied. 
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SlH1ARY AND CONC.LUSIONS 
APPENDIX II - NOTATION 

The nonlinear equations governing the elastic response of thin canpression 

elements loaded into the postbuckling range by dYnamic edge loads applied in the The following notation is used in this paper: 

middle plane were formulated and solved. Based on a number of cases considered, 

the relationship between the parameters which affect the dynamic response were 

evaluated. It is anticioated that the results obtained in this studY will be 

of use in establishing the behavior of cold-formed structural members subjected 

to shock loading. 
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a, b lengths of sides of rectanqular element, in.; 

effective width used to account for nonuniform distribution of 
longitudinal stress, in.; 
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D • 12(~~,,2j • flexural rigidity, lb. in.; 
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p* 

f-f S • __ o 
h 

f s • ...!!. 
0 h 

t 

T 

u, v 

w(x,y) 

X,Y 

a' • f. 
p 

y 

T • J_ 
t,. 

"'n 

a 

v 

modulus elasticity, lb. in.-2; 

aq>litude of transverse deflection, in.; 

amplitude of initial transverse deflection, in.; 

thickness of element, in.; 

longitudinal force in middle plane per unit length, lb. in.-1 ; 

external force in middle plane, lbs .;-

Eq, Sa, 6a, lbs; 

nondimensional transverse deflection; 

nondimensional initial transverse deflection; 

time, sec.; 

time duration of applied l_oad, sec.; 

1/"'n, sec.; 

natural period (211/wn), sec.; 

in-plane displacements in x and y directions averaged over 
thickness, in.; 

total transverse deflection of a point in middle plane 
(including initial imperfections), in.; 

initial transverse deflection, in.; 

rectangular coordinates; 

nondimensional load; 

Eqs. 5b, 6b; 

nondimensional time; 

nondimensional load duration; · 

lowest natural frequency of transverse vibration, rad, sec. -1; 

stress, lb. in. - 2 , 

maxf1111111 longitudinal edge stress in middle plane, lb. in. -2; 

Poisson's ratio; and 
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